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1. Introduction

Let G be a locally compact Hausdorff group, and let L^{\infty}(G) be the
usual Banach algebra. Let X be a non-zero weak*-closed linear subspace
of L^{\infty}(G) which is (i) left and right translation invariant, (ii) self-adjoint,
and (iii) an algebra. Such subspaces X were characterized by Pathak and
Shapiro [5] for LCA groups G, and by Crombez and Govaerts [1] for
general locally compact Hausdorff groups G (not necessarily abelian) under
the assumption that X contains the constant functions. In this paper we
consider the property (ii)’ complemented, instead of (ii), and characterize
weak*-closed linear subspaces of L^{\infty}(G) with the properties (i), (ii)’, and (iii)
for LCA groups G and compact Hausdorff groups G, not necessarily abelian.
Pathak-Shapiro Theorem ([5]) and our result show that if G is a LCA
group, and if X is a weak*-closed translation invariant subalgebra of L^{\infty}(G) ,
then X is complemented if and only if X is self-adjoint. Also, Crombez-
Govaerts Theorem ([1]) and our result show that if G is a compact Hausdorff
group, not necessarily abelian, and if X is a weak*-closed left and right
translation invariant subalgebra of L^{\infty}(G) , then X is complemented if and
only if X is self-adjoint. (See Remark 3 in section 3).

Let G be a locally compact Hausdorff group and fix left Haar measure
dx on G. Let L^{\infty}(G) be the class of all complex-valued essentially bounded
Haar-measurable functions on G, and let L^{1}(G) be the class of all complex-
valued Haar-integrable functions on G. L^{\infty}(G) is a commutative Banach
algebra under pointwise multiplication of functions as the product. As is
well-known, L^{\infty}(G) is the Banach space dual of L^{1}(G) . For s\in G , left and
right translation of a function f on G by s are denoted by (L_{s}f)(x)=f(sx)

and (R_{s}f)(x)=f(xs)(x\in G) , respectively. A linear subspace X of L^{\infty}(G)

is said to be left [right, left and right] translation invariant if L_{s}f\in X[R_{s}f\in X,
L_{s}f and R_{s}f\in X ] for all s\in G and f\in X. If G is abelian, left (and hence
left and right) translation invariant subspaces of L^{\infty}(G) are simply said to
be translation invariant. A subset X of L^{\infty}(G) is said to be self-adjoint if
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f\in X implies \overline{f}\in X, where \overline{f} denotes the complex conjugate of f. A closed
linear subspace X of L^{\infty}(G) is said to be complemented if there exists a
bounded projection P (i . e. , a bounded linear operator with P^{2}=P) of L^{\infty}(G)

onto X.
Given a closed normal subgroup H of G, we put X_{H}=\{f\in L^{\infty}(G) ;

L_{e}.f=R_{s}f=f for all s\in H}. We can easily see that every X_{H} is a weak*-
closed linear subspace of L^{\infty}(G) which is left and right translation invariant
and an algebra containing the constant functions. Also, if G is a LCA
group or a compact Hausdorff group, not necessarily abelian, then X_{H} is
complemented. This is verified as follows ; If G is a LCA group, then it
follows immediately from Gilbert Theorem ([2]) that X_{H} is complemented.
(See Remark 1 in section 2). If G is a compact Hausdorff group, not neces-
sarily abelian, and if we define P:L^{\infty}(G)- L^{\infty}(G) by (Pf) (x)= \int Hf(x\xi)d\xi

(f\in L^{\infty}(G)) , where d\xi is the normalized Haar measure on H, then P is a
bounded projection L^{\infty}(G) onto X_{H} (See [4] (28. 54)). Hence X_{H} is comple-
mented.

We prove the following converse Theorems.
THEOREM 1. Let G be a LCA group, and let X be a non-zero weak*-

closed linear subspace of L^{\infty}(G) which is (i) translation invariant, /\backslash i_{\acute{1}})’

complemented, and (iii) an algebra. Then there exists a unique closed sub-
group H of G such that X=X_{H}.

THEOREM 2. Let G be a compact Hausdorff group, not necessarily
abelian, and let X be a nonzero weak*-closed linear subspace of L^{\infty}(G)

which is (i) left and right translation invariant, (ii)’ complemented, and
(iii) an algebra. Then there exists a unique closed normal subgroup H of
G such that X=X_{H}.

