Solvability of some groups

By Masahiko MIYAMOTO

(Received May 1, 1980)

Introduction. K. Nomura posed the following problem: Let G be a finite group that has a large inner automorphism consition. Then, is G a solvable group ? Especially, we call a finite group G to be an AI-group if G satisfies the following: $N_{G}(A)/C_{G}(A)$ is isomorphic to the full automorphism of A for every Abelian subgroup A of G.

The purpose in the paper is to show the following theorem:

THEOREM A. Let ^G be ^a finite AI-group, then ^G is solvable.

To prove the theorem, we introduce the weaken condition. A finite group G is called an $A_{3}I$ -group if G satisfies the following condition: For every Abelian 3'-subgroup A and a 3-subgroup B of $C_{G}(A)$, $C_{G}(B)\cap N_{G}(A)/S$ $C_{G}(B)\cap C_{G}(A)\geq O^{3} (\text{Aut} (A)).$ We will say that $C_{G}(B)$ covers $O^{3} (\text{Aut} (A))$ if the condition holds.

Using the above notion, we will change the form of the theorem.

THEOREM B. The following hold:

a) All AI-groups are A_3I -groups.

b) Every $A_{3}I$ -group is solvable.

Clearly, Theorem A is an immediate consequence of Theorem B. Most of our notation is standard and taken from [\[1\].](#page-4-0) All groups considered in this paper will be finite. Let G be a group. Then $F(G)$ denotes the Fitting subgroup of G.

2. Preliminary lemmas. In this section, we will search the properties of $A_{3}I$ -groups.

LEMMA 2.1. Let G be a finite $A_{3}I$ -group and B be a 3-subgroup of G. Then the following hold;

a) $i(G)=1$, the conjugate class of involutions of G is one.

b) $Z(P)$ is of order p for a Sylow p-subgroup P of G and every prime divisor p of the order of G, $(p\neq 3)$.

- c) $C_{G} (B)$ is an A₃I-group.
- d) $G/O_{3}(G)$ is an A₃I-group.

e) $O^{3}(G)$ is an A₃I-group.

PROOF. By the definition of $A_{3}I$ -groups, we easily get the above state-

ments.

LEMMA 2.2. Let G be a finite solvable $A_{3}I$ -group. Assume that $O_{3}(G)$ $=1$ and $O^{3}(G)=G$. Then one of the following holds;

a) $G/F(G) \cong Z/2Z$ and $F(G)$ is cyclic of odd prime order.

b) G is isomorphic to $Z/2Z$ or the quaternion group of order 8.

c) A Sylow 2-subgroup of G is isomorphic to Q_{8} and moreover, one of the following holds;

i) $G\unrhd G_{1}\cong Z/4Z\times Z/pZ$ and $G/G_{1}\cong Z/2Z$,

ii) $G\trianglerighteq G_{1}\cong Z/2Z\times Z/qZ\times Z/pZ$ and $G/G_{1}\cong Z/2Z\times Z/2Z$.

PROOF. If $F(G)$ is of odd order, then $F(G)$ is cyclic since $O^{3}(GL_{2}(p))$ is not solvable for $p\geq 5$. Therefore, $G/F(G)$ is Abelian and $|G|_{2}=2$. The desired statement a) follows from the easy calculation. Next, we assume $O_{2}(G)\neq 1$. By Lemma 2. 1 a), every involution of G is contained in $V=$ $\Omega_{1}(Z(O_{2}(G))).$ Since G is an A₃I group, $G/C_{G} (V) \cong O^{3} (\text{Aut} (V)).$ If $m_{2}(G)$ $=2$, then $G/C_{G}(V)$ is isomorphic to the symmetric group S^{3} on 3 letters. Let P be a Sylow 3-subgroup of G, then $N_{G}(P)$ is of even order, which contradicts $N_{G}(P)\cap V=1$. Clearly, the solvability of G implies $m_{2}(G)=1$. In this case, a Sylow 2-subgroup of G is isomorphic to Q_{8} or Z/2Z, and we obtain the desired statement b) and c).

