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Throughout this paper “algebra” will mean finite dimensional algebra
with unit over a field F and, unless otherwise indicated, “algebra” without
modifier will mean associative algebra. An algebra is called a Frobenius
algebra if there exists a non-degenerate associative bilinear form f(x, y)
on A, where associativity means that

(0. 1) f(x, c)=f(a, bc)
for a, b, c\in A . This condition is readily seen to be equivalent to: A con-
tains a hyperplane that contains no non-zero one sided ideal.

A number of years ago we proved the following result on generation
of central simple algebras.

0. 1. THEOREM. Let A be a central simple algebra of degree n, Ca
commutative Frobenius subalgebra of n dimensions. Then A contains an
element b such that A=CbC (Jacobson [1]).

It is well known that an algebra with a single generator is Frobenius
(see e . g . Jacobson [1], p. 219). Hence we have the following consequence
of this theorem.

0. 2. COROLLARY. Let A be a central simple algebra of degree n,

a an element of A such that [F[a] : F]=n . Then A contains an element
b such that A=F[a]bF[a] .

The proof of Theorem 0. 1 is based on the following facts:
1. The tensor product of Frobenius algebras is Frobenius. 2. If C is

a commutative Frobenius algebra then any faithful representation of C con-
tains the regular representation as a direct component. 3. If B is a sub-
algebra of a central simple algebra then A regarded as a bimodule for B
in the natural way can be regarded as a faithful module for B\otimes B^{op} . This
follows from the fact that A is faithful as A\otimes A^{op} module which in turn
follows from the simplicity of A\otimes A^{op} .

* This research was partially supported by the National Science Foundation grant
MCS79-04473 .
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In this note we propose to investigate to what extent the analogue of
the above Corollary is valid for special Jordan algebras.

1. We recall that a subspace H of an algebra A is a special Jordan
algebra if H contains 1 and H is closed under the composition aba and
hence under abc+cba. If the characteristic is \neq 2 this is equivalent to

closure under a . b= \frac{1}{2}(ab+ba) . Associated with H we have a special

universal envelope S(H), which is analogous to the universal enveloping
algebra of a Lie algebra. We recall the definition. First, we define an
associative specialization \sigma of H into the algebra B as a linear map such
that \sigma(1)=1 , \sigma(aba)=\sigma(a)\sigma(b)\sigma(a) . Then a special universal envelope is a
pair (S(H), \sigma_{u}) where S(H) is an algebra and \sigma_{u} is an associative specializa-
tion of H into S(H) such that if \sigma is any associative specialization of H
into B then we have a unique (associative algebra) homomorphism \eta of S(H)
into B such that

is commutative. The pair (S(H), \sigma_{u}) is unique in the usual strong sense of
uniqueness of universals in category theory. The existence of S(H) , \sigma) is
easily proved. We refer the reader to Jacobson [2] or [3] for this and
proofs of other properties which we shall state. Among these we note that
S(H) is generated by \sigma_{u}(H) and S(H) has a (unique) in- volution \iota such
that \iota\sigma_{u}(a)=\sigma_{u}(a) , a\in H. Unlike the situation for universal enveloping alge-
bras of Lie algebras, S(H) is finite dimensional for finite dimensional H.

Let H be a subalgebra of a special Jordan algebra K with ambient associ-
ative algebra B. If a, b\in H we write U_{K}(a) for the linear map x\mapsto axa in
K and U_{K}(a, b)=U_{K}(a+b)-U_{K}(a)-U_{K}(b) . This is x\mapsto axb+bxa . If K=H
we drop the subscripts K and write U(a) and U(a, b) . We now define the
squared special Jordan a^{l}gebra S”’(H) to be the subalgebra of S(H)\otimes_{F}S(H)

generated by the elements \sigma(a)\otimes\sigma(a) , a\in H. We shall now show that K
has a left S’(H)-module structure in which

