On separable extensions over a local ring

By Kozo Sugano

(Received July 22, 1980; Revised June 15, 1981)

1. Introduction

Throughout this paper Λ is a ring with 1 and Γ is a subring of Λ which contains 1 of Λ . Λ is a separable extension of Γ if and only if map π of $\Lambda \otimes_{\Gamma} \Lambda$ to Λ such that $\pi(x \otimes y) = xy$ for $x, y \in \Lambda$ splits as $\Lambda - \Lambda$ -map, namely, if and only if there exists $\sum x_i \otimes y_i$ in $(\Lambda \otimes_{\Gamma} \Lambda)^A$ such that $\sum x_i y_i = 1$, where $(\Lambda \otimes_{\Gamma} \Lambda)^A = \{\chi \in \Lambda \otimes_{\Gamma} \Lambda | x\chi = \chi x \text{ for all } x \text{ in } \Lambda\}$. If σ is a ring automorphism of Λ , then by $\Lambda[X; \sigma]$, we denote as usual the ring of all polynomials $\sum_i X^i r_i \ (r_i \in \Lambda)$ with an indeterminate X whose multiplication is defined by $rX = X\sigma(r)$ for each $r \in \Lambda$. In this paper we shall show that if Λ is a separable extension of a local ring Γ such that $\Lambda = \Gamma \oplus M$ as $\Gamma - \Gamma$ -module with M a finitely generated left (or right) Γ -module and $M^2 \subset \Gamma$, then $\Lambda \cong$ $\Gamma[X; \sigma]/(X^2 - a)$ for some $a \in \Gamma$ and σ . We will also show that any trivial extension can not be a separable extension (Theorem 1).

2. Structure of separable extension of a local ring

A modification of the proof of Lemma 1.2 [1] yields

PROPOSITION 1. Let Λ be a separable extension of Γ , and suppose that there exists a ring homomorphism φ of Λ onto Γ such that $\varphi(r)=r$ for all $r \in \Gamma$. Then there exists a unique central idempotent e of Λ such that $\varphi(x)e=ex$ for all x in Λ and $\varphi(e)=1$. Furthermore, if φ_1 and φ_2 are mutually strongly distinct homomorphisms^(*) which satisfy the same conditions as φ , then $\varphi_i(e_j) = \delta_{ij}$ and $e_i e_j = e_i \delta_{ij}$, where each e_i is the unique central idempotent determined by φ_i .

PROOF. Since Λ is a separable extension of Γ , there exists $\Sigma x_i \otimes y_i$ in $(\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ such that $\Sigma x_i y_i = 1$. Set $e = \Sigma \varphi(x_i) y_i$. Since $\Sigma x x_i \otimes y_i = \Sigma x_i \otimes y_i x_i$ for all x in Λ , and φ is a $\Gamma - \Gamma$ -homomorphism, we have $\Sigma \varphi(x) \varphi(x_i) y_i = \Sigma \varphi(x_i) y_i x_i$ for all x in Λ , consequently, $\varphi(x) e = ex$. On the othere hand, $\varphi(e) = \varphi(\Sigma \varphi(x_i) y_i) = \Sigma \varphi(x_i) \varphi(y_i) = \varphi(\Sigma x_i y_i) = \varphi(1) = 1$. Then, $ee = \varphi(e) e = \varphi$

^(*) When f and g are ring homomorphisms of Λ_1 to Λ_2 , f and g are said to be strongly distinct if for any central idempotent e of Λ_2 there exists s in Λ_1 such that $f(s) e \neq g(s) e$.

K. Sugano

1e=e. Similarly if we put $f = \sum x_i \varphi(y_i)$, we have $f^2 = f$, $\varphi(f) = 1$ and $xf = f\varphi(x)$ for all x in Λ . Then $ef = f\varphi(e) = f 1 = f$ and $ef = \varphi(f)e = 1e = e$. Therefore, we have e = f, and $xe = xfe = f\varphi(x)e = fex = ex$ for all x in Λ . Thus e is a central idempotent of Λ . The proof of the equality e = f shows the uniqueness of such an idempotent. The latter half of this proposition can be proved by the same way as Lemma 1.2 [1], since e_i 's are central idempotents.

