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Solvability of some groups

By Masahiko MIYAMOTO
(Received May 1, 1980)

Introduction. K. Nomura posed the following problem : Let G be
a finite group that has a large inner automorphism consition. Then, is G

a solvable group ? Especially, we call a finite group G to be an AI-group
if G satisfies the following: N_{G}(A)/C_{G}(A) is isomorphic to the full automor-
phism of A for every Abelian subgroup A of G.

The purpose in the paper is to show the following theorem:

THEOREM A. Let G be a finite AI-group, then G is solvable.
To prove the theorem, we introduce the weaken condition. A finite

group G is called an A_{3}I-group if G satisfies the following condition: For
every Abelian 3’ subgroup A and a 3-subgroup B of C_{G}(A) , C_{G}(B)\cap N_{G}(A)/

C_{G}(B)\cap C_{G}(A)\geqq O^{3} (Aut (A)). We will say that C_{G}(B) covers O^{3} (Aut (A ) if
the condition holds.

Using the above notion, we will change the form of the theorem.

THEOREM B. The following hold:
a) All AI groups are A3I groups
b) Every A_{3}I-group is solvable.

Clearly, Theorem A is an immediate consequence of Theorem B. Most of
our notation is standard and taken from [1]. All groups considered in this
paper will be finite. Let G be a group. Then F(G) denotes the Fitting
subgroup of G.

2. Preliminary lemmas. In this section, we will search the properties
of A_{3}I groups

LEMMA 2. 1. Let G be a finite A_{3}I-group and B be a 3-subgroup of
G. Then the following hold;

a) i (G)=1 , the conjugate class of involutions of G is one.
b) Z(P) is of order p for a Sylow p subgroup P of G and every

prime divisor p of the order of G, (p\neq 3) .
c) C_{G} (B) is an A_{3}I group.
d) G/O_{3}(G) is an A_{3}I group.
e) O^{3} (G) is an A_{3}I group.
PROOF. By the definition of A_{3}I-groups, we easily get the above state-
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merits.

Lemma 2. 2. Let G be a finite solvable A_{3}I-group. Assume that O_{3}(G)

=1 and O^{3}(G)=G . Then one of the following holds;
a) G/F(G)\cong Z/2Z and F(G) is cyclic of odd prime order.
b) G is isomorphic to Z/2Z or the quaternion group of order 8.
c) A Sylow 2-subgroup of G is isomorphic to Q_{8} and moreover, one

of the following holds;
i) G\underline{\sim\triangleright}G_{1}\cong Z/4Z\cross Z/pZ and G/G_{1}\cong Z/2Z,
ii) G\underline{\triangleright^{\backslash }}G_{1}\equiv Z/2Z\cross Z/qZ\cross Z/pZ and G/G_{1}\cong Z/2Z\cross Z/2Z.

PROOF. If F(G) is of odd order, then F(G) is cyclic since O^{3}(GL_{2}(p))

is not solvable for p\geq 5 . Therefore, G/F(G) is Abelian and |G|_{2}=2 . The
desired statement a) follows from the easy calculation. Next, we assume
O_{2}(G)\neq 1 . By Lemma 2. 1 a), every involution of G is contained in V=
\Omega_{1}(Z(O_{2}(G))) . Since G is an A_{3}I-group, G/C_{G} ( V)\cong O^{3} (Aut (V)). If m_{2}(G)

=2, then G/C_{G} ( V) is isomorphic to the symmetric group S^{3} on 3 letters.
Let P be a Sylow 3-subgroup of G, then N_{G}(P) is of even order, which
contradicts N_{G}(P)\cap V=1 . Clearly, the solvability of G implies m_{2}(G)=1 .
In this case, a Sylow 2-subgroup of G is isomorphic to Q_{8} or Z/2Z, and
we obtain the desired statement b) and c).

3. Proof of the statement a) in Theorem B. Let G be an Al-group
but not A_{3}I-group. Namely, there is an Abelian 3’ -subgroup A and a 3-
subgroup B in C_{G} (A) such that C_{G} (B) does not cover O^{3} (Aut (A)). Clearly,
we can choose B to be a Sylow 3-subgroup of C_{G} (A). Let B_{0} be a maximal
normal Abelian subgroup of B, then N_{C}(A)/C_{C}(A)\cong Aut(A) , where C=C_{G}(B_{0})

First, we assert that B_{0} is a Sylow 3-subgroup of C_{G}(B_{0}\cross A) . In fact, this
follows from the maximality of B_{0} . Next, since B is a Sylow 3-subgr0up
of BC_{G}(B_{0})\cap C_{G}(A) , N_{G}(B)\cap C_{G}(B_{0}) induces O^{3} (Aut (A)) by the Frattini
argument. Since B_{0} is a self centralizer subgroup of B, we have that C_{G} (B)
induces O^{3} (Aut (A)), a contradiction.

This completes the proof of the statement a).