(1. 1) (\sigma(a)\otimes\sigma(a))x=U_{K}(a)x , a\in H, x\in K

First, we have the homomorphism of S(H) into B such that \sigma(a)\mapsto a , a\in H.
Combining this with b\mapsto b_{L} where b_{L} is x\mapsto bx we obtain the homomorphism
of S(H) into End_{F}B such that \sigma(a)\mapsto a_{L} . Similarly, since we have the
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involution \iota of S(H) such that \iota\sigma_{u}(a)=\sigma_{u}(a) , we have the homomorphism
of S(H) into End_{F}B such that \sigma(a)-\mapsto a_{R} . Since left multiplications com-
mute with right multiplications we obtain a homomorphism of S(H)\otimes S(H)

into End_{F}B such that \sigma(a)\otimes\sigma(b)\mapsto a_{L}b_{R} . Then B is a S(H)\otimes S(H) module
in which (\sigma(a)\otimes(b))x=axb, x\in B . Hence B is an S’(H) module in which
(\sigma(a)\otimes\sigma(a^{\backslash },|)x=axa . Since H is a subalgebra of K, K is a submodule of B
as S’(H) -module. Then K is an S’(H) -module in which we have (2).

It is clear from the definition that S’(H) is contained in the subalgebra
of S(H)\otimes S(H) of elements fixed under the exchange automorphism such
that c\otimes d\vdasharrow d\otimes c, c, d\in S(H) . In important cases S’(H) coincides with this
subalgebra. This is the case if H is the subalgebra of K generated by a single
element c\iota . For, it follows from the power formulas U(a)1=a^{2}, U(a)a^{k}=a^{k+2}

that the subalgebra generated by a is F[a] . It is readily seen that the special
universal envelope of F[a] is F[a] together with the identity map, so F[a]’
is the subalgebra of F[a]\otimes F[a] generated by the elements b\otimes b , b\in F[a] .
It is readily seen also that this is the subalgebra of fixed points under the ex-
change automorphism. If the dimensionality [F[a] : F]=m then (1, a, \cdots, a^{m-1})

is a base for F[a] and (a^{i}\otimes a^{i}, a^{i}\otimes a^{j}+a^{j}\otimes a^{i}, 0\leq i<j\leq m-1) is a base for
F[a]’-

We recall that an element e of H is idempotent if e^{2}=e and e and fare orthogonal idempotents if e\circ f\equiv ef+fe=U_{e}f=U_{f}e=0 . These Jordan rela-
tions are equivalent to the associative relations ef=0=fe in the ambient
associativealgebra A . Let \{e_{1}, \cdots, e_{k}\} be a set of non-zero orthogonal idem-
potents that are supplementary in the sense that \Sigma e_{i}=1 . Then the opera-
tions U(e_{i}) , U(e_{i}, e_{j}) , i<j, are orthogonal idempotent endomorphisms such that
\Sigma U(e_{i})+\Sigma U(e_{i}, e_{j})=1 . Hence these give a Peirce decomposition of H as
(1. 2) H= \bigoplus_{i\leq j}H_{ij}

where H_{ii}=U(e_{i})H, H_{ij}=U\{ei9 e_{j}) H for i<j . (Jacobson [4], p. 2. 1 ff.). Since
the e_{i} form a su form a supplementary set of orthogonal idempotents in A we
have the tw0-sided Peirce decomposition A=\oplus A_{ij} where A_{ij}=e_{i}Ae_{j} . Then

(1. 4) H_{ii}=H\cap A_{ii} , H_{ij}=H\cap(A_{ij}+A_{ji}) . i<j
Evidently H_{ii} is a special Jordan algebra with unit e_{i} .

We shall now derive two results on Peirce decompositions of H that are
valid in the abstract case (cf. Jacobson [2], p. 105 or McCrimmon [1], p .
294).

1. 5. PROPOSITION. We have a module action of S(H_{ii})\otimes S(H_{jj}) on
H_{ij}, i<j , in which
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(1. 6) (\sigma_{u}(h_{ii})\otimes\sigma_{u}(h_{jj}))h_{ij}=U(h_{ii}, h_{jj})h_{ij} .

PROOF. Let h_{ii}=e_{i}ae_{i} , h_{ij}=e_{i}xe_{j}+e_{j}xe_{i} , a, x\in H. Then

U(h_{ii}, e_{j})h_{ij}=e_{i}ae_{i}(e_{i}xe_{j}+e_{j}xe_{i})e_{j}+

e_{j}(e_{i} xe_{j}+e_{j} xet)e_{i} ae_{i}=e_{i} ae_{i} xe_{j}+e_{j} xe_{i} ae_{i} .

