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Regularity of solutions to hyperbolic mixed problems

with uniformly characteristic boundary
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(Received April 22, 1980; Revised July 16, 1980)

\S 0. Introduction and results

Let G be a domain in R^{n} with smooth boundary \partial G . We consider
the following mixed problem for a hermitian hyperbolic system P :

(P, B)

’

Pu=f in [t_{1}, t_{2}]\cross G .
Bu=g on [t_{1}, t_{2}]\cross\partial G’.

-u(t_{1}, x)=h for x\in G ,

where t_{1}<t_{2},

(0. 1) P(t, x;D_{t}, D_{x})=D_{t}+ \sum_{j=1}^{n}A_{j}(t, x)D_{j}+C(t, x)j

A_{j} and C are m\cross m matrices, A_{j}=A_{j}^{*} , D_{t}=-i \frac{\partial}{\partial t} and D_{j}=-i \frac{\partial}{\partial x_{j}} . The

B(t, x) is an l\cross m matrix of constant rank l and all of A_{j} , C and B are

smooth and constant for large |t|+|x| .
For the sake of simplicity of description, throughout in the present

paper we may suppose that G is the open half space \{x_{n}>0\} . Furthermore
it is assumed that \partial G is uniformly characteristic for P, i. e. , the boundary

matrix A_{n} is of constant rank d less than m near \partial G . This article is con-
cerned with the L^{2}-well possedness for (P, B) and the regularity of solutions
to (P, B) under the L^{2}-well posedness. In particular, we are here interested
in the problem whose solution u satisfies the estimates of the type

(0. 2) \sum_{i=0}^{p}\{e^{-\gamma t}|D_{t}^{i}u(t)|_{p-i,\gamma}^{2}+\gamma\int_{t_{1}}^{t}e^{-rs}|D_{s}^{i}u(s)|_{p-i,\gamma}^{2}ds\}

+ \sum_{i+j\leq p}\gamma\int_{t_{1}}^{t}e^{-fS\langle D_{s}^{i}D_{n}^{j}A_{n}u(S)\rangle_{p-\frac{\iota}{2}-i-j,\gamma}^{2}ds}

\leq C_{p}\sum_{i=0}^{p}\{e^{-\gamma t_{1}}|D_{t}^{i}u(t_{1})|_{p-i,\gamma}^{2}

+ \gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}(|D_{s}^{i}f(s)|_{p-i,\gamma}^{2}+\langle D_{s}^{i}g(s)\rangle_{p+\frac{1}{2}-i,\gamma}^{2})ds\} , t_{1}<t<t_{2} ,
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for \gamma\geq\gamma_{p} , where p\geq\circ are integers and \gamma_{p} , C_{p}>0 are constants independent
of t_{1} , t_{2}, f, g and h (see \S 1 for notations).

Without loss of generality, we may take A_{n} to be block diagonal:

(0. 3) A_{n}=\{\begin{array}{ll}A 00 0\end{array}\}

j A=\{\begin{array}{ll}A^{+} 00 A^{-}\end{array}\} ,

where A^{+}(A^{-}) is a positive (negative) definite d^{+}\cross d^{+}(d^{-}\cross d^{-}) matrix respec-
tively and d^{+}+d^{-}=d . Furthermore, it is natural to assume that l=d^{+} and
(P, B) is reflexive, i. e. , ker A_{n}\subset kerB on \partial G. So, under (0. 3) we may take
B to be of the form
(0. 4) B=(B_{I}, 0)’. B_{I}=(I_{cl^{+}}, S) ,

where I_{i} denotes the i\cross i unit matrix and S is a d^{+}\cross d^{-} matrix (cf. Kubota
and Ohkubo [3], Lemmas 2. 9 and 2. 10). Let P_{0}(t, x;\tau, \sigma, \lambda) be the principal
symbol of P, where \tau , \sigma=(\sigma_{1}, \cdots, \sigma_{n-1}) , \lambda are covariables of t, x’=(x_{1^{ }},\cdots, x_{n-1}) ,
x_{n} respectively. Then we have

THEOREM 1. Let P_{0}(t, x;\tau, \sigma, \lambda) be of constant multiplicity in \tau . Sup-
pose that the kernel of B is maximally non-positive for P on \partial G, i . e. ,
(0. 5) A_{n},u\cdot u\leq 0 for u\in kerB on \partial G

and ker B is a maximal subspace obaying the above property. Then, forevery t_{1} , t_{2} and every f\in C^{0}([t_{1}, t_{2}];L^{2}(G)) , g\in C^{0}([t_{1}, t_{2}];H^{\frac{1}{2}}(\partial G)) and h\in L^{2}(G)

there exists a unique strong solution u\in C^{0}([t_{1}, t_{2}];L^{2}(G)) to (P, B) satisfying
inequality (0. 2) with p=0.

To get higher order estimates (0. 2) with p\geq 1 which are analogous
to those under Kriess’ condition (cf. Majda and Osher [6]), we must assume
additional conditions besides those of Theorem 1 (cf. Tsuji [12]). Let us
write P_{0}(t, x;0, \sigma, 0) as

(0. 6) \sum_{j=1}^{n-1}A_{j}(t, x)\sigma_{j}=\{\begin{array}{llll}A_{I} I A_{I} IIA_{II} I A_{II} II\end{array}\} (t, x;\sigma) ,

where A_{II} and A_{IIII} are d\cross d and (m-d)\cross(m-d) matrices respectively.
We now make the following assumption (A) on P_{0} :
(A-1) (A_{III}A^{-1}A_{II}-A_{IIII}A_{III}A^{-1})(t, x;\sigma)=0 for \sigma\in R^{n-1} ,
(A-2) (A_{III}A^{-1}A_{III})(t, x;\sigma)=0 for \sigma\in R^{n-1} .
Then we have

THEOREM 2. Suppose the conclusion of Theorem 1and in addition
the condition (A). For each integer p\geq 1 , if the data f, g, h belong
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to n^{p}C^{i}([t_{1}, t_{2}];_{H^{p-i}(G))} , n^{p}C^{i}([t_{1}, t_{2}] ; H^{p+\frac{1}{2}-i}(\partial G)) , H^{p}(G) respectively and
i=0 i=0

fulfifill compatibility conditions of order p-1 {see Defifinition 5. 1 below),

then the solution u belongs to \bigcap_{i=0}^{p}C^{i}([t_{1}, t_{2}];H^{p-i}(G)) and satisfifies inequality

(0. 2) together with the following inequality which yields an estimate for
the fifirst term on the right side in (0. 2):

(0. 7) \sum_{i=0}^{p}|D_{t}^{i}u(t_{1})|_{p-i,\gamma}^{2}\leq C_{p}(|h|_{p,\gamma}^{2}+\sum_{i=0}^{p-1}|D_{t}^{i}f(t_{1})|_{p-1-i,\gamma}^{2})

Estimates (0. 2) are as sharp as those in [6]. Furthermore the con-
dition (A) with respect to P is satisfied by important physical examples such
as the curl operator, Maxwell system and the linearized shallow water equa-
tions, which are treated also in [6]. But the conditions in [6], satisfied by

these examples, seem to be too complicated to compare with our conditions
(cf. \S 6).

Here we shall explain briefly why (A) is required to obtain higher

order estimates (0. 2). Let us write u={}^{t}(^{t}u_{I},{}^{t}u_{II})\in C^{m} where u_{I} and u_{II} are
d- and (m-d) -vectors respectively, and denote by A_{JK} operators with symbols
A_{JK}(t, x;\sigma)(J, K=I, II) . Then by (0.3) and (0.6) the equation Pu=f is

rewritten as

(0. 81 D_{n}u_{I}=A^{-1}(f_{I}-D_{t}u_{I}-A_{I1}u_{I}-A_{I} IIu_{II}-(Cu)_{I})

(D_{t}+A_{III}+C_{IIII})u_{II}=f_{II}-A_{II1}u_{I}-C_{II1}u_{I} ,

where C_{III} and C_{IIII} are the lowest left (m-d)\cross d and right (m – d) \cross (m – d)

blocks of C respectively. Unlike the noncharacteristic case, these do not

yield directly an estimate of D_{n}u_{II} in terms of f and tangential derivatives
of u . So we apply D_{n} to the second equation of the above to get

(D_{t}+A_{IIII}+C_{IIII})(D_{n}u_{II})

=D_{n}f_{II}-A_{II1}(D_{n}u_{I})-C_{III}D_{n}u_{I}+K_{1}u .
where (and in what follows) K_{i} stand for first order (tangential) differential
operators not containing D_{n} . Substituting (0. 8) into the second term on

the right and rearranging yield

(D_{t}+A_{IIII}+C_{IIII})(D_{n}u_{II})

=D_{n}f_{II}-A_{II1}A^{-1}.f_{I}-C_{III}D_{n}u_{I}+K_{2}u

+A_{III}A^{-1}A_{II}u_{I}+A_{III}A^{-1}A_{III}u_{II}+A_{III}A^{-1}D_{t}u_{I} .

Rewriting the last term of the above as D_{t}A_{III}A^{-1}u_{I}+K_{3}u_{I} we get for x_{n}\geq 0
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(0. 9) (D_{t}+A_{IIII}+C_{IIII})(D_{n}u_{II}-A_{II1}A^{-1}u_{I})

=D_{n}f_{II}-A_{II1}A^{-1}f_{I}-C_{III}’,D_{n}u_{I}+K_{4}u

+(A_{II1}A^{-1}A_{II}-A_{IIII}A_{II1}A^{-1})u_{I}+A_{II1}A^{-1}A_{III}u_{II1}

Note that (D_{t}+A_{IIII}+C_{IIII}) is a hermitian hyperbolic operator which does
not contain D_{n} . Then, under (A), we can obtain an estimate of (D_{n}u_{II}-

A_{III}A^{-1}u_{I}) and hence D_{n}u_{II} in terms of first order derivatives of f and u_{I}

and tangential derivatives of u_{II} (c . f . Lemma 4. 1). Thus, using estimates
of D_{n}u_{I} following from (0. 8) and of tangential derivatives of u which are
obtained from (0. 2) with p=0 as in the noncharacteristic case, we can raise
the differentiability of u to obtain (0. 2) with p=1 . The analogous procedures
together with differentiations of (0. 8) and (0. 9) will yield (0. 2) with p\geq 2 .

Section 2 is concerned with the proof of Theorem 1 and L^{2} estimates
of u are derived from the assumptions of Theorem 1. Sections 3 and 4
are concerned with the proof of Theorem 2, or higher order estimates.
In section 3, assuming the conclusion of Theorem 1 we mainly discuss
tangential estimates of u, and in section 4, assuming further the condition
(A) we do normal estimates of u_{II} . The proofs of Theorems 1 and 2 are
accomplished in section 5. In section 6 we give examples of (P, B) for
which (A) is satisfied.

\S 1. Norms and notations

Let H^{q}(R^{n-1}) be the usual Sobolev space of vector valued functions
v(x’)–(v_{1}, \cdots, v_{k}) , (q\in R^{1}) . We use the following norm with \gamma>0 of H^{q}(R^{n-1}) :
(1. 1) \langle v\rangle_{q,\gamma}=\langle\Lambda_{\gamma}^{q}v\rangle_{0} ,

where \langle\cdot\rangle_{0} is the standard norm of L^{2}(R^{n-1}) and

( \Lambda_{\gamma}^{q}v)(x’)=(2\pi)^{-(n-1)}\int_{n^{n-1}}(\gamma^{2}+|\sigma|^{2})^{q/2}\hat{v}(\sigma)c^{ix’\sigma}d\sigma ,

\hat{v}(\sigma)=\int_{n^{n-1}}e^{-ix’\sigma}v(x’)d\acute{x}

As the norm of the Sobolev space
functions u(x)=(u_{1}, \cdots, u_{k}) we use

(1. 2) |u|_{p,\gamma}=( \sum_{k=0}^{p}|\Lambda_{\gamma}^{p-k}D_{n}^{k}u|_{0}^{2)^{\frac{1}{2}}}

H^{p}(G)(p=0,1, \cdots) of vector valued

which is equivalent to ( \sum_{i+|\alpha|\leq p}|\gamma^{i}D^{\alpha}u|_{0}^{2})^{\frac{1}{2}}, |\cdot|_{0} being the standard norm of L^{2}(G) .
Let X be a Banach space and C^{j}([t_{1}, t_{2}];X) be the space of X-valued
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functions of t\in[t_{1}, t_{2}] which are j times continuously differentiable. For
u(t) \in\bigcap_{j=0}^{p}C^{j}([t_{1}, t_{2}] ; H^{p-j}(G)) and v(t) \in\bigcap_{j=0}^{[q]}C^{j}([t_{1}, t_{2}] ; H^{q-j}(R^{n-1})) with q\geq 0 we
define the norms by

(1. 3) |||u(t)|||_{p,\gamma}^{2}= \sum_{j=0}^{p}|D_{t}^{j}u(t)|_{p-j,\gamma 9}^{2}

\langle\langle v(t)\rangle\rangle^{2}q,r=\sum_{j=0}^{[q]}\langle D_{t}^{j}v(t)\rangle_{q-j,\gamma}^{2} ,

respectively. Then we see from (1. 2) and (1. 1) that

(1. 4) |||u(t)|||_{p,\gamma}^{2} \simeq\sum_{j+k\leq p}|\Lambda_{\gamma}^{p-j-k}D_{t}^{j}D_{n}^{k}u(t)|_{0}^{2} ,

(1. 5) \langle\langle v(t)\rangle\rangle_{p,\gamma}^{2}\approx\sum_{j\leq[q]}\langle\Lambda_{\gamma}^{q-j}D_{t}^{j}v(t)\rangle_{0}^{2} ,

where \approx stands for the equivalence of norms. Hence putting

(1. 6) ||u(t)||_{p}^{2}, \gamma=\sum_{j\leq p}|\Lambda_{\gamma}^{p-j}D_{\iota}^{j}u(t)|_{0}^{2} ,

(1. 7) \langle\langle\langle u(t)\rangle\rangle\rangle_{q}^{2},\gamma=\sum_{j+k\leq[q]}\langle\Lambda_{\gamma}^{q-j-k}D_{t}^{j}D_{n}^{k}u(t)\rangle_{0}^{2} ,

we get

(1. 8) |||u(t)|||_{p,\gamma}^{2} \approx\sum_{k=0}^{p}||D_{n}^{k}u(t)||_{p-k,\gamma}^{2} ,

\langle\langle\langle u(t)\rangle\rangle\rangle_{q}^{2},r=\sum_{k=0}^{[q]}\langle\langle D_{n}^{k}u(t)\rangle\rangle_{q-k,\gamma}^{2}

Now, for real \gamma(\gamma\neq 0) we set

\langle\langle v\rangle\rangle_{q,\gamma}^{2}=\int_{-\infty}^{\infty}\langle e^{-\gamma t}(\Lambda_{\tau}^{q}v)(t)\rangle_{0}^{2}dt .

