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1. In order to generalize the notion of Azumaya algebra, we researched
on a special type of separable extension, called H-separable extension, and
have found that many properties which hold in Azumaya algebras hold also
in H-separable extensions (see for example [5], [2], and [8]). In this
paper we shall study relations between Galois extensions and H-separable
extensions, and shall obtain some necessary and suficient conditions for Galois
extensions to be H-separable extensions. By the definition of Galois extension
and by Cor. 1.1 [5], we can easily see that in the case of algebras over
a commutative ring R, H-separable Galois extensions of R is same as central
Galois extension of R. Throughout this paper A shall always be a ring with
1, I' a subring of A which contains same 1, C the center of 4 and 4=V,(I)
=A", and M*={meM|xm=mx for all x4} for any A—A-module M.

2. First, we shall recall definitions.

DeFINITION 1. A is called an H-separable extension of I" when A and
I' satisfy one of the following equivalent conditions ;

(a) AXrA4 is isomorphic to a direct summand of APADP --- DA (finite
direct sum) as 4— A-module.

(b) 4 is C-finitely generated projective, and the following map 7 is an
isomorphism

7: AQrA—Hom (¢4, ¢4) 7(2®y) (d)=2yd (x,yE 4, dE )
(c) For any A— A-module M, the following map ¢y is an isomorphism
Ou: AQeM*—M" gu(dRm)=dm (d€d, me M)

(d) 1X1€4(AQA)*

As for the proof of equivalence of (a)~(d), see Theorem 1.2 [5], Prop. 1
or (1.3) [7]. Note that Azumaya algebra always satisfies these conditions.

Next, let & be a finite group of automorphisms of 4 which fix all ele-
ments of I We can make Y, 4 AU, a ring by (zU,) (WU,)=xe() U,. (s, 7EG),
where {U},y is a free A-basis. We denote this ring by 4(4:®). Then
we can always have a ring homomorphism j of 4(4:®) to Hom (4, 4,)
such that j(zU,) (y)=x0W) (xr,y=4, s=®).

DerFINITION 2. We say that 4 is a &-Galois extension of I" when 4
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and I satisfy the following three conditions ; (1) 4 is right I'-finitely generated
projective (2) j is an isomorphism (3) A¥=I", where A®={z& A|o(x)=x for
all c=®}.

By Prop. 2.4 [3], 4 is a ©-Galois extension of I" if and only if A®=T,
and there exist x; ¥; (1=1,2, ---,n) in 4 such that Yx;6(y;)=d;,.

3. For any ring 4, we denote the opposite ring of 4 by A° and for
any subset X of 4, we put X’={2’lx=X}. Let ¢ be any ring automorphism
of A, then we shall put J,={a=A|xa=ao(x) for any x&4}. From 4 we
can obtain a new A— A-module 4, as follows; A,=/A as left A-module, but
as right module z-y=x0()) (x,y=4). Then, we have J,=(4,)" and 4=(4,)".

Next, note that, if 4 is an H-separable extension of I', we have a ring
isomorphism 7 of AXR)¢4° to Hom (4, 4;) such that 7(x&d’) (y) = xyd (z, y € 4,
ded) (See 1.5 [7]).

ProposiTiON 1. Let A be an H-separable extension of I' and & a
finite group of ring automorphisms of A which fix all elements of I
Then, we have

(1) j is an isomorphism if and only if 4=232J, (direct sum). In case
these conditions are satisfied, we have A®=V (V) (=I").

(2) In case A is, furthermore, right I'-finitely generated projective, A
is &-Galois extension of I if and only if 4=2324J..

Proor. (1). Suppose 4=22gJ,. Since Ais H-separable over I', 4Q)¢J,
~4 by dRd,—dd,(ds4,d,&J,), for each s&®. Hence we have 4J,=4 and
AJ,=A. Now consider a map ¢, of 4AQ¢J? to AU, defined by g,(xQd5)=
xzd, U, (x4, d,eJ,), for each ¢=G. Since AJ,=/, each g, is a left A-epimor-
phism. Then we obtain a left A-epimorphism ¢ of ARcA" (=23gd7) to

4(4;®) (=3244U,) with g=2g,. It is easy to compute that jg=7. Then
since ¢ is an epimorphism and # is an isomorphism, j is an isomorphism.
Next, for any x€ 4%, d=4, we have that d=23d,(d,€J,) and zd=2Xxd,=
Yd,o(x)=23d,x=dx. Hence we have A*CV,(4). A®DV,(d) is obvious from
& CHom (4, A) = AR 4. Thus we have A¥=V,(4)=1I". Conversely sup-
pose that j is an isomorphism. Then, 4= Hom (,4,, 44;)=[4(4;8)]'=
[Y24,(AU)N*=225J,U,. Then it follows that 4=23%4J,. (2). By Theorem
1.3 [5], 4 is also H-separable over I”, and Hom (4, Ar)=Hom (4, 4r)
(ZARc4. Hence A is also [”-finitely generated projective by Morita Theo-
rem. Therefore, (2) follows form (1) and the definition of Galois extension.