REMARK. Let Λ , Γ , φ and e be as in Prop. 1. Then we have Ker $\varphi = \{x - \varphi(x) | x \in \Lambda\} = \Lambda(1-e)$, since $xe = \varphi(x)e$ for all $x \in \Lambda$ and $\varphi(e) = 1$.

We say that Λ is a trivial extension of Γ , in case $\Lambda = \Gamma \oplus M$ as $\Gamma - \Gamma$ -module and $M^2 = 0$. As a corollary to Prop. 1, we have

THEOREM 1. No trivial extension is a separable extension.

PROOF. Let Λ be a trivial extension of Γ by a $\Gamma - \Gamma$ -module M. Then M is an ideal of Λ , and we have a natural ring homomorphism of Λ to $\Lambda/M=\Gamma$ such that $\varphi(r)=r$ for all $r\in\Gamma$. If Λ is separable over Γ , M must be generated by a central idempotent of Λ , and $M^2=M$. This contradicts to $M^2=0$. Hence Λ is not a separable extension of Γ .

Now let us consider the case where Λ is a separable extension of Γ and Γ is a $\Gamma - \Gamma$ -direct summand of Λ . Set $\Lambda = \Gamma \oplus M$, where M is a $\Gamma - \Gamma$ submodule of Λ . If $M^2 \subset M$, M becomes an ideal of Γ , and we can apply Prop. 1. Therefore there exists a central idempotent e of Λ , such that $M = \Lambda(1-e)$ and $\Lambda e \cong \Gamma$ as ring. Next consider the case where $M^2 \subseteq \Gamma$. which means that Λ is a graded ring of degree 2.

PROPOSITION 2. Let Λ be a separable extension of Γ , and suppose that $\Lambda = \Gamma \oplus M$ as $\Gamma - \Gamma$ -module and $M^2 \subseteq \Gamma$. Then $M^3 = M$, and M^2 is an idempotent ideal of Γ .

PROOF. Set $M^2 = \mathfrak{a}$. It is obvious that \mathfrak{a} is an ideal of Λ . Since $\Lambda = \Gamma \oplus M$ as $\Gamma - \Gamma$ -module, $\mathfrak{a}\Lambda = \Lambda \mathfrak{a} = M^2 \oplus M^3$ is an ideal of Λ . Then, $\Lambda/\mathfrak{a}\Lambda = \Gamma/\mathfrak{a} \oplus M/M^3$ is a separable extension of Γ/\mathfrak{a} by Prop. 2.4 [2]. Since $M^2 = \mathfrak{a}$, $(M/M^3)^2 = 0$ in $\Lambda/\mathfrak{a}\Lambda$. Hence $\Lambda/\mathfrak{a}\Lambda$ is a tryial extension of Γ/\mathfrak{a} , which can not be a separable extension. Therefore $M/M^3 = 0$. Thus $M = M^3$ and $M^2 = M^4$.

THEOREM 2. Let Γ be a local ring with the unique maximal ideal $J(\Gamma)$ and Λ a separable extension of Γ . Suppose that Λ is a left (or right) Γ -finitely generated module, and $\Lambda = \Gamma \oplus M$ as $\Gamma - \Gamma$ -module with $M^2 \subseteq \Gamma$. Then M is a left as well as right Γ -free module of rank 1, and there

exists a unit x in M and an automorphism σ of Γ such that $\Lambda = \Gamma \oplus \Gamma x$ and $rx = x\sigma(r)$ for all $r \in \Gamma$.