We will prove Theorem 1 and 2 in section 2 and 3, re_{\supset}\neg pective1y .

I would like to thank Professor S. Koshi and Professor J. Inoue for
their valuable suggestions.

2. Proof of Theorem 1

Throughout this section, G will be a LCA group unless the contrary
is explicitly specified. The group operation in G will be written additively.
The dual group of G is denoted by \hat{G} . We need two Lemmas to obtain
the proof of Theorem 1.

For an abelian group G, the coset-ring of G is the smallest ring of sets
of G containing all the cosets of G. The coset-ring of G is denoted by \mathscr{R}(G) .
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Lemma 1. Let Z be the additive group of the integers, S a subsemi-

group of Z. Suppose that S differs from \bigcup_{j=1}^{k}(tZ+u_{j}) in at most finitely

many places, where t, u_{j}\in Z, 0<t , 0\leq u_{j}<t(1\leq j\leq k) . Then S is a sub-
group of Z.

PROOF. Let c= \min\{n\in S;n>0\} and d= \max\{m\in S;m<0\} . Indeed,
there exist such elements by the form of S. Then c+d=0 because of
S+S\subset S and our choice of c and d. Hence 0\in S and - c=d\in S, and so
we have cZ(zS. If x is a positive element in S, then there exists a unique
n\in Z such that (n+1) (-c)\leq-x<n(-c) . Thus 0<n (-c)+x\leq c . Since
n(-c)+x\in S, we have n(-c)+x=c by our choice of c. Hence xEzcZ.
If x is a negative element in S, by the same argument we have x\in cZ .
Hence we conclude S=cZ. This completes the proof of Lemma 1.

Lemma 2. Let G be an abelian group, and let E be a non-empty
subset of G in \mathscr{R}(G) . If E is a subsemigroup of G, then E is a subgroup
of G.

PROOF. It suffices to show that x\in E implies - x\in E. Let H be the
subgroup generated by x. Then H\cap E is a subsemigroup of G. If the
order of x is finite, then H\cap E is a finite subsemigroup of G. Since a
finite subsemigroup of every group is a subgroup, H\cap E is a subgroup of
G. Hence - x\in E. If the order of x is Infinite, then H\equiv Z. Since H\cap E

\in \mathscr{R}(H) and H\cong Z, we may consider H\cap E\in \mathscr{R}(Z) . Since H\cap E is infinite,
it follows from Helson Theorem ([8]. p. 61) that H\cap E must be the form
described in Lemma 1. Hence H\cap E is a subgroup, and so - x\in E. This
completes the proof of Lemma 2.

Let X be a weak*-closed translation invariant subspace of L^{\infty}(G) . Then
the spectrum of X, written sp(X)y is defined as the set of all elements of
G which belong to X([8]. 7.8) .

The following Theorem is due to J. E. Gilbert ([2]).

THEOREM 3 (J. E. Gilbert). Let X be a weak*-closed translation
invariant subspace of L^{\infty}(G) . Then X is complemented if and only if
sp(X)\in \mathscr{R}(C)| .

REMARK 1. In section 1 we described that X_{H} is complemented. This
fact follows immediately from Theorem 3 since sp(X_{H})=H^{\perp}\in \mathscr{R}(\hat{G}) . Here
H^{\perp} denotes the annihilator of H, i. e. , H^{\perp}= { \gamma\in\hat{G} ; (x, \gamma)=1 for all x\in H}.

PROOF OF THEOREM 1. Let X be a non-zero weak*-closed linear sub-
space of L^{\infty}(G) with the properties (i), (ii)’,\cdot and (iii). By (i) and (iii), sp(X)
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is non-empty and is a closed subsemigroup of \hat{G} . Since X has the property
(ii)’, it follows from Theorem 3 that sp(X)\in \mathscr{R}(\hat{G}) . Hence by Lemma 2,
sp(X) is a closed subgroup of \hat{G} . Putting H=(sp(X))^{\perp}=\{x\in G;(x, \gamma)=1

for all (\gamma\in sp(X)\} , we have X=X_{H}. Noting sp(X_{H})=H^{\perp} for every closed
subgroup of G, we obta\ln the uniqueness of H with X=X_{H} . This completes
the proof of Theorem 1.

