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Cut loci of Berger’s spheres

By Takashi SAKAI
(Received February 28, 1980)

1. Introduction. In the present note we determine the structure of
the cut loci of Berger’s spheres explicitly. Let M be a compact riemannian
manifold with a fixed point 0 . Then for every geodesic \gamma_{X} (parametrized

by arc-length) from 0 with unit initial direction X\in T_{o}M, we define the cut

point \gamma_{X}(t) of 0 along \gamma_{X} as the last point on \gamma_{X} to which the geodesic arc
of \gamma_{X} minimizes the distance from 0. tX\in T_{o}M will be called the tangent

cut point of 0 along \gamma_{X}. The set of all (tangent) cut points of 0 is called
the (tangent) cut loculs of 0 . The cut locus contains the essential information
on the topology of M. Now the structure of cut locus is interesting in

connection with the singular ity of the exponential mapping Exp:T_{o}Marrow M.
Recently in case of analytic riemannian structure or in generic case much
progress has been made ([2], [3], [4], [14]). But since their works appeal

to the powerful general theory (Hironaka’s or Mather’s theory), it is not

clear how to apply these methods to concrete cases. On the other hand

for compact symmetric spaces the structure of cut loci has been completely

analyzed in terms of root system by the author and M. Takeuchi ([10],

[11], [12] ) . Thus it is a natural problem to study the cut loci of more

general homogeneous riemannian manifolds. But it seems difficult to establish
a general theory which analyzes the detailed and concrete structure of cut

loci in all homogeneous spaces. So we consider here some examples which

seems to be the first step for the above problem. Namely we consider
Berger’s spheres M_{a}(0<\alpha\leq\pi/2) -for the construction see \S 2-- which

are homogeneous spaces diffeomorphic to the three dimensional sphere.

These riemannian structures may be obtained from the canonical riemannian
structure M_{\pi 12} of constant curvature by deforming the metric along the

fibers of the Hopf fibering S^{3}-S^{2} (see [9]) or may be realized as the distance

spheres in CP^{2} with Fubini-Study metric ([15]) and give nice examples in

riemannian geometry ([5], [13], [16]).

Now in the present note, by determining the structure of the cut locus

of a point in M_{a} explicitly we see that the cut locus is the 2-disc whose
boundary consists of the conjugate points of order 1 and the cut locus con-

tracts to a point as \alpha converges to \pi/2 .
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In the case of the compact simply connected symmetric spaces the cut
locus coincides with the first conjugate locus by Crittenden’s theorem. But
in our case they don’t coincide but have the intersection. Moreover it turns
out that the first conjugate points have strong influence upon the cut locus.
We suspect that this holds also in the case of general simply connected
homogeneous spaces.

Although we treat here three dimensional case for the sake of simplicity,
the same method seems to be valid also for higher dimensional case.

In \S 4 we give an explicit estimate for injectivity radii of Wallach’s
manifolds which are seven dimensional manifolds of positive curvature. This
is a supplementary remark to a Huang’s recent work ([7]).

The author wishes to express his sincere thanks to S. Tanno for the
check of tedious computations.

2. Preliminaries.

2. 1. In this section we review the construction of the Berger’s spheres
(see [1], [5]). Let \mathfrak{g} be the Lie algebra of the Lie group G:=SU(2)\cross R^{1} .
Then \mathfrak{g} carries a bi -invariant inner product which is obtained from the
Killing form B(X, Y):=-1/2 tr XY on \mathfrak{s}\mathfrak{u}(2) and the canonical one on R.

We set for 0<\alpha\leq\pi/2 ,

S_{1} :=(_{0}^{\sqrt{-1}}0-\sqrt{-1}0000)0 , D:=(\begin{array}{lll}0 0 00 0 00 0 1\end{array}) (generator of R),

\xi:=sin\cdot S_{1}- cos \alpha D,

e_{1} :=\{ -100 001 00)0 , e_{2} :=(\sqrt{\frac{0}{0}1}\sqrt{-1}0000)0 .

