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On separable extensions over a local ring

By Kozo SUGANO
(Received July 22, 1980; Revised June 15, 1981)

1. Introduction

Throughout this paper \Lambda is a ring with 1 and \Gamma is a subring of 11
which contains 1 of \Lambda . \Lambda is a separable extension of \Gamma if and only if map
\pi of \Lambda\otimes_{\Gamma}\Lambda to \Lambda such that \pi(x\otimes y)=xy for x, y\in\Lambda splits as \Lambda-\Lambda map
namely, if and only if there exists \sum x_{i}C\cross y_{i} in (\Lambda\otimes_{\Gamma}\Lambda)^{\Lambda} such that \Sigma_{X_{i}}y_{i}=1 ,

where (\Lambda\otimes_{\Gamma}\Lambda)^{\Lambda}= { \chi\in\Lambda\otimes_{\Gamma}\Lambda|x\chi=\chi x for all x in \Lambda}. If \sigma is a ring aut0-

morphism of \Lambda , then by \Lambda[X;\sigma] , we denote as usual the ring of all poly-
nomials \Sigma_{i}X^{i}r_{i}(r_{i}\in\Lambda) with an indeterminate X whose multiplication is defined
by rX=X\sigma(r) for each r\in\Lambda . In this paper we shall show that if \Lambda is a
separable extension of a local ring \Gamma such that \Lambda=\Gamma\oplus M as \Gamma-\Gamma-module
with M a finitely generated left (or right) \Gamma-module and M^{2}\subset\Gamma

- then \Lambda\cong

\Gamma[X;\sigma]/(X^{2}-a) for some a\in\Gamma and \sigma . We will also show that any trivial
extension can not be a separable extension (Theorem 1).

2. Structure of separable extension of a local ring

A modification of the proof of Lemma 1. 2 [1] yields

PROPOSITION 1. Let \Lambda be a separable extension of \Gamma_{2} and suppose
that there exists a ring homomorphism \varphi of \Lambda onto \Gamma such that \varphi(r)=r

for all r\in\Gamma Then there exists a unique central idempotent e of \Lambda such

that \varphi(x)e=ex for all x in \Lambda and \varphi(e)=1 . Furthermore, if \varphi_{1} and \varphi_{2} are
mutually strongly distinct homomorphisms^{(*)} which satisfy the same condi-

tions as \varphi , then \varphi_{i}(e_{j})=\delta_{ij} and e_{i}e_{j}=e_{i}\delta_{ij} , where each e_{i} is the unique central
idempotent determined by \varphi_{i} .

PROOF. Since \Lambda is a separable extension of \Gamma . there exists \Sigma x_{i}\otimes y_{i} in
(\Lambda\otimes_{\Gamma}\Lambda)^{\Lambda} such that \Sigma x_{i}y_{i}=1 . Set e=\Sigma\varphi(x_{i})y_{i} . Since \Sigma xx_{i}\otimes y_{i}=\Sigma x_{i}\otimes y_{i}x

for all x in \Lambda , and \varphi is a \Gamma-\Gamma-homomorphism, we have \Sigma\varphi(x)\varphi(x_{i})y_{i}=

\Sigma\varphi(xx_{i})y_{i}=\Sigma\varphi(x_{i})y_{i}x for all x in \Lambda , consequently, \varphi(x)e=ex . On the othere
hand, \varphi(e)=\varphi(\Sigma\varphi(x_{i})y_{i})=\Sigma\varphi(x_{i})\varphi(y_{i})=\varphi(\Sigma x_{i}y_{i})=\varphi(1)=1 . Then, ee=\varphi(e)e=

(^{*}) When f and q are ring homomorphisms of \Lambda_{1} to \Lambda_{2} , f and g are said to be strongly

distinct if for any central idempotent e of \Lambda_{2} there exists s in \Lambda_{1} such that f(s)e\neq

g(s)e.
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1e=e. Similarly if we put f=\Sigma x_{i}\varphi(y_{i}) , we have f^{2}=f, \varphi(f)=1 and xf-f\varphi\varphi(x)

for all x in \Lambda . Then ef=f\varphi(e)=f1=f and ef=\varphi(f)e=1e=e . Therefore,
we have e=f, and xe=xfe=f\varphi(x)e=fex=ex for all x in \Lambda . Thus e is
a central idempotent of \Lambda . The proof of the equality e=f shows the
uniqueness of such an idempotent. The latter half of this proposition can
be proved by the same way as Lemma 1. 2 [1], since e_{i} ’s are central idem-
potents.