It follows that if h_{ii}’ is a second element of H_{ii} then

U(h_{ii}, e_{j})U(h_{ii}’, e_{j})U(h_{ii}, e_{j})h_{ij}

=U( U(h_{ii})h_{ii}’ , e_{j}) h_{ij}\tau

Also U(e_{i}, e_{j})h_{ij}=h_{ij} . Hence we have a homomorphism of S(H_{i}) into End_{F}

H_{ij} such that \sigma_{u}(h_{ii})-U\{hii9 e_{j}) |H_{ij} . Similarly, we have a homomorphism
of S(H_{j}) into End_{F}H_{ij} such that \sigma_{u}(h_{jj}) - U(e_{i}, h_{jj})|H_{ij} . Next we can verify
that

U(h_{ii}, e_{j})U(e_{i}, hj3)h_{ij}=U\{hii9 h_{jj})h_{ij}

=U(e_{i}, h_{jj})U(h_{ii}, e_{j})h_{ij}

It follows that we have a homomorphism of S(H_{ii})\otimes S(H_{jj}) into End_{F}H_{ij}

such that \sigma_{u}(h_{ii})\otimes\sigma_{u}(h_{jj})-U(h_{ii}, h_{jj})|H_{ij} . Hence we have a module action
of S(H_{i})\otimes S(H_{j}) on H_{ij} for which (1. 6) holds. \square

We now suppose that H is a subalgebra of the Jordan algebra K with
ambient algebra B containing A as a subalgebra. Suppose H=H_{1}\oplus H_{2}

\oplus\cdots\oplus H_{s} where H_{i} is an ideal in H(H_{i} is a subspace and U(h_{i})h and
U(h)h_{i}\in H_{i} for h_{i}\in H_{i} , h\in H). We have 1=\Sigma 1_{i} , 1_{i}\in H_{i} and the 1_{i} are
orthogonal idempotents. The decomposition H=\oplus H_{i} is the Peirce decom-
position of H relative to this set of idempotents. Let E be the ring of
endomorphisms in K generated by the U_{K}(h) , h\in H. Then E contains the
supplementary set \Sigma=\{U_{K}(1_{i}), U_{K}(1_{i}, 1_{j}), i<1)\} of orthogonal idempotent
operators. If h_{i}\in H_{i} then U_{K}(1_{i})U_{K}(h_{i})U_{K}(1_{i})=U_{K}(U_{K}(1_{i})h_{i})=U_{K}(h_{i}) . Hence
U_{K}(1_{i})U_{K}(h_{i})=U_{K}(h_{i})=U_{K}(h_{i})U_{K}(1_{i}) and U_{K}(1_{j})U_{K}(h_{i})=0=U_{K}(h_{i})U_{K}(1_{j}) for
j\neq i, U_{K}(1_{j}, 1_{k})U_{K}(h_{i})=0=U_{K}(h_{i})U_{K}(1_{j}, 1_{k}) for j<k . Direct verification shows
also that U_{K}(1_{i}, 1_{j})U_{K}(h_{i}, h_{j})=UK\{hi )h_{j}) =UK\{hi )h_{j}) U_{K}(1_{i}, 1_{j}) for h_{i}\in H_{i} ,
h_{j}\in H_{j} , i<j . It now follows that multiplication of U_{K}(h_{i}, h_{j}) on either side
by any idempotent operator \neq U_{K}(1_{i}, 1_{j}) in the set \Sigma gives 0. We use these
results to prove

1. 7. PROPOSITION. The idempotents U_{K}(1_{i}) , U_{K}(1_{i}, 1_{j}) are central in
E so E= \bigoplus_{i\leq j}E_{ij} where E_{ii}=U_{K}(1_{i})E, E_{ij}=U_{K}(1_{i}, 1_{j})E, i<j, are ideals.

Moreover, U_{K}(h_{i}’)\in E_{ii} and U_{K}(h_{i}, fx_{j})\in E_{ij} if h_{i}\in H_{i} , h_{j}\in H_{j} and i<j .
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PROOF. Any h\in H can be written as \Sigma h_{i} , h_{i}\in H_{i} . Since U_{K}(h) is
a quadratic function of h we have U_{K}(h)= \Sigma U_{K}(h_{i})+\sum_{i<j}U_{K}(h_{i}, h_{j}) . Thus E

is generated by the U_{K}(h_{i}) and the U_{K}(h_{i}, h_{j}) . Since these commute with the
idempotents U_{K}(1_{i}) , U_{K}(1_{i}, 1_{j}) , these idempotents are central and we have
E= \bigoplus_{i<j}E_{ij} when the E_{ij} are as defined in the statement of the proposition.