Note that \{e_{1}, e_{2}, S_{1}, D\} forms an orthonormal basis of \mathfrak{g} . If we put \mathfrak{h}_{\alpha} :=
linear span of \cos\alpha S_{1}+\sin\alpha D, then

exp \mathfrak{h}_{\alpha}=\{(_{00}^{e^{lcos\cdot\sqrt{-1}0}}a_{0e^{-l\cos\sqrt{-1}}}\alpha\cdot l0)\sin 0;\alpha l\in R\}

defines a closed subgroup H_{\alpha} of G and we get the normal homogeneous
riemannian manifolds M_{\alpha} :=G/H_{a} which are diffeomorphic to S^{3} and are
called Berger’s spheres. Note that M_{\pi}/2 is the standard sphere of constant
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curvature 1. In the following we assume that 0<\alpha<\pi/2 . The tangent space
T_{o}M (0:=\pi(e);\pi : Garrow M_{a} canonical projection) may be identified with the
subspace \mathfrak{m}_{a} := linear span of \{\xi, e_{1}, e_{2}\} of \mathfrak{g} . We get easily

\mathfrak{g}=\mathfrak{h}_{a}+\mathfrak{m}_{a} , [\mathfrak{h}_{a}, \mathfrak{m}_{\alpha}]\subset \mathfrak{m}_{\alpha} , [\mathfrak{h}_{a}, \xi]=0 , [\mathfrak{h}_{\alpha}, e_{1}]\neq 0

2. 2. From the above we see that Ad H_{a} acts as an isometry group
transitively on the unit circle in the orthogonal complement \xi^{\perp} of \xi in \mathfrak{m}_{a} .
This means that the tangent cut locus and conjugate locus of 0 are surfaces
of revolution around the axis \xi . Thus to study the tangent cut locus it
suffices to determine the tangent cut point of 0 along the geodesic \gamma_{\theta} ema-
nating from 0 with the initial direction \cos\theta\cdot\xi+\sin\theta\cdot e_{2}(0\leq\theta\leq\pi) . Recall
that if \gamma_{\theta}(t) is the cut point of 0 along \gamma_{\theta} then either \gamma_{\theta}(t) is the first con-
jugate point to 0 along \gamma_{\theta} or there exists another minimizing geodesic \gamma’

(\neq\gamma_{\theta}) emanating from 0 with \gamma_{\theta}(t)=\gamma’(t) .

Now the first conjugate point of 0 along \gamma_{\theta} has been determined by I.
Chavel ([5]).

2. 3. Lemma ([5]). Let t_{0}(\theta) denote the first conjugate point to 0 along
\gamma_{\theta} . Then t_{0}(\theta) is the unique solution of

2. 4. REMARK. It is easy to see that t_{0}(\theta) is strictly monotone decreasing

(1) (tan xt) /(tx)=-\cot^{2}\alpha\cdot\sin^{2}\theta , x=\sqrt{\cos^{2}\theta\sin^{2}\alpha+\sin^{2}\theta}

which satisfies \pi/2<xt_{0}\leq\pi .

on [0, \pi/2] and \frac{dt_{0}}{d\theta}|_{\theta=0}=\frac{dt_{0}}{d\theta}|_{\theta/2}=\pi=0 , t_{0}(0)=\pi/\sin\alpha , t_{0}(\pi-\theta)=t_{0}(\theta) . In fact,

\frac{dt_{0}}{d\theta}\{1/\cos^{2}t_{0}x+\sin^{2}\theta \cot 2 \alpha\}=- sin 2\theta/(2x^{2})\{t_{0} cos2 \alpha(1/\cos^{2}t_{0}x+\cot^{2}\alpha \sin 2\theta)+

2t_{0}x^{2}\cot^{2}\alpha\}1

Thus for our purpose it suffices to determine t(\theta):= Inf {0<t\leq t_{0}(\theta) ;
there exists another minimizing geodesic \gamma’(\neq\gamma_{\theta}) with \gamma_{\theta}(t)=\gamma’(t)\} . Namely,
for a given \theta we have to search for the minimum value of positive t\leq t_{0}(\theta)

such that
(2) Exp t (cos \theta\cdot\xi+\sin\theta\cdot e_{2}) =Expt Ad h (cos \theta_{1}\cdot\xi+\sin\theta_{1}\cdot e_{2})

holds for some \theta_{1}\in[0, \pi] , h\in H_{a} with cos \theta\cdot\xi+\sin\theta\cdot e_{2}\neq adh (cos \theta_{1}\cdot\xi+\sin

\theta_{1}\cdot e_{2}) and t\leq t_{0}(\theta) , t_{0}(\theta_{1}) . Since in our case ExptX=\pi\cdot\exp tX, where exp
denotes the exponential map of Lie group, (2) is clearly equivalent to the
following :

(3) exp (-t (cos \theta\cdot\xi+\sin\theta\cdot e_{2}))h exp t (cos \theta_{1}\cdot\xi+\sin\theta_{1}\cdot e_{2}) \in H_{a} .