REMARK. Let \Lambda , \Gamma , \varphi and e be as in Prop. 1. Then we have Ker \varphi=

\{x-\varphi(x)|x\in\Lambda\}=\Lambda(1-e) , since xe=\varphi(x\grave{)}e for all x\in\Lambda and \varphi(e)=1 .
We say that \Lambda is a trivial extension of \Gamma, in case \Lambda=\Gamma\oplus M as \Gamma-\Gamma-

module and M^{2}=0 . As a corollary to Prop. 1, we have

THEOREM 1. No trivial extension is a separable extension.
PROOF. Let \Lambda be a trivial extension of \Gamma by a \Gamma-\Gamma-module M. Then

M is an ideal of \Lambda , and we have a natural ring homomorphism of \Lambda to
\Lambda/M=\Gamma such that \varphi(r)=r for all r\in\Gamma If \Lambda is separable over \Gamma. M must
be generated by a central idempotent of 11, and M^{2}=M. This contradicts
to M^{2}=0 . Hence \Lambda is not a separable extension of \Gamma

NAow let us consider the case where \Lambda is a separable extension of \Gamma

and \Gamma is a \Gamma-\Gammaindirect summand of \Lambda . Set \Lambda=\Gamma\oplus M, where M is a \Gamma-\Gamma-

submodule of \Lambda . If M^{2}\subset M, M becomes an ideal of \Gamma
- and we can apply

Prop. 1. Therefore there exists a central idempotent e of \Lambda , such that
M=\Lambda(1-e) and \Lambda e\cong\Gamma as ring. Next consider the case where M^{2}\underline{\subset}\Gamma.

which means that \Lambda is a graded ring of degree 2.

PROPOSITION 2. Let \Lambda be a separable extension of \Gamma, and suppose that
\Lambda=\Gamma\oplus M as \Gamma-\Gamma-module and M^{2}\underline{\subset}\Gamma Then M^{3}=M, and M^{2} is an
idempotent ideal of \Gamma

PROOF. Set M^{2}=\alpha . It is obvious that a is an ideal of \Lambda . Since \Lambda=\Gamma

\oplus M as \Gamma-\Gamma module, \alpha\Lambda=\Lambda\alpha=M^{2}\oplus M^{3} is an ideal of \Lambda . Then, \Lambda/\alpha\Lambda=

\Gamma/\alpha\oplus M/M^{3} is a separable extension of \Gamma/\alpha by Prop. 2. 4 [2]. Since M^{2}
. =

\alpha, (M/M^{\theta})^{2}=0 in \Lambda/\alpha\Lambda . Hence \Lambda/\alpha\Lambda is a trvial extension of \Gamma/\alpha , which can
not be a separable extension. Therefore M/M^{3}=0 . Thus M=M^{3} and
M^{2}=M^{4} .

THEOREM 2. Let \Gamma be a local ring with the unique maximal ideal
J(\Gamma) and \Lambda a separable extension of \Gamma- Suppose that \Lambda is a left {or right)
\Gamma-finitely generated module, and \Lambda=\Gamma\oplus M as \Gamma-\Gamma-module witfi M^{2}\subseteq\Gamma

Then M is a left as well as right \Gamma-free module of rank 1, and there
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exists a unit x in M and an automorphism \sigma of \Gamma such that \Lambda=\Gamma\oplus\Gamma x

and rx=x\sigma(r) for all r\in\Gamma

PROOF. Set M^{2}=\alpha . Then by Prop. 2, \alpha M=M^{3}=M. Hence \alpha\Lambda=\alpha\oplus