(1. 9) ||u||_{q,\gamma}^{2}= \int_{-\infty}^{\infty}|e^{-\gamma l}(\Lambda_{\tau}^{q}u)(t)|_{0}^{2}dt ,

|||u|||_{p,\gamma}^{2}= \sum_{k=0}^{p}||D_{n}^{k}u||_{p-k,\gamma}^{2} .

Here \Lambda_{\tau}^{q}=\Lambda_{\tau}^{q}(D_{t}, D_{x’} ; \gamma) is the pseud0-differential operator with the symbol
(\gamma^{2}+\eta^{2}+|\sigma|^{2})^{q/2}=(|\tau^{2}|+|\sigma|^{2})^{q/2} , where \tau=\eta-i\gamma and a pseud0-differential operator
\beta(t, x;D_{t}, D_{x’} ; \gamma) with the symbol \beta(t, x;\eta, \sigma;\gamma)=\beta(t, x;\tau, \sigma) is defined by

(1. 10) \beta(t, x;D_{t}, D_{x’} ; \gamma)\cdot v(t, x’\rangle

=(2 \pi)^{-n}e^{rt}\int_{R^{n}}\beta(t, x;\eta-i\gamma, \sigma)\hat{e^{-\gamma t}v}(\eta, \sigma)e^{i\eta t+i\sigma x’}d\eta d\sigma
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(cf., for instance, Ohkubo and Shirota [8]). We denote by H_{q,\gamma}(R^{1}\cross R^{n-1}) ,
H_{0,q;\gamma}(R^{1}\cross G) and H_{p,0;\gamma}(R^{1}\cross G) the completions of C_{0}^{\infty}(R^{1}\cross R^{n-1}) , C_{0}^{\infty}(R^{1}\cross\overline{G})

and C_{0}^{\infty}(R^{1}\cross\overline{G}) with respect to the norms in (1. 9), respectively (cf. Kubota
[2] ) . We finally remark that for \gamma>0

\langle\langle v\rangle\rangle_{q,\pm\gamma}^{2}\approx\int_{-\infty}^{\infty}e^{\mp 2\gamma t}\langle\langle v(t)\rangle\rangle^{2}q,\gamma dtj q\geq 0 :

(1. 11) ||u||_{p,\pm\gamma}^{2} \approx\int_{-\infty}^{\infty}e^{\mp 2\gamma t}||u(t)||_{p,\gamma}^{2}dt ,

|||u|||_{p,\pm\gamma}^{2} \approx\int_{-\infty}^{\infty}e^{\mp 2\gamma t}|||u(t)|||_{p,\gamma}^{2}dt

\S 2. L^{2}-estimates

In this section, under the assumptions of Theorem 1, we first discuss
the L^{2}-well posedness for the following boundary value problem (P, B)_{0} :

\mathfrak{l}^{Pu}=f in R^{1}\cross G ,
(P, B)_{0} 1 Bu =g on R^{1}\cross\partial G ,

and next derive a priori estimate (0. 2) with p=0.
Hereafter in all inequalities let \gamma be sufficiently large and denote by C

suitable positive constants independent of \gamma , t_{1} , t_{2} and functions appeared
there, unless especially stated.

PROPOSITION 2. 1. Let P_{0}(t, x;\tau, \sigma, \lambda) be of constant multiplicity in
\tau . Then there exist constants C, \gamma_{0}>0 such that for every \gamma\geq\gamma_{0} and u\in

C_{0}^{\infty}(R^{1}\cross G)

(2. 1) \langle\langle\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}\rangle\rangle_{0,\gamma}^{2}\leq C(||u||_{0,\gamma}^{2}+\gamma^{-2}||f||_{0,\gamma}^{2}+\gamma^{-1}\langle\langle g\rangle\rangle_{0,\gamma}^{2})’.

the norms being defifined by (1. 9).

PROOF. From (0.4) and [3], Lemma 2. 10 there exists a small \epsilon>0

such that for all {t,x’ ,\tau,\sigma)\in R^{1}\cross\partial G\cross((\overline{C}_{-}\cross R^{n-1})\backslash 0) with |\sigma|\leq\epsilon|\tau|

(2. 2) R(t, x’ ; \tau, \sigma)\neq 0 ,

where \overline{C}_{-}= { \tau\in\overline{C}^{1} ; Im \tau\leq 0} and R is a Lopatinskii determinant for (P, B)_{0} .
Let \beta_{1}(\tau, \sigma) and \beta_{2}(\tau, \sigma) be positively homogeneous scalar valued C^{\infty}

-

functions of degree 0 in (\eta, \sigma, \gamma) with (\eta-i\gamma, \sigma)\in(\overline{C}_{-}\cross R^{n-1})\backslash 0 satisfying \beta_{1}+

\beta_{2}=1 whose supports are in \{(\tau, \sigma) ; |\sigma|\geq(\epsilon/2)|\tau|\} and \{(\tau, \sigma);|\sigma|\leq\epsilon|\tau|\} re-
spectively. Let \beta_{i}(D_{t}, D_{x’} ; \gamma)(i=1,2) be the pseud0-differential operators as
in (1. 10); noting u_{I}=\beta_{1}(D_{t}, D_{x’} ; \gamma)u_{I}+\beta_{2}(D_{t}, D_{x’} ; \gamma)u_{I} we shall estimate \beta_{1}u_{I}

and \beta_{2}u_{I} (cf. Miyatake [7]).
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Since on the support of \beta_{1}(\tau, \sigma)

(\gamma^{2}+|\sigma|^{2})^{-1}\leq 8\epsilon^{-2}(|\tau|^{2}+|\sigma|^{2})^{-1} for \gamma=- Im \tau>0 ,

we see from (1. 9) that for every u\in C_{0}^{\infty}(R^{1}\cross G)

\langle\langle\Lambda_{\gamma}^{-\frac{1}{2}}\beta_{1}u_{I}\rangle\rangle_{0,\gamma}^{2}\leq C_{\epsilon}\langle\langle\Lambda_{\tau}^{-\frac{1}{2}}u_{I}\rangle\rangle_{0,\gamma}^{2} ,

where C_{e}>0 is independent of \gamma and u_{I} . Since\ll\Lambda_{\tau}^{-\frac{1}{2}}u_{I}\gg_{0,\gamma}^{2}=2{\rm Im}(e^{-\gamma t}(D_{n}u_{I}) ,
e^{-\gamma t}\Lambda_{\tau}^{-1}u_{I})_{L^{2}(l^{1}\cross G)}, , from (0. 8)

\langle\langle\Lambda_{\tau}^{-\frac{1}{2}}u_{I}\rangle\rangle_{0,\gamma}^{2}\leq C(||u||_{0,\gamma}^{2}+\gamma^{-2}||f||_{0,\gamma}^{2})(

Therefore (2. 1) follows if we prove under (2. 2) that for every u\in C_{0}^{\infty}(R^{1}\cross G)

(2.3) \langle\langle\beta_{2}u_{I}\rangle\rangle_{0,\gamma}^{2}\leq C(\gamma^{-1}||u||_{0,\gamma}^{2}+\gamma^{-1}||f||_{0,\gamma}^{2}+\langle\langle g\rangle\rangle_{0,\gamma}^{2}+\langle\langle\Lambda_{\tau}^{-1}u_{I}\rangle\rangle_{0,\gamma}^{2})

To establish this we shall localize and reduce (P, B)_{0} to a noncharacteristic
problem for \beta_{2}u_{I} . Set

(2. 4) \{\begin{array}{lllll}Q_{I} I Q_{I} IIQ_{II} I Q_{II} II\end{array}\}

(t, x; \tau, \sigma)=P_{0}(t, x;\tau, \sigma, 0)=\tau I_{m}+\sum_{j-1}^{n-1}A_{j}\sigma_{j} ,

where Q_{II} , Q_{IIII} are d\cross d, (m-d)\cross(m-d) matrices respectively. Then
(P, B)_{0} is rewritten as

\int^{(D_{n}+A^{-1}Q_{I1})u_{I}+A^{-1}Q_{III}u_{II}=A^{-1}(f_{I}-(Cu)_{I})} ,
|Q_{IIII}u_{II}=f_{II}-Q_{III}u_{I}-(Cu)_{II} in R^{1}\cross G .

B_{I}u_{I}=g on R^{1}\cross\partial G_{:}

where the last equality is due to (0. 4).
In what follows, for J , K=I, II we denote again by Q_{JK}(t, x;\tau, \sigma)

an appropriate positively homogeneous C^{\infty}-extention to (\overline{C}_{-}\cross R^{n-1})\backslash 0 of Q_{JK}

(t, x;\tau, \sigma) restricted to the support of \beta_{2}(\tau, \sigma) such that for any (\tau, \sigma)\in

(\overline{C}_{-}\cross R^{n-1})\backslash 0 there exists a (\tau_{0}, \sigma_{0})\in supp\beta_{2} satisfying Q_{JK}(t, x;\tau, \sigma)=Q_{JK}

(t, x;\tau_{0}, \sigma_{0}) and |\tau_{0}|^{2}+|\sigma_{0}|^{2}=1 (cf. [8] for instance). Since the degrees of \beta_{2}

and Q_{JK} are 0 and 1 respectively, it follows from the above equations that
|’(D_{n}+A^{-1}Q_{I1})\beta_{2}u_{I}+A^{-1}Q_{III}(\beta_{2}u_{II})=\beta_{2}A^{-1}f_{I}+\tilde{K}_{1}u

,\cdot(2. 5)
|Q_{IIII}\beta_{2}u_{II}=-Q_{II1}\beta_{2}u_{I}+\beta_{2}f_{II}+\tilde{K}_{2}u in R^{1}\cross G\tau

(2. 6) B_{I}(\beta_{2}u_{I})=\beta_{2}g+[B_{I}, \beta_{2}]u_{I} on R^{1}\cross\partial G ,

where (and in what follows) \tilde{K}_{i} stand for pseud0-differential operators of
degree 0.

Since from (2. 4) det Q_{IIII}(t, x;\pm 1,0)=(\pm 1)^{m-(l}\neq 0 , we have
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det Q_{IIII}(t, x;\tau, \sigma)\neq 0 on (\overline{C}_{-}\cross R^{n-1})\backslash 0 ,

if \epsilon is taken sufficiently small. Hence there exists an inverse Q_{III}^{-1} of Q_{IIII}

whose principal symbol is Q_{III}^{-1}(t, x;\tau, \sigma) of degree -1. Therefore we get
from the second equation of (2. 5)

\beta_{2}u_{II}=-Q_{IIII}^{-1}Q_{II1}\beta_{2}u_{I}+Q_{1III}^{-1}\beta_{2}f_{II}+\tilde{K}_{3}\Lambda_{\tau}^{-1}u .

Inserting the above into the first of (2. 5) yields

(2. 7) (D_{n}-M(t, X ; D_{t}, D_{x^{\prime }}; \gamma))(\beta_{2}u_{I})

=(\beta_{2}A^{-1}f_{I}-A^{-1}Q_{III}Q_{IIII}^{-1}\beta_{2}f_{II})+\tilde{K}_{4}u in R^{1}\cross G ,

where M denotes the d\cross d matrix

(2. 8) M(t, x;\tau, \sigma)=-A^{-1}(Q_{II}-Q_{III}Q_{IIII}^{-1}Q_{II1})(t, x;\tau, \sigma)

Let us recall that R is a Lopatinskii determinant for the noncharacteristic
problem (2. 7) with boundary condition (2. 6) with respect to \beta_{2}u_{I} (see [3],
(2. 20) and (2. 21)) . Therefore, applying Kreiss’ methods we can derive (2. 3)

from (2. 2) and the following lemma (see, for instance, [8], Lemma 5. 1 and
subsection 8. 1) :

lemma 2. 2. Under the assumption of Proposition 2. 1, there exist
constants \epsilon, C>0 , nonsingular d\cross dC^{\infty} matrix S_{I}(t, x;\tau, \sigma) and C^{\infty}-func-
tions \lambda_{i}(t, x;\tau, \sigma)(i=1, \cdots, d) such that for |\sigma|\leq\epsilon|\tau| and |\tau|^{2}+|\sigma|^{2}=1

S_{I}^{-1}MS_{I}=\{\begin{array}{lll}\lambda_{1} \ddots \lambda_{a}\end{array}\} and |{\rm Im}\lambda_{i}|\geq C|{\rm Im}\tau|

PROOF. Let \tau_{i} be the roots in \tau of det P_{0}(t, x;\tau, \sigma, \lambda)=0 and m_{i} their
multiplicities. Then from the assumption, all \tau_{i}(t, x;\sigma, \lambda) are infinitely
differentiable over R^{1}\cross\overline{G}\cross R^{n} and analytic, real and distinct for (\sigma, \lambda)\in R^{n}\backslash 0 .
Furthermore by (0. 3) we may assume that

\tau_{i}(t, x;0, \lambda)=a_{i}(t, x)\lambda for i\leq d’ ,

\tau_{i}(t, x;0, \lambda)=0 for i\geq d’+1 ,

where a_{i}\neq 0 are the eigenvalues of -A and d’ is the number of distinct

ones. Hence we get \frac{\partial\tau_{i}}{\partial\lambda}(t, x;0, \lambda)\neq 0 for i\leq d’ and \sum_{i\leq cl},m_{i}=d. So, accor-
ding to the implicit function theorem, there exist C^{\infty} function \lambda_{i}(t, x;\tau, \sigma)

which are real and analytic in \tau\in R^{1} such that

(2. 9) \tau-\tau_{i}(t, x;\sigma, \lambda)=(\lambda-\lambda_{i}(t, x;\tau, \sigma))c_{i}(t, x;\tau, \sigma, \lambda) i\leq d’.
,
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with c_{i}(t, x;\tau, 0, \lambda)\neq 0 . Since (2. 9) implies \frac{\partial\lambda_{i}}{\partial\tau}\neq 0 , |{\rm Im}\lambda_{i}|\geq C|{\rm Im}\tau| holds
for small |\sigma| and some C>0 .