3. Tangent cut locus and cut locus.

3. 1. Since we have exp t (cos \theta\cdot\xi+\sin\theta\cdot e_{2}) =M(t, \theta, x):=
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=( \cos tx\sqrt{-1}\frac{\sin tx}{x,0’}\sin\theta\cos tx-\sqrt{-1}\frac{sin1}{s}\theta\sin\alpha 0)+\sqrt{-1}\frac{\sin tx}{x}\cos\theta\sin\alpha_{0-t\cos\theta\cdot\cos\alpha}\sqrt{-}\frac{\sin tx}{xtxx_{CO}}\sin\theta 0 ,

(3) is equivalent to

M(-t, \theta, x)(^{e^{l\cos_{0}}}\alpha_{0}.\sqrt{-1}e^{-\iota’\cos\alpha\cdot\sqrt{-1}}o_{0}lo0)^{M(t,\theta_{1},x_{1})}\sin\alpha

=\{e_{0}^{l’\cos a\cdot\sqrt{-1}}0e^{-l}00\cos a\cdot\sqrt{-1}l’ 00)\sin\alpha

with x_{1}

:=\sqrt{\cos^{2}\theta_{1}\sin^{2}\alpha+\sin^{2}\theta_{1}}(0\leq\theta_{1}\leq\pi)

where \alpha , \theta , x are known and t, \theta_{1} , l, l’ are unknown. In the above note
that for (3, 3) -components matrix multiplication is given by addition. Again
this is equivalent to the following transcendental equations:

(4) \frac{\sin tx\sin tx_{1}}{xx_{1}}\sin(\theta_{1}-\theta)\sin\alpha\cos u=

=( \frac{\sin tx}{x}\cos tx_{1}\sin\theta+\frac{\sin tx_{1}}{x_{1}} cos tx sin \theta_{1}) sin u

\frac{\sin tx\sin tx_{1}}{xx_{1}} sin (\theta_{1}+\theta) sin \alpha sin u=

=( \frac{\sin tx}{x} cos tx_{1} sin \theta^{-}\frac{\sin tx_{1}}{x_{1}} cos tx sin \theta_{1}) cos u .

(5) cos u cos A+\sin u sin A=

=( \cos tx\cos tx_{1}+\frac{\sin tx\sin tx_{1}}{xx_{1}} (cos \theta cos \theta_{1} sin2 \alpha+\sin\theta sin \theta_{1})) \cos u

+( \frac{\sin tx}{x} cos tx_{1} cos \theta-\frac{\sin tx_{1}}{x_{1}} cos tx cos \theta_{1}) \sin\alpha sin u

sin u cos A- cos u sin A=

=( \cos tx\cos tx_{1}+\frac{\sin tx\sin tx_{1}}{xx_{1}} (cos \theta cos \theta_{1} sin2 \alpha- sin \theta sin \theta_{1})) \sin u

-(\frac{\sin tx}{x} cos tx_{1} cos \theta-\frac{\sin tx_{1}}{x_{1}} cos tx cos \theta_{1}) \sin\alpha cos u ,

where we have put u=l cos \alpha, A=t (cos \theta_{1}- cos \theta) cot \alpha cos \alpha and l’ is
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determined by l’ cos \alpha=u-A .
3. 2. Firstly we consider the equation (4). Considering (4) as hom0-

geneous linear equation with respect to unknowns sin u and cos u, we get
the n . s. c. of having solutions:

(6) \frac{\sin^{2}\theta_{1}}{\sin^{2}\theta}=\frac{\sin^{2}\alpha+x_{1}^{2}\cot^{2}tx_{1}}{\sin^{2}\alpha+x^{2}\cot^{2}tx}

(0<t\leq t_{0}(\theta_{1}), t_{0}(\theta))

3. 3. Lemma. (6) implies that sin \theta=\sin\theta_{1} .
PROOF. Setting v:=tx, v_{1} :=tx_{1} and noting that sin 2\theta= (x^{2}- sin 2\alpha)/

cos 2\alpha, we get from (6)

(7) \frac{v_{1}^{2}-\sin^{2}\alpha\cdot t^{2}}{\sin^{2}\alpha\cdot t^{2}+v_{1}^{2}\cot^{2}v_{1}}=_{\sin^{2}\alpha\cdot t^{2}+v^{2}\cot^{2}v}^{i^{2}}v^{2}-\sin\alpha t^{2}

Now suppose that sin \theta_{1}\neq\sin\theta . Then we may assume 0\leq\theta<\theta_{1}\leq\pi/2 .
For fixed t(\leq t_{0}(\theta_{1}), t_{0}(\theta)) , we consider the function f of \overline{\theta}\in[\theta, \theta_{1}] defined by

f( \overline{\theta}):=\frac{v^{2}(\overline{\theta})-\sin-\alpha\cdot t^{2}}{\sin^{2}\alpha\cdot t^{2}+v^{2}(\overline{\theta})\cot^{2}v(\overline{\theta})}