PROOF. Set $M^2 = \mathfrak{a}$. Then by Prop. 2, $\mathfrak{a}M = M^3 = M$. Hence $\mathfrak{a}A = \mathfrak{a} \oplus \mathfrak{a}$ $\mathfrak{a}M = \mathfrak{a} \oplus M$, and $\Gamma + \mathfrak{a}\Lambda = \Gamma + M = \Lambda$. Then if $\mathfrak{a} \subset J(\Gamma)$, $\Gamma = \Lambda$ by Nakayama's Lemma. Hence $\mathfrak{a} \not\subset J(\Gamma)$. This means that $MM = \Gamma$, since Γ is local. Therefore there exist m_i and n_i (finite) in M such that $\Sigma m_i n_i = 1$. It is well known that in this case M is said to be invertible, and $_{\Gamma}M$ and M_{Γ} are progenerators, $_{\Gamma}M_{\Gamma}\cong_{\Gamma}\operatorname{Hom}(_{\Gamma}M,_{\Gamma}\Gamma)_{\Gamma},_{\Gamma}M_{\Gamma}\cong_{\Gamma}\operatorname{Hom}(M_{\Gamma},\Gamma_{\Gamma})_{\Gamma},\Gamma^{0}=\operatorname{Hom}(_{\Gamma}M,_{\Gamma}M_{\Gamma})_{\Gamma}$ $_{\Gamma}M$ and $\Gamma \cong \text{Hom}(M_{\Gamma}, M_{\Gamma})$, where Γ^{0} means the opposite ring of Γ . In fact it is easy to prove these matters by using m_i and n_i 's. But since Γ is local, M is free of finite rank. Hence ${}_{\Gamma}M\cong_{\Gamma}\Gamma$ and $M_{\Gamma}\cong_{\Gamma}\Gamma$, and there exist x, $y \in M$ such that $M = \Gamma x = y\Gamma$. Then $\Gamma x \Gamma x = M^2 = \Gamma$, and $1 = \Sigma r_i x s_i x$ =mx for some r_i , s_i in Γ and $m=\Sigma r_i x s_i \in M$. Then $0 \neq xm=xmxm$, and $xm \in M^2 = \Gamma$. Hence xm = mx = 1, since Γ has no nontrivial idempotents. Similarly y is a unit. Set y=tx with $t\in\Gamma$. Then t is a unit of Γ , since $y^{-1} \in M$ and $t^{-1} = xy^{-1} \in M^2 = \Gamma$. Hence $\Gamma y = \Gamma t x = \Gamma x = y\Gamma$, and similarly $\Gamma x = x\Gamma$. Then since x is a unit, there exists a unique element $\sigma(a)$ in Γ such that $ax = x\sigma(a)$, for each a in Γ . It is easy to see that σ is an automorphism of Γ .

REMARK. Let Λ , Γ , σ and x be as in Theorem 2, and set $x^2 = a \ (\in \Gamma)$. Then since $ax = x^3 = xa$, we have $\sigma(a) = a$ and $ra = rxx = a\sigma^2(r)$ for each r in Γ . Therefore we have $\Gamma[X, \sigma] (X^2 - a) = (X^2 - a) \Gamma[X, \sigma]$, and $\Lambda \cong \Gamma[X, \sigma]/(X^2 - a)$.

The next proposition which we need to prove our main theorem has been proved by Y. Miyashita in [4] in more general form. Here we will give the proof by direct computations for the sake of reader's convenience.

PROPOSITION 3. (Theorem 3.1 [3]) Let R be a ring with 1 and σ an automorphism of R. For a unit element a of R such that $\sigma(a)=a$ and $ra=a\sigma^{n}(r)$ for all $r \in R$, $R[X; \sigma]/(X^{n}-a)$ is a separable extension of R if and only if there exists c in the center of R such that $\sum_{i=0}^{n-1}\sigma^{i}(c)=1$.

PROOF. Denote the center of R by C, and set $\Lambda = R[X; \sigma]/(X^n - a)$. First note that $(\Sigma X^i a_i) (X^n - a) = (X^n - a) (\Sigma X^i \sigma^n(a_i))$, and $R[X; \sigma]/(X^n - a) = (X^n - a) R[X; \sigma]$. Set $x = X + (X^n - a)$. Then we have that $\Lambda = R \oplus Rx \oplus \cdots \oplus Rx^{n-1}$, and $x^n = a$ and $rx = x\sigma(r)$ for all $r \in R$. x is a unit since a is so. Hence $\{x^i \otimes x^j | i, j = 0, 1, \dots, n-1\}$ forms a free basis of $\Lambda \otimes_R \Lambda$ over Λ . If Λ is a separable extension of R, there exists $\Sigma \alpha_i \otimes \beta_i$ in $(\Lambda \otimes_R \Lambda)^A$ such that $\Sigma \alpha_i \beta_i = 1$. We can set $\Sigma \alpha_i \otimes \beta_i = \Sigma x^i \otimes x^j r_{ij}$ with $r_{ij} \in R$. Then from $\Sigma \alpha_i \beta_j = X^n \otimes \beta_i = \Sigma x^i \otimes x^j r_{ij}$ with $r_{ij} \in R$.

