Solvability of some groups

By Masahiko Мічамото

(Received May 1, 1980)

Introduction. K. Nomura posed the following problem: Let G be a finite group that has a large inner automorphism consistion. Then, is G a solvable group? Especially, we call a finite group G to be an AI-group if G satisfies the following: $N_G(A)/C_G(A)$ is isomorphic to the full automorphism of A for every Abelian subgroup A of G.

The purpose in the paper is to show the following theorem :

THEOREM A. Let G be a finite AI-group, then G is solvable.

To prove the theorem, we introduce the weaken condition. A finite group G is called an A_3I -group if G satisfies the following condition: For every Abelian 3'-subgroup A and a 3-subgroup B of $C_G(A)$, $C_G(B) \cap N_G(A)/C_G(B) \cap C_G(A) \ge O^3(\operatorname{Aut}(A))$. We will say that $C_G(B)$ covers $O^3(\operatorname{Aut}(A))$ if the condition holds.

Using the above notion, we will change the form of the theorem.

THEOREM B. The following hold:

a) All AI-groups are A_3I -groups.

b) Every $A_{s}I$ -group is solvable.

Clearly, Theorem A is an immediate consequence of Theorem B. Most of our notation is standard and taken from [1]. All groups considered in this paper will be finite. Let G be a group. Then F(G) denotes the Fitting subgroup of G.

2. Preliminary lemmas. In this section, we will search the properties of $A_{s}I$ -groups.

LEMMA 2.1. Let G be a finite $A_{3}I$ -group and B be a 3-subgroup of G. Then the following hold;

a) i(G)=1, the conjugate class of involutions of G is one.

b) Z(P) is of order p for a Sylow p-subgroup P of G and every prime divisor p of the order of G, $(p \neq 3)$.

- c) $C_G(B)$ is an A_3I -group.
- d) $G/O_{3}(G)$ is an $A_{3}I$ -group.
- e) $O^{3}(G)$ is an $A_{3}I$ -group.

PROOF. By the definition of A_3I -groups, we easily get the above state-

ments.

LEMMA 2.2. Let G be a finite solvable A_3I -group. Assume that $O_3(G) = 1$ and $O^3(G) = G$. Then one of the following holds;

a) $G/F(G) \cong \mathbb{Z}/2\mathbb{Z}$ and F(G) is cyclic of odd prime order.

b) G is isomorphic to Z/2Z or the quaternion group of order 8.

c) A Sylow 2-subgroup of G is isomorphic to Q_8 and moreover, one of the following holds;

i) $G \supseteq G_1 \cong Z/4Z \times Z/pZ$ and $G/G_1 \cong Z/2Z$,

ii) $G \supseteq G_1 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ and $G/G_1 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

PROOF. If F(G) is of odd order, then F(G) is cyclic since $O^3(GL_2(p))$ is not solvable for $p \ge 5$. Therefore, G/F(G) is Abelian and $|G|_2=2$. The desired statement a) follows from the easy calculation. Next, we assume $O_2(G) \ne 1$. By Lemma 2.1 a), every involution of G is contained in V= $\Omega_1(Z(O_2(G)))$. Since G is an A₃I-group, $G/C_G(V) \cong O^3(\operatorname{Aut}(V))$. If $m_2(G)$ =2, then $G/C_G(V)$ is isomorphic to the symmetric group S^3 on 3 letters. Let P be a Sylow 3-subgroup of G, then $N_G(P)$ is of even order, which contradicts $N_G(P) \cap V=1$. Clearly, the solvability of G implies $m_2(G)=1$. In this case, a Sylow 2-subgroup of G is isomorphic to Q_8 or Z/2Z, and we obtain the desired statement b) and c).

3. Proof of the statement a) in Theorem B. Let G be an AI-group but not A₃I-group. Namely, there is an Abelian 3'-subgroup A and a 3subgroup B in $C_G(A)$ such that $C_G(B)$ does not cover $O^3(\operatorname{Aut}(A))$. Clearly, we can choose B to be a Sylow 3-subgroup of $C_G(A)$. Let B_0 be a maximal normal Abelian subgroup of B, then $N_C(A)/C_C(A) \cong \operatorname{Aut}(A)$, where $C = C_G(B_0)$ First, we assert that B_0 is a Sylow 3-subgroup of $C_G(B_0 \times A)$. In fact, this follows from the maximality of B_0 . Next, since B is a Sylow 3-subgroup of $BC_G(B_0) \cap C_G(A)$, $N_G(B) \cap C_G(B_0)$ induces $O^3(\operatorname{Aut}(A))$ by the Frattini argument. Since B_0 is a self centralizer subgroup of B, we have that $C_G(B)$ induces $O^3(\operatorname{Aut}(A))$, a contradiction.

This completes the proof of the statement a).