4. Proof of the statement b) in Theorem B. Let G be a minimal
counterexample. Clearly, we have O_{3}(G)=1 and O^{2’}(G)=G . For a 3-sub-
group B of G, since C_{G} (B) is an A_{3}I-group by Lemma 2. 1, the minimality
of G means that m_{2}(C_{G}(B))\leq 1 by Lemma 2. 2. Therefore, we have m_{2} (G)
\leq 3 . First, we assume m_{2}(G)=3 . Let V be a subgroup of type (2, 2, 2).

Lemma 4. 1. C_{G} (V) is a 2-gr0up.

PROOF. As we showed, since m_{2}(C_{G}(B)\leq 1 for a 3-subgroup B, we have
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that C_{G}(V) is a 3’ group and N_{G} ( V)/C_{G}(V) is isomorphic to GL (3, 2) .
Since G is an A_{3}I -group, every odd Sylow subgroup of C_{G} (V) is cyclic,
which means that [C_{G}(V), a]\underline{\subset}O_{2}(C_{G}(V) for an element a of order 3 in
N_{G}(V) . Let R be a Sylow p subgroup of N_{G} ( V) . Since C_{G}(a) is isomor-
phic to one of the groups in the list of Lemma 2. 2, we get that N_{C_{G^{(V)}}}(R)

is of even order, which contradicts N_{G}(R)\cap V=1_{r}

Lemma 4. 2. C_{G}(V)=V.

PROOF. Suppose false and set U=C_{G} ( V) . Since m_{2}(C_{G}(a))=1 and
C_{c_{G}(V)}(a) is a subgroup of Q_{8} by Lemma 2. 2, we obtain that U/V is is0-
morphic to one of the following:

a) U/V\cong(2,2,2) ;
b) U/V\cong(2,2, 2)\cross(2,2, 2) ; and
c) U\supseteq U_{1}\supseteq V such that U/U_{1}\cong(2,2,2) and U_{1}/V\cong(2,2,2) .
In any case, U has a maximal normal Abelian subgroup U_{0}\supseteq V such

that N_{G}(U_{0}) does not cover C_{G}(\Omega_{1}(U_{0}))\cap O^{3} (Aut (U_{0})), a contradiction.
Let A be a subgroup of V with A\cong(2,2) .

Lemma 4. 3. C_{G}(A) is a 2-subgr0up.

PROOF. Suppose false. By Lemma 2. 2, we get that C_{G}(A) is a 3’-
subgroup and N_{G}(A)/C_{G}(A) is isomorphic to the Symmetric group S^{3} on
3 letters, which means that every Sylow subgroup of C_{G}(A) of odd order
is cyclic. Therefore, for an element a of N_{G}(A) of order 3, we obtain that
[C_{G}(A), a] is a 2-subgroup. Let P be a Sylow p-subgroup of C_{G}(a)\cap C_{G}(A) ,
then since C_{G}(a) is a solvable A_{3}I group and m_{2}(C_{G}(P))=2 , we have that
|C_{c_{G}(A)}(a)|_{2}=2 . Since an odd element of C_{G}(a)\cap C_{G}(A) centralizes C_{G}(a)\cap

O^{2}(C_{G}(A)) , we have C_{G}(a)\cap O^{2}(C_{G}(A))=1 as we showed in Lemma 4. 2.
Therefore, we get that the nilpotency class of O_{2}(C_{G}(A)) is at most 2 by
Theorem 8. 1 in [2]. Since N_{G} ( V)/V\equiv GL(3,2) and C_{G}(a)\cap O^{2}(C_{G}(A))=1 ,
we get Z(O_{2}(C_{G}(A))=A . Furthermore, since C_{G} (V)=V, we have |O_{2}(C_{G}(A))

/A|\leq 2^{4}, which means that O_{2}(C_{G}(A))/A is an elementary Abelian. If P
acts on O_{2}(C_{G}(A)/A faithfully, we get p=5 since we already got C_{G}(a)\cap

O^{2}(C_{G}(A))=1 , which contradicts Aut (P)\equiv Z/4Z. Therefore, P centralizes
O_{2}(C_{G}(A)) . Let U_{1} be a maximal normal Abelian subgroup of O_{2}(C_{G}(A)) ,
then N_{G}(U_{1})\cap C_{G}(A\cross P) covers O^{3} (Aut (U_{1})\cap C_{G}(A) ) by the definition of
S_{3}.I-group, which contradicts C_{G}(P)\cap C_{G’}(A)=P\cross O_{2}(C_{G}(A)) by Lemma 2. 2.

LEMMA 4. 4. N_{G}(A)\subseteq N_{G}(V) .