3. Proof of the statement a) in Theorem B. Let G be an Al-group but not A₃I group. Namely, there is an Abelian 3' -subgroup A and a 3subgroup B in $C_{G} (A)$ such that $C_{G} (B)$ does not cover $O^{3} (\text{Aut} (A))$. Clearly, we can choose B to be a Sylow 3-subgroup of $C_{G}(A)$. Let B_{0} be a maximal normal Abelian subgroup of B, then $N_{C}(A)/C_{C}(A) \cong$ Aut(A), where $C=C_{G}(B_{0})$ First, we assert that B_{0} is a Sylow 3-subgroup of $C_{G}(B_{0}\times A)$. In fact, this follows from the maximality of B_{0} . Next, since B is a Sylow 3-subgroup of $BC_{G}(B_{0})\cap C_{G}(A)$, $N_{G}(B)\cap C_{G}(B_{0})$ induces $O^{3} (\text{Aut}(A))$ by the Frattini argument. Since B_{0} is a self centralizer subgroup of B, we have that $C_{G} (B)$ induces O^{3} (Aut (A)), a contradiction.

This completes the proof of the statement a).

4. Proof of the statement b) in Theorem B. Let G be a minimal counterexample. Clearly, we have $O_{3}(G)=1$ and $O^{2'}(G)=G$. For a 3-subgroup B of G, since $C_{G}(B)$ is an A₃I group by Lemma 2.1, the minimality of G means that $m_{2}(C_{G}(B))\leq 1$ by [Lemma](#page-1-0) 2.2. Therefore, we have $m_{2}(G)$ \leq 3. First, we assume $m_{2}(G)=3$. Let V be a subgroup of type $(2, 2, 2)$.

LEMMA 4.1. $C_{G}(V)$ is a 2-group.

PROOF. As we showed, since $m_{2}(C_{G}(B)\leq 1$ for a 3-subgroup B, we have

that $C_{G}(V)$ is a 3'-group and $N_{G}(V)/C_{G}(V)$ is isomorphic to GL (3, 2). Since G is an A₃I-group, every odd Sylow subgroup of $C_{G}(V)$ is cyclic, which means that $[C_{G}(V), a]\subseteq O_{2}(C_{G}(V)$ for an element a of order 3 in $N_{G}(V)$. Let R be a Sylow p-subgroup of $N_{G}(V)$. Since $C_{G}(a)$ is isomor-phic to one of the groups in the list of [Lemma](#page-1-0) 2.2, we get that $N_{C_{G}(V)}(R)$ is of even order, which contradicts $N_{G}(R)\cap V=1$.

LEMMA 4.2. $C_{G}(V)=V$.

PROOF. Suppose false and set $U=C_{G}(V)$. Since $m_{2}(C_{G}(a))=1$ and $C_{c_{G}(V)}(a)$ is a subgroup of Q_{8} by [Lemma](#page-1-0) 2.2, we obtain that U/V is isomorphic to one of the following:

- a) $U/V \cong (2,2,2)$;
- b) $U/V \cong (2, 2, 2) \times (2, 2, 2)$; and

c) $U\supseteq U_{1}\supseteq V$ such that $U/U_{1}\cong(2,2,2)$ and $U_{1}/V\cong(2,2,2)$.

In any case, U has a maximal normal Abelian subgroup $U_{0}\supseteq V$ such that $N_{G}(U_{0})$ does not cover $C_{G}(\Omega_{1}(U_{0}))\cap O^{3}$ (Aut (U_{0})), a contradiction.

Let A be a subgroup of V with $A \cong (2,2)$.

LEMMA 4.3. $C_{G}(A)$ is a 2-subgroup.