4. Proof of the statement b) in Theorem B. Let G be a minimal counterexample. Clearly, we have $O_3(G)=1$ and $O^{2'}(G)=G$. For a 3-subgroup B of G, since $C_G(B)$ is an A₃I-group by Lemma 2.1, the minimality of G means that $m_2(C_G(B)) \leq 1$ by Lemma 2.2. Therefore, we have $m_2(G) \leq 3$. First, we assume $m_2(G)=3$. Let V be a subgroup of type (2, 2, 2).

LEMMA 4.1. $C_{G}(V)$ is a 2-group.

PROOF. As we showed, since $m_2(C_G(B) \leq 1$ for a 3-subgroup B, we have

that $C_G(V)$ is a 3'-group and $N_G(V)/C_G(V)$ is isomorphic to GL(3,2). Since G is an A₃I-group, every odd Sylow subgroup of $C_G(V)$ is cyclic, which means that $[C_G(V), a] \subseteq O_2(C_G(V))$ for an element a of order 3 in $N_G(V)$. Let R be a Sylow p-subgroup of $N_G(V)$. Since $C_G(a)$ is isomorphic to one of the groups in the list of Lemma 2.2, we get that $N_{C_G(V)}(R)$ is of even order, which contradicts $N_G(R) \cap V = 1$.

LEMMA 4.2. $C_{G}(V) = V$.

PROOF. Suppose false and set $U=C_{G}(V)$. Since $m_{2}(C_{G}(a))=1$ and $C_{C_{G}(V)}(a)$ is a subgroup of Q_{8} by Lemma 2.2, we obtain that U/V is isomorphic to one of the following:

- a) $U/V \cong (2, 2, 2);$
- b) $U/V \cong (2, 2, 2) \times (2, 2, 2)$; and

c) $U \supseteq U_1 \supseteq V$ such that $U/U_1 \cong (2, 2, 2)$ and $U_1/V \cong (2, 2, 2)$.

In any case, U has a maximal normal Abelian subgroup $U_0 \supseteq V$ such that $N_G(U_0)$ does not cover $C_G(\Omega_1(U_0)) \cap O^3(\operatorname{Aut}(U_0))$, a contradiction.

Let A be a subgroup of V with $A \cong (2, 2)$.

LEMMA 4.3. $C_G(A)$ is a 2-subgroup.

PROOF. Suppose false. By Lemma 2.2, we get that $C_{\mathcal{G}}(A)$ is a 3'subgroup and $N_{G}(A)/C_{G}(A)$ is isomorphic to the Symmetric group S³ on 3 letters, which means that every Sylow subgroup of $C_{G}(A)$ of odd order is cyclic. Therefore, for an element a of $N_{G}(A)$ of order 3, we obtain that $[C_{G}(A), a]$ is a 2-subgroup. Let P be a Sylow p-subgroup of $C_{G}(a) \cap C_{G}(A)$, then since $C_{G}(a)$ is a solvable A₃I-group and $m_{2}(C_{G}(P))=2$, we have that $|C_{C_{G}(A)}(a)|_{2}=2$. Since an odd element of $C_{G}(a) \cap C_{G}(A)$ centralizes $C_{G}(a) \cap$ $O^2(C_G(A))$, we have $C_G(a) \cap O^2(C_G(A)) = 1$ as we showed in Lemma 4.2. Therefore, we get that the nilpotency class of $O_2(C_G(A))$ is at most 2 by Theorem 8.1 in [2]. Since $N_{G}(V)/V \cong GL(3, 2)$ and $C_{G}(a) \cap O^{2}(C_{G}(A)) = 1$, we get $Z(O_2(C_G(A)) = A$. Furthermore, since $C_G(V) = V$, we have $|O_2(C_G(A))|$ $|A| \leq 2^4$, which means that $O_2(C_G(A))/A$ is an elementary Abelian. If P acts on $O_2(C_G(A)/A)$ faithfully, we get p=5 since we already got $C_G(a) \cap$ $O^2(C_q(A)) = 1$, which contradicts Aut $(P) \cong \mathbb{Z}/4\mathbb{Z}$. Therefore, P centralizes $O_2(C_G(A))$. Let U_1 be a maximal normal Abelian subgroup of $O_2(C_G(A))$, then $N_{G}(U_{1}) \cap C_{G}(A \times P)$ covers $O^{3}(\operatorname{Aut}(U_{1}) \cap C_{G}(A))$ by the definition of S₃.I-group, which contradicts $C_{\mathcal{G}}(P) \cap C_{\mathcal{G}}(A) = P \times O_2(C_{\mathcal{G}}(A))$ by Lemma 2.2.

Lemma 4.4. $N_G(A) \subseteq N_G(V)$.