These are ideals and since U_{K}(h_{i})=UK\{li) U_{K}(h_{i}) , U_{K}(h_{i})\in E_{ii} . Similarly
U_{K}(h_{i}, h_{j})\in E_{ij} . \square

2. The special Jordan algebras we shall consider in this paper are the
following: 1. A^{+} where A is central simple assocative and A^{+} is obtained
from A by replacing the associative product by the composition U(a)b=aba.
2. The subalgebra H(A,j) of A^{+} of j-symmetric elements (j(h)=h) of A^{+}

where A is central simple with involution j. 3. H(A,j) where A is simple
with center a separable quadratic extension of the base field and j is an
involution of second kind. All of these Jordan algebras are central simple.
Under extension of the base field F to its algebraic closure \overline{F} the Jordan
algebras in 1. and 3. become M_{n}(\overline{F})^{+} and the algebras in 2. become either
H(M_{n}) the Jordan algebra of n\cross n symmetric matrices or H(M_{n}, s) the
Jordan algebra of n\cross n (n even) symplectic symmetric matrices. In the
first case j is said to be of orthogonal type and in the second of symplectic
type.

If a is an element of a Jordan algebra H we call the degree of the
minimum polynomial of a the degree of a . The maximum degree of the
elements of H is called the degree of H. For the algebras we have listed
the degrees in all cases are n except in the case H(A,j) where j is of
symplectic type, in which case the degree is \nu=n/2 .

From now on H will denote one of the central simple Jordan algebras
we have listed. In this section we shall show that H is a faithful F[a]’-
module for any a that is separable in the sense that its minimum polynomial
has distinct roots and the same result holds for all a if char F\neq 2 . The
statement that H is a faithful F[a]’ -module is equivalent to the following:
If [F[a] : F]=m so (1, a, \cdots, a^{m-1}) is a base for F[a]/F then the m(m+1)/2
linear transformations U(a^{i}) , U(a^{i}, a^{j}) , 0\leq i<j\leq m-1 , are linearly independ-
ent. Since we can extend F to its algebraic closure \overline{F} and replace H by
H_{\overline{t}} , it suffices to prove this for F algebraically closed.

2. 1. Lemma. If e and f are non-zero orthogonal idempotents in H
then U(e,f)\neq 0 .

PROOF. Since e+f is idempotent and U_{e}H is a Jordan algebra of the
same type as H we may assume e+f=1 . Also we may assume F is alge-
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braically closed. Then we can we can write e= \sum_{1}^{m}e_{i} , f= \sum_{m+1}^{n}e_{j} where
\{e_{k}|1\leq k\leq n\} is a supplementary set of orthogonal idempotents \neq 0 . Then we
have the Peirce decomposition \oplus H_{kl} , relative to \{e_{k}\} . Since F is algebraically
closed H_{kk}=Fe_{k}(\neq 0) . Since H is simple every H_{kl}\neq 0 (Jacobson [4], p .
3. 26). Then the orthogonal idempo operators U(e_{k}) and U(e_{k}, e_{l}) are
\neq 0 and so these are linearly independent. Hence U(e,f)= \sum U(e_{i}, e_{j})i\leq m,j>m\neq 0 . \square

2. 2. THEOREM. Let H be one of the central simple Jordan algebras
listed above and let a be a separable element of H. Then H is faithful
as F[a]’ -module.

PROOF. We may assume F algebraically closed. Then F[a]=Fe_{1}\oplus

\ldots\oplus Fe_{m} where the e_{i} are orthogonal idempotents and a=\Sigma\alpha_{i}e_{i} where the
\alpha_{i} are distinct. Then every U(e_{i}) , U(e_{i}, e_{j}) is non-zero so these are linearly
independent for 1\leq i<j\leq m . Hence the U(a^{i}) , U(a^{i}, a^{j}) for 0\leq i<j\leq m-1

are linearly independent. \square

We now assume char F\neq 2 and we shall prove

2. 3. THEOREM. Let H be as before and assume char F\neq 2 . Then
H is a faithful F[a]’ -module for every a\in H.