PROOF. Since N_{G}(V) covers Aut (A), it is sufficient to show C_{G}(A)\subseteq
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N_{G}(V) . Let a he a 3-element of N_{G}(A) and v be an element in V-A.
We may assume that a is contained in N_{G}\langle V). Then, we have C_{U}(a)=\langle\overline{v}\rangle

where U=C_{G}(A)/A . Furthermore, since C_{U}(v)=N_{G}(V)\cap C_{G}(A) , we obtain
that C_{U}(v) is of order 8. But, since a acts on Z(U)^{g} fixed point free, we
have C_{U}(v)=\langle\overline{v}\rangle\cross Z(U) , which implies v\not\in U’ and that a acts on [C_{G}(A), a]

fixed point free. Set W=[C_{G}(A), a] . By Theorem 8. 1 in [2], we get
cl(W)\leq 2 and so we have Z(W)=A since G is an A_{3}.I-group. Since a

acts on W fixed point free and C_{U}(v) is of order 8, we obtain that W/A

is of order 16. In this case, we can check that there is an Abelian sub-
group U_{1} of W containing A such that N_{G}(UiJ does not cover O^{3} (Aut (U_{1})

\cap C_{G}(A)) , a contradiction.

Lemma 4. 5. V=\Omega_{1}(S) for a Sylow 2-subgroup S of G.
PROOF. Suppose false, then there is an involution i in N_{S}(V)-V for

a Sylow 2-subgroup S containing V. Let A=C_{V}(i) , then we have m_{2}(A)=2

and N_{G}(A)/V\cong S^{4} , the symmetric group on 4 letters. By Lemma 4. 4, we
also get N_{G}(A)\underline{\subset}N_{G}(\langle A, i\rangle) . However, a does not normalize \langle A, i\rangle , where
a is a 3-element in N_{G} (V)\subset N_{G}(A) , by the structure of GL (3, 2) , a con-
tradiction.

Lemma 4. 6. m_{2}(G)\neq 3 .
PROOF. As we showed, we got V=\Omega_{2}(S) for a Sylow 2-subgroup S

of G. But, in this case, V is a strongly closed Abelian subgroup in S with
respect, to G. Therefore, we can get a contradiction by the result of
Goldschmidt [1].

Since m_{2}(G)\leq 3 , we next assume m_{2}(G)=2 .

Lemma 4. 7. Let S(G) be the unique maximal normal solvable sub-
group of G. Then S(G) is of odd order.

PROOF. Suppose false and set \overline{G}=G/O(G) and V=\Omega_{1}(Z(O_{2}(\overline{G}))) . Since
i(\overline{G})=1 , every involution of \overline{G} is contained in V and so we get that V is
a four-group and \overline{G}/C=_{7} (V)\cong S^{3} , the symmetric group on 3 letters. Let P
be a Sylow 3-subgroup of \overline{G} , then N_{\overline{C\tau}}(P) is of even order, but N_{V}(P)=1 ,

a contradiction.
Let\overline{C_{7}} =G/O(G),\overline{E}=F^{*}(\overline{G}) , and E be the inverseimage of \overline{E} in G.

Clearly \overline{E} is a simple group.

Lemma 4. 8. O(G)=1 .
PROOF. Suppose false and let P be Sylow p subgroup of F(G) . Then

we can easily see that every element of G of order p is contained in \Omega_{1}(Z(P)) .
If m(P)=1 , then we get that P is a cyclic Sylow p-subgroup of G and
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G/P is also an A_{3}.I-group, a contradiction. Since m_{2}(G)=2 , we have m(P)=2
and V=\Omega_{1}(Z(P)) is of type (p, p) . Since G/C_{G} ( V)\cong O^{3} (GL (2, p)) and
O_{2}(O^{3} (GL (2, p)) \neq 1 and S(G) is of odd order, C_{G}(V) is not solvable, in
particular, C_{G} ( V)\underline{\supset}E, but G/C_{G}(V) is not solvable, a contradiction.

Lemma 4. 9. m_{2}(G)\neq 2 .
PROOF. As we showed, E=F^{*}(G) is a simple group with m_{2}(E)=2 .

Then E is of known type and isomorphic to one of the following:
L_{2}(q) , L_{3}(q) , U_{3}(q) , q odd, U_{3}(4) , A_{7}, or M_{11} .
In any groups, we can easily check that they are not A_{3}.I groups,

Last case is m_{2}(G)=1 . Since G is an A_{3}.I-group, a Sylow 2-subgr0up
of G is isomorphic to Q_{8} . Let i be an involution of G.

Lemma 4. 10. O(G)=1 , in particular, G=C_{G}(i) .
PROOF. Let P be a Sylow p-subgroup of G for an odd prime p(\neq 3)

Then we have m(P)=1 , since m_{2}(G)=1 . Therefore, P is of order p. In
particular, F(O(G)) is cyclic and a Hall subgroup of G. Therefore, we
can easily see that G/F(O(G)) is also an A_{3}.I-group, a contradiction.

Finally, we have that F^{*}(G) is a quasi-simple group. In particular,
F^{*}(G) is isomorphic to SL_{2}(q)q\equiv 3 (mod 8). We can check that G is not
an A_{3}.I-group for each q, a contradiction. This completes the proof of the
statement b) of Theorem B.
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