PROOF. Since $N_{\mathcal{G}}(V)$ covers Aut (A), it is sufficient to show $C_{\mathcal{G}}(A) \subseteq$

 $N_G(V)$. Let *a* be a 3-element of $N_G(A)$ and *v* be an element in V-A. We may assume that *a* is contained in $N_G(V)$. Then, we have $C_U(a) = \langle \bar{v} \rangle$ where $U = C_G(A)/A$. Furthermore, since $C_U(v) = N_G(V) \cap C_G(A)$, we obtain that $C_U(v)$ is of order 8. But, since *a* acts on $Z(U)^*$ fixed point free, we have $C_U(v) = \langle \bar{v} \rangle \times Z(U)$, which implies $v \in U'$ and that *a* acts on $[C_G(A), a]$ fixed point free. Set $W = [C_G(A), a]$. By Theorem 8.1 in [2], we get $cl(W) \leq 2$ and so we have Z(W) = A since *G* is an A₃.I-group. Since *a* acts on *W* fixed point free and $C_U(v)$ is of order 8, we obtain that W/Ais of order 16. In this case, we can check that there is an Abelian subgroup U_1 of *W* containing *A* such that $N_G(U_1)$ does not cover $O^3(\operatorname{Aut}(U_1) \cap C_G(A))$, a contradiction.

LEMMA 4.5. $V = \Omega_1(S)$ for a Sylow 2-subgroup S of G.

PROOF. Suppose false, then there is an involution i in $N_S(V) - V$ for a Sylow 2-subgroup S containing V. Let $A = C_V(i)$, then we have $m_2(A) = 2$ and $N_G(A)/V \cong S^4$, the symmetric group on 4 letters. By Lemma 4.4, we also get $N_G(A) \subseteq N_G(\langle A, i \rangle)$. However, a does not normalize $\langle A, i \rangle$, where a is a 3-element in $N_G(V) \subset N_G(A)$, by the structure of GL(3, 2), a contradiction.

Lemma 4.6. $m_2(G) \neq 3$.

PROOF. As we showed, we got $V=\Omega_2(S)$ for a Sylow 2-subgroup S of G. But, in this case, V is a strongly closed Abelian subgroup in S with respect, to G. Therefore, we can get a contradiction by the result of Goldschmidt [1].

Since $m_2(G) \leq 3$, we next assume $m_2(G) = 2$.

LEMMA 4.7. Let S(G) be the unique maximal normal solvable subgroup of G. Then S(G) is of odd order.

PROOF. Suppose false and set $\overline{G} = G/O(G)$ and $V = \Omega_1(Z(O_2(\overline{G})))$. Since $i(\overline{G}) = 1$, every involution of \overline{G} is contained in V and so we get that V is a four-group and $\overline{G}/C_{\overline{g}}(V) \cong S^3$, the symmetric group on 3 letters. Let P be a Sylow 3-subgroup of \overline{G} , then $N_{\overline{G}}(P)$ is of even order, but $N_V(P) = 1$, a contradiction.

Let $\overline{G} = G/O(G)$, $\overline{E} = F^*(\overline{G})$, and E be the inverse image of \overline{E} in G. Clearly \overline{E} is a simple group.

LEMMA 4.8. O(G) = 1.

PROOF. Suppose false and let P be Sylow p-subgroup of F(G). Then we can easily see that every element of G of order p is contained in $\Omega_1(Z(P))$. If m(P)=1, then we get that P is a cyclic Sylow p-subgroup of G and G/P is also an A₃.I-group, a contradiction. Since $m_2(G)=2$, we have m(P)=2and $V = \Omega_1(Z(P))$ is of type (p, p). Since $G/C_G(V) \cong O^3(GL(2, p))$ and $O_2(O^3(GL(2, p)) \neq 1$ and S(G) is of odd order, $C_G(V)$ is not solvable, in particular, $C_G(V) \supseteq E$, but $G/C_G(V)$ is not solvable, a contradiction.

Lemma 4.9. $m_2(G) \neq 2$.

PROOF. As we showed, $E = F^*(G)$ is a simple group with $m_2(E) = 2$. Then E is of known type and isomorphic to one of the following: $L_2(q)$, $L_3(q)$, $U_3(q)$, q odd, $U_3(4)$, A_7 , or M_{11} .

In any groups, we can easily check that they are not A_3 . I-groups.

Last case is $m_2(G)=1$. Since G is an A₃.I-group, a Sylow 2-subgroup of G is isomorphic to Q_8 . Let *i* be an involution of G.

LEMMA 4.10. O(G)=1, in particular, $G=C_G(i)$.

PROOF. Let P be a Sylow p-subgroup of G for an odd prime $p \ (\neq 3)$ Then we have m(P)=1, since $m_2(G)=1$. Therefore, P is of order p. In particular, F(O(G)) is cyclic and a Hall subgroup of G. Therefore, we can easily see that G/F(O(G)) is also an A₃.I-group, a contradiction.

Finally, we have that $F^*(G)$ is a quasi-simple group. In particular, $F^*(G)$ is isomorphic to $SL_2(q) \ q \equiv 3 \pmod{8}$. We can check that G is not an A₃.I-group for each q, a contradiction. This completes the proof of the statement b) of Theorem B.

References

- [1] D. M. GOLDSCHMIDT: 2-Fusion in Finite groups, Ann. Math. Vol. 99 (1974), 70-117.
- [2] G. HIGMAN: Odd Characterization of Finite Simple Groups, preprint.

Department of Mathematics Faculty of Science Ehime University