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The Lorentz-Poincaré metric on the upper

Let G, be the matrix group consisting of all # Xz matrices of the form

a

L0 ...

It is a'Lie group of type & in the sense of [5] (also [4]), and, as such, it
admits a left-invariant Lorentz metric with any prescribed constant % as its
constant sectional curvature (Theorem 1, [5]). If we consider a diffeomor-
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correspond to the action of G, on U, by
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The Lorentz metric on U,

d52 = (dx{"-l— e _I_ dxn—lz - dxn2>/xn2 ’

(3)

is invariant by the action (2) of G, and corresponds to a left-invariant
Lorentz matric on the group G, of constant sectional curvature 1.
Lorentz metric (3) is, apparently, an analogue of the well-known Riemannian
metric, due to Poincaré, on the space U, which has constant sectional

curvature —1

(xh .

Tn

Tn

.

0

Vol 7 ra
X

Lp-1

1 J

L0 .-

0

s L1y xn)_—_—)(a .231+ bl’ ot

r'xn

L0

‘s bp_y a)E Un ’

T

T,

s a xn—1+bn-—1’ a xn) .

‘s bn_IER .

This work has been partially supported by NSF grant MCS 79-01310, 02.




254 K. Nomizu

In this note we discuss the geometry of the metric (3), to be called
the Lorentz-Poincaré metric on U,. We find that this metric is not geo-
desically complete. Can we, then, extend it to a geodesically complete
Lorentzian manifold? We answer this question affirmatively by isometrically
imbedding U, into the de Sitter space S7; the imbedding is actually equi-
variant relative to an isomorphism of the largest connected isometry group
of U, into the proper Lorentz group SO* (1, n).

I wish to thank John Beem and Steven Harris for discussing my per-
liminary- draft on the metric (3) and its geodesic behaviors. J. Beem called
my attentioh to his work with Busemann [2] and Busemann [1], which
mention the mietric (3) as an example in their axiomatic approach to Loren-
tzian differential geometry. S. Harris suggested a way of imbedding U, into
S? by using families of null geodesics that cover U,

1. Geodesics of the Lorentz-Poincaré metric.

On the upper half-space U,={(x, -**, ) ; £, >0}, let X; be the coordinate
vector fields : X;=8/0x;, 1<i<n. The Levi-Civita connection for the metric
(3) is described by

Ve, X;=0 for i#j, 1<4, j<n—1;
Vg, Xi = — X/ Zn for 1<i<n;
Vi, Xo =Vx, Xi= — Xi/ %, for 1<i<nn—1.

From these we may calculate the curvature tensor R as follows. If ¢, j, &
are distinct among 1, ---, n—1, then

R(X;, X)) Xe = R(X,, Xi) X = R(X;, Xp) X;=0
R(X,, X,) Xi=R(Xs, Xp) X = — Xi/ 2% .
Thus
RX,Y)Z=<Y,Z) X—<KX,Z)Y

for any tangent vectors X, Y and Z (where, of course, {,) denotes the
inner product by the metric). This means that our metric has constant

sectional curvature 1.

The Christofel symbols are given by

(4,) z?:Fn::Fz;:FnZ:_l/xm 1<i<n—1;
other I'f =0.

The equations for a geodesic z!(¢), with ¢ as affine parameter, are
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d*z;/dt* = 2(dx;/dt) (dx,/dE)] z,

( 5) n—1
aeofdit ={ S (df i+ (dafde) 2z,
i=1

Let (dzy/dt) (0)=c;, 1<i<m, so that the initial tangent vector of the
geodesic is given by (cy, -++, ch_y, ¢;). By an appropriate rotation of the first
n—1 variables (which is an isometry of the metric) we may assume that
Cg=++=¢C,1=0. From the equations (5) it follows that xy(¢), ---, z,_4(¢) are
constant functions in this case. This argument reduces the study of the
geodesic behaviors of U, to the case n=2.

For n=2, we write x, ¥ instead of z;, 2. The equations (5) are now

dx/d? = 2 (dz/dt) (dy|d)y
5/
(%) dry/de* = {(dz/dtp-+(dyldey}y .

We shall find the solutions of (5). Denoting d/dt by prime ’, we have
(2 fy*) =0. Thus &' /y*=c (constant). We have also

W'ly) =2y =ca
and thus
(6) YW =cx+c (¢;: constant) .

Case I: ¢=0. We get 2/ =0 so that £==> (constant). From (6) we have
Y =cy so that y=ae*!, where a is a constant >0. The geodesic is thus
a vertical line parametrized by

(7) x=0b, Y= ae"* .