,

, v(\overline{\theta})=tx(\overline{\theta})t

Then since dx/d\theta(\overline{\theta})=\sin 2\overline{\theta}\cdot\cos^{2}\alpha/2x(\overline{\theta}) , we have
df/d\theta(\overline{\theta})=

= \frac{t^{4}\sin 2\overline{\theta}\cdot\cos^{2}\alpha}{(\sin^{2}\alpha\cdot t^{2}+v^{2}\cot^{2}v)^{2}}\{\frac{\sin^{2}\alpha}{\sin^{2}v}+\frac{\cot v}{\sin^{2}v}v\sin^{2}\overline{\theta}\cos^{2}\alpha\} .
Now put v_{0}(\overline{\theta}):=t_{0}(\overline{\theta})x(\overline{\theta}) . Then for \overline{\theta}\in[\theta, \theta_{1}] we get v(\overline{\theta})\leq v_{0}(\overline{\theta}) , since
t_{0}(\overline{\theta}) is monotone decreasing and t\leq t_{0}(\theta_{1})(<t_{0}(\theta)) . On the other hand the
function varrow v\cot v is strictly monotone decreasing for positive v and we see
that vcot v\geq-\tan^{2}\alpha/\sin^{2}\overline{\theta}. Neamely we have

df/d\theta(\overline{\theta})\geq 0

and f(\overline{\theta}) is strictly monotone increasing on [\theta, \theta_{1}] . Thus we get f(\theta)<f(\theta_{1})

which contradicts (7). q . e . d .
3. 4. Lemma. \theta_{1}=\pi-\theta(\theta\neq\theta_{1}) .
PROOF. Suppose that \theta=\theta_{1} . Then from (4) we get sin tx cos tx\cdot\sin\theta\cdot\sin

u=0, sin2 tx\cdot\sin 2\theta\cdot\sin u=0 , namely, sin u=0, tx=\pi , sin \theta=0 , or \theta=t=\pi/2 .

Case 1. sin u=0 : Then u=n\pi, n\in Z and Ad h=Ad ( 0 ( \frac{0}{0}1)^{n}n\pi 0 )\tan 0\alpha

fixes the initial direction cos \theta\cdot\xi+\sin\theta\cdot e_{2} which contradicts the assumption
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in (2). Case 2. \sin\theta=0 : In this case Ad H_{\alpha} again leaves \cos\theta\cdot\xi+\sin\theta\cdot e_{2}

fixed. Case 3. tx=\pi implies that t_{0}x=\pi and \sin\theta=0 . Case 4. \theta=t=\pi/2

implies sin u=0 by (5). q . e . d .

Now by solving (4)_{1} under this condition we get

(8) sin \alpha tan u=(\tan tx/x) sin \alpha cos \theta sin \theta .

This means that u=l cos \alpha is determined uniquely modulo \pi from the value

of t unless sin \theta\neq 0 , namely Ad h is determined uniquely from the value of

t unless sin \theta\neq 0 . In the case of sin \theta=0 , i . e. , \theta_{1}=\pi or 0, we get for any

h\in H_{a} ad h (cos \theta_{1}\cdot\xi+\sin\theta_{1}\cdot e_{2}) =\cos\theta_{1}\cdot\xi+\sin\theta_{1}\cdot e_{2} ( =-\xi or \xi) which is also

uniquely determined.
3. 5. REMARK. For \theta=\pi/2 , there exist no minimizing geodesies dif-

ferent from \gamma_{\pi}/2 which intersect \gamma_{\pi}/2 at the value of t(=xt)\leq t_{0}(\pi/2) .

3. 6. REMARK. From the above we have

(9) A=-2t cos \theta cot \alpha cos \alpha .

3. 7. Next we consider the equation (5). By lemma 3. 4, (5) takes

the following form :

cos A cos u+\sin A sin u=

=( \cos^{2}tx-\frac{\sin^{2}tx}{x^{2}}(\cos^{2}\theta\sin^{2}\alpha-\sin^{2}\theta))\cos u+

+2 \sin\alpha\frac{\sin tx}{x} cos tx\cdot\cos\theta\cdot\sin u ,

-sin A cos u+\cos A sin u=

=(\cos^{2}tx-\sin^{2}tx) sin u-2 sin \alpha\cdot\frac{\sin tx}{x}\cos tx\cdot\cos\theta\cdot\cos u .