We conclude this section with three examples which show that all the
conditions in Theorem 1 are really necessary.

EXAMPLE 1. Let G=T be the circle group. Then \hat{G}=Z (the additive
group of the integers). Let X be a non-zero weak*-closed translation invari-
ant subspace of L^{\infty}(T) such that sp(X) belongs to \mathscr{R}(Z) and is not sub-
subgroup of Z. Indeed, there exists such X. For example, let X be the
weak*-colsed translation invariant subspace with sp(X)=\{2n+1 ; n\in Z\} .
Then X satisfies (i), ( ii/ but not (iii^{1} .

EXAMPLE 2. Let G=T and X=H^{\infty}(T)=\{f\in L^{\infty}(T);\hat{f}(n)=0 for all
negative integers n}. Here \hat{f} denotes the Fourier transform of f. Then
X is a weak*-closed linear subspace of L^{\infty}(T) , and satisfies (i), (iii) but not
(ii)’ ([2]).

EXAMPLE 3. Let G=T and m the normalized Haar (Lebesgue) measure
on T\tau Let E\subset T be a Borel set such that 0<m(E)<1 . Put X=\{f\in L^{\infty}(T) ;
f(x)=0 on E^{c}}, where E^{c} denotes the complement of E relative to T Then
X is a non-zero weak*-closed linear subspace and satisfies (ii)’, (iii) but not
(i).

3. Proof of Theorem 2

Throughout this section G will be a compact Hausdorff group, not
necessarily abelian, with the normalized left Haar measure dx unless the
contrary is explicitly specified. The identity element of G is denoted by e.
Given a function f on G, we put \tilde{f}(x)=f(x^{-1})(x\in G) . Let C(G) be the
Banach algebra of all complex-valued continuous functions on G, and M(G)
the Banach space of all bounded regular complex Borel measure on G with
total variation norm. Then, as is well-known, M(G) is the Banach space
dual of C(G) . Self-adjoint subsets and complemented linear subspaces of
C(G) are defined in the same way, except that L^{\infty}(G) in the defifin\dot{\{tions} of
those of L^{\infty}(G) is replaced by C(G) .

For two functions f and g in L^{1}(G) , the convolution f^{*}g is defined by

f^{*}g(x)= \int_{G}f(xy)g(y^{-1})dy=\int_{G}f(y)g(y^{-1}x)\cdot,dy (x\in G)
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For f\in L^{1}(G) and \mu\in M(G) , the convolution \mu^{*}f and f^{*}\mu are defined by

\mu^{*}f(x)=\int_{G}f(y^{-1}x)d\mu(y)

and

f^{*} \mu(x)=\int_{G}\Delta(y^{-1})f(xy^{-1})d\mu(y) ,

respectively. Here \Delta is the modular function of G. Since every compact
Hausdorff group is unimodular, i . e. , \Delta(x)\equiv 1(x\in G) ([6]. p. 62), in the
present case we have

f^{*} \mu(x)=\int_{G}f(xy^{-1})d\mu(y)

To prove Theorem 2 we need some Lemmas. Lemma 6 and 7 leading
to Theorem 2 are also of interest in their own right.

Lemma 4. Let X be a weak*-closcd right translation invariant com-
plemented subspace of L^{\infty}(G) . Then there exists a bounded projection T
of L^{\infty}(G) onto X such that TR_{s}=R_{s}T for all s\in G .

PROOF. We can prove this Lemma by using an argument similar to
one of the proof of Theorem 1. 1 in [7]. Let M denote the bounded linear

functional on L^{\infty}(G) defined by M(f)= \int_{G}f(x)dx . Thus M satisfies the
following,

(a) M(1)=1 ,

(b) M(R_{s}f)=M(f) for all s\in G and f\in L^{\infty}(G),,

(c) |M(f)|\leq||f||_{\infty} for all f\in L^{\infty}(G)

Let ( ) denote the usual pairing between L^{1}(G) and L^{\infty}(G) . Thus if
f\in L^{1}(G) and g\in L^{\infty}(G) , then (f, g)= \int_{G}f(x)g(x^{-1})dx .