(IM=\alpha\oplus M, and \Gamma+\alpha\Lambda=\Gamma+M=\Lambda . Then if \alpha\subset J(\Gamma) , \Gamma=\Lambda by Nakayama’s
Lemma. Hence \alpha \not\subset J(\Gamma) . This means that MM=\Gamma, since \Gamma is local.
Therefore there exist m_{i} and n_{i} (finite) in M such that \Sigma m_{i}n_{i}=1 . It is
well known that in this case M is said to be invertible, and \Gamma M and M_{\Gamma}

are progenerators, \Gamma M\Gamma\cong {}_{r}Hom(_{\Gamma\Gamma}M,\Gamma)_{\Gamma’\Gamma}M_{\Gamma}\cong {}_{r}Hom(M_{\Gamma}, \Gamma_{\Gamma})_{\Gamma}, \Gamma^{0}=Hom(_{\Gamma}M,
\Gamma M) and \Gamma\cong Hom(M_{\Gamma}, M_{\Gamma}) , where \Gamma^{0} means the opposite ring of \Gamma In
fact it is easy to prove these matters by using m_{i} and n_{i}’s. But since \Gamma

is local, M is free of finite rank. Hence rM\cong_{\Gamma}\Gamma and M_{\Gamma}\equiv\Gamma_{\Gamma} , and there
exist x, y\in M such that M=\Gamma x=y\Gamma Then \Gamma x\Gamma x=M^{2}=\Gamma,\cdot and 1=\Sigma r_{i}xs_{i}x

=mx for some r_{i} , s_{i} in \Gamma and m=\Sigma r_{i}xs_{i}\in M. Then 0\neq xm=xmxm , and
xm\in M^{2}=\Gamma Hence xm=mx=1 , since \Gamma has no nontrivial idempotents.
Similarly y is a unit. Set y=tx with t\in\Gamma Then t is a unit of \Gamma, since
y^{-1}\in M and t^{-1}=xy^{-1}\in M^{2}=\Gamma Hence \Gamma y=\Gamma tx=\Gamma x=y\Gamma, and similarly
\Gamma x=x\Gamma Then since x is a unit, there exists a unique element \sigma(a) in \Gamma

such that ax=x\sigma(a) , for each a in \Gamma It is easy to see that \sigma is an aut0-
morphism of \Gamma

REMARK. Let \Lambda , \Gamma-. \sigma and x be as in Theorem 2, and set x^{2}=a(\in\Gamma) .
Then since ax=x^{3}=xa , we have \sigma(a)=a and ra=rxx=a\sigma^{2}(r) for each r
in \Gamma Therefore we have \Gamma[X, \sigma](X^{2}-a)=(X^{2}-a)\Gamma[X, \sigma] , and \Lambda\cong\Gamma[X,
\sigma]/(X^{2}-a) .

The next proposition which we need to prove our main theorem has
been proved by Y. Miyashita in [4] in more general form. Here we will
give the proof by direct computations for the sake of reader’s convenience.

PROPOSITION 3. (Theorem 3. 1 [3]) Let R be a ring with 1 and \sigma

an automorphism of R. For a unit element a of R such that \sigma(a)=a and
ra=a\sigma^{n}(r) for all r\in R , R[X;\sigma]/(X^{n}-a) is a separable extension of R if
and only if there exists c in the center of R such that \Sigma_{i0}^{n-1}\sigma^{i}(c)=1 .

PROOF. Denote the center of R by C, and set \Lambda=R[X;\sigma]/(X^{n}-a) .
First note that (\Sigma X^{i}a_{i})(X^{n}-a)=(X^{n}-a)(\Sigma X^{i}\sigma^{n}(a_{i})) , and R[X;\sigma]/(X^{n}-a)=

(X^{n}-a)R[X;\sigma] . Set x=X+(X^{n}-a) . Then we have that \Lambda=R\oplus Rx\oplus\cdots