Considering again this as the homogeneous linear equation with respect to

cos u and sin u we get the n . a . s. condition of having solutions:

\cos 2tx[2\cos A-\frac{\sin^{2}\theta}{x^{2}}(1+\cos A)]+\sin 2tx[\frac{2\sin\alpha}{x} cos \theta sin A]

=2- \frac{\sin^{2}\theta}{x^{2}}(1+\cos A)

Noting that

[2 \cos A-\frac{\sin^{2}\theta}{x^{2}}(1+\cos A)]^{2}+[\frac{2\sin\alpha}{x}\cos\theta\cdot\sin A]^{2}=

=[2- \frac{\sin^{2}\theta}{x^{2}}(1+\cos A)]^{2} ,
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the above condition is equivalent to the following:

(10) cos (2tx-B)=1 ,

where B is defined by sin B=2\sin\alpha cos \theta sin A/xC, cos B=(2\cos A-\sin^{2}\theta(1

+\cos A)/x^{2})/C, with C=2-\sin^{2}\theta(1+\cos A)/x^{2} and A=-2t cos \theta cot \alpha cos \alpha .
Then this determines the value of t in principle. We study this in

a more detail. Put sin \gamma=\sin\theta/x, \cos\gamma=\sin\alpha\cdot\cos\theta/x . By the above we have
tan (A/2)=\cos\gamma\cdot\tan(B/2) . On the other hand we get tan (B/2)=\tan tx by
virtue of (10). Thus we get

(11) tan (A/2)=\cos\gamma\cdot\tan tx (cos \gamma=\sin\alpha\cdot\cos\theta/x ,
A=-2t cos \theta cot \alpha cos \alpha) [

Now (11) determines t=t(\theta) uniquely. In fact firstly we determine t(0) .
In this case (11) turns out to be -tan (t sin \alpha .cot2 \alpha) =\tan (t sin \alpha), i. e. , t=
n\pi sin \alpha , n\in Z. Since t(0) is the positive minimum value which satisfies the
above, we have t(0)=\pi sin \alpha<\pi/\sin\alpha=t_{0}(0) . Next we put

f(t, \theta) := cos \gamma\cdot\tan tx+\tan (t cos \theta sin \alpha cot2 \alpha) )

Then we get for \theta\in[0, \pi/2]

\partial f/\partial t=\cos\gamma\cdot x ( 1/\cos^{2}tx+\cot^{2}\alpha/\cos^{2} (t cos \theta sin \alpha\cdot\cot^{2}\alpha)) \geq 0 ,

where the equality holds iff cos \gamma=0 , i . e. , \theta=\pi/2 . By the implicit function
theorem t=t(\theta) is determined uniquely for \theta\in[0, \pi/2) . On the other hand
note that t(\pi-\theta)=t(\theta) by (11).

3. 8. Lemma. dt/d \theta(\theta)=\frac{\tan\theta((\tan tx)/x+\sin^{2}\theta\cot^{2}\alpha\cdot t)}{(x^{2}/\sin^{2}\alpha+\tan^{2}tx)}

PROOF. Note that dx/d\theta=\cos\theta . sin \theta .cos2 \alpha/x, d cos \gamma/d\theta=- sin \alpha\cdot\sin\theta/

x^{3} and dA/d\theta=-2 sin \alpha\cdot\cot^{2}\alpha ( dt/d\theta\cdot\cos\theta-t sin \theta). The by differentiating

the both sides of tan A/2=\cos\gamma tan tx and noting that \frac{1}{\cos^{2}A/2}=1+\cos^{2}\gamma

tan 2tx, 1+\cot^{2}\alpha cos2 \gamma=\frac{1}{x^{2}} , we get the lemma. q. e . d .

Now we compute \lim_{\thetaarrow\pi/2} tan tx for completeness. By 1’ Hospital’s rule

we get

\lim_{\thetaarrow\pi/2}\tan tx_{\thetaarrow\pi/2}=h.m\tan(A/2)/\cos\gamma=h.m\thetaarrow\pi,’ 2 (d/d\theta tan (A/2))/(d/d\theta cos \gamma)

= \lim_{\thetaarrow\pi/2} cot2 \alpha (sin2 \alpha tan t-\sin^{2}\alpha\cdot t-t sin2 \alpha tan2 t)/(1+\sin^{2}\alpha \tan 2 t)\neg.
From this we have \lim_{\thetaarrow\pi/2}\sin^{2}\alpha/\cos^{2}t

. (t \cot 2 \alpha+\tan t)=0 , i. e. ,
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tan (, \lim_{arrow\pi/2}t(\theta))/\lim_{\thetaarrow\pi/2}t(\theta)=-\cot^{2}\alpha (compare with (1)).