Now, since \sum_{j-1}^{n-1}A_{j}\sigma_{j}+A_{n}\lambda is hermitian and has eigenvalues -\tau_{i} , there
exist linearly independent associated C^{\infty}-eigenvectors \{\tilde{h}_{i}^{j}\}_{j=1,\cdots,m_{i}} , so that
P_{0}(t, x;\tau_{i}, \sigma, \lambda)\tilde{h}_{i}^{j}(t, x;\sigma, \lambda)=0 . Set h_{i}^{j}(t, x;\tau, \sigma)=\tilde{h}_{i}^{j}(t, x;\sigma, \lambda_{i}(t, x;\tau, \sigma))\in C^{\infty}

for i\leq d’ , j=1 , \cdots , m_{i} and for small |\sigma| , then it follows from (2. 9) that h_{i}^{j}

are null vectors of P_{0}(t, x;\tau, \sigma, \lambda_{i}) . Therefore we get from (2. 4) and (0. 3)

(h_{i}^{j})_{II}=-Q_{IIII}^{-1}Q_{II1}(h_{i}^{j})_{I}

So putting

\{\begin{array}{ll}S_{I} -Q_{IIII}^{-1}Q_{II} IS_{I}\end{array}\}=[h_{1^{ }}^{1},\cdots, h_{1}^{m_{1_{ }}},\cdots, h_{d}^{1},, \cdots, h_{a}^{m_{d’}},] ,

where S_{I}\in C^{\infty} is the upper d\cross d matrix, we see from the linear independence
of \{h_{i}^{j}\}_{i,j} that det S_{I}\neq 0 . Furthermore since

P_{0}(t, x;\tau, \sigma, \lambda_{i})=\{\begin{array}{ll}A 00 I_{m-\iota l}\end{array}\} [^{\lambda_{i}I_{a_{0}^{-}}M}A^{-1}Q_{III}Q_{IIII]}^{-1}I_{m-a} \{\begin{array}{llll}I_{d} 0 Q_{II} 1 Q_{II} II\end{array}\}

according to (2. 4), (2. 8) and (0. 3), we conclude that M(h_{i}^{j})_{I}=\lambda_{i}(h_{i}^{j})_{I} . This
implies the desired diagonalization of M by S_{I} .

Using Proposition 2. 1 essentially we will obtain
PROPOSITION 2. 3. Suppose the conditions of Theorem 1. Then for

any integer p there exists constants C_{p} , \gamma_{p}>0 such that for every \gamma\geq\gamma_{p},
f\in H_{0,pj\gamma}(R^{1}\cross G) and g with \Lambda^{\frac{1}{2\gamma}}g\in H_{p,\gamma}(R^{1}\cross\partial G) the problem (P, B)_{0} has
a unique solution u\in H_{0,p;\gamma}(R^{1}\cross G) satisfying the inequality

(2. 10) ||u||_{p,\gamma}^{2}+\langle\langle\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}\rangle\rangle_{p,\gamma}^{2}\leq C_{p}\gamma^{-2}(||f||_{p,\gamma}^{2}+\langle\langle\Lambda^{\frac{1}{\gamma 2}}g\rangle\rangle_{p,\gamma}^{2})1

Moreover, for any real t_{0}, if f=g=0 for all t<t_{0} then u=0 for all
t<t_{0} .

In order to prove Proposition 2. 3, we first discuss the maximal non-
positiveness of (P, B) . Let u_{I}={}^{t}(^{t}u^{+},{}^{t}u^{-}) where u^{\pm} are d^{\pm} vectors respec-
tively. Then from (0. 3) we have

(2. 11) A_{n}u\cdot u=A^{+}u^{+}\cdot u^{+}+A^{-}u^{-}\cdot u^{-}

Since by (0.4)\backslash u\in kerB implies u^{+}=-Su^{-} , substitute this into (2. 11). Then
(0. 5) becomes

(2. 12) (A^{-}+S^{*}A^{+}S)u^{-}\cdot u^{-}\leq 0 for u^{-}\in C^{a^{-}} on \partial G



102 T. Ohkubo

Now, for convenience, we put \mathscr{A}^{1}=\{u ; u, D_{t}u, D_{j}u(j=1, \cdots, n-1) and
D_{n}u_{I}\in L^{2}([t_{1}, t_{2}]\cross G)\} ; then H^{1}([t_{1}, t_{2}]\cross G)\subset \mathscr{A}^{1}\subset C^{0}([t_{1}, t_{2}] ; L^{2}(G)) . For
u\in \mathscr{F}^{1} it follows from (0. 1) and (0. 3) that

\frac{d}{dt}|u(t)|_{0}^{2}=-2 Im (D_{t}u(t), u(t))

\leq\{\langle A_{n}u, u\rangle-2 Im (f, u)+C|u|_{0}^{2}\}(t) ,

where C>0 and (\cdot, \cdot) , \langle\cdot, .\rangle stand for the inner products in L^{2}(G) , L^{2}(\partial G)

respectively. Set g=Bu|_{\partial G} . Then we have from (0. 4) and (2. 11)

\langle A_{n}u, u\rangle(t)=\{\langle(A^{-}+S^{*}A^{+}S)u^{-} , u^{-}\rangle

+\langle A^{+}g, g\rangle-\langle A^{+}g, Su^{-}\rangle-\langle A^{+}Su^{-}, g\rangle\}(t)

Therefore, we find (2. 12) implies that for any positive \delta\leq 1

\frac{d}{dt}|u(t)|_{0}^{2}\leq\gamma|u(t)|_{0}^{2}+C\gamma^{-1}|f(t)|_{0}^{2}

+C(\delta^{-1}\gamma^{-1}\langle\Lambda_{\gamma}^{1/2}g(t)\rangle_{0}^{2}+\delta\gamma\langle\Lambda_{\gamma}^{-1/2}u_{I}(t)\rangle_{0}^{2}) ,

i. e. ,

(2. 13) \frac{d}{dt}(e^{-\gamma t}|u(t)|_{0}^{2})\leq Ce^{-\gamma t}\{\gamma^{-1}(|f(t)|_{0}^{2}

+\delta^{-1}\langle\Lambda^{\frac{1}{\gamma 2}}g(t)\rangle_{0}^{2})+\delta\gamma\langle\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}(t)\rangle_{0}^{2}\} u\in \mathscr{F}^{1} ,

where \delta is independent of C, \gamma , t_{1} , t_{2} and u (c . f . Taniguchi [11]).

Lemma 2. 4. Let h(t)\geq 0 be an integrable function and \gamma>0 . Then

\int_{a}^{t}ds.\int sae^{-\gamma(s+s’)}h(s’)ds’\leq\gamma^{-1}\downarrow_{a}^{t}.e^{-2\gamma s’}h(s’)ds’ , t>a .

Using this lemma which is verified directly, we obtain
Lemma 2. 5. Assume the conditions of Theorem 1. Then for any

integer p there exist constants C_{p}, \gamma_{p}>0 such that for every \gamma\geq\gamma_{p} and
u, v\in C_{0}^{\infty}(R^{1}\cross G)

(2. 14) ||u||_{p}^{2},\gamma+\langle\langle\Lambda_{\gamma}^{-1/2}u_{I}\rangle\rangle_{p,\gamma}^{2}\leq C_{p}\gamma^{-2}(||Pu||_{p,\gamma}^{2}+\langle\langle\Lambda_{\gamma}^{1/2}Bu\rangle\rangle_{p,\gamma}^{2}) ,

(2. 15) ||v||_{p,-\gamma}^{2}+\langle\langle\Lambda_{\gamma}^{-1/2}v_{I}\rangle\rangle_{p,-\gamma}^{2}\leq C_{p}\gamma^{-2}(||P^{*}v||_{p,-\gamma}^{2}+\langle\langle\Lambda_{\gamma}^{1/2}B’v\rangle\rangle_{p,-\gamma}^{2}) ,

where
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P^{*}(t, x;D_{t}, D_{x})=D_{t}+ \sum_{j=1}^{n}A_{j}^{*}.(t, x)D_{j}+\sum_{j-1}^{n}(D_{j}A_{j}^{*}(t, x))+C^{*}(t, x) ,
(2. 16)

B’(t, x)=(B_{I}’(t, x)A^{*}(t, x), 0)\eta
, B_{I}(B_{I}’)^{*}=0

and B_{I}’ , B’ are (d-l)\cross d, (d-l)\cross m matrices of rank d-l respectively.
PROOF. Since (P, B) is maximally non-positive, (2. 13) holds for u\in

C_{0}^{\infty}(R^{1}\cross G) ; integrating it from - oo to t we get

e^{-\gamma t}|u(t)|_{0}^{2} \leq c\{\delta\gamma\int_{-\infty}^{t}e^{-rs\langle\Lambda_{\gamma}^{-1/2}u_{I}(s)\rangle_{0}^{2}ds}

+ \gamma^{-1}\int_{-\infty}^{t}e^{-rs}(|f(s)|_{0}^{2}+\delta^{-1}\langle\Lambda_{\gamma}^{1/2}g(s)\rangle_{0}^{2})ds\} .

Multiplying the above by e^{-\gamma t} and integrating from - co to \infty , we see from
Lemma 2. 4 and (1. 11) that

||u||_{0,\gamma}^{2}\leq C\{\delta\langle\langle\Lambda_{\gamma}^{-1/2}u_{I}\rangle\rangle_{0,\gamma}^{2}+\gamma^{-2}(||f||_{0,\gamma}^{2}+\delta^{-1}\langle\langle\Lambda_{\gamma}^{1/2}g\rangle\rangle_{0,\gamma}^{2})\}

This with \delta\ll 1 and (2. 1) lead to (2. 14) with p=0.
Next, apply \Lambda_{\tau}^{p} to the both sides of Pu=f and Bu|_{\partial G}=g and use (2. 14)

with p=\circ . Then by the relations (0. 8) and

\langle\langle\Lambda_{\tau}^{p-1}\Lambda_{\gamma}^{1/2}u_{I}\rangle\rangle_{0,\gamma}^{2}\leq C||\Lambda_{\tau}^{p}u_{I}||_{0,\gamma}^{2} ,

we obtain (2. 14) for each integer p.
Now according to [5], Lemma 3. 2, if N\equiv kerB is maximally non-

positive for A_{n} then N’\equiv kerB’=(A_{n}(N))^{\perp} is non-positive for (-A_{n}) . Fur-
thermore (0. 4) implies codim N’=d-d^{+}=d^{-} (see [3], Lemma 2. 1). So
ker B’ is maximally non-positive for (-A_{n}) . Hence applying the same argu-
ments to the problem

/P^{*}(-t, x;-D_{t}, D_{x})v(-t, x)=f’(-t, x) in R^{1}\cross G,\cdot

(2. 17)
|B’(-t, x)v(-t, x)=g’(-t, x) on R^{1}X\partial G ,

as we derived (2. 14), we obtain (2. 15).

Lemma 2. 6. For an integer p let \tilde{\Lambda}_{\tau}^{p}=\tilde{\Lambda}_{\tau}^{p}(D_{t}, D_{x’} ; \gamma) be a pseudO-
differential operator whose symbol is (\tau+|\sigma|)^{p}=(\eta-i\gamma+|\sigma|)^{p} where \gamma\neq 0 .
Then:

(i) \langle\langle v\rangle\rangle_{p,\gamma}\approx\langle\langle\tilde{\Lambda}_{\tau}^{p}v\rangle\rangle_{0,\gamma} for v\in H_{p,\gamma}(R^{1}\chi R^{n-1}) .
(ii) Lct\gamma>0 and p<0 . Then, for any real t_{0}, v belongs to H_{p,\gamma}

(R^{1}\cross R^{n-1}) and vanishes identically for t<t_{0} if and only if \tilde{\Lambda}_{\tau}^{p}v belongs
to H_{0,\gamma}(R^{1}\cross R^{n-1}) and vanishes identically for t<t_{0} .

PROOF. The equivalence (i) follows from the inequality
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|(\tau+|\sigma|)^{p}|^{2}\leq C_{1}(\gamma^{2}+\eta^{2}+|\sigma|^{2})^{p}\leq C_{2}|(\tau+|\sigma|)^{p}|^{2} ,

where C_{i} do not depend on \tau and \sigma .
To show (ii) it suffices, in view of (i), to prove that, for v\in C_{0}^{\infty}(R^{1}\cross R^{n-1})

v=0(t<t_{0}) is equivalent to \tilde{\Lambda}_{\tau}^{p}\tau=0(t<t_{0}) . Set w=\tilde{\Lambda}_{\tau}^{p}v , then v=\tilde{\Lambda}_{\tau}^{-p}w and
w does not depend on \gamma since (\tau+|\sigma|)^{p} is analytic in \tau with \gamma>0 . First
let w=0(t<t_{0}) , then v=0(t<t_{0}) since (\tau+|\sigma|)^{-p} is entire analytic in \tau\in C^{1}

for every fixed \sigma\in R^{1} . Next since |(\tau+|\sigma|)^{-p}|^{2}\geq 1 foy \gamma\geq 1 we have
\langle\langle w\rangle\rangle_{0,\gamma}^{2}\leq\langle\langle\tilde{\Lambda}_{\tau}^{-p}w\rangle\rangle_{0,\gamma}^{2}=\langle\langle v\rangle\rangle_{0,\gamma}^{2}(

Therefore we can derive w=0(t<t_{0}) from v=0(t<t_{0}) by the standard
technique: According to (1. 9) v=0(t<t_{0}) implies that the right side of the
above is dominated by Ce^{-2\gamma t_{0}} , where C does not depend on \gamma . So making
\gamma sufficiently large lead to w=0(t<t_{0}) .