PROOF. Suppose false. By [Lemma](#page-1-0) 2.2, we get that $C_{G}(A)$ is a 3'subgroup and $N_{G}(A)/C_{G}(A)$ is isomorphic to the Symmetric group S^{3} on 3 letters, which means that every Sylow subgroup of $C_{G}(A)$ of odd order is cyclic. Therefore, for an element a of $N_{G}(A)$ of order 3, we obtain that $[C_{G}(A), a]$ is a 2-subgroup. Let P be a Sylow p-subgroup of $C_{G}(a)\cap C_{G}(A)$, then since $C_{G}(a)$ is a solvable A₃I-group and $m_{2}(C_{G}(P))=2$, we have that $|C_{C_{G}(A)}(a)|_{2}=2$. Since an odd element of $C_{G}(a)\cap C_{G}(A)$ centralizes $C_{G}(a)\cap$ $O^{2}(C_{G}(A))$, we have $C_{G}(a)\cap O^{2}(C_{G}(A))=1$ as we showed in [Lemma](#page-2-0) 4. 2. Therefore, we get that the nilpotency class of $O_{2}(C_{G}(A))$ is at most 2 by Theorem 8. 1 in [\[2\].](#page-4-1) Since $N_{G}(V)/V \cong GL(3,2)$ and $C_{G}(a)\cap O^{2}(C_{G}(A))=1$, we get $Z(O_{2}(C_{G}(A))=A$. Furthermore, since $C_{G}(V)=V$, we have $|O_{2}(C_{G}(A))|$ $|A|\leq 2^{4}$, which means that $O_{2}(C_{G}(A))/A$ is an elementary Abelian. If P acts on $O_{2}(C_{G}(A)/A$ faithfully, we get $p=5$ since we already got $C_{G}(a)\cap$ $O^{2}(C_{G}(A))=1$, which contradicts Aut $(P)\cong Z/4Z$. Therefore, P centralizes $O_{2}(C_{G}(A))$. Let U_{1} be a maximal normal Abelian subgroup of $O_{2}(C_{G}(A))$, then $N_{G}(U_{1})\cap C_{G}(A\times P)$ covers O^{3} (Aut $(U_{1})\cap C_{G}(A)$) by the definition of S₃.I group, which contradicts $C_{G}(P)\cap C_{G}(A)=P\times O_{2}(C_{G}(A))$ by [Lemma](#page-1-0) 2. 2.

LEMMA 4.4. $N_{G}(A){\subseteq}N_{G}(V)$.

PROOF. Since $N_{G}(V)$ covers Aut (A) , it is sufficient to show $C_{G}(A)\subseteq$

 $N_{G}(V)$. Let a be a 3-element of $N_{G}(A)$ and v be an element in $V-A$. We may assume that a is contained in $N_{G}\left(V\right)$. Then, we have $C_{U}(a)=\langle\bar{v}\rangle$ where $U=C_{G}(A)/A$. Furthermore, since $C_{U}(v)=N_{G}(V)\cap C_{G}(A)$, we obtain that $C_{U}(v)$ is of order 8. But, since a acts on $Z(U)^{*}$ fixed point free, we have $C_{U}(v)=\langle\bar{v}\rangle\times Z(U)$, which implies $v\in U'$ and that a acts on $[C_{G}(A), a]$ fixed point free. Set $W=[C_{G}(A), a]$. By Theorem 8.1 in [\[2\],](#page-4-1) we get $cl(W) \leq 2$ and so we have $Z(W)=A$ since G is an A₃.I group. Since a acts on W fixed point free and $C_{U}(v)$ is of order 8, we obtain that W/A is of order 16. In this case, we can check that there is an Abelian subgroup U_{1} of W containing A such that $N_{G}(U_{1})$ does not cover O^{3} (Aut (U_{1})) $\cap C_{G}(A)$, a contradiction.

LEMMA 4.5. $V = \Omega_{1}(S)$ for a Sylow 2-subgroup S of G.

PROOF. Suppose false, then there is an involution *i* in $N_{s}(V)-V$ for a Sylow 2-subgroup S containing V. Let $A=C_{V}(i)$, then we have $m_{2}(A)=2$ and $N_{G}(A)/V\cong S^{4}$, the symmetric group on 4 letters. By [Lemma](#page-2-1) 4.4, we also get $N_{G}(A) {\subseteq}N_{G}(\langle A, i\rangle)$. However, a does not normalize $\langle A, i\rangle$, where a is a 3-element in $N_{G}(V) \subset N_{G}(A)$, by the structure of GL (3, 2), a contradiction.