Finally we study the sign of dt/d\theta(0\leq\theta<\pi/2) . Clearly dt/d\theta(0)=0 .
(i) If 0<tx<\pi/2 , then dt/d\theta>0 ,
(ii) If tx=\pi/2 , then dt/d\theta=0 ,
(iii) In the case of tx>\pi/2 . We may assume tx\leq v_{0} (for the definition

of v_{0} see the proof of lemma 3. 3) and therefore
(tan tx)/tx\leq(\tan v_{0})/v_{0}=-\sin^{2}\theta\cdot\cot^{2}\alpha . Thus we get

tan tx/x+\sin^{2}\theta\cdot\cot^{2}\alpha\cdot t\leq 0 ,

where equality holds iff tx=v_{0} .

3. 9. To sum up we can see how the function t=t(\theta) behaves:

Case 1. t(0)=\pi sin \alpha\geq\pi/(2\sin\alpha) : Then t=t(\theta) can not intersect tx=\pi/2

by virtue of (ii). On the other hand t=t(\theta) can not intersect t=t_{0}(\theta) for
0\leq\theta<\pi/2 . Otherwise at the intersection we can estimate that dt/d\theta=0 ,
dt_{0}/d\theta<0(0<\theta<\pi/2) . (See 2. 4. Remark). From this we see that t=t_{0}(\theta)

and t=t(\theta) can not intersect at more one than point for \theta\in(0, \pi/2) . So as-
sume that t=t_{0}(\theta) intersects t=t(\theta) at exactly one point given by 0<\theta_{0}<\pi/2 .
Now we consider the tangent cut locus: firstly take the curve C_{1} in (\xi, e_{2}) -

plane defined by

C_{1}(\theta) :=)^{t(\theta)} (cos \theta\cdot\xi+\sin\theta\cdot e_{2}) 0\leq\theta\leq\theta_{0}

|t_{0}(\theta) (cos \theta\cdot\xi+\sin\theta\cdot e_{2}) \theta_{0}\leq\theta\leq\pi/2 .
Secondly consider the curve C_{2} in (\xi, e_{2}) -plane obtained by reflecting C_{1} about
the e_{2}-axis. Then the tangent cut locus is the surface of revolution obtained
by rotating the curve C_{1}\cup C_{2} around the \xi-axis. The cut locus is then given
by projecting the tangent cut locus under the exponential mapping and must
contain homotopically non-trivial closed curves. This contradicts the fact
that the cut locus is simply connected iff the given manifold is simply
connected. Thus t=t(\theta) is monotone decreasing on [0, \pi/2] and \lim_{\thetaarrow\pi/2}t(\theta)=

t_{0}(\pi/2) . Also we get \lim_{tarrow\pi/2}dt/d\theta=0 and the cut point of \gamma_{\pi/2} is the first con-

jugate point. The last fact follows also from Remark 3. 5. (see diagram 1).

case 2. t\langle 0) =\pi sin \alpha<\pi/2\sin\alpha. In this case for small positive values of
\theta, t=t(\theta) is monotone increasing. Since \lim_{\thetaarrow\pi/2}t(\theta)=t_{0}(\pi/2)>\pi/2 , t=t(\theta) in-

tersects a point of tx=\theta/2 . Then we see by the same arguement as above
that t=t(\theta) converges to t_{0}(\pi/2) monotone decreasingly with \lim_{tarrow\pi/2}dt/d\theta=0 .
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(see diagram 2).

3. 10. REMARK. From the above construction unknowns \theta_{1} , t, l, and
l’ are uniquely determined. Then the equation (5) is automatically satisfied
(In fact we have A=2u). It is also clear that t=t(\theta) defines the tangent
cut point of 0 along the geodesic \gamma_{\theta} .

\pi/\backslash i\prime 1a

r. f2 sin \alpha

\pi\int 2

r. sinrv

\backslash \backslash \grave{\tau}^{t-\gamma_{0}(\theta)}\backslash

|t

\sim\backslash

\iota_{\grave{1}}|

,

\backslash \backslash \backslash \backslash \backslash \backslash \backslash ^{I}\backslash \sim

tr_{1}--|||\vec{d\cdot}1’2

1

\iota-/(//)

0 \tau‘/\prime 2
\tau.