PROOF. We assume first that a=z is nilpotent with minimum polynomial
\lambda^{m} . Then it is known (Jacobson [5]) that z can be imbedded in a subalgebra
that is a direct sum of ideals H_{i} where H_{i} can be identified with the Jordan
algebra of m_{i}\cross m_{i} matrices that are j_{i} -symmetric relative to the involution

(2. 4) j_{i} : x\mapsto M_{i}(^{t}x)M_{i}^{-1}

where

(2. 5) M_{i}=_{k+l} \sum_{m_{i}+1}e_{kl}=M_{i}^{-1}

( e_{kl} the matrix with 1 in the (k, l)-position, 0’s elsewhere). Moreover, we
may suppose m_{1}=m and the component z_{i} of z in H_{i} is

(2. 6) z_{i}= \sum_{1}^{m_{i}-1}e_{k,k+1}

To prove the operators U(z^{i}, z^{j}) , 0\leq i\leq j\leq m-1 , (U(z^{j}, z^{i})=2U(z^{i}))

are linearly independent it suffiices to show this is the case for their restric-
tions to H_{1} . Hence we may assume H is the Jordan algebra of m\cross m

matrices h such that M(^{t}h)M=h where M= \sum_{k+l-m+1}e_{kl} and z= \sum_{1}^{m-1}e_{k,k+1} . Now

H contains
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(2. 7) h_{kl}=e_{kl}+Me_{lk}M=e_{kl}+e_{m+1-l,m+1-k}

and
(2. 8) (h_{kl}|1\leq k, l\leq m, k+1\leq m+1)

is a base for H. We have
(2. 9) U(z^{i}, z^{j})h_{kl}=h_{k-i,l+j}+h_{k-j,l+i}

where h_{u,v}=0 unless the (u, v) satisfy the inequalities for (k, l) given in (2. 8).
These formulas show that every U(z^{i}, z^{j}) , 0\leq i\leq j\leq m-1 , \neq 0 and that

no two of the matrices of these linear transformations relative to the base
(2. 8) (taken in some order) have non-zero entries in the same position.
Hence the matrices are linearly independent and the operators U(z^{i}, z^{j})

are linearly independent.
Now let a be arbitrary and assume F is algebraically qlosed. Then

F[a] contains a supplementary set of orthogonal idempotents \{e_{i}|1\leq i\leq s\}

such that a_{i}=U(e_{i})a=\alpha_{i}e_{i}+z_{i} where \alpha_{i}\in F and z_{i}\in U(e_{i})F[a] has minimum
polynomial \lambda^{m_{i}} . Then

(2. 10) (e_{1}, z_{1}, \cdots, z_{1}^{m_{1}-1} ; e_{2}, Z_{2}^{ },\cdots, Z_{2}^{m_{2}-1}, \cdots ; \cdots z_{s}^{m_{S}-1})

is a base for F[a] . It auffices to prove the linear independence of the set
\{U(x, y)\} where x and y are chosen in (2. 10) and x\leq y in the order displayed
in (2. 10). By Proposition 1. 7 and the result just proved on nilpotent
elements, it suffices to show that for every i\neq j the operators U(z_{i}^{k}, z_{j}^{l}) ,
0\leq k\leq m_{i}-1,0\leq l\leq m_{j}-1 are linearly independent. By replacing H by
U(e_{i}+e_{j})H we may assume s=2 and write e=e_{i} , f=e_{j}, z=z_{i} , w=z_{j} . If
we apply the imbedding theorem for nilpotent elements to the algebras
U(e)H and U(f)H we see that there exists a subalgebra of H of the
form \bigoplus_{1}’H_{k} where H_{k} is an ideal in this subalgebra that can be identified
with the algebra of m_{k}\cross m_{k} symmetric matrices and z\in H_{1}+\cdots+H_{r}, w\in
H_{r+1}+\cdots+H_{t} . The result on the linear independence of the U(z^{k}, w^{l}) will
follow if we can show that if (z_{1}, \cdots, z_{u}) is a base for H_{1}+\cdots+H_{r} and
(w_{1}, \cdots, w_{v}) is a base for H_{r+1}+\cdots+H_{t} then the set of operators \{U(z_{p}, w_{q})\}

are linearly independent. By using Proposition 1.7 we may assume t=2.
Now it is known that the special universal envelope of the algebra HM_{n}(F)

of n\cross n symmetric matrices is M_{n}(F) (Jacobson [2], p. 134). This applies
to H_{i} and implies that S(H_{1})\otimes S(H_{2}) is simple. Since U(e,f) H\neq 0 (Lemma
2. 1), this is a faithful module for S(H_{1})\otimes S(H_{2}) via (1. 6). Then the operators
U(z_{p}, w_{q}) are linearly independent.