\oplus Rx^{n-1} , and x^{n}=a and rx=x\sigma(r) for all r\in R . x is a unit since a is so.
Hence \{x^{i}\otimes x^{j}|i,j=0,1, \cdots, n-1\} forms a free basis of \Lambda\otimes_{R}\Lambda over \Lambda . If
\Lambda is a separable extension of R, there exists \Sigma\alpha_{t}\otimes\beta_{i} in (\Lambda\otimes_{R}\Lambda)^{\Lambda} such that
\Sigma\alpha_{i}\beta_{i}=1 . We can set \Sigma\alpha_{i}\otimes\beta_{i}=\Sigma x^{i}\otimes x^{j}r_{ij} with r_{ij}\in R . Then from \Sigma_{\alpha_{i}\beta_{j}=}
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1, we obtain r_{00}+\Sigma_{i=1}^{n-1}ar_{n-i,i}=1 . While from \Sigma xx^{i}\otimes x^{j}r_{ij}=\Sigma x^{k}\otimes x^{l}r_{kl}x=

\Sigma x^{k}\otimes x^{l+1}\sigma(r_{kl}) , we obtain r_{ij}=\sigma(r_{i+1,j-1}) , \sigma(r_{0,i-1})=ar_{n-1,i} , r_{i-1,0}=a\sigma(r_{i,n-1}) , in
particular, \sigma(r_{00})=ar_{n-1,1} and \sigma(r_{n-i,i})=r_{n-i-1,i+1} , for i=0,1 , \cdots , n-1 . Hence
ar_{n-i,i}=\sigma^{i}(r_{00}) for all i. It is also obvious that r_{00}\in C, since \Sigma r\alpha_{i}\otimes\beta_{i}=\Sigma\alpha_{i}\otimes

\beta_{i}r for all r\in R . Thus we have \Sigma_{i-0}^{n-1}\sigma^{i}(r_{00})=1 with r_{00}\in C. Conversely
suppose that there exists c in C such that \Sigma\sigma^{i}(c)=1 . Then we have \sigma^{n}(c)

=c. While by assumption we have \sigma(a)=a and \sigma^{n}(r)a^{-1}=a^{-1}r for all r\in

R, too. Then by these three conditions we easily see that \Sigma x^{n-i}\otimes x^{i}a^{-1}\sigma^{i}(c)

\in(\Lambda\otimes_{R}\Lambda)^{A} and \Sigma x^{n-i}x^{i}a^{-1}\sigma^{i}(c)=\Sigma\sigma^{i}(c)=1 . Therefore \Lambda is a separable exten-
sion of R.

THEOREM 3. If \Gamma is a local ring, the following two conditions are
equivalent;

(i) \Lambda is a separable extension of \Gamma with \Lambda=\Gamma\oplus M as \Gamma-\Gamma-module
where M is finitely generated as left (or right) \Gamma-module and M^{2}\underline{\subset}\Gamma

(ii) \Lambda\cong\Gamma(X;\sigma] /(X^{2}-a) with some automorphism \sigma and a unit a of \Gamma

such that \sigma(a)=a and ra=a\sigma^{2}(r) for all r\in R , and there exists c in the
center of \Gamma such that c+\sigma(c)=1 .

PROOF. This is obvious by Theorem 2, Prop. 3 and the remark after
Theorem 2.

REMARK. In the case where \Gamma is a left (or right) Noetherian local
ring, we can omit the condition that M is \Gamma-finitely generated case \Gamma-module
in the proofs of Theorem 2 and Theorem 3. Because in this case \alpha (=M^{2})

is left \Gamma-finitely generated, and \alpha^{2}=\alpha\underline{\subset}J(\Gamma) implies that \alpha=\alpha\alpha\subset J(\Gamma)\alpha\subseteq\alpha .
This means \alpha=J(\Gamma)\alpha . Hence \alpha=0 by Nakayama’s lemma, which contradicts
to Theorem 1. Hence \Gamma=M^{2} . Now we can follow the same lines as the
proof of Theorem. 2.