Since X is complemented, there exists a bounded projection P of L^{\infty}(G)

onto X. Now fix g\in L^{\infty}(G) . For each f\in L^{1}(G) , consider (f, R_{x^{-1}}PR_{x}g)

an element of L^{\infty}(G) . Then farrow M((f, R_{x^{-l}}PR_{x}g)) defines a bounded linear
functional on L^{1}(G) . Let Tg be the unique element of L^{\infty}(G) representing
this functional. Then T is a bounded linear operator of L^{\infty}(G) into L^{\infty}(G)

with the norm ||T||\leq||P|| . To see that T is a projection of L^{\infty}(G) onto
X, it suffices to show that T(L^{\infty}(G))\subset X and that g\in X implies Tg=g.
Since X is weak*-closed, we have X= { g\in L^{\infty}(G);(f, g)=0 for all f\in X^{\perp}},
where X^{\perp}= { f\in L^{1}(G) ; (f, g)=0 for all g\in X}. Let g\in L^{\infty}(G) . Then
(f, R_{x^{-l}}PR_{x}g)=0 for each x\in G and f\in X^{\perp} since R_{x^{-l}}PR_{x}g\in X. Thus (f,
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Tg)=M((f, R_{x^{-1}}PR_{x}g))=0 , and so Tg\in X. Hence T(L^{\infty}(G))\subset X. Next,
let g\in X. Then PR_{x}g=R_{x}g for each x\in G . By (a), we have (/, Tg)=
M((f, R_{x^{-1}}R_{x}g))=M((f, g))=(f, g) for all f\in L^{1}(G) . Hence Tg=g. Finally,
to see TR_{s}=R_{s}T for all s\in G , let g\in L^{\infty}(G) , f\in L^{1}(G) , and s\in G . Noting
G is unimodular, we have (f, R_{s}Tg)=(L_{s}f, Tg) . Since M satisfies (b),

(f, TR_{s}g)=M((fR_{x^{-1}}PR_{x}R_{s}g))\backslash’

=M((f, R_{s}R_{(xs)^{-1}}PR_{xs}g))

=M((L_{s}f, R_{(xs)^{-1}}PR_{xs}g))

=(L_{s}f, Tg)=(f, R_{s}Tg)

Hence we have TR_{s}=R_{s}T for all s\in G . This completes the proof of
Lemma 4.

Lemma 5. Let X be a weak^{*} -closed right translation invariant sub-
space of L^{\infty}(G) . Put X^{*}L^{1}=\{g^{*}f;f\in L^{1}(G), g\in X\} . Then X^{*}L^{1}\subset X.

PROOF. This Lemma can be proved by using the same argument as
that in the proof of Lemma 2 in [1] if we note the following equation ;

\int_{G}k(x)(g^{*}f)(x)dx=\int_{G}f(x)(\tilde{g}^{*}k)(x)dx

for every f, k\in L^{1}(G) and g\in L^{\infty}(G) .
REMARK 2. Lemma 5 holds for every unimodular locally compact

Hausdorff group G.
In view of Lemma 4 and 5, we can extend the result known for compact

abelian groups to compact Hausdorff groups, not necessarily abelian.
Lemma 6. Let X be a weak^{*} -closed right translation invariant com-

plcmented subspace of L^{\infty}(G) . Then there exists a weak*-closed left transla-
tion invariant subspace Y of L^{\infty}(G) such that L^{\infty}(G)=X\oplus Y.

PROOF. By Lemma 4, there exists a bounded projection P of L^{\infty}(G)

onto X such that PR_{s}=R_{s}P for all s\in G . Then f\in C(G) implies Pf\in C(G) .
For if f\in C(G) , then

||R_{s}Pf-Pf||_{\infty}=||PR_{s}f-Pf||_{\infty}\leq||P||||R_{s}f-f||_{\infty}arrow 0 as sarrow e

in G. So farrow(Pf)(e) defines a bounded linear functional on C(G) . Con-
sequently, there exists a \mu\in M(G) such that (Pf) (e)= \int_{G}f(y^{-1})d\mu(y) for every

f\in C(G) . But for x\in G,



122 Y. Takahashi

(Pf) (x)=(R_{x}Pf)(e)=(PR_{x}f)(e)= \int_{G}f(y^{-1}x)d\mu(y)=\mu^{*}f(x)