PROOF OF PROPOSITION 2. 3. The former statement of the proposition
follows from (2. 14) and (2. 15) (see [3]). Since the latter statement for p\geq\circ

follows from (2. 10) with p=0 as usual, we shall prove that for p<0 . (2. 10)
and Lemma 2. 6 (i) imply that the solution u\in H_{0,p;\gamma}(R^{1}\cross G) satisfies

||\tilde{\Lambda}_{\tau}^{p}u||_{0,\gamma}^{2}\leq C\gamma^{-2}(||\tilde{\Lambda}_{\tau}^{p}f||_{0,\gamma}^{2}+\langle\langle\tilde{\Lambda}_{\tau}^{p}\Lambda^{\frac{1}{\gamma 2}}g\rangle\rangle_{0,\gamma}^{2})

Let f=g=0(t<t_{0}) . Then from Lemma 2. 6 (ii) we have \tilde{\Lambda}_{\tau}^{p}f--\tilde{\Lambda}_{\tau}^{p}\Lambda^{\frac{1}{\gamma 2}}g=0

(t<t_{0}) . This and the above inequality yield \tilde{\Lambda}_{\tau}^{p}u=0(t<t_{0}) , which implies
u=0(t<t_{0}) by Lemma 2. 6 (ii).

PROPOSITION 2. 7. Under the assumptions of Theorem 1, there exist
constants C_{0}, \gamma_{0}>0 such that for every \gamma\geq\gamma_{0} and u\in \mathscr{F}^{1}

(2. 18) e^{-\gamma t}|u(t)|_{0}^{2}+ \gamma\int_{t_{1}}^{t}e^{-rs}(|u(s)|_{0}^{2}+\langle u_{I}(s)\rangle_{-\frac{1}{2},\gamma}^{2})ds

\leq C_{0}\{e^{-\gamma t_{1}}|h|_{0}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}(|f(s)|_{0}^{2}+\langle g(s)^{\backslash })_{\frac{21}{2},\gamma})ds\}j

where \mathscr{A}^{1} is the function space defifined in the fifirst line of p. 102.
PROOF. According to Proposition A. 1 in the Appendix below we have

(A. 1). Moreover, (2. 13) holds since (P, B) is maximally non-positive. Inte-
grate (2. 13) with \delta=1 from t_{1} to t and apply (A. 1) to the resulting last
term. Then we get

(2. 19) e^{-\gamma t}|u(t)|_{0}^{2}

\leq C\{e^{-\gamma t_{1}}|h|_{0}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}(|f(s)|_{0}^{2}+\langle g(s)\rangle_{\frac{21}{2},\gamma})ds\}c
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Multiply (2. 19) by e^{-\gamma t} , integrate from t_{1} to t and use Lemma 2. 4. Then
after replacing \gamma by \gamma/2 we obtain

(2. 20) \gamma\int_{t_{1}}^{t}e^{-\gamma s}|u(s)|_{0}^{2}ds

\leq C\{e^{-\gamma t_{1}}|h|_{0}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-rs}(|f(s)|_{0}^{2}+\langle g(s)\rangle_{\frac{21}{2},\gamma})ds\}

(A. 1), (2. 19) and (2. 20) imply (2. 18).

\S 3. Tangential estimates

Throughout this and the following sections we suppose p\geq 1 and, for
u\in H^{p+1}([t_{1}, t_{2}]\cross G) , set f=Pu, g=Bu|_{\partial G} and h=u(t_{1}) . We first list in two
lemmas some inequalities following from only the relations Pu=f and u(t_{1})=h ,
which include (0. 7) and estimates of normal derivatives of u_{I} . Then under
the conclusion of Theorem 1, we will derive estimates of tangential deriva-
tives of u, an estimate for the last term on the left side in (0. 2) and the
differentiability in tangential directions of the solution to (P, B)_{0} .

Lemma 3. 1. There exists a constant C_{p}>0 such that for every \gamma>0

and u\in H^{p+1}([t_{1}, t_{2}]\cross G)

(3. 1) |||u(t_{1})|||_{p}^{2},\gamma\leq C_{p}(|h|_{p,\gamma}^{2}+|||f(t_{1})|||_{p-1,\gamma}^{2}) ,

(3. 2) |||f(t_{1})|||_{p-1,\gamma}^{2}\leq C_{p}|||u(t_{1})|||_{p,\gamma}^{2}

Lemma 3. 2. Let 1\leq k\leq p . Then there exists constants C_{p}, \gamma_{p}>0 such
that for every \gamma\geq\gamma_{p} and u\in H^{p+1}([t_{1}, t_{2}]\cross G)

(3. 3) e^{-\gamma t}||D_{n}^{k}u_{I}(t)||_{p-k,\gamma}^{2}+ \gamma\int_{t_{1}}^{t}e^{-\gamma s}||D_{n}^{k}u_{I}(s)||_{p-k,\gamma}^{2}ds

\leq C_{p}\{(e^{-\gamma t_{1}}|||u(t_{1})|||_{p}^{2},r+_{J_{t_{1}}^{(t}}\gamma^{-1}e^{-\gamma s}|||f(s)|||_{p,\gamma}^{2}ds)

+(e^{-\gamma t}||u(t)||_{p,\gamma}^{2}+ \gamma\int_{t_{1}}^{t}e^{-rs}||u(s)||_{p,\gamma}^{2}ds)

+ \sum_{j=1}^{k-1}(e^{-\gamma t}||D_{n}^{j}u_{II}(t)||_{p-j,\gamma}^{2}+\gamma\int_{t_{1}}^{t}e^{-\gamma s}||D_{n}^{j}u_{u}(s)||_{p-j,\gamma}^{2}ds\}

and

(3. 4) ||D_{n}u_{I}(t)||_{p-1,\gamma}^{2}\leq C_{p}(||u(t)||_{p,\gamma}^{2}+||f(t)||_{p-1,\gamma}^{2})

PROOF 0F Lemma 3. 1. Let 1\leq j\leq p . Then, since f=Pu it follows
from (0. 1) that
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D_{t}^{j}u(t_{1})=D_{t}^{j-1}.f(t_{1})-D_{t}^{j-1}( \sum_{i=1}^{n}A_{i}D_{i}+C)u(t_{1})1

Hence by (1. 2) and the relation |\cdot|_{k,\gamma}\leq|\cdot|_{l,\gamma} for k\leq l we have for some
C\geq 0

|D_{t}^{j}u(t_{1})|_{p-j,\gamma}^{2} \leq|D_{t}^{j-1}f(t_{1})|_{p-j,\gamma}^{2}+C\sum_{i=0}^{j-1}|D_{t}^{i}u(t_{1})|_{p-i,\gamma}^{2}(

This together with (1. 3) implies (3. 1), i. e. , (0. 7), and (3. 2) follows similarly.
To prove Lemma 3. 2 we use
Lemma 3. 3. It holds for every \gamma>0 and f\in H^{1}([t_{1}, t_{2}]\cross G) that

|f(t)|_{0}^{2} \leq 2(|f(t_{1})|^{2}0+\gamma^{-1}\int_{t_{1}}^{t}e^{\gamma(t-s)}|\frac{\partial f}{\partial s}(s)|_{0}^{2}ds) , t_{1}<t<t_{2}\uparrow

PROOF. This is a direct consequence of the equality

f(t)= \int_{t_{1}}^{t}(e^{-(\gamma/2)(t-s)})(e^{(\gamma/2)(t-s)}\frac{\partial f(s)}{\partial s})ds+f(t_{1})

and Schwarz’ inequality.

PROOF OF LEMMA 3. 2. Let 1\leq k\leq p . Then it follows from (0. 8) that

(3. 5) D_{n}^{k}u_{I}=D_{n}^{k-1}A^{-1}(f_{I}-D_{t}u_{I}-A_{II}u_{I}-A_{III}u_{II}-(Cu)_{I}) [

By this, (1. 6) and the relation ||\cdot||_{i,\gamma}\leq||\cdot||_{j,\gamma} for i\leq j we have for some C\geq 0

(3.6) ||D_{n}^{k}u_{I}(t)||_{p-k,\gamma}^{2} \leq C’\sum_{j=0}^{c-1}(||D_{n}^{j}fI(t)||_{p-1-j,\gamma}^{2}+||D_{n}^{j}u(t)||_{p-j,\gamma)I}^{2}

Since k\leq p, (1.8) implies that the first terms in the brackets on the right
are dominated by |||f_{I}(t)|||_{p-1,\gamma}^{2} ; rewriting the second terms as ||D_{n}^{j}u_{I}(t)||_{p-j,\gamma}^{2}+

||D_{n}^{j}u_{II}(t)||_{p-j,\gamma}^{2} , we inductively deduce that for k=1 , \cdots , p

||D_{n}^{k}u_{I}(t)||_{p-k,\gamma}^{2} \leq C(|||f_{I}(t)|||_{p-1,\gamma}^{2}+||u(t)||_{p,\gamma}^{2}+\sum_{j=1}^{k-1}||D_{n}^{j}u_{II}(t)||_{p-j,\gamma}^{2})

Moreover, since f_{I}\in H^{p}([t_{1}, t_{2}]\cross G) Lemma 3. 3 and (1. 4) give

|||f_{I}(t)|||_{p-1,\gamma}^{2} \leq C(|||f_{I}(t_{1})|||_{p-1,\gamma}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{\gamma(t-s)}|||f_{I}(s)|||_{p,\gamma}^{2}ds) .

Hence, by (3. 2)

e^{-\gamma t}||D_{n}^{k}u_{I}(t)||_{p-k,\gamma}^{2}

\leq C\{e^{-\gamma t_{1}}|||u(t_{1})|||_{p,\gamma}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}|||f(s)|||_{p,\gamma}^{2}ds

+e^{-\gamma t}(||u(t)||_{p,\gamma}^{2}+ \sum_{j=1}^{k-1}||D_{n}^{j}u_{II}(t)||_{p-j,\gamma}^{2})\}
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since t>t_{1} . This means that the first term on the left in (3. 3) is estimated
by the right. The estimate of the second term is obtained from the above
inequality as we derived (2. 20) from (2. 19). Thus (3. 3) is established, and
(3. 4) follows from (3. 6) with k=1 .

Lemma 3. 4. Under the conclusion of Theorem 1, there exist constants
C_{p}, \gamma_{p}>0 such that for every \gamma\geq\gamma_{p} and u\in H^{p\dagger 2}([t_{1}, t_{2}]\cross G)

(3. 7) e^{-\gamma t}||u(t)||_{p,\gamma}^{2}+r \int_{t_{1}}^{t}e^{-\gamma s}(||u(s)||_{p}^{2},r+\langle\langle u_{I}(s)\rangle\rangle_{p-\frac{1}{2},\gamma)ds}^{2}

\leq C_{p\{\gamma}e^{-\gamma t_{1}}||u(t_{1})||_{p}^{2},+\gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}(||f(s)||_{p,\gamma}^{2}+\langle\langle g(s)\rangle\rangle_{p+\frac{1}{2},\gamma}^{2})ds\}

PROOF. Let 0\leq i\leq p and u\in H^{p+2}([t_{1}, t_{2}]\cross G) ; then P(D_{t}^{i}\Lambda_{\gamma}^{p-i}u)\in

H^{1}([t_{1}, t_{2}]\cross G)\subset C^{0}([t_{1}, t_{2}] ; L^{2}(G)) and B(D_{t}^{i}\Lambda_{\gamma}^{p-i}u)|_{\partial G}\in C^{0}([t_{1}, t_{2}] ; H^{\frac{1}{2}}(\partial G)) .
Hence, by the assumption we can apply a priori estimate (0. 2) with p=0
to D_{t}^{i}\Lambda_{\gamma}^{p-i}u ; noting that \langle D_{t}^{i}\Lambda_{\gamma}^{p-i}u_{I}(t)\rangle_{-\frac{1}{2},\gamma}^{2}\leq C\langle A_{n}D_{t}^{i}\Lambda_{\gamma}^{p-i}u(t)\rangle_{-\frac{1}{2},\gamma}^{2} , we get

(3. 8) e^{-\gamma t}|D_{t}^{i} \Lambda_{\gamma}^{p-i}u(t)|_{0}^{2}+\gamma\int_{t_{1}}^{t}e^{-rs}(|D_{t}^{i}\Lambda_{\gamma}^{p-i}u(s)|_{0}^{2}+\langle D_{t}^{i}\Lambda_{\gamma}^{p-i}u_{I}(s)\rangle_{-\frac{1}{2},\gamma}^{2})ds

\leq C\{e^{-\gamma t_{1}}|D_{t}^{i}\Lambda_{\gamma}^{p-i}u(t_{1})|_{0}^{2}

+ \gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}(|P(D_{t}^{i}\Lambda_{\gamma}^{p-i}u(s))|_{0}^{2}+\langle B(D_{t}^{i}\Lambda_{\gamma}^{p-i}u(s))\rangle_{\frac{21}{2},\gamma})ds\}

Observe that

P(D_{t}^{i}\Lambda_{\gamma}^{p-i}u)=D_{t}^{i}\Lambda_{\gamma}^{p-i}f-[D_{t}^{i}\Lambda_{\gamma}^{p-i}, C]u

- \sum_{j=1}^{n=1}[D_{t}^{i}\Lambda_{\gamma}^{p-i}, A_{j}]D_{j}u-[D_{t}^{i}\Lambda_{\gamma}^{p-i}, A_{n}]^{t} (t(D_{n}u_{I}) , 0),
B(D_{t}^{i}\Lambda_{\gamma}^{p-i}u)=D_{t}^{i}\Lambda_{\gamma}^{p-i}g-[D_{t}^{i}\Lambda_{\gamma}^{p-i}, B_{I}]u_{I} .