ReMARK. Note that the ‘only if’ part of (1) holds without the condition
that A is H-separable over I' (see Prop. 1 [4].

THFOREM 2. Let A be a &-Galois extension of I'.  Then the following
conditions are equivalent ;
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(i) 4 is an H-separable extension of T

(ii) For each ¢€®, map ¢, of AR¢J, to 4 defined by ¢,(dRd,)=dd,
(ded,d,ed,) is an isomorphism.

(i) J,J,-=C for every c=@®.

In case these conditions are satisfied, for any o, t€®, we have J,J.=J.,
and each J, is a C-progenerator of rank 1.

Proor. (i)=>(ii). This follows from (c). (i)>(ii). Since
4=2%gJ, by the above remark, 4X)J, =4 implies that 4=324J.J,C
2%gJ,.=4. Therefore we have J.J,=J,, for any 7, 6&®. Especially J,J,-:
=C. (il)>(3). Each element of J,-: can be regarded as an element of
Homy (J,, C), since J,-J,=C. Let 1=Xxzy, with ;&J, and y;&J,~.. Then
{x:, ¥} forms a dual basis of J, over C, since x=2Xz;y;x for every z<J,.
Also it can easily be shown that J,-i=Hom¢(J,, C). and C=Hom(J,, J,).
Thus J, is a C-progenerator of rank 1. Next, for each ¢&®, consider a
left A-homomorphism ¢, of AR¢J, to AU, defined by ¢,(xRQd,)=zd,U, (x4,
d,eJ,). Of course AR)yJ, and AU, are A— A-modules. Pick any z,y<=4
and d,J,. Then, ¢,((x®d,) y)=9.(xyQd,) =2yd, U, = zd,o(y) U,=2d, U,y =
g.(xQd,)y. Therefore ¢, is a A4— A-homomorphism. Since J,~J,=C, we
can put 1=u;v;(u;EJ,~,v;€J,). Then for any x4, zU,=g,(Exu;Qv,).
Thus g, is an epimorphism. If Yz, QRd;EKer ¢,(x;E 4, d;EJ,), then Zx,Rd;=
2 QQdiu;v;=3x;d;u;Xv;=0, since Yx;d;=0 and d;u,J,J,~.=C. Hence
Ker g,=0. Thus ¢, is a A— A-isomorphism. Then since J, is C-finitely
generated projective, AX)¢], <P(APADP --- PA) as A—A-module. There-
tore, Hom (A4, Ap)= 3% AU, <EP(APAP --- PA) as A— A-module. Then, we
have AR A= AQrHom (,4, 44)=Hom (;Hom (4, A7), ;A) <PAPAD --- P A),
as /- A-module.

CorOLLARY 3. Let A be a &-Galois extension of I'. Then if all ele-
ments of & are inner-automorphisms of A, A is an H-separable extension
of T

Proor. For each ¢=@®, let r, be a unit of 4 such that ¢(z)=r,- 27,
for all z& 4. Then r,eJ,, and 7,7,-: is a unit in C. Since J,J,-: is an ideal
of C, and r,r,-.&J,J,-, we have C=J,J,-..

ExaMpPLE 1. Let R be an arbitrary ring with 1, A=(R), 2 x2-full

matrix ring over R, and F:{[_Z 2] a, bER}. Put I:[_(l) (1)], and let E

be the identity matrix in 4. Let ((A)=A and ¢(A)=I"1AI, for every A= A.
Then 4 is a &-Galois extension of I" with &={, ¢}. Consequently, 4 is an
H-separable extension of I'. Because, for the matrix units e; ;(z,j=1, 2) of
4, we have Xe; e, ,;=FE and Je; 0(e;)=e, 1652+ €1(—e,,)=0. By direct com-
putations, we have that ¢*=¢ and A%=T".
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ExampLE 2. Let R, A, E, I, ¢ and ¢ be as in Example 1, and add

J:[(l) —(1)] K:[(l) é]’ and Put c(4)=J"AJ and p(A)=K'AK for all

A in 4. Furthermore suppose that 2 is a unit in R. Then 4 is a Galois
extension of R relative to an Abelian group ¥ ={, 0,7, p}. Because, by
direct computations, we see that et=10=p, pr=tp=0, sgp=po=t and 4*=R.
On the other hand, 27'<R implies that {E, I, J, K} is a free C-basis of
V,(R)=(C),. It is also easy to see that J,=CI, J.=CJ and J,=CK. Thus
we have V,(R)=232,J, Hence 4 is & -Galois extension of R by Prop. 1.