Hence we conclude that Pf=\mu^{*}f for each f\in C(G) .
Now we consider T:L^{1}(G)-arrow L^{1}(G) defined by Tf=f-f^{*}\mu . Put X^{\perp}=

{ f\in L^{1}(G);(f, g)=0 for all g\in X}, where (f, g)= \int_{G}f(x)g(x^{-1})dx . Then

we claim that T is a bounded projection of L^{1}(G) onto X^{\perp} and that L_{s}T=

TL_{s} for all s\in G . It is clear that L_{s}T=TL_{s} for all s\in G . To see that
T(L^{1}(G))\subset X^{\perp} , let f\in L^{1}(G) and g\in X. Then g^{*}f\in C(G) . So

(f-f^{*}\mu, g)=(g^{*}f)(e)-(\mu^{*}g^{*}f)(e)

=(g^{*}f)(e)-P(g^{*}f)(e)

By Lemma 5, we have X^{*}L^{1}\subset X, and so g^{*}f\in X. Hence P(g^{*}f)=g^{*}f,
and (f-f^{*}\mu, g)=0 . We obtain T(L^{1}(G))\subset X^{\perp} . Next, to see that f\in X^{\perp}

implies Tf=f, i. e. , f^{*}\mu=0 , let f\in X^{\perp} and g\in C(G) . Since

(f^{*}\mu, g)=(\mu^{*}g^{*}f)(e)=(Pg^{*}f)(e)=(f, Pg)

and f\in X^{\perp} and Pg\in X, we have (f^{*}\mu, g)=0 . Since C(G) is weak^{*dense} in
L^{\infty}(G) , f\in X^{\perp} implies f^{*}\mu=0 . Hence we conclude that T is a bounded
projection of L^{1}(G) onto X^{\perp} such that L_{s}T=TL_{s} for all s\in G .

Let T^{*} be the adjoint operator of T, i. e. , T^{*} is the bounded linear
operator of L^{\infty}(G) into L^{\infty}(G) which satisfies (Tf, g)=(f, T^{*}g) for all f\in L^{1}(G)

and g\in L^{\infty}(G\rangle . Put Y=\{g\in L^{\infty}(G);(I-T^{*})g=0\} . Here I denotes the iden-
tity operator on L^{\infty}(G) . Then Y is a weak*-closed left translation invariant
subspace. Since I-T^{*} is weak*-continuous, Y is weak*-closed. Let g\in Y,
f\in L^{1}(G) , and s\in G . Then by a direct computation, we have (/, L_{s}g-T^{*}L_{s}g)

=(R_{s}f, g-T^{*}g) , and so (f, L_{s}g -- T^{*}L_{s}g)=0 . Hence L_{s}g\in Y for all s\in G

and g\in Y. By the definition of Y, it is clear that L^{\infty}(G)=X\oplus Y. This
completes the proof of Lemma 6.

The following Lemma 7 is of interest from viewpoint of constructing
a complemented subalgebra of C(G) from a complemented one of L^{\infty}(G)\backslash.

Lemma 7. Let X be a weak*-closed left and right translation invariant
complemented subalgebra of L^{\infty}(G) . Then L^{1*}X is a closed complemented
subalgebra of C(G) .

PROOF. If we note that G is a compact Hausdorff group, by Lemma
4 in [1], we have L^{1*}X=C(G)\cap X. Hence L^{1*}X is a closed subalgebra of
C(G) . By Lemma 6, there exists a weak^{*c}1osed left translation invariant
subspace Y such that L^{\infty}(G)=X\oplus Y. Since by Corollary 2 in [1] L^{1*}X\subset

X, L^{1*}Y\subset Y, and C(G)=L^{1*}L^{\infty}([4]. 32.45(b).) , we have C(G)=L^{1*}L^{\infty}=
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(L^{1*}X)\oplus(L^{1*}Y) . Since L^{1*}X and L^{1*}Y are closed in C(G) , it follows that
L^{1*}X is complemented in C(G) . This completes the proof of Lemma 7.