Then we find from (1. 5) and (1. 6) that the first and second terms in the
brackets ( ) on the right in (3. 8) are dominated respectively by constant
times

||f(s)||_{p}^{2},r+||u(s)||_{p,\gamma}^{2}+||D_{n}u_{I}(s)||_{p-1,\gamma}^{2} ,

\langle\langle g(s)\rangle\rangle_{p+\frac{1}{2},\gamma}^{2}+\langle\langle u_{I}(s)\rangle\rangle_{p-\frac{1}{2},\gamma}^{2} .

Therefore (3. 8) leads to

e^{-\gamma t}||u(t)||_{p,\gamma}^{2}+ \gamma\int_{t_{1}}^{t}e^{-rs}(||u(s)||_{p}^{2},\gamma+\langle\langle u_{I}(s)\rangle\rangle_{p-\frac{1}{2}r}^{2},)ds

\leq C\{e^{-\gamma t_{1}}||u(t_{1})||_{p,\gamma}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}(||f(s)||_{p}^{2},\gamma+\langle\langle g(s)\rangle\backslash ,2p+\frac{1}{2},\gamma)ds
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+ \gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}(||u(s)||_{p,\gamma}^{2}+\langle\langle u_{I}(s)\rangle\rangle_{p-\frac{1}{2},\gamma}^{2}+||D_{n}u_{I}(s)||_{p-1,\gamma}^{2})ds\}

Applying (3. 4) to the last term we obtain (3. 7).

Lemma 3. 5. Under the conclusion of Theorem 1, there exist constants
C_{p}, \gamma_{p}>0 such that for every \gamma\geq\gamma_{p} and u\in H^{p+2}([t_{1}, t_{2}]\cross G)

(3. 9) \gamma\int_{t_{1}}^{t}e^{-\gamma s} \langle\langle \Lambda_{\gamma}^{-\frac{1}{2}}A_{n}u(s)\rangle\rangle_{p,\gamma}^{2}ds

\leq C_{p}\{e^{-\gamma t_{1}}||u(t_{1})||_{p,\gamma}2+\gamma\int_{t_{1}}^{t}e^{-\gamma s}|||u(s)|||_{p,\gamma}^{2}ds

+r^{-1}J_{t_{1}}^{t}e^{-\gamma s}(|||f(s)|||_{p,\gamma}^{2}+\langle\langle g(s)^{\backslash })\rangle_{p+\frac{1}{2},\gamma}^{2})ds\}* .

PROOF. According to (1. 7) we have \backslash \backslash ’\cdot\langle\Lambda_{\gamma}^{-\frac{1}{2}}A_{n}u(s)\gg_{p,\gamma},\backslash \leq C_{\backslash }’’\ll\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}(s)\rangle\geq_{p,\gamma}\backslash

and hence

(3. 10) \gamma\int_{t_{1}}^{t}e^{-rs}\langle\langle\langle\Lambda_{\gamma}^{-\frac{1}{2}}A_{n}u(s)\rangle\rangle\rangle_{p,\gamma}^{2}ds

\leq C\gamma\int_{t_{1}}^{t}e^{-\gamma s}(\langle\langle\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}(s)\rangle\rangle_{p,\gamma}2+\sum_{k\leq p} j+,\langle\Lambda_{\gamma}^{p-\frac{1}{2}-j-k}D_{l}^{j}D_{n}^{k}u_{I}(s)\rangle_{0}2)dsk\geq 1^{\cdot}

By (3. 7) and the relation ||\cdot||_{p,\gamma}\leq|||\cdot|||_{p,\gamma} , the first term on the right in (3. 10)

is dominated by the right of (3. 9). Therefore it is enough to estimate the
second term.

Let k\geq 1 and j+k\leq p and apply \Lambda_{\gamma}^{p-\frac{1}{2}-j-k}D_{t}^{j}D_{n}^{k-1} to (9. 8). Then we have

\Lambda_{\gamma}^{p-\frac{1}{2}-j-k}D_{t}^{j}D_{n}^{k}u_{I}=-\Lambda_{\gamma}^{p-\frac{1}{2}-j-k}D_{t}^{j}D_{n}^{k-1}A^{-1}D_{t}u_{I}

-\Lambda_{\gamma}^{-\frac{1}{2}}\cdot\Lambda_{\gamma}^{p-j-k}D_{t}^{j}D_{n}^{k-1}A^{-1}(A_{II}u_{I}+A_{III}u_{II}+(Cu)_{I}-f_{I})

Here we remark that \Lambda_{\gamma}^{-\frac{1}{2}}=\Lambda^{\frac{1}{\gamma 2}}\Lambda_{\gamma}^{-1} and
\langle\Lambda^{\frac{1}{\gamma 2}}u\rangle_{0}\leq C|u|_{1,\gamma} u\in H^{1}(G) .

Then we see from (1. 4) that

\langle\Lambda_{\gamma}^{p-\frac{1}{2}-j-k}D_{t}^{j}D_{n}^{k}u_{I}(t)\rangle_{0}^{2}\leq C(\langle\Lambda_{\gamma}^{p-\frac{1}{2}-j-k}D_{t}^{j+1}D_{n}^{k-1}u_{I}(t)\rangle_{0}2

+ \sum_{i,l}\langle\Lambda_{\gamma}^{p-\frac{1}{2}-j-k}D_{t}^{i}D_{n}^{l}u_{I}(t)\rangle_{0}^{2}+|||u(t\rangle|||_{p,\gamma}^{2}+|||\Lambda_{\gamma}^{-1}f_{I}(t)|||_{p,\gamma}^{2}).,

where the sum is taken over i+l\leq j+k-1 , i\leq j+1 and l\leq k-1 . Observe
that the first and second terms on the right are, for k=1 and j=0, \cdots , p-1 ,

dominated by C\langle\langle\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}(t)\rangle\rangle_{p,\gamma}^{2} according to (1. 5). Employing the above in-
ductively for k=2, \cdots , p with j=0, \cdots , p-k we obtain, for any k\geq 1 and
j+k\leq p ,
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\langle\Lambda_{\gamma}^{p-\frac{1}{2}-j-k}D_{t}^{j}D_{n}^{k}u_{I}(t)\rangle_{0}^{2}

\leq C(\langle\Lambda_{\gamma}^{-_{2}^{1}}u_{I}(t)\rangle_{p,\gamma}^{2}+|||u(t)|||_{p,\gamma}^{2}+|||\Lambda_{\gamma}^{-1}f_{I}(t)|||_{p,\gamma}^{2})

Combining this with (3. 7) we conclude that the second term of (3. 10) is

dominated by the right of (3. 9). Thus the lemma is proved.

PROPOSITION 3. 6. Under the conclusion of Theorem 1, that of PropO-

sition 2. 3 is valid.
PROOF. It suffices to prove the conclusions of Lemma 2. 5 under our

assumption. (2. 14) for p=0 and u\in C_{0}^{\infty}(R^{1}\cross G) follows from (0. 2) with
p=0 by replacing \gamma by 2\gamma , since \langle u_{I}(s)\rangle_{-\frac{1}{2},\gamma}\leq C\langle A_{n}u(s)\rangle_{-\frac{1}{2},\gamma} and t_{1} , t_{2} are
arbitrary. To prove (2. 15) for p=0 we claim that for every f\in C_{0}^{\infty}(R^{1}\cross G)

and g\equiv 0(P, B)_{0} has a solution u satisfying (2. 10) with p=0. In fact, choose
t_{1} so that supp f\subset\{t>t_{1}\} , and let u be an extension to \{t<t_{1}\} of the solu-
tion to the mixed problem (P, B) with g=h=0 such that u=0 in \{t<t_{1}\} .
Then since t_{2} is arbitrary and the solution is unique in [t_{1}, t_{2}]\cross G, u is well
defined for all t\in R^{1} and is a desired solution to (P9 B)_{0} according to (0. 2)

with p=0. Therefore (2. 15) for p=0 and v\in C_{0}^{\infty}(R^{1}\cross G) follows from
Green’s formula (cf. [2], Lemma 4. 3 and (A. 4) below) and Proposition 2. 1

applied to the problem (2. 17). (2. 14) and (2. 15) with p\geq 1 follow from
those with p=0.

\S 4. Normal estimates

We first show the following lemma concerning the equation

\{D_{t}+A_{IIII}(t, x;D_{x’})+C_{II} II(t, x)\}u_{II}=f_{II} in R^{1}\cross G :

lemma 4. 1. (i) For any integer p\geq 0 there exist constants C_{p}, \gamma_{p}>0

such that for every \gamma\geq\gamma_{p} and u_{II}(t, x)\in H^{p+1}([t_{1}, t_{2}]\cross G)

(4. 1) e^{-\gamma t}||u_{II}(t)||_{p,\gamma}^{2} \leq C_{p}(e^{-\gamma t_{1}}||u_{II}(t_{1})||_{p,\gamma}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-rs}||f_{II}(s)||_{p,\gamma}^{2}ds)t

(ii) For any integer p there exist constants C_{p}, \gamma_{p}>0 such that for
every \gamma\geq\gamma_{p} and f_{II}\in H_{0,p;\gamma}(R^{1}\cross G) there exists a unique solution u_{II}\in H_{0,p;r}

(R^{1}\cross G) satisfying

(4. 2) ||u_{II}||_{p}^{2},\gamma\leq C_{p}\gamma^{-2}||f_{II}||_{p,\gamma}^{2}

PROOF. Since A_{IIII} is hermitian and does not contain D_{n} , as we derived
(2. 13) we have

(4. 3) \frac{d}{dt}(e^{-\gamma t}|u_{II}(t)|_{0}^{2})\leq C\gamma^{-1}e^{-\gamma t}|f_{II}(t)|_{0}^{2}1
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Integrating (4. 3) over [t_{1}, t] yields (4. 1) with p=0 ; applying it to (\Lambda_{\gamma}^{p-i}D_{t}^{\cdot}u_{II})

with u_{1I}\in H^{p+1}([t_{1}, t_{2}]\cross G) and i\leq p we get (4. 1) with p\geq 1 as in the proof
of Lemma 3. 4. (ii) follows from (4. 3) by the same fashon as in the proofs
of Lemma 2. 5 and Proposition 2. 3.

In what follows, we suppose p\geq 1 and the condition (A). We shall
first derive a priori estimates (0. 2) and then the differentiability in the normal
direction of the solution to (P, B)_{0} .

Now, in order to prove (0. 2) we use
Lemma 4. 2. Let 1\leq k\leq p . Then there exist constants C_{p} , \gamma_{p}>0 such

that for every \gamma\geq\gamma_{p} and u\in H^{p+1}([t_{1}, t_{2}]\cross G)

(4. 4) e^{-\gamma l}||D_{n}^{k}u_{II}(t)||_{p-k,\gamma}^{2}+ \gamma\int_{t_{1}}^{t}e^{-rs}||D_{n}^{k}u_{II}(s)||_{p-k,\gamma}^{2}ds

\leq C_{p}\{(e^{-\gamma t_{1}}|||u(t_{1})|||_{p,\gamma}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}|||f(s)|||_{p,\gamma}^{2}ds)

+(e^{-\gamma t}||u(t)||_{p,\gamma}^{2}+ \gamma\int_{t_{1}}^{t}e^{-\gamma s}||u(s)||_{p,\gamma}^{2}ds)

+ \sum_{j-1}^{k-1}(e^{-\gamma t}||D_{n}^{j}u_{I}(t)||_{p-j,\gamma}^{2}+\gamma\int_{t_{1}}^{t}e^{-rs}||D_{n}^{j}u(s)||_{p-j,\gamma}^{2}ds)

+ \gamma^{-1}\int_{t_{1}}^{t}c^{-\gamma s}’||D_{n}^{k}u_{I}(s)||_{p-k,\gamma}^{2}ds\}

PROOF. The definition of f yields (0.9) and (A) implies that there are
no second order derivatives on the right side of (0. 9). Hence, applying
D_{n}^{k-1} with 1\leq k\leq p to (0. 9) we have

(4. 5) (D_{t}+A_{IIII}+C_{IIII})(D_{n}^{k}u_{II}-D_{n}^{k-1}A_{III}A^{-1}u_{I})=F for x_{n}\geq 0 ,

where

(4. 6) F=D_{n}^{k-1}\{D_{n}f_{II}-A_{II1}A^{-1}f_{I}-C_{III}D_{n}u_{I}+K_{5}u\}

+[A_{IIII}+C_{IIII}, D_{n}^{k-1}](D_{l},u_{II}-A_{II1}A^{-1}u_{I})

Since u\in H^{p+1}([t_{1}, t_{2}]\cross G) , (4. 5) together with Lemma 4. 1 (i) with p
replaced by p-k implies that

e^{-\gamma t}||D_{n}^{k}u_{II}(t)-D_{n}^{k-1}A_{III}A^{-1}u_{I}(t)||_{p-k,\gamma}^{2}

\leq C_{p}\{e^{-\gamma t_{1}}||D_{n}^{k}u_{II}(t_{1})-D_{n}^{k-1}A_{III}A^{-1}u_{I}(t_{1})||_{p-k,\gamma}^{2}

+ \gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}||F(s)||_{p-k,\gamma}^{2}ds\}

Hence
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e^{-\gamma t}||D_{n}^{k}u_{II}(t)||_{p-k,\gamma}^{2}\leq C\{e^{-\gamma t_{1}}|||u(t_{1})|||_{p,\gamma}^{2}

+ \sum_{j=0}^{k-1}e^{-\gamma t}||D_{n}^{j}u_{I}(t)||_{p-j,\gamma}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}||F(s)||_{p-k,\gamma}^{2}ds\}

Note that K_{5} in (4. 6) is a first order differential operators not containing
D_{n} whose coefficients depend only on those of P. Then from (4. 6) we
see that for some C>0

||F(t)||_{p-k,\gamma}^{2} \leq C(|||f(t)|||_{p,\gamma}^{2}+\sum_{j=0}^{k-1}||D_{n}^{j}u(t)||^{2}p-j,r+||D_{n}^{k}u_{I}(t)||_{p-k,\gamma)}^{2} .