\square

2. 11. REMARK. The proof of Theorem 2. 3 is considerably more
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complicated than the proof of the corresponding result in the associative
case. The latter follows from the fact that if A is central simple associa-
tive then A^{e}=A\otimes A^{op} is simple and hence A is a faithful A^{e} -module. On
the other hand, if H is central simple Jordan then H is generally not

faithful as S’(H) -module. For example, let H=H(A,j) where A is central
simple of degree \geq 3 and j is an involution in A. Assume char F\neq 2 .
Then S’(H)\cong M_{n(n-1)/2}(F)\oplus M_{n(n+1)/2}(F) (Jacobson [2], p. 273). Since H(AJ)
is simple it is irreducible as S’(H) -module. Since S’(H) is not simple, H
is not faithful as S’(H) -module.

3. We prove next a result due to Azumaya (1956. unpublished).

3. 1. THEOREM. Let B be the subalgebra of F[a]\otimes F[a] of fixed
elements under the automorphism \epsilon such that b\otimes c\mapsto c\otimes b . Then B is a

Frobenius algebra if and only if either a is separable or char F\neq 2 .

PROOF. We recall first the well known result that an algebra A over
F is Frobenius if and only if A_{\overline{I}^{r}} is Frobenius for \sqrt{}^{-}

. the algebraic closure
of F. Also it is clear that the exchange automorphism \overline{\epsilon} in \overline{F}[a]\otimes\overline{F}[a]

is the extension of \epsilon in F[a]\otimes F[a] and that the subalgebra of \overline{\epsilon} fixed
elements is B -. Hence it suffice to prove the theorem for an algebraically
closed base field. In this case we have F[a]=F[a_{1}]\oplus\cdots\oplus F[a_{r}] where
a_{i}=\alpha_{i}e_{i}+z_{i} , \alpha_{i}\in F, e_{i} the unit of F[a_{i}] and z_{i} has minimum polynomial \lambda^{m_{i}} .
Then F[a]\otimes F[a]\cong\oplus(F[a_{i}]\otimes F[a_{j}]) . The automorphism \epsilon interchanges

i,j
F[a_{i}]\otimes F[a_{j}] and F[a_{j}]\otimes F[a_{i}] . It follows that B \cong\bigoplus_{i<j}(F[a_{i}]\otimes F[a_{j}])\oplus(\oplus B_{i})

where B_{i} is the subalgebra of \epsilon -fixed points of F[a_{i}]\cross F[a_{i}] . Since the
direct sum of algebras is Frobenius if and only if every component is FrO-
benius and the tensor product of Frobenius algebras is Frobenius, it suffices
to prove the theorem for the case r=1 .

We now suppose a=\alpha 1+z where the minimum polynomial of z is \lambda^{m} .
By replacing a by z we may assume a is nilpotent with minimum polynomial
\lambda^{m} . If m=1 , a=0 and F[a]=F. Then B=F1 is Frobenius. This and
the preceding reductions show that B is Frobenius if a is separable.

Now assume a is nilpotent with minimum polynomial \lambda^{m}, m>1 . Then
B has the base

(3. 2) (1 ; a^{i}\otimes a^{i}, 1\leq i\leq m-1 ; a^{i}\otimes a^{j}+a^{j}\otimes a^{i}, 0\leq i<j\leq m-1)

These elements \neq 1 are nilpotent and hence span a nilpotent ideal N. We
have B/N\cong F. Hence B is a local ring with N as its unique maximal ideal.
It follows that B is Frobenius if and only if it has a unique minimal ideal
(see e . g . Jacobson [1], p. 219). Since B/N\cong F a B-module is completely



Bimodule structure of certain Jordan algebras relative to subalgebras with one generator 341

reducible if and only if it is annihilated by N and irreducible B-modules
are one dimensional. Hence the socle of B(= sum of the minimal ideals
of B) is the annihilator M of N in B and B is Frobenius if and only if
M is olle dimensional.