The following result is due to I. Glicksberg ([3]). It is used to prove
Lemma 9 below.

THEOREM 8 (I. Glicksberg). Let X be a closed left and right transla-
tion invariant subalgebra of C(G) . Then X is complemented in C(G) if
and only if X is self-adjoint.

In view of Lemma 7, Theorem 8, and Lemma 4 in [1], we obtain the
following result.

Lemma 9. Let X be a weak*-closed left and right translation invariant
complemented subalgebra of L^{\infty}(G) . Then L^{1*}X is a closed self-adjoint
subalgcbra of C(G) .

In the following Lemma 10 we prove Theorem 2 under the assumption
that X contains the constant functions.

Lemma 10. Let X be a weak*-closed linear subspace of L^{\infty}(G) which
has the properties (i), (ii)’ and (iii). If X contains the constant functions,
then there exists a unique closed normal subgroup H of G such that X=X_{H}.

PROOF. Let X be a weak*-closed linear subspace of L^{\infty}(G) which
satisfies the assumption of Lemma. Then we first note that L^{1*}X is a

closed self-adjoint subalgebra of C(G) , by Lemma 9. Once we obtain this,

we can proceed in the same method as that of Crombez-Govaerts ([1]).

PROOF OF THEOREM 2. In view of Lemma 10 the proof of Theorem
2 will be completed if we show that X contains the constant function 1

under the assumption of Theorem 2. As we saw in the proof of Lemma
6, there exist a bounded projection P of L^{\infty}(G) onto X and a \mu\in M(G)

such that Pf=\mu^{*}f for each f\in C(G) .
Case 1. \mu(G)\neq 0 .

Since 1= \mu^{*}(\frac{1}{\mu(G)})=P(\frac{1}{\mu(G)})\in X, X contains the constant function 1.

Case 2. \mu(G)=0 .
We show that Case 2 cannot occur. Using the notations in the proof

of Lemma 6, we have L^{\infty}(G)=X\oplus Y, where Y=\{g\in L^{\infty}(G) ; (I-T^{*})g=0\}

and Tf=f-f^{*}\mu(f\in L^{1}(G)) . Then Y contains the constant function 1.

For if f\in L^{1}(G) ,

(f, (I-T^{*})1)=(f, 1)-(f, T^{*}1)=(f, 1)-(Tf, 1)

=(f, 1)-(f, 1)+(f^{*} \mu, 1)=\mu(G)\int_{G}f(x)dx=0 .
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Let Y_{1} be the set of all the constant functions in L^{\infty}(G) . Then it is
easy to verify that Y_{1} is a weak*-closed left and right translation invariant
subalgebra of L^{\infty}(G) and is complemented in Y. Thus it follows that X\oplus Y_{1}

is a weak*-closed left and right translation invariant complemented subalgebra
of L^{\infty}(G) containing the constant functions. Hence, by Lemma 10, we have
X\oplus Y_{1}=X_{H} for some closed normal subgroup H of G. Since X is non-zero,
there exists f\in X such that.f\neq 0 in L^{\infty}(G) . Noting that X_{H} is self-adjoint
and X is a tw0-sided ideal of X_{H}, we have |f|^{2}=f.\overline{f}\in X. Then it follows
from Corollary 2 in [1] that 1^{*}|f|^{2}\in X. Since (1^{*}|f|^{2})(x)= \int_{G}|f(y^{-1})|^{2}dy\neq 0 ,
1^{*}|f|^{2} is a non-zero constant function in X. Hence we have 1\in X. But
this is impossible. Consequently Case 2 cannot occur.

REMARK 3. For compact Hausdorff groups, Crombez-Govaerts TheO-
rem holds if we assume that X is non-zero instead of the assumption that
X contains the constant functions. For since X is non-zero, there exists
f\in X such that f\neq 0 in L^{\infty}(G) . Then |f|^{2}\in X because X is self-adjoint
and an algebra. Hence 1^{*}|f|^{2}\in X (Corollary 2 in [1]), and so X contains
the constant functions. From this fact and our Theorem 2, it is easily
verified that if G is a compact Hausdorff group and if X is a weak*-closed
left and right translation invariant subalgebra of L^{\infty}(G) , then X is comple-
mented if and only if X is self-adjoint.
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