Diagan\tau 2(\alpha<\ell\tau/4)

Thus the whole tangent cut locus of 0 is obtained by rotating the
diagrams 3, 4 around the axis \xi . Under the exponential mapping every
point of the northern hemisphere is identified with the unique point in the
southern hemisphere, which is determined by the value of l and \theta_{1}=\pi-\theta

(see \S \S 3. 4.). On the equator the exponential mapping is injective. Since
M is homogeneous we have

3. 11. THEOREM. The cut locus of any point of Berger’s sphere M_{a}

(0<\alpha<\pi/2) is the disc whose boundary consists of conjugate points of order
1. This disc contracts to a point when \alpha converges to \pi/2 .

3. 12. REMARK. For 0<\alpha<\pi/4 , the injectivity radius of M (:=Infd
(0, the cut locus of o)) is given by \pi\sin\alpha . On the other hand for \alpha\geq\pi/4

this value gives the diameter of M and the injectivity radius is given by
t_{0}(\pi/2) which defines the first conjugate point. The first conjugate points
are given by non-isotropic Jacobi fields in the sense of Chavel ([5]). Thus
the first conjugate locus has strong influence upon the cut locus and we
suspect that this holds also for general homogeneous spaces.
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\overline{\sigma}

Di_{\grave{\iota}}a\prime_{tum4}(rx<_{d}\sim./4)

Di_{\iota}\tau gr_{c}\iota\prime\prime t3(\alpha^{\backslash }/-\vee/4_{l}1

4. Examples of Wallach.

4. 1. N. Wallach constructed the following 7-dimensional manifolds of
positive curvature. We shall follow the notation of Huang ([7]). Let T(p, q)

(p, q are relatively prime integers) be the circle in SU(3) defined by

T(p, q)
:=\{(\begin{array}{lll}e^{2\pi ip\theta} 0 00 e^{2\pi iq\theta} 00 0 e^{-2\pi i(p+q)\theta}\end{array}) \theta\in R,p^{2}+q^{2}>0i=\sqrt{-1}\}

and define M(p, q):=SU(3)/T(p, q) , which is simply connected and H^{4}(M

(p, q);Z)\cong Z_{r} with r=|p^{2}+q^{2}+pq| . Then the Lie algebra \mathfrak{g} of SU(3) is
decomposed into the vector space direct sum: \mathfrak{g}=H+V_{1}+V_{2} where

H:= Lie algebra of T(p, q)

V_{1}

:= \int_{1} (\begin{array}{ll}Z 00 -trZ\end{array})

;
Z=(\begin{array}{ll}/a v-\overline{v} b\end{array})

’
a(2p+q)+b(p+2q)=0a,b\in R,v\in C\}

V_{2}:=

:(\begin{array}{lll}0 0 z_{1}0 0 z_{2}-\overline{z}_{1} -\overline{z}_{2} 0\end{array})

; z_{i}\in C ,

i=1,2|)

Let \langle , \rangle be the Ad_{SU(3)} -invariant inner product on \mathfrak{g} defined by \langle X, Y\rangle=-

1/2 tr XY. We define the inner product \langle \rangle_{t} on \mathfrak{p}=V_{1}+V_{2} by

\langle X_{1}+X_{2}, Y_{1}+Y_{2}\rangle_{t} :=(1+t)\langle X_{1}, Y_{1}\rangle+\langle X_{2}, Y_{2}\rangle (-1<t<0) ,

and extend \langle , \rangle_{t} to an inner product on \mathfrak{g} making H and \mathfrak{p} orthogonal
and choosing \langle \rangle_{t}=\langle, \rangle on H. Then \langle : \rangle_{t} is Ad_{T(p,q)} -invariant and in-
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duces a homogeneous riemannain structure on M(p, q) which turns out to be
of positive curvature. Note that this metric can not be normal.

4. 2. Now Huang showed that the pinching number of M(i, i+1)
converges to that of M(1,1) as iarrow co and computed explicitly the pinching
number of M(1,1) for r=-1/2(2/37\leq K_{\sigma}\leq 29/8) . Then using the finiteness
theorem due to Cheeger and Weinstein he concluded that the infinimum of
the injectivity radii of M(i, i+1) is equal to zero.

Now we remark that it is possible to give an explicit estimate from the
above of the injectivity radius of (M(p, q) , \langle , \rangle_{t}) . Our idea is the following:
Let T^{2} be the maximal torus containing T(p, q) . Then N:=SU(3)/T^{2}
carries a structure of hermitian manifold of positive curvature and we have
the circle bundle M(p, q)arrow N. Then the fibers of this bundle will give
short closed geodesies. This happens in the case of Berger’s spheres ([6]).