This is a time-like geodesic defined for all values of its affine parameter ¢
(complete in both directions). See Fig. 1.

Case I1: ¢+#0. From 2 /y?=c and (6), we get ¥'/2 =(czx+c))/cy so that
Yy =cxx +c,2'. Thus

(1/2) cy? = (1/2) cx®+c1x+cy (cp: constant)l.
Then

V2=t 2cxfc+(crf )2+ (2¢s/c — ¥/ ) .
Depending on whether the last term is 0, >0 or <0, we have
(8) Y¥=(x—b)*  (b: constant)
or

(9) Y= (x— b2+ a? (a>0: constant)
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or
(10) Y+ a?=(x—b)02.

(8) gives rise to the lines y=x—b and y= —x+b. The first line is
a null geodesic

(8a) x(t) = 2o — Yoty Ho—1), Y(t) =¥/ WYo—1),

where ¢ is an affine parameter (i.e. these functions are solutions of the
equations (5')). Observe that this geodesic with initial tangent vector (1, 1)
at the initial point (xy,¥y,) for #=0) is defined for all <y, It is complete
for t— — oo but incomplete in the other direction. See Fig. 2 a. The second
line is a null geodesic

(8b) x(t) = 2o+ Yo—YHWo+2), Y(&) =YY Yo+t),

where ¢ is an affine parameter. This geodesic is complete in the downward
direction (¢—o0) and incomplete in the other direction. See Fig. 2 b.

The equation (9) is a branch of a hyperbola (y>0). We may first
parametrize it by

(9) x(u) = b+asinh u, y(u) = a cosh u .

The tangent vector (dx/du, dy/du) has length 1/cosh , and the arc-length
parameter ¢ (measured from the point (x(u,), ¥(u,)) is given by

t{u) = r du/cosh u = sin™! (tanh «) —sin~! (tanh u,) .

This space-like geodesic with affine parameter ¢ is incomplete in both direc-
tions, because ¢ (#)— * /2 —sin~!(tanh u,) as u—+oco. See Fig. 3.
The equation gives two half-branches of hyperbolas (y>0). We

may first parametrize them by
(10') x(u) = b+ acosh u, y(u) = asinh u, u>0.

The tangent vector (dx/du,dy/du) is time-like with length 1/sinh . The
proper-time parameter ¢ measured from z=wu,>0 for this time-like geodesic
is given by

t(u) = Su du/sinh u = log (tanh u/2) —log (tanh #,/2) .
The geodesic is complete as it approaches the x-axis, since t{x)— — oo as

«—0. It is incomplete in the other direction since #(x)— —log (tanh u,/2)
as u—oco. See Fig. 44, b.



258 K. Nomizu

2. Full isometry group.

We may now determine the full isometry group I(U,) of the space U,
with metric (3). Since the group G, acts transitively on U,, so does I(U,).
Let po=(0, ---,0,1), and we find the isotropy group at p,. Suppose f is an
isometry fixing p,. Then the differential fy at p, maps the tangent vector
(Xn)p, into £(X,),, because the time-like geodesic (0, ---, 0, ¢’), which is com-
plete in both directions, must be mapped by f into itself. Therefore f
induces a rotation in the span of (X),, 1<i<n—1. This rotation is induced
by an isometry of U, of the form

fA : (xl, 0ty Tnty xn)——’(?h, Y yn—la xn) )

where

n—1

Y; = Za”xj with A:[aij]EO(Tl—'l) .
J—1

Now if fx((Xy)p)=(Xn)p, then f must coincide with the transformation above.
If fx((Xp)p) =—(Xu)p, then consider the null geodesic ray p, with initial
tangent vector (1,0, ---,0,1) which is defined for all #<0. The image of p,
by the isometry f3'f is the null geodesic ray through p with initial tangent
vector (1,0, -++, -+-, 0, —1) and is not defined for all £<0. This is a contra-
diction. We have just shown that f, must map (X,), into itself and thus
coincides with f.

The full isometry group I(U,) therefore consists of all matrices of the
form

b
aA 51 .
(11) b,_s with A€O(n—-1) a>0, by, -, b,_,ER
0.0 1
acting on U, in the natural fashion. The identity component I°(U,) consists
of all such matrices with A=SO(n—1).
3. Isometric imbedding of U, into S7

We shall now give an isometric imbedding of U, into the de Sitter
space S?. This space is the hypersurface

{u:(uﬂ’ Upy ooy Un) 3 Uy Uy = —udtul+--tu= }

in the Lorentz space L*! with its induced Lorentz metric of constant sec-

tional curvature 1 [3], [6].
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We define f: U,—St by

f(xla c0ty Tty xn) - (uo, Uy =y un) ’

where

ug=1+azl+- 42 1 —x,%)/2,
(12) = —xifxn, 1<i<n—1,

Uy :(l*xlz_'"'— ?z—l+xn2)/2xn .