Now N is generated as an ideal by the elements a\otimes a and 1\otimes a^{i}+a^{i}\otimes 1 ,
1\leq i\leq m-1 , since

(a\otimes a)^{i}=a^{i}\otimes a^{i}

a^{i}\otimes a^{j}+a^{j}\otimes a^{i}=(a\otimes a)^{i}(1\otimes a^{j-i}+a^{j-i}\otimes 1)

if 1\leq i<j\leq m-1 . We determine first the annihilator M_{1} of a\otimes a . For this
purpose we multiply the base (3. 2) by a\otimes a . This multiplication gives 0
for the base elements a^{m-1}\otimes a^{m-1} and a^{i}\otimes a^{m-1}+a^{m-1}\otimes a^{i} . Otherwise, we
obtain distinct elements of the base (3. 2). It follows that M_{1} is the subspace
spanned by a^{m-1}\otimes a^{m-1} and a^{i}\otimes a^{m-1}+a^{m-1}\otimes a^{i} , 0\leq i<m-1 . We now mul-
tiply these elements by 1\otimes a+a\otimes 1 to obtain successively 0 and a^{i+1}\otimes a^{m-1}+

a^{m-1}\otimes a^{i+1} . It follows that the annihilator of a\otimes a and a\otimes 1+1\otimes a is spanned
by a^{m-1}\otimes a^{m-1} if char F\neq 2 and by a^{m-1}\otimes a^{m-1} and a^{m-2}\otimes a^{m-1}+a^{m-1}\otimes a^{m-2}

if char F=2 . Now

1\otimes a^{i}+a^{i}\otimes 1\equiv(1\otimes a+a\otimes 1)^{i} mod ((a\otimes a)B)

Hence a^{m-1}\otimes a^{m-1}\in M for any F and a^{m-2}\otimes a^{m-1}+a^{m-1}\otimes a^{m-2}\in M if char F
=2 . Thus

M=F(a^{m-1}\otimes a^{m-1}) if char F\neq 2

M=F(a^{m-1}\otimes a^{m-1})+F(a^{m-2}\otimes a^{m-1}+a^{m-1}\otimes a^{m-2}) if char F=2
and B is Frobenius if and only if char F\neq 2 . \square

4. We can now derive our main results on the central simple Jordan
algebras listed at the beginning of 2.

4. 1. THEOREM. Let H be a Jordan algebra in the following list:
1. A^{+} , A central simple associative, 2. H(A,j) where A is central simple
and j is an involution, 3. H(A,j) where A is simple with center a separable
quadratic extension of the base field and j is an involution of second kind.
Let a\in H be of degree m and suppose a is separable if char F=2. Then
there exists an element b in H such that F[a]’b has the base aibai, a^{i}ba^{j}+

a^{j}ba^{i} where 0\leq i<j\leq n-1 and H=F[a]’b\oplus M, M an F[a]’ -submodule
of H.

PROOF. The results of the last two sections show that F[a]’ is a
Frobenius algebra and H is a faithful module for F[a]’ . Hence H=P\oplus M

where P and M are F[a]’ -submodules and p\cong F[a]’- Let b denote the
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image of 1 in a F[a]’ isomorphism of F[a]’ onto P. Since the elements
a_{i}\otimes a^{i} , a^{i}\otimes a^{j}+a^{j}\otimes a^{i} form a base for F[a]’ it follows that the elements
a^{i}ba^{i} , a^{i}ba^{j}+a^{j}ba^{i} , 0\leq i<j\leq m-1 , form a base for P.

The dimensionality of F[a]’b is m(m+1)/2 . This coincides with [H:F]
if and only if H=H(A,j) where A is central simple and j is an involution
of orthogonal type, and a has maximal degree. The positive part of this
result can be stated as

4. 2. COROLLARY. Let H=H(A,j) where A is central simple and j
is an involution of orthogonal type in A. Let a be an element of H of
degree n where [A:F]=n^{2} and assume a is separable if char F=2. Then
there exists a b\in H such that

(4. 3) (a^{i} ba^{i}, a^{i}ba^{j}+a^{j} ba^{i}, 0\leq i<j\leq n-1)

is a base for H over F.

4. 4. REMARKS. The foregoing theorem and corollary appear to con-
stitute an adequate Jordan analogue for Corollary 0. 2. One is tempted to

define a Frobenius Jordan algebra as a Jordan algebra that possesses a
non-degenerate symmetric associative bilinear form. If char F\neq 2 the ana-
logue of a commutative associative algebra is a Jordan algebra that is as-

sociative in the multiplication a.b= \frac{1}{2}U(a, b)1 . This leads to the question

of the valdity of an analogue of Theorem 0. 1 in which commutative
Frobenius subalgebras are replaced by associative Frobenius subalgebras of
H (for char F\neq 2 ).
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