K. Sugano

1, we obtain $r_{00} + \sum_{i=1}^{n-1} ar_{n-i,i} = 1$. While from $\sum xx^i \otimes x^j r_{ij} = \sum x^k \otimes x^l r_{kl} x = \sum x^k \otimes x^{l+1}\sigma(r_{kl})$, we obtain $r_{ij} = \sigma(r_{i+1,j-1})$, $\sigma(r_{0,i-1}) = ar_{n-1,i}$, $r_{i-1,0} = a\sigma(r_{i,n-1})$, in particular, $\sigma(r_{00}) = ar_{n-1,1}$ and $\sigma(r_{n-i,i}) = r_{n-i-1,i+1}$, for $i=0, 1, \dots, n-1$. Hence $ar_{n-i,i} = \sigma^i(r_{00})$ for all *i*. It is also obvious that $r_{00} \in C$, since $\sum r\alpha_i \otimes \beta_i = \sum \alpha_i \otimes \beta_i r$ for all $r \in R$. Thus we have $\sum_{i=0}^{n-1} \sigma^i(r_{00}) = 1$ with $r_{00} \in C$. Conversely suppose that there exists *c* in *C* such that $\sum \sigma^i(c) = 1$. Then we have $\sigma^n(c) = c$. While by assumption we have $\sigma(a) = a$ and $\sigma^n(r)a^{-1} = a^{-1}r$ for all $r \in R$, too. Then by these three conditions we easily see that $\sum x^{n-i} \otimes x^i a^{-1} \sigma^i(c) = \sum \sigma^i(c) = 1$. Therefore Λ is a separable extension of R.

THEOREM 3. If Γ is a local ring, the following two conditions are equivalent;

(i) Λ is a separable extension of Γ with $\Lambda = \Gamma \bigoplus M$ as $\Gamma - \Gamma$ -module where M is finitely generated as left (or right) Γ -module and $M^2 \subseteq \Gamma$.

(ii) $\Lambda \cong \Gamma(X; \sigma]/(X^2-a)$ with some automorphism σ and a unit a of Γ such that $\sigma(a) = a$ and $ra = a\sigma^2(r)$ for all $r \in R$, and there exists c in the center of Γ such that $c + \sigma(c) = 1$.

PROOF. This is obvious by Theorem 2, Prop. 3 and the remark after Theorem 2.

REMARK. In the case where Γ is a left (or right) Noetherian local ring, we can omit the condition that M is Γ -finitely generated case Γ -module in the proofs of Theorem 2 and Theorem 3. Because in this case $\mathfrak{a} (=M^2)$ is left Γ -finitely generated, and $\mathfrak{a}^2 = \mathfrak{a} \subseteq J(\Gamma)$ implies that $\mathfrak{a} = \mathfrak{a} \oplus \subseteq J(\Gamma)\mathfrak{a} \subseteq \mathfrak{a}$. This means $\mathfrak{a} = J(\Gamma)\mathfrak{a}$. Hence $\mathfrak{a} = 0$ by Nakayama's lemma, which contradicts to Theorem 1. Hence $\Gamma = M^2$. Now we can follow the same lines as the proof of Theorem. 2.

3. Commutative Noetherian semi-local ring

In this section we will consider the case where Γ is a commutative Noetherian semi-local ring. To begin with we will introduce

LEMMA 1 (Lemma 2 [3]). Let R be a commutative ring with 1 and S a commutative R-algebra. Then if a is an idempotent ideal of S which is R-finitely generated, a=Se for some $e=e^2 \in S$.

PROOF. See Lemma 2 [3].