It is straightforward to verify that f is an isometric imbedding of U, into
St.  The image f(U,) is the open submanifold

We now define an isomorphism A of the group G, into the proper
Lorentz group SO (1, n), which is the largest connected group of isometries
of S?. Note that SO* (1, n) consists of all Lorentz-orthogonal matrices with
determinant 1 whose first column vectors are future-pointing time-like unit
vectors a=(ay, a;, '+, a,), {a,a>=—1, a;>0. In order to define A, let us
observe the following about the Lie algebras of G, and SO* (1,n). In the
Lie algebra g of G, let

0 1 0
(13 X=| 0 1|, 1<i<n—1, X,=| 1 §
0.0 0 0 ... 0 0

Then X, -+, X,_y, X, form a basis of g such that
[X: X;1=0 for 1<, j<n-—1
[X:, X.] = X; for 1<i<n-—1.

Similarly, in the Lie algebra o (1, n) of SO* (1, n) let

0.--—1 --- 0
Y,=| -1 0 —11,1<i<n—1
0 1 0

0---0 1
Ya=| s

Then Yy, -+, Y,_;, Y, satisfy the same commutation conditions
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[Yiy Y] =0 for 1<, j<n-—1
Y, Y, ] =Y, for 1<i<n—1

and generate a Lie subalgebra of o(1, n) which is isomorphic to g.

The isomorphism Ay of g into 0(1, 7n) mapping X; into Y; for 1<i<n
gives rise to a homomorphism % of the Lie group G, into SO (1, n) which
maps ‘

cosh s---sinh s
e® 1
exp(an):[ ] into exp (sY,) = KT
e’ 1
sinh s---cosh s

and
1 0 14820 —t o 132
: ' | :
exp (t X)) = t into exp(tY,) = —1 —t
1 0 ; Lo,
0.0 1 —2 e fe 12

for each 7, 1<i<n—1. :
We shall show that the imbedding f: U,—S? is equivariant relative to
h: G,—SO" (1, n), that is,
flgp)=hig)f(p)  for all g&G, and peU,.
It suffices to prove this for p=p,=(0, -+, 1), for which f(p,)=(0, ---, 0, 1)=.S?.
Now for ¢ as in (1) with a=e¢™%, we have
h(9) f(po) = h (exp bn_1 Xn_1)--h(exp by X;) h (exp s X;) f(Po)
= (sinh s+ Be*/2, —b,é*, -++, —b,,_,€°, cosh s— Be*/2),

where B=0b?+---+b!_;. On the other hand,
f(gPO) :f(bb R bn—l’ e—s)
=((1+B—e*)/2¢, —bie", -+, —byuye’, (1— B+e%)/2¢7))

and hence f(gp,) = h(9) f(po)-

We can now prove that 2 is an isomorphism. Suppose A(g) =h(g)
for g, g=G,. Then h(g)f(p) =h(¢)f(p). By adding the first and last
coordinates of this point we find that ¢ and ¢’ have the same homothetic
factor (that is a in (1)). The other coordinates of the point show that ¢
and ¢’ have the same translation part (that is, &y, -, b,_, in (1)). Thus
9=q.
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We have shown that the imbedding f is equivariant relative to the
isomorphism A of G, into SO*(1,7n). We can extend A to an isomorphism
of the largest connected group I°(U,) into SO*(1,7) in such a way that
f remains equivariant. It is sufficient to define

10 0
A 0
g =|0 A 0]|esorq,n forg:[o 1]EI°(U,,),
00 1

where A=SO* (n—1) as before.
Thus we state

TueoreEM. There is an isometric imbedding of the upper half-space
U, with Lorentz-Poincaré metric into the de Sitter space St which is equi-
variant relative to an isomorphism of the largest connected isometry group
I°(U,) into the proper Lorentz group SO* (1, n).

A geodesic z, in U, is incomplete if and only if f(x) reaches the
boundary f(U,)={uES ; uy+u,=0} for a finite value of the affine para-
meter f. |

Finally, let us remark that the left-invariant Lorentz metric on the group
G, corresponding to the Lorentz-Poincaré metric is determined by the Lorentz
inner product in the Lie algebra g such that (X, X,>=-1, {X; X.»>=0
and <X;, X;>=0;; for 1<i, j<n—1, where X,, -, X, are given in (13).
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