Therefore we get for 1\leq k\leq p

e^{-\gamma t}||D_{n}^{k}u_{II}(t)||_{p-k,\gamma}^{2}

\leq C\{(e^{-\gamma l_{1}}|||u(tJ|||_{p,\gamma}^{2}+\gamma^{-1}\int_{{}^{t}t_{1}}^{t}e^{-\gamma s}|||f(s)|||_{p,\gamma}^{2}ds)

+ \sum_{j=0}^{k-1}(e^{-\gamma t}||D_{n}^{j}u_{I}(t)||_{p-j,\gamma}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-rs}||D_{n}^{j}u(s)||_{p-j,\gamma}^{2}ds)

+ \gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}||D_{n}^{k}u_{I}(s)||_{p-k,\gamma}^{2}ds\} .

This means that the first term on the left in (4. 4) is estimated by the right.
The estimate of the second term is obtained from the above inequality as
we derived (2. 20) from (2. 19).

From Lemmas 3. 2 and 4. 2 we have

Lemma 4. 3. There exist constants C_{p}, \gamma_{p}>0 such that for every \gamma\geq\gamma_{p}

and u\in H^{p+1}([t_{1}, t_{2}]\cross G)

(4. 7) e^{-\gamma t}|||u(t)|||_{p,\gamma}^{2}+ \gamma\int_{t_{1}}^{t}e^{-\gamma s}|||u(s)|||_{p,\gamma}^{2}ds

\leq C_{p}\{(e^{-rt_{1}}|||u(t_{1})|||_{p,\gamma}^{2}+\gamma^{-1}\int_{t_{1}}^{t}e^{-rs}|||f(s)|||_{p,\gamma}^{2}ds)

+(e^{-\gamma t}||u(t)||_{p,\gamma}^{2}+ \gamma\int_{t_{1}}^{t}e^{-\gamma s}||u(s)||_{p,\gamma}^{2}ds)\} .

PROOF. From (3. 3) and (4. 4) we get for 1\leq k\leq p

e^{-\gamma t}||D_{n}^{k}u(t)||_{p-k,\gamma}^{2}+ \gamma\int_{t_{1}}^{t}e^{-\gamma s}||D_{n}^{k}u(s)||_{p-k,\gamma}^{2}ds

\leq C\{K+\sum_{j=1}^{k-1}(e^{-\gamma t}||D_{n}^{j}u(t)||_{p-j,\gamma}^{2}+\gamma\int_{t_{1}}^{t}e^{-\gamma s}||D_{n}^{j}u(s)||_{p-j,\gamma}^{2}ds)\} ,

where K is the right side of (4. 7).
yields (4. 7).

Using this inductively for k=1 , \cdots , p
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From Lemmas 4. 3, 3. 4 and 3. 5 we obtain (0. 2), that is,
PROPOSITION 4. 4. Under the assumptions of Theorem 2, there exist

constants C_{p}, \gamma_{p}>0 such that for every \gamma\geq\gamma_{p} and u\in H^{p+2}([t_{1}, t_{2}]\cross G)

e^{-\gamma t}|||u(t)|||_{p}^{2},r+ \gamma\int_{t_{1}}^{t}e^{-\gamma s}(|||u(s)|||_{p,\gamma}^{2}+\langle\langle\langle\Lambda_{\gamma}^{-\frac{1}{2}}A_{n}u(s)\rangle\rangle\rangle_{p,\gamma}^{2})ds

\leq c_{p\{\gamma}e^{-\gamma t_{1}}|||u(t_{1})|||_{p}^{2},+\gamma^{-1}\int_{t_{1}}^{f}e-\gamma s(|||f(s)|||_{p,\gamma}^{2}+\langle_{\backslash }^{\sqrt}g(s\rangle\rangle\rangle_{p+\frac{1}{2},\gamma)ds\}}^{2}

The rest of this section is devoted to the proof of
PROPOSITION 4. 5. Under the assumptions of Theorem 2, there exist

constants C_{p} , \gamma_{p}>0 such that for every \gamma\geq\gamma_{p}, f\in H_{p,0;\gamma}(R^{1}\cross G) and g with
\Lambda^{\frac{1}{\gamma 2}}g\in H_{p,\gamma}(R^{1}\cross\partial G) there exists a unique solution u\in H_{p,0;\gamma}(R^{1}\cross G) to (P, B)_{0}

satisfying the inequality

|||u|||_{p,\gamma}^{2}\leq C_{p}\gamma^{-2}(|||f|||_{p,\gamma}^{2}+\langle\langle\Lambda^{\frac{1}{\gamma 2}}g\rangle\rangle_{p}^{2},\gamma)

First, from (3. 5) and (3. 6) we deduce the regularity result corresponding
to Lemma 3. 2 :

Lemma 4. 6. Suppose that u\in H_{0,p;\gamma}(R^{1}\cross G) and f\in H_{p,0;\gamma}(R^{1}\cross G) . Let
1\leq k\leq p . If ||D_{n}^{j}u||_{p-j,\gamma} are fifinite for all j=1 , \cdots , k –1, then ||D_{n}^{k}u_{I}||_{p-k,\gamma}^{2} is
fifinite and the inequality

||D_{n}^{k}u_{I}||_{p-k,\gamma}^{2} \leq C(|||f|||_{p-1,\gamma}^{2}+||u||_{p,\gamma}^{2}+\sum_{j=1}^{k-1}||D_{n}^{j}u||_{p-j,\gamma)}^{2}

holds.
Next we have the regularity result corresponding to Lemma 4. 2:
Lemma 4. 7. Suppose that u\in H_{0,p;\gamma}(R^{1}\cross G) and f\in H_{p,0;\gamma}(R^{1}\cross G) . Let

1\leq k\leq p . If ||D_{n}^{j}u||_{p-j,\gamma} are fifinite for all j=1 , \cdots , k –1 and so is ||D_{n}^{k}u_{I}||_{p-k,\gamma} ,
then ||D_{n}^{k}u_{II}||_{p-k,\gamma} is fifinite and the inequality

||D_{n}^{k}u_{II}||_{p-k,\gamma}^{2}\leq C(\gamma^{-2}|||f_{1}||_{p,\gamma}^{2}+||u||_{p,\gamma}^{2}

+ \sum_{j=1}^{k-1}||D_{n}^{j}u||_{p-f,\gamma}^{2}+\gamma^{-2}||D_{n}^{k}u_{I}||_{p-k,\gamma)}^{2}

holds.
PROOF. Since (A) implies (4. 5) with F\equiv F_{k} defined by (4. 6), it follows

from the assumptions and k\leq p that F_{k} belongs to H_{0,p-k;\gamma}(R^{1}\cross G) and that

(4. 8) ||F_{k}||_{p-k,\gamma}^{2} \leq C(|||f|||_{p,\gamma}^{2}+\sum_{j=0}^{k-1}||D_{n}^{j}u||_{p-j,\gamma}^{2}+||D_{n}^{k}u_{I}||_{p-k,\gamma)1}^{2}

So applying Lemma 4. 1 (ii) with p replaced by p-k to (4. 5), we get
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||D_{n}^{k}u_{II}-D_{n}^{k-1}A_{III}A^{-1}u_{I}||_{p-k,\gamma}^{2}\leq C\gamma^{-2}||F_{k}||_{p-k,\gamma}^{2} ,

hence

||D_{n}^{k}u_{II}||_{p-k,\gamma}^{2} \leq C(\gamma^{-2}||F_{k}||_{p-k,\gamma}^{2}+\sum_{j=0}^{k-1}||l\dot{\mathcal{Y}}_{n}u_{I}||_{p-j,\gamma)}^{2}

This together with (4. 8) implies the lemma.
PROOF OF PROPOSITION 4. 5. Since f\in H_{p,0;\gamma}(R^{1}\cross G) implies f\in H_{0,p;\gamma}

(R^{1}\cross G) , we have the unique solution u\in H_{0,pj\gamma}(R^{1}\cross G) described in PropO-
sition 3. 6. For such f and u apply Lemmas 4. 6 and 4. 7 alternately. Then
we see that u\in H_{p,0;\gamma}(R^{1}\cross G) and

|||u|||_{p,\gamma}^{2}\leq C(||u||_{p}^{2},\gamma+\gamma^{-2}|||f||_{p,\gamma}^{2}|)

This together with (2. 10) implies the proposition.

\S 5. Proofs of Theorems 1 and 2

To define the compatibility conditions for (P, B) , let the solution
u(t, x) \in\bigcap_{i=0}^{k}C^{i}([t_{1}, t_{2}] ; H^{p-i}(G)) . Then from Bu|_{\partial G}=g the relations

(5. 1) (D_{t}^{i}g)(t_{1}, x)=(D_{t}^{i}Bu)(t_{1}, x)

= \sum_{j=0}^{i}(\begin{array}{l}ij\end{array}) (D_{t}^{i-j}B)(t_{1}, x)(D_{t}^{j}u)(t_{1}, x) , on \partial G, (0\leq i\leq k)

must hold. Representing (D_{t}^{j}n)(t_{1}, x) by f and h and inserting them into
the above, we arrive at the following

DEFINITION 5. 1. Let p\geq 1 , f\in H^{p}([t_{1}, t_{2}]\cross G) , \Lambda^{\frac{1}{\gamma 2}}g\in H^{p}([t_{1}, t_{2}]\cross\partial G) and
h\in H^{p}(G) . Let these data satisfy

(5. 2) \sum_{j=0}^{i}(\begin{array}{l}ij\end{array}) (D_{t}^{i-j}B)(t_{1}, x)h^{(j)}(x)=(D_{t}^{i}g)(t_{1}, x)

on \partial G for i=0, \cdots , k ,

where k\leq p-1 , h^{(0)}(x)=h(x) ,

(5. 3) h^{(i)}(x)=(D_{t}^{i-1}f)(t_{1}, x)- \sum_{j=0}^{i-1} (\begin{array}{l}i-1j\end{array}) L_{i-1-j}(t_{1})h^{(j)}(x) , (1\leq i\leq p) ,

(5. 4) L_{i}(t_{1})=(D_{t}^{i}(P-D_{t}))(t_{1})= \sum_{j=1}^{n}(D_{t}^{i}A_{j})(t_{1}, x)D_{j}+(D_{t}^{i}C)(t_{1}, x)(

Then we say that the compatibility conditions of order k or, for convenience,
\{f, g, h ; p, k\} are fulfilled.

Now in order to prove our theorems we need
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Lemma 5. 2. Suppose that p\geq 1 and \{f, g, h;p, p-1\} are fulfifilled and
let q\geq p+1 be an integer. Then there exist sequences \{f_{n}\}\subset H^{q}([t_{1}, t_{2}]\cross G) ,
\{\Lambda_{\gamma}^{1}\Sigma g_{n}\}\subset H^{q}([t_{1}, t_{2}]\cross\partial G) and \{h_{n}\}\subset H^{p}(G) such that \{f_{n}, g_{n}, h_{n} ; p+1, p\} are
fulfifilled and that f_{n}arrow f in H^{p}([t_{1}, t_{2}]\cross G) , \Lambda^{\frac{1}{\gamma 2}}g_{n}arrow\Lambda^{\frac{1}{\gamma 2}}g in H^{p}([t_{1}, t_{2}]\cross\partial G)

and h_{n}arrow h in H^{p}(G) as narrow\infty .
PROOF. Since this lemma can be proved by a minor modification of

the proof of Rauch and Massey III [9], Lemma 3. 3, we only describe dif-
ferent points preserving the same notations as in [9], p309 as far as possible.
First let B(t, x) be independent of t . Then the data fulfills Bh^{(i)}=(D_{t}^{i}g^{)}, (t_{1})

on \partial G for 0\leq i\leq p-1 , and we must approximate f, g, h by sequences \{f_{n}\} ,
\{g_{n}\} , \{h_{n}\} satisfying Bh_{n}^{(i)}=(D_{l}^{i}g_{n})(tx) on \partial G for 0\leq i\leq p .

Let q\geq p+1 and first take sequences \{f_{n}\}\subset H^{p+q}([t_{1}, t_{2}]\cross G) , \{\Lambda^{\frac{1}{\gamma 2}}g_{n}\}\subset

H^{p+q}([t_{1}, t_{2}]\cross\partial G) , \{\tilde{h}_{n}\}\subset H^{p+q}(G) with f_{n}arrow f in H^{p}([t_{1}, t_{2}]\cross G) , \Lambda^{\frac{1}{\gamma 2}}g_{n}arrow\Lambda^{\frac{1}{f2}}g

in H^{p}([t_{1}, t_{2}]\cross\partial G),\tilde{h}_{n}arrow h in H^{p}(G) and write the desired sequence \{h_{n}\} as
h_{n}=\tilde{h}_{n}-h_{n}’ . Here h_{n}’\in H^{q}(G) must be chosen so that h_{n}’arrow 0 in H^{p}(G) and

BB_{i}h_{n}’=B(B_{i}\tilde{h}_{n}+E_{i}f_{n})-(D_{t}^{i}g_{n})(t_{1}) on \partial G for 0\leq i\leq p ,

where B_{i} and E_{i} are such operators as in p309, i. e. , (5. 3) is rewritten
as h^{(i)}=B_{i}h+E_{i}f\in H^{p-i}(G) . Let \tilde{T}={}^{t}(^{t}(B_{I}^{*}(B_{I}B_{I}^{*})^{-1},0) be an m\cross l matrix,

where B_{I} is the l\cross d matrix in (0. 4). Then \tilde{T}B=I_{b}7 , so it suffices to solve
the equation (B_{i}h_{n}’)_{I}=(a_{i,n})_{I} on \partial G for 0\leq i\leq p, where a_{i,n}=\tilde{T}\{B(B_{i}\tilde{h}_{n}+

E_{i}f_{n})-(D_{t}^{i}g_{n})(t_{1})\}\equiv{}^{t}(^{t}(a_{i,n})_{I},{}^{t}(a_{i,n})_{II}) .
According to (5. 3) and (5. 4), the operator B_{i} has the form

B_{i}h=(\begin{array}{ll}-A 00 0\end{array}) iD_{n}^{i}h+ \sum_{j=0}^{i-1}C_{i,i-j}D_{n}^{j}h’.

where C_{i,i-j} are m\cross m matrix valued operators of order i-j which only
invlove differentiations tangential to \partial G . We now choose h_{n}’ so that (h_{n}’)_{II}=0 .
Then the equation (B_{i}h_{n}’)_{I}=(a_{i,n})_{I} can be written as D_{n}^{i}(h_{n}’)_{I}=b_{i,n} where

b_{i,n}=(-A)^{-i}((a_{i,n})_{I}- \sum_{j=0}^{i-1}(C_{i,i-j})_{I1}b_{j,n})

and (C_{i,i-j})_{II} is the upper left d\cross d matrix of C_{i,i-j} . Now the assumption
implies that (a_{i,n})_{I} belongs to H^{p+q-i-\frac{1}{2}}(\partial G) for 0\leq i\leq p and tends to zero
in H^{p-i-\frac{1}{2}}(\partial G) for 0\leq i\leq p-1 , hence so do b_{i,n} . Therefore we can con-
struct (h_{n}’)_{I}\in H^{q}(G) so that (h_{n}’)_{I}arrow 0 in H^{p}(G) and D_{n}^{i}(h_{n}’)_{I}=b_{i,n} on \partial G for
0\leq i\leq p by the same fashion as h_{n} is done in [9], p310 (decompose (h_{n}’)_{I}=

v_{n}+w_{n} so that, on \partial G, D_{n}^{i}v_{n}=b_{i,n}(0\leq i\leq p-1) , D_{n}^{i}v_{n}=0(p\leq i\leq p+q-1)

and D_{n}^{i}w_{n}=0(0\leq i\leq p-1) , D_{n}^{p}w_{n}=b_{p,n}-D_{n}^{p}v_{n}) .
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Next, when B depends on t, we can reduce our arguments to the above
case, by using such a transformation r of dependent variables as in the proof

of [9], Lemma 3. 1 (in our case let r(t, x)=\{\begin{array}{ll}H(t_{1},x)H^{-1}(t,x) 00 I_{m-d}\end{array}\} where
H=(B_{I}^{*}, (B_{I}’)^{*}) and B_{I}’ is the matrix in (2. 16)) .