THEOREM 4. Let Γ be a commutative Noetherian semi-local ring and Λ a separable extension of Γ , and suppose that $\Lambda = \Gamma \oplus M$ with a $\Gamma - \Gamma$ -

submodule M such that M_{Γ} is faithful and $M^2 \subseteq \Gamma$. Then $\Lambda \cong \Gamma[X; \sigma]/(X^2-u)$ for some automorphism σ of Γ and a unit u of Γ such that $\sigma(u)=u$ and $xu=u\sigma^2(x)$ for all $x \in \Gamma$.

PROOF. Set $\mathfrak{a}=M^2$. Then $0\neq\mathfrak{a}=\mathfrak{a}^2$ by Theorem 1 and Prop. 2, and a is finitely generated. Hence $a = \Gamma e$ for some $0 \neq e^2 = e \in \Gamma$ by Lemma 1. We have also $M = M\mathfrak{a} = Me$ by Prop. 2. Hence M(1-e) = Me(1-e) = 0. But M is faithful as right Γ -module. Hence e=1, and we have that $M^2=$ Γ . Then M is invertible and $\Gamma \cong \text{Hom}(_{\Gamma}M,_{\Gamma}M)$. Now let in be a maximal ideal of Γ and let $r = \dim_{\Gamma/m} M/\mathfrak{m} M$. Since M is left Γ -projective, there exists a ring homomorphisms of Hom $({}_{r}M, {}_{r}M)$ onto Hom $({}_{r}M/\mathfrak{m}M, {}_{r}M/\mathfrak{m}M) \cong$ $(\Gamma/\mathfrak{m})_r$, the $r \times r$ -full matrix ring over Γ/\mathfrak{m} . But the former is commutative. Hence $(\Gamma/\mathfrak{m})_r$ is also commutative, which means that r=1. Now let $\mathfrak{m}_1, \mathfrak{m}_2, \cdots, \mathfrak{m}_s$ be the set of maximal ideals of Γ . Since $MM = \Gamma$, we see that $\mathfrak{m}_{1}\cdots\mathfrak{m}_{i-1}\mathfrak{m}_{i+1}\cdots\mathfrak{m}_{s}M \not\subset \mathfrak{m}_{i}M$ for each *i*. Hence there exists $m_{i} \in \mathcal{M}_{i}$ $\mathfrak{m}_{1}\cdots\mathfrak{m}_{i-1}\mathfrak{m}_{i+1}\cdots\mathfrak{m}_{s}M$ such that $m_{i} \in \mathfrak{m}_{i}M$. Set $m = \Sigma m_{i}$. Then $m \in \mathfrak{m}_{i}M$ for each j. Therefore, $\Gamma/\mathfrak{m}_i(m+\mathfrak{m}_iM) = M/\mathfrak{m}_iM$, and $M = \Gamma m + \mathfrak{m}_iM$ for each maximal ideal \mathfrak{m}_i of Γ . Then by Nakayama's lemma we have $M=\Gamma m$. Similarly we have $M=n\Gamma$ for some $n\in M$. Then $M^2=n\Gamma m=\Gamma$, and there is an s in Γ such that nsm=1. But n(smn-1)=0, and $smn \in M^2 = \Gamma$. Hence $M(smn-1) = n\Gamma(smn-1) = n(smn-1)\Gamma = 0$. Then, since M is right Γ -faithful, smn=1. Thus m, n and s are units, and we see that $M=\Gamma m=m\Gamma$. Then the same proof as Theorem 2 shows that $\Lambda \cong \Gamma[X; \sigma]/(X^2 - u)$ with $u=m^2$.

REMARK. In the case where Γ is indecomposable commutative Noetherian and semi-local, we can ommit the assumption that M is Γ -faithful.

References

- D. K. HARRISON and S. U. CHASE and Alex ROSENBERG: Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Soc., 52 (1965).
- [2] K. HIRATA and K. SUGANO: On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
- [3] T. KANZAKI: On Galois algebra over a commutative ring, Osaka J. Math., 2 (1965), 309-317.
- [4] Y. MIYASHITA: On a skew polynomial ring, J. Math. Soc. Japan 31 (1979), 317-330.
- [5] T. NAGAHARA and K. KISHIMOTO: On a free cyclic extensions of rings, Proc. 10th symposium on ring theory, 1978, Okayama Japan.

Department of Mathematics Hokkaido University