For that purpose we consider the element
(12) \overline{M}_{7} :=(1/\sqrt{3(1+t)}\Delta)

(\begin{array}{lll}(2q+p)i 0 00 -(2p+q)i 00 0 (p-q)i\end{array})\in \mathfrak{p}

with \Delta=\sqrt{p^{2}+pq+q^{2}} which defines a unit vector in T_{o}M(p, q)\cong V_{1}+V_{2},
o=\pi_{\backslash }’e) . Then using the multiplication table for Lie bracket in [7], we easily
see that

\nabla_{M_{7}}\overline{M}_{7}=1/2[\overline{M}_{7},\overline{M}_{7}]-ad_{M_{7}}^{*}\overline{M}_{7}=0

Namely sarrow\pi\circ\exp s\overline{M}_{7} defines a geodesic in (M(p, q), \langle , \rangle_{t}) .
Now we look for the minimum positive number s_{0} of s which satisfies

exp s\overline{M}_{7}\in T(p, q) . This holds iff

\{

exp ((2q+p)si/\sqrt{3+(1+t)}\Delta)=\exp ip\theta for some \theta\in R, i. e. ,

exp (-(2p+q)si/\sqrt{3(1+t)}\Delta)=\exp iq\theta

(13) \{\begin{array}{l}(2q+p)s/\sqrt{3(1+t)}\Delta=p\theta+2\pi m,m,n\in Z-(2p+q)s/\sqrt{3(1+t)}\Delta=q\theta+2\pi n\end{array}

Eliminating \theta from the last equation we get

s=\pi\mapsto 3(1+t)/\Delta\cdot(mq-np) .
Then \theta is determined automatically from the above (13). Now since p, q
are relatively prime we can choose m, n so that mq– np=1 . Thus we see
that the smallest value s_{0} of such s is given by
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s_{0}=\pi\sqrt{3(1+t)}/\sqrt{p^{2}+pq+q^{2}}

This means that sarrow\pi\circ\exp s\overline{M}_{P}, ; s\in[0, s_{0}] defines a geodesic loop in M(p, q)

which turns out to be a closed geodesic of length \pi\sqrt{3(1+t)}/\sqrt{p^{2}+pq+q^{2}}

(see [8]). Since the injectivity radius is not greater than half the length
of closed geodesies we get

4. 3. PROPOSITION. For the injectivity radius i(M(p, q)) of M(p, q)
we get the following inequality:

i(M(p, q))\leq\pi\sqrt{3(1+t)}/2\sqrt{p^{2}+pq+q^{2}}

In this occasion I would like to correct some errors in my previous paper
“ON THE INDEX THEOREM OF AMBROSE” (Vol. IV (1975), 227-233) Hokkaido
Math. J.

P228\uparrow 12 H’-vector fifie1dsarrow H^{1}-vector fields
P229\uparrow 16 2\alpha(X_{h}, X_{v}) , (Y_{h}, Y_{v}))arrow\alpha((X_{h}, X_{v}) , (Y_{h}, Y_{v}))

\uparrow 7 \perp\dot{c}(b) :=S_{1}\oplus T_{1}\oplus N\oplus Aarrow\perp\dot{c}(b):=(S_{1}+T_{1})\oplus N\oplus A, where
S_{1}+T_{1} denotes the linear span of S_{1} and T_{1} .

\uparrow 2 pr_{N}A_{T}pr_{N}xarrow pr_{N}A_{T}pr_{T}x

P230\downarrow 1 pr_{T_{1}}A_{T}pr_{N}Y(b)arrow pr_{T_{1}}A_{T}pr_{T}Y(b)

\downarrow 2 pr_{N}A_{T}pr_{N}Y(b)arrow pr_{N}A_{T}pr_{T}Y(b)

\downarrow 4 pr_{S^{s}(b)}(\nabla Y(b)-\nabla x(b))arrow pr_{s*(b)}(\nabla Y(b)-\nabla X(b))

\downarrow 17 \Psi=A_{S^{l}(b)}-pr_{N}A_{T}arrow\Psi=A_{S(b)}.-pr_{s*(b)}A_{T}

P232\downarrow 3 Insert the following sentense before “So by lemma 4, \cdots
”

“Similary for any O(a)\in W(a) we have \langle\xi(a), \nabla U(a)\rangle=0 from
D^{2}E(c)(\xi, \zeta_{0}\oplus\zeta J=0 . ”

\uparrow 3 H’-vector fifie1dsarrow H^{1}-vector fields.

The author wishes to express his hearty thanks to T. Otsuki for pointing
out some of these errors.
The author is partially supported by Grant-in-Aid for Scientific Research,
No. 564001.
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