COROLLARY 5. 3. Suppose that p\geq 0 and f\in H^{p}([t_{1}, t_{2}]\cross G) , \Lambda^{\frac{1}{\gamma 2}}g\in H^{p}

([t_{1}, t_{2}]\cross\partial G) and h\in H^{p}(G) . When p\geq 1 suppose further that \{f, g, h;p,
p-1\} are fulfifilled. Then, for q\geq p+3 , there exist sequences \{f_{n}\}\subset H^{q}([t_{1}, t_{2}]

\cross G) , \{\Lambda^{\frac{1}{\gamma 2}}g_{n}\}\subset H^{q}([t_{1}, t_{2}]\cross\partial G) and \{h_{n}\}\subset H^{q}(G) such that { f_{n} , g_{n} , h_{n} ; p+3,
p+2\} are fulfifilled and that f_{n}arrow f in H^{p}([t_{1}, t_{2}]\cross G) , \Lambda^{\frac{1}{\gamma 2}}g_{n}arrow\Lambda^{\frac{1}{\gamma 2}}g in H^{p}([t_{1}, t_{2}]

\cross\partial G) and h_{n}arrow h in H^{p}(G) as narrow\infty .

PROOF. First let p=0. Take sequences \{f_{n}\}\subset H^{1}([t_{1}, t_{2}]\cross G) , \{\Lambda^{\frac{1}{\gamma 2}}g_{n}\}\subset

H^{1}([t_{1}, t_{2}]\cross\partial G) and \{h_{n}\}\subset H^{1}(G) such that f_{n}arrow f in L^{2}([t_{1}, t_{2}]\cross G) , \Lambda^{\frac{1}{12}}g_{n}arrow\Lambda^{\frac{1}{\gamma 2}}g

in L^{2}([t_{1}, t_{2}]\cross\partial G) and h_{n}arrow h in L^{2}(G) , h_{n}|_{\partial G}=\tilde{T}g_{n}(t_{1})\in H^{\frac{1}{2}}(\partial G) respectively,
where \tilde{T} is the m\cross l matrix defifined in the proof of Lemma5.2. Then
\{f_{n}, g_{n}, h_{n} ; 1, 0\} are fulfilled. Applying Lemma 5. 2 with p=1 we approx-
imate, for every fixed n , the sequences \{f_{n}\} , \{g_{n}\} and \{h_{n}\} above taken.
Then we obtain new ones \{f_{n}\} , \{g_{n}\} and \{h_{n}\} such that \{f_{n}, g_{n}, h_{n} ; 2, 1\}

are fulfilled. Applying once more Lemma 5. 2 with p=2 to these sequences
we obtain the desired ones. Next, when p\geq 1 , the desired sequences are
obtained by the analogous uses of Lemma 5. 2.

PROOF OF THEOREM 2. First let p\geq-1 for later convenience and
suppose that f\in H^{p+3}([t_{1}, t_{2}]\cross G) , \Lambda^{\frac{1}{\gamma 2}}g\in H^{p+2}([t_{1}, t_{2}]\cross\partial G) , h\in H^{p\dagger 3}(G) and
\{f, g, h;p+2, p+1\} are fulfilled. Let u_{0}\in H^{p+3}([t_{1}, t_{2}]\cross G) be a solution to
the Cauchy problem

.\mathfrak{l}^{Pu_{0}}=f in [t_{1}, t_{2}]\cross G ,
|_{u_{0}}(t_{1}, x)=h for x\in G ;

we shall consider the boundary value problem

1 Pu_{1}=0 in R^{1}\cross G-
,

(5. 5)
|Bu_{1}=\tilde{g} on R^{1}\cross\partial G’.

where

\tilde{g}=\mathfrak{l}_{g-Bu_{0}|_{\partial G}}^{0}

for t_{1}<t<t_{2} .
for t<t_{1} and for large t ,

Since \{f, g, h;p+2, p+1\} are fulfilled, it follows from (5. 1), (5. 2) and (5. 3)
that

(D_{t}^{i}Bu_{0})(t_{1})=(D_{t}^{i}g)(t_{1}) on \partial G (0\leq i\leq p+1) .
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So, we can take \tilde{g} to be \Lambda^{\frac{1}{\gamma 2}}\tilde{g}\in H_{p+2,\gamma}(R^{1}\cross\partial G) . Now let p\geq 1 . Applying
Proposition 4. 5 we obtain the solution u_{1}\in H_{p+2,\gamma}(R^{1}\cross G) to (5. 5), which
satisfies u_{1}(t_{1}, x)=0 by Proposition 3. 6. Thus u=u_{0}+u_{1} is a solution to

(P, B) belonging to H^{p+2}([t_{1}, t_{2}]\cross G)(hence to ip \bigcap_{=0}^{+1}C^{i}([t_{1}, t_{2}] ; ^{H^{p+1-i}}(G))) and

satisfies (0. 7) and (0. 2) according to Lemma3.1 and Proposition4.4 respec-
tively.

Next suppose f, g, h are general data satisfying the hypotheses of the
theorem and let \{f_{n}\} , \{g_{n}\} , \{h_{n}\} be such approximating sequences as described
in Corollary 5. 3. If u_{n} is such a solution to (P, B) as above corresponding
to the data f_{n} , g_{n} , h_{n} , then inequality (0. 2) with (0. 7) applied to u_{n}-u_{m}

shows that the sequence \{u_{n}\} converges in C^{i}([t_{1}, t_{2}];H^{p-i}(G)) for all i\leq p .
Since u_{n} tends to a function u in L^{2}([t_{1}, t_{2}]\cross G) , u belongs to n^{p}C^{i}([t_{1}, t_{2}] ;

i=0
H^{p-i}(G)) and is a (strong) solution to (P, B) with data f, g, h satisfying (0. 2)
and (0. 7). Thus the conclusions of the theorem follow from the uniquness
in C^{0}([t_{1}, t_{2}] ; L^{2}(G)) of the solution to (P, B) .

PROOF OF THEOREM 1. First let f\in H^{2}([t_{1}, t_{2}]\cross G) , \Lambda^{\frac{1}{\gamma 2}}g\in H^{1}([t_{1}, t_{2}]\cross\partial G) ,
h\in H^{2}(G) and \{f, g, h ; 1, 0\} be fulfilled. We apply the arguments in the
first part of the proof of Theorem 2 to p=-1 . Then we see from PrO-
position 2. 3 and (0. 8) that there exists a solution u_{1}\in H_{0,1;\gamma}(R^{1}\cross G) to (5. 5)
such that D_{n}(u_{1})_{I} belongs to H_{0,0;\gamma}(R^{1}\cross G) and u_{1}(t_{1}, x)=0 . Therefore
u\equiv u_{0}+u_{1} is a solution to (P, B) which belongs to \mathscr{F}^{1} so that to C^{0}([t_{1}, t_{2}] ;
L^{2}(G)) ; by this and Proposition 2. 7 u satisfies (2. 18) (hence (0. 2) with
p=0) . Now the existence in C^{0}([t_{1}, t_{2}];L^{2}(G)) of such a solution for f, g, h
as in Theorem 1 follows from the same arguments as in the proof of Theo \cdot

rem 2 by using Corollary 5. 3 with p=0 and inequality (0. 2) with p=0.
The uniquness of solutions in C^{0}([t_{1}, t_{2}];L^{2}(G)) follows from the uniqueness
of solutions to (P, B)_{0} owing to Proposition 2. 3 with p=0.

\S 6. Examples

We first present three examples of hermitian hyperbolic operators which
(i) are of constant multiplicity, (ii) are uniformly characteristic and (iii) fulfill
the condition (A).

EXAMPLE 6. 1. {the curl operator)

P(D_{t}, D_{x})=I_{3}D_{t} \pm cur1=I_{3}D_{t}+\sum_{j=1}^{n}A_{j}D_{j} , m=n=3 :
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P(\tau, \sigma, \lambda)=I_{3}\tau\pm i( \{\begin{array}{lll}0 0 00 0 -10 1 0\end{array}\} \sigma_{1}+\{\begin{array}{lll}0 0 10 0 0-1 0 0\end{array}\} \sigma_{2}+\{\begin{array}{lll}0 -1 01 0 00 0 0\end{array}\} \lambda)\backslash ,

det P(\tau, \sigma, \lambda)=\tau(\tau^{2}-|\sigma|^{2}-\lambda^{2}) ( (i) ) j

rank A_{n}=2 ( (ii))

We only show (iii) for the operator I_{3}D_{t}+curl (similarly for I_{3}D_{t}- curl).
Let T_{n} be the following 3\cross 3 matrix

T_{n}=[^{\frac{1}{\Gamma 20}}\{\begin{array}{ll}1 ii 1\end{array}\} 00]1 ’so T_{n}^{-1}=[_{0}^{\frac{1}{\sqrt{2}}\{\begin{array}{l}1-i-i 1\end{array}\}} 00]1

Then P is transformed so that (0. 3) is valid, obtaining

T_{n}^{-1}A_{n}T_{n}=\{\begin{array}{lll}1 -1 0\end{array}\} , T_{n}^{-1}A_{1}T_{n}= \frac{1}{\sqrt{2}}\{\begin{array}{lll}0 0 -10 0 -i-1 i 0\end{array}\}, \cdot

T_{n}^{-1}A_{2}T_{n}= \frac{1}{r_{2}} \{\begin{array}{lll}0 0 i0 0 1-i 1 0\end{array}\}

Hence, T_{n}^{-1}PT_{n} fulfills (A) since A_{II}=A_{IIII}=0 and A_{III}A^{-I}A_{I} 11=0 .
EXAMPLE 6. 2. (Maxwell system)

P(D_{t}, D_{x})=I_{6}D_{l}+ \frac{1}{i} \{\begin{array}{ll}0 -curlcurl 0\end{array}\}=I_{6}D_{t}+\sum_{j=1}^{n}A_{j}D_{j} , m=6, n=3 :

det P(\tau, \sigma, \lambda)=\tau^{2}(\tau^{2}-|\sigma|^{2}-\lambda^{2})^{2} ( (i))

Since the curl operator is invariant under rotations of the coordinates, make
the change of variables: x_{1}arrow x_{n} , x_{2}arrow x_{1} , x_{3}arrow x_{2} in [3], pp 153–154. Then
we see (designate there T_{1} , A_{1} , A_{2} , A3 by T_{n} , A_{n} , A_{1} , A_{2} respectively) that,
by the orthogonal matrix

T_{n}= \frac{1}{\sqrt{2}}[_{1}^{1}0000 -100001 000011 -100001 \sqrt{2}00000 \sqrt{2}0]0000 ,
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P is transformed so that (0. 3) is valid, obtaining

T_{n}^{-1}A_{n}T_{n}=\{

1

1-1-100] ,
T_{n}^{-1}A_{1}T_{n}=- \frac{1}{2}‘-\lceil\backslash

L-10

00110-10!.1\iota_{I}|1I||I||||1|||\mathfrak{l}|\iota^{1}110-10-110--100] ,

T_{n}^{-1}A_{2}T_{n}= \frac{1}{\sqrt{2}}\{\begin{array}{lllllll} -1 0 0-1 0 \iota_{I}^{I}||IIII 0 1-1 0 0 1 |||| 1 00 -1 1 0 0\end{array}\} .

So, rank T_{n}^{-1}A_{n}T_{n}=4 , i. e. , (ii) is fulfilled, furthermore T_{n}^{-1}PT_{n} fulfills (A)
since A_{II}=A_{IIII}=0 and A_{III}A^{-I}A_{I} 11=0.