LEMMA 4.6. $m_{2}(G)\neq 3$.

PROOF. As we showed, we got $V=\Omega_{2}(S)$ for a Sylow 2-subgroup S of G. But, in this case, V is a strongly closed Abelian subgroup in S with respect, to G. Therefore, we can get a contradiction by the result of Goldschmidt [\[1\].](#page-4-0)

Since $m_{2}(G) \leq 3$, we next assume $m_{2}(G)=2$.

LEMMA 4.7. Let $S(G)$ be the unique maximal normal solvable subgroup of G. Then $S(G)$ is of odd order.

Proof. Suppose false and set $\bar{G}=G/O(G)$ and $V=\Omega_{1}(Z(O_{2}(G))).$ Since $i\,(\bar{G})\!=\!1$, every involution of \bar{G} is contained in V and so we get that V is a four-group and $\overline{G}/C_{\overline{G}} (V)\cong S^{3}$, the symmetric group on 3 letters. Let P be a Sylow 3-subgroup of \bar{G} , then $N_{\bar{G}}(P)$ is of even order, but $N_{V}(P)=1 ,$ a contradiction.

Let $\overline{G} = G/O(G)$, $\overline{E}=F^{*}(\overline{G})$, and E be the inverseimage of \overline{E} in G. Clearly \overline{E} is a simple group.

LEMMA 4.8. $O(G)=1$.

PROOF. Suppose false and let P be Sylow p-subgroup of $F(G)$. Then we can easily see that every element of G of order p is contained in $\Omega_{1}(Z(P))$. If $m(P)=1$, then we get that P is a cyclic Sylow p-subgroup of G and

 G/P is also an A₃.I group, a contradiction. Since $m_{2}(G)=2$, we have $m(P)=2$ and $V=\Omega_{1}(Z(P))$ is of type (p, p) . Since $G/C_{G} (V) \cong O^{3} (\text{GL } (2, p))$ and $O_{2}(O^{3} (GL (2, p)) \neq 1$ and $S(G)$ is of odd order, $C_{G}(V)$ is not solvable, in particular, $C_{G} \left(V \right) {\supseteq}E$, but $G/C_{G}(V)$ is not solvable, a contradiction.

LEMMA 4.9. $m_{2}(G)\neq 2$.

PROOF. As we showed, $E=F^{*}(G)$ is a simple group with $m_{2}(E)=2$. Then E is of known type and isomorphic to one of the following: $L_{\rm 2}(q) ,\,\, L_{\rm 3}(q) ,\,\, U_{\rm 3}(q) ,\,\, q \,\,\, {\rm odd},\,\, U_{\rm 3}(4) ,\,\, A_{7},\,\, {\rm or}\,\,\, M_{11} .$

In any groups, we can easily check that they are not $A_{3}I$ -groups.

Last case is $m_{2}(G)=1$. Since G is an A₃.I group, a Sylow 2-subgroup of G is isomorphic to Q_{8} . Let i be an involution of G.

LEMMA 4.10. $O(G)=1$, in particular, $G=C_{G}(i)$.

PROOF. Let P be a Sylow p-subgroup of G for an odd prime $p \ (\neq 3)$ Then we have $m(P)=1$, since $m_{2}(G)=1$. Therefore, P is of order p. In particular, $F(O(G))$ is cyclic and a Hall subgroup of G. Therefore, we can easily see that $G/F(O(G))$ is also an A₃.I-group, a contradiction.

Finally, we have that $F^{*}(G)$ is a quasi-simple group. In particular, $F^{*}(G)$ is isomorphic to $SL_{2}(q)$ $q\equiv 3 \pmod{8}$. We can check that G is not an A₃.I group for each q, a contradiction. This completes the proof of the statement b) of Theorem B.

References

- [1] D. M. GOLDSCHMIDT: 2-Fusion in Finite groups, Ann. Math. Vol. 99 (1974), 70-117.
- [2] G. HIGMAN: Odd Characterization of Finite Simple Groups, preprint.

Department of Mathematics Faculty of Science Ehime University