ReEMARK. In Example 1, if we put R=ring of rational integers, 2 is
not a unit in R. Thus orders of Galois groups are not always units in H-
separable Galois extensions, though they are always units in central Galois
algebras (see Cor. 3 [4]). In case 2 is unit in R, we have (1) [" is I'—1"-
direct summand of 4 (2) V,(I")=C" (the center of I') (3) V,(V,(")=I, by
next proposition which is proved in [9];

ProprosITION 4. Let A be an H-separable &-Galois extension of I
Then the following assertions hold

(1) V(VuI)=T".

(2) 4 is C-finitely generated projective of rank n, where n=|@|.

(3) The following conditions are equivalent ;

(i) n'eR (i) fr<@Prdr (i) 4 is a separable C-algebra
Proor. See Prop. 3 [9].
ReEMARK. From (1) it follows that, in case A is H-separable and ©-

galois over I, the center of I is equal to the center of 4, which we shall
denote by C'.

REMARK. Suppose that 4 is a ®&-Galois extension of I', and put &=
{aE@|oM=identity}. Then, & is contained in the center of &. Because,
for any ¢€& and 70, J,=¢{J,)CJ,.,—. But Y 4J. is a direct sum. Hence
J.=J,..—1, consequently, gr=rg.

ProrosITION 5. Let A be an H-separable extension of I' and o be any
automorphism of A which fixes all elements of I'. Then old=identity if
and only if J,CV,(4), the center of 4.

Proor. If ¢|4=identity, then for any a€J, and de4, da=as(d)=ad.
Hence J,CV,(4). On the other hand, by (c), 4J,=4. Then,
4J,J,-=4J,-.=4. But J,J,~: is an ideal of C and Cy,<@P4,. Hence J,J,—
=C. Similarly J,-J,=C. Put 1=y, z;(y;€J,~, x;=J,), and suppose J,C
V,(d4). Then for any ded, ¢ '(d)=3y,z;07(d)=2y;07'(d) x; = 2dy; x; = d.
Hence ¢(d)=d.

THFOREM 6. Let A be an H-separable and &-Galois extension of I
and & as in the remark above. Then if |®| is a unit, we have;
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(1) 4 is an H-separable 8-Galois extension of A®.
(2) A% is an H-separable &/R-Galois extension of I.
(3) The following conditions are equivalent ;
(i) C=232qd, (i) A*=I4 (i) 4 is a central &/K-Galois extension
of C.
ProoF. Put [@|=n. Since n'e€C(, tyz(n)=2,y0(n")=1. Therefore,
in this case 4 is a Galois extension of I' relative to & in the sense of Y.
Takeuchi [10], which is under stronger conditions than ours. Therefore, by
Theorem 1 [10], 4 is a R-Galois extension of A%, and 4% is a ©/R-Galois
extension of /" in our sense, too. Then by Prop. 1 [4], V,(4%)=223.J..
Hence, J,J,-.=C for all 6 RC®, by [Theorem 2. Then A is H-separable
over A% by [Theorem 2. Furthermore put J,={aEA®*|za=ad(x) for all
xE A%} for each 6€® (G=O/R), and let E=0,RUs,RU -+ Us, & be a de-
composition of & by cosets of & Then, obviously (¥2,J,..)CJ,, and we
see 1€J,,.J,-1-1CJ,~J,;- for all ;€®/R. Thus J,J,~= the center of A%
for all &®. Hence A% is H-separable over I. Thus we have shown (1)
and (2). (3). Put D=V ,(4%), which is equall to Y24J,. ({)=({i). By Prop.
4, 4=V (V(47))=V(D)=V,C). But since 4 is an Azumaya C -algebra,
we have that V,(C')=V,(4) 4=T'd(='K¢4d). Hence A*=I'4. (ii)=(i). Clear.
(i)o(ii). Put A=A, Note that Vi(I)=A*NV,([)=dNA*=4, Vi(d)=
ANV (A)=AND=D. Hence 4 and C' are D-finitely generated projective
by (b). By (2), we have Y25 AU,=Hom (4, 4;), and Y254U,=
(3%54U,)r=Hom (A, pAr) =4 pd° (see (1.5) [7]). Hence we have the fol-
lowing commutative diagram
2.2 4U;,—— Hom (pApy v Ay) = AR) pd°
€8 || .
32 AU,——Hom (d¢, de) = A@Oj"
495}
Therefore, j is an isomorpgism if and only if 4X)p,4=4K) 4, consequently, if
and only if D=C', because C’ is D-finitely generated projective, and C' <@P4.
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