EXAMPLE 6. 3. (The linearized shallow water equations with uni-
formly characteristic boundary (c.f. [6]))

P(D_{t}, D_{x})=I_{3}D_{t}-\{\begin{array}{lll}a 0 c0 a 0c 0 a\end{array}\} D_{1}-\{\begin{array}{lll}0 0 00 0 c0 c 0\end{array}\} D_{2} ,

c>|a|>0 , m=3, n=2 :

det P(\tau, \sigma, \lambda)

=(\tau-a\sigma)(\tau-a\sigma-c\mapsto\sigma^{2}+\lambda^{2})(\tau-a\sigma+c\mapsto\sigma^{2}+\lambda^{2}) ( (i) ) ,

rank A_{n}=2 ( (ii))

P(\tau, \sigma, \lambda) is transformed by the 3\cross 3 matrices

[ \frac{01}{\sqrt{2}} \{\begin{array}{ll}-1 11 1\end{array}\}0 0]10 and its inverse [_{1}^{0}0 \frac{1}{\sqrt{2}0} \{\begin{array}{ll}-1 11 1\end{array}\}] ,

to

I_{3}\tau-\{

a 0 (\sqrt{2})^{-1}c^{-}

0 a (\sqrt{2})^{-1}c

(\sqrt{2})^{-1}c(\sqrt{2})^{-1}c a
–

\sigma+\{\begin{array}{lll}c -c 0\end{array}\} \lambda .
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This fulfills (A) since A_{III}A^{-1}A_{II}=(\sqrt{2})^{-1}a(1,1)=A_{IIII}A_{III}A^{-1} and A_{III}A^{-1}

A_{III}=0 .
We remark that, for the operators in Examples 6. 1 and 6. 3, all L^{2} -

well posed boundary conditions are maximally non-positive after a change
of dependent variables if necessary (see [1]). Furthermore for Maxwell
system P, so is (P, B) if either B is real and (P, B) satisfies Hersh’s con .
dition or else (P, B) satisfies Kreiss’ condition (see [3], [4]).

For each operator above, all roots \lambda of det P(\tau, \sigma, \lambda)=0 are bounded
whenever (\tau, \sigma) is bounded (cf. case (iv) of Theorem 3 in [6], where Kreiss’
condition is assumed for (P, B)) . There are further such operators fulfilling
(A) :

EXAMPLE6.4. Let

P_{1}( \tau, \sigma, \lambda)=I_{2}\tau+\sum_{j=1}^{n-1} \{\begin{array}{ll}a_{j} \overline{c}_{j}c_{j} b_{j}\end{array}\} \sigma_{j}+\{\begin{array}{ll}a 00 0\end{array}\} \lambda , a\neq 0’.

P_{2}(\tau, \sigma, \lambda)=I_{3}\tau+\{\begin{array}{ll}a_{1} \overline{b} -(\sqrt{2})^{-1}-(\sqrt{2})^{-1}b(\sqrt{2})^{-1}ia_{2} -(\sqrt{2})^{-1}ia_{3}\end{array}\} \sigma+\{\begin{array}{lll}1 -1 0\end{array}\} \lambda\epsilon

Then, if P_{i} fulfifills (A), all roots \lambda of the equation det P_{i}(\tau, \sigma, \lambda)=0 are
bounded whenever (\tau, \sigma) is bounded (i=1,2) .

PROOF. Since

det P_{1}( \tau, \sigma, \lambda)=(\tau+\sum_{j=1}^{n-1}b_{j}\sigma_{f})a\lambda

+( \tau+\sum_{j-1}^{n-1}b_{j}\sigma_{f})(\tau+\sum_{j=1}^{n-1}a_{j}\sigma_{j})-|\sum_{j-1}^{n-1}c_{j}\sigma_{j}|^{2} ,

all roots \lambda of det P_{1}(\tau, \sigma, \lambda)=0 are bounded whenever (\tau, \sigma) is, if and only

if \sum_{j-1}^{n-1}c_{j}\sigma_{j}=0 for all \sigma, that is, c_{1}=\cdots=c_{n-1}=0 , which is equivalent to (A)

for P_{1} . Since

det P_{2}(\tau, \sigma, \lambda)=-(\tau+a_{3}\sigma)\lambda^{2}+(\tau+a_{3}\sigma)(a_{2}-a_{1})\sigma\lambda

+(\tau+a_{3}\sigma)\{(\tau+a_{1}\sigma)(\tau+a_{2}\sigma)-|b|^{2}\sigma^{2}\}

-\sigma^{2}\{\tau+(2^{-1}(a_{1}+a_{2})- Im b) \sigma\} ,

we see that all roots \lambda of det P_{2}(\tau, \sigma, \lambda)=0 are bounded whenever (\tau, \sigma) is,
if and only if

2^{-1}(a_{1}+a_{2})- Im b=a_{3} .
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This holds if
a_{2}=a_{1}+2i({\rm Re} b) and a_{3}=a_{1}+ib ,

which is equivalent to (A–1). Since (A–2) is always fulfilled for P_{2} , the
assertion for P_{2} is proved.

We finally give a remark on (A). Let P_{1} be the operator in Example
6. 4 with a>0 and n=2 and ker B be maximally non-positive for P_{1} . If
estimates (0. 2) with p\geq 1 hold for the solution to (P_{1}, B) then the condition
(A) must be fulfilled, that is, c_{1}=0 in Example 6. 4 (see [12], Theorem 3).

Appendix

The following proposition is used for the proof of Proposition 2. 7:
PROPOSITION A. 1. Suppose that (P, B) is maximally non-positive and

P_{0}(t, x;\tau, \sigma, \lambda) is of constant multiplicity in \tau . Then there exist constants
C, \gamma_{0}\geq 0 such that for every \gamma\geq\gamma_{0} and u\in \mathscr{F}^{1}

(A. 1) \gamma\int_{t_{1}}^{t}e^{-\gamma s}\langle\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}(s)\rangle_{0}^{2}ds\leq C\{e^{-\gamma t_{1}}|h|_{0}^{2}

+\gamma^{-1}\downarrow_{t_{1}}^{t}.e^{-\gamma S}(|f(s)|_{0}^{2}+\langle\Lambda^{\frac{1}{\gamma 2}}g(s)\rangle_{0}^{2})ds\} .

To prove this proposition we use the methods as in Sakamoto [10].
We start with

Lemma A. 2. Assume the same conditions as in Proposition A. 1.
Then for every fifixed t_{0}(>t_{1}) and every f’\in C_{0}^{\infty}((t_{1}, \infty)\cross G) and g’\in C_{0}^{\infty}((t_{1} ,
\infty)\cross\partial G) with f’=g’=0(t>t_{0}) the dual boundary value problem for (P, B)_{0} :

(P^{*}, B’)_{0} \{

P^{*}v=f’ in R^{1}\cross G ,

B’v=g’ on R^{1}\cross\partial G
;

has a unique solution v with v=0(t>t_{0}) such that for large \gamma
v\in H_{0,1j-\gamma}

(R^{1}\cross G) , D_{n}v_{I}\in H_{0,0;}
-

\gamma(R^{1}\cross G) and

(A. 2) e^{\gamma t_{1}}|v(t_{1})|_{0}^{2}+ \gamma\int_{t_{1}}^{t_{0}}e^{\gamma s}(|v(s)|_{0}^{2}+\langle\Lambda_{\gamma}^{-\frac{1}{2}}v_{I}(s)\rangle_{0}^{2})ds

\leq C\gamma^{-1}\int_{t_{1}}^{t_{0}}e^{\gamma s}(|f’(s)|_{0}^{2}+\langle\Lambda^{\frac{1}{\gamma 2}}g’(s)\rangle_{0}^{2})ds ,

where C>0 is independent of \gamma , t_{0} , t_{1} , f ’ and g_{r}’

PROOF. The assumption implies that (2. 17) is maximally non-positive
and that p_{0}* (-t, x; -\tau, \sigma, \lambda) is of constant multiplicity in \tau . So, let us
apply Proposition 2. 3 to (2. 17) noting that any changes of f and g in t>-t_{1}
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have no influence on the solution u to (P, B)_{0} in t<-t_{1} . Then we obtain
such a solution v as described in the lemma which satisfies, by (1. 9), for
large \gamma

(A. 3) \gamma\int_{t_{1}}^{t_{0}}e^{\gamma s}(|v(s)|_{0}^{2}+\langle\swarrow 4_{\gamma}^{-\frac{1}{2}}v_{I}(s_{/}^{\backslash }\rangle_{0}^{2})ds

\leq c_{\mathcal{T}^{-1}}J_{t_{1}}^{t_{0}}.e^{\gamma s}(|f’(s)|_{0}^{2}+\langle’\Lambda^{\frac{1}{\gamma 2}}g’(s)\rangle_{0}2)ds .

Since v belongs also to \mathscr{A}^{1}, the maximal non-positiveness of (2. 17) yields
an analogue of (2. 13); (integrating it over (-t_{0}, -tJ) we can derive the
inequality

e^{\gamma t_{1|v(t_{1})|_{0}^{2}\leq C\int_{t_{1}}^{t_{0}}e^{\gamma s}\{\gamma\langle\Lambda_{\gamma}^{-\frac{1}{2}}v_{I}(s)\rangle_{0}^{2}+\gamma^{-1}(|.f’(s)|_{0}^{2}+\langle’\Lambda^{\frac{1}{\gamma\#}}g’(s)\rangle_{0}^{2})\}ds}} ,

since v(t_{0})=0 . This and (A. 3) imply (A. 2).
Lemma A. 3. Let B_{I}’ be the matrix in (2. 16) and set

C_{I}=(B_{I}B_{I}^{*})^{-1}B_{I}A^{*} , C_{I}’=(0, I_{a-l})(B_{I}^{*}, (B_{I}’)^{*})^{-1} ,

where C_{I}, C_{I}’ are l\cross d, (d-l)\cross d matrices respectively. Then every u_{I} and
v_{I}\in C^{d} satisfy the following:
(A. 4) Au_{I}\cdot v_{I}=B_{I}u_{I}\cdot C_{I}v_{I}+C_{I}’u_{I}\cdot(B_{I}’A^{*})v_{I} ,

(A. 5) |u_{I}|^{2}\leq C(|B_{I}u_{I}|^{2}+|C_{I}’u_{I}|^{2}) :

where C>0 is a constant independent of u_{I} .
PROOF. Set H=(B_{I}^{*}, (B_{I}’)^{*}) , then according to (2. 16) H is a d\cross d

nonsingular matrix ; clearly, (I_{t}, 0)H^{*}=B_{I} , (0, //-1) H^{*}=B_{I}’ and (I_{t}, 0)H^{-1}=

(B_{I}B_{I}^{*})^{-1}B_{I} . Applying these relations to the identity
Au_{I}\cdot v_{I}=H^{-1}u_{I}\cdot H^{*}A^{*}v_{I}

=((I_{t}, 0)H^{-1})u_{I}\cdot((I_{t}, 0)H^{*})A^{*}v_{I}

+(0, I_{d-l})H^{-1}u_{I}\cdot((0, I_{a-t})H*)A^{*}v_{I} , u_{I}, v_{I}\in C^{a} ,

we see (A. 4). (A. 5) follows from (A. 4) and C|u_{I}|^{2}\leq|Au_{I}\cdot u_{I}| .
PROOF OF PROPOSITION A. 1. Let u\in \mathscr{F}^{1} and apply (A. 5) to \Lambda_{\gamma}^{-\frac{1}{2}}u_{I} .

Then, noting B_{I}\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}=\Lambda_{\gamma}^{-\frac{1}{2}}g+[B_{I}, \Lambda_{\gamma}^{-\frac{1}{2}}]u_{I} on \partial G we get

\gamma\int_{t_{1}}^{t}e^{-\gamma s\langle_{\backslash }\Lambda_{\gamma}^{-\frac{1}{2}}u_{I}(s)\rangle_{0}^{2}d_{S}}

\leq C\gamma\{\int_{t_{1}}^{t}e^{-\gamma s}\langle\Lambda_{\gamma}^{-\frac{1}{2}}g(s)\rangle_{0}^{2}ds+\int_{t_{1}}^{t}e^{-rs}\langle\Lambda_{\gamma}^{-_{2}^{1}}C_{I}’u_{I}(s)\rangle_{0}^{2}ds\}r
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So it suffices to estimate the last integral.
Let v be the function satisfying the conditions of Lemma A. 2 with

f’\equiv 0 . Then (A. 4) implies that
\langle C_{I}’u_{I}, g’\rangle(s)=\langle Au_{I}, v_{I}\rangle(s)+R(u_{I}, v_{I})(s)’.

where
|R(u_{I}, v_{I})(s)|^{2}\leq C\langle\Lambda^{\frac{1}{\gamma 2}}g(s)\rangle_{0}^{2}\langle\Lambda_{\gamma}^{-\frac{1}{2}}v_{I}(s)\rangle_{0}^{2}

Now integration by parts yields

\int_{t_{1}}^{t_{0}}\{(Pu, v)(s)-(u, P^{*}v)(s)\}ds

=i \int_{t_{1}}^{t_{0}}\langle Au_{I}, v_{I}\rangle(s) ds-i(u, ^{v})(s)|_{s=t_{1}^{0}}^{s=t}

Hence noting that P^{*}v\equiv 0 and v(t_{0})=0 and using (A. 2), we obtain

(A. 6) | \int_{t}^{t}:\langle C_{I}’u_{I} , g’ \rangle(s)ds|\leq C\gamma^{-\frac{1}{2}}F(t_{0})(\int_{t_{1}}^{t_{0}}e^{rs}\langle\Lambda^{\frac{1}{\gamma 2}}g’(s)\rangle_{0}^{2}ds)^{\frac{1}{2}},,

where
F^{2}(t)=e^{-\gamma t_{1}}|u(t_{1})|_{0}^{2}

+ \gamma^{-1}\int_{t_{1}}^{t}e^{-\gamma s}(|f(s)|_{0}^{2}+\langle\Lambda^{\frac{1}{\gamma 2}}g(s)\rangle_{0}^{2})ds .

Observing that (A. 6) holds for every g’\in C_{0}^{\infty}((t_{1}, t_{0})\cross\partial G) and t_{0}(>t_{1}) is ar-

bitaray we get for t>t_{1}

\gamma\int_{t_{1}}^{t}e^{-\gamma s}\langle\Lambda_{\gamma}^{-\frac{1}{2}}C_{I}’u_{1}(s)\rangle_{0}^{2}ds\leq CF^{2}(t)

Therefore we obtain (A. 1) and complete the proof.
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