3. Commutative Noetherian semi-local ring

In this section we will consider the case where \Gamma is a commutative
Noetherian semi-local ring. To begin with we will introduce

Lemma 1 (Lemma 2 [3]). Let R be a commutative ring with 1 and
S a commutative R-algebra. Then if \alpha is an idempotent ideal of S which
is R-finitely generated, \alpha=Se for some e=e^{2}\in S.

PROOF. See Lemma 2 [3].

THEOREM 4. Let \Gamma be a commutative Noetherian semi-local ring and
\Lambda a separable extension of \Gamma, and suppose that \Lambda=\Gamma\oplus M with a \Gamma-\Gamma -
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submodule M such that M_{\Gamma} is faithful and M^{2}\subseteq\Gamma Then \Lambda\cong\Gamma[X;\sigma]/

(X^{2}-u) for some automorphism \sigma of \Gamma and a unit u of \Gamma such that \sigma(u)=u

and xu=u\sigma^{2}(x) for all x\in\Gamma

PROOF. Set \alpha=M^{2} . Then 0\neq\alpha=\alpha^{2} by Theorem 1 and Prop. 2, and
\alpha is finitely generated. Hence \alpha=\Gamma e for some 0\neq e^{2}=e\in\Gamma by Lemma 1.
We have also M=M\alpha=Me by Prop. 2. Hence M(1-e)=Me(1-e)=0.
But M is faithful as right \Gamma-module. Hence e=1 , and we have that M^{2}=

\Gamma Then M is invertible and \Gamma\cong Hom(_{\Gamma’\Gamma}MM) . Now let \iota \mathfrak{n} be a maximal
ideal of \Gamma and let r=\dim_{\Gamma/m}M/\mathfrak{m}M. Since M is left \Gamma-projective, there
exists a ring homomorphisms of Hom (_{\Gamma’\Gamma}MM) onto Hom (_{\Gamma}M/\mathfrak{m}M_{ \Gamma},M/\mathfrak{m}M)^{1}\equiv

(\Gamma/\mathfrak{m})_{r} , the r\cross r- full matrix ring over \Gamma/\mathfrak{m} . But the former is commuta-
tive. Hence (\Gamma/\mathfrak{n}t)_{r} is also commutative, which means that r=1 . Now
let \mathfrak{m}_{1} , \mathfrak{m}_{2} , \cdots , \mathfrak{m}_{s} be the set of maximal ideals of \Gamma Since MM=\Gamma. we
see that \mathfrak{m}_{1}\cdots\tau \mathfrak{n}_{i-1}\mathfrak{m}_{i+1}\cdots \mathfrak{m}_{s}M\not\subset \mathfrak{m}_{i}M for each i. Hence there exists m_{i}\in

\mathfrak{m}_{1}\cdots \mathfrak{m}_{i-1}\mathfrak{m}_{i+1}\cdots \mathfrak{m}_{s}M such that m_{i}\not\in \mathfrak{m}_{i}M. Set m=\Sigma m_{i} . Then m\not\in \mathfrak{m}_{j}M

for each j. Therefore, \Gamma/\mathfrak{m}_{i}(m+\mathfrak{m}_{i}M)=M/\mathfrak{m}_{i}M, and M=\Gamma m+\mathfrak{m}_{i}M for
each maximal ideal \mathfrak{m}_{i} of \Gamma Then by Nakayama’s lemma we have M=\Gamma m .
Similarly we have M=n\Gamma for some n\in M. Then M^{2}=n\Gamma m=\Gamma. and there
is an s in \Gamma such that nsm=1 . But n(smn-1)=0, and smn\in M^{2}=\Gamma Hence
M(smn - 1)=n\Gamma (smn - 1)=n(smn-1)\Gamma=0 . Then, since M is right \Gamma-faith-
full smn=1 . Thus m, n and s are units, and we see that M=\Gamma m=m\Gamma-

Then the same proof as Theorem 2 shows that \Lambda\cong\Gamma[X;\sigma]/(X^{2}-u) with
u=m^{2} .

REMARK. In the case where \Gamma is indecomposable commutative Noe-
therian and semi-local, we can ommit the assumption that M is \Gamma faithful
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