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Structure of Banach quasi-sublattices

By Shizuo MivajiMa
(Received August 2, 1982)

§ 1. Introduction

We begin with the following motivating example. Let D denote the
open unit disc in the complex plane and let D be its closure. C(D) means
the Banach lattice of all continuous functions on D with usual pointwise
order and supremum norm. Let H be the subspace of C(D) consisting of
all functions which are harmonic in D. Although H is not a sublattice of
C(D), it enjoys the following properties :

(i) H becomes a Banach lattice with respect to the order and the
norm induced by those of C(D), respectively.

(i) Let I:={feC(D); f=0 on D\D} and let = denote the canonical
surjection from C(D) onto C(D)/I. Then m is an isometric lattice isomor-
phism onto C(D)/I.

(iii) H is the range of a contractive positive projection Pe«(C(D))
which is lattice homomorphic as an operator from C(D) onto the Banach
lattice H. (=2(C(D)) denote the set of all bounded linear operators on C(D).)
In fact, it suffices to define Pf to be the harmonic extension of fisp to D
for feC(D). V

The purpose of this paper is to investigate the structure of subspaces
of a Banach lattice having the same property as the above (i) for H, which
we call Banach quasi-sublattices.

In §2, we give the definition of quasi-sublattices and Banach quasi-
sublattices. (The former is introduced to treat the algebraic aspect -of the
latter separately.) Then we prove the fundamental facts about these spaces,
fixing some notations along the way.

In §3, we show that the analogues of (i) and (iii) for H is valid for

Banach quasi-sublattices of AM-spaces.

§ 2. Quasi-sublattices and Banach quasi-sublattices

DEFINITION 1. A subspace F of a vector lattice E is called a quasi-
sublattice of E if it becomes a vector lattice with respect to the order induced
by that of E.
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Let F be a quasi-sublattice of a vector lattice E. Then the positive
part, negative part and the absolute value of xt&F in F are denoted by
x**, 27~ and |xz|p, respectively. The standard notations x*, x~ and |x| are
used to denote the positive part, negative part and the absolute value of
z€E in E. The supremum and infimum of z, yEF in F are denoted by
VY and xAY, respectively, while z\Vy and xA¥y stand for the supremum
and infimum of z, y€E in E, respectively. It follows immediately from the
definition that xvVy>xVYy and xAy<zAy hold for any z, y=F.

LeEmMA 1. Let F be a quasi-sublattice of a vector lattice E. Suppose
two finite families {a;z}icr, jer, {bu}vexicr Of elements of F satisfy

V /\aijz\/ /\bkz-

i€l jeJ k€K l€L

Then

Y Aaij=A ¥V by
i€l jeJ ke 6L

holds, where \/, N [resp. ¥, A] denote the supremum and the infimum
in E [resp. in F], respectively.
Proor. First we show that a;EF and \V A a;;>0 imply ¥ A a;;>0.
1€l jeJ 1€l jeJ
In fact, since the distributive law in E yields

ANVawpmi=V Naj; =0,

je€J a€x i€l jeJ

where Y=1I’, we obtain V a,,;>0 for any jeJ. Hence ¥ a,;;>0 and

I[P oel¥
hence A ¥ a,;;=>0, which in turn implies ¥ A a;;>>0.
JjeJ o e€l jeJ
Returning to V A a;;=V Aby and fixing an i1, we get \/ A by>
i€l jeJ keX leL k€K leL

A a;;. Noting that A a;;2> A a;;, we obtain V' A (by;— A a;;)>0. Since by, —
JjeJ JjeJ jeJ k€K leL jeJg
A a;;EF, the first part of the proof yields ¥ A (by— A @;;)>0, and hence
jeJg keK leL JjeJ

¥V Abu>¥Y Aaj. Thus we obtain the desired equality since the converse
keK 6L i€l jeJ o
inequlity is proved similarly.

TueoreM 1. Let F be a quasi-sublattice of a vector lattice E, and let
F, be the sublattice of E generated by F. Then there exists a positive
(linear) projection P from F, onto F, which is lattice homomorphic with
respect to the lattice structures of Fy and F, 1. e., P satisfies P(x \y)=PxAPy

and P(x\/y)=PxN Py for any x, YEF,.
Proor. Since Fy={V A a;;; I, J finite, a;;EF} ([2] p. 74), the mapping

iel jeJ
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P: NV Najl—YV Aa; (I, J finite, a;;EF)
1€l jeJ 16l jeJ
is well defined on F,. Since Px&F for x€F, and Px=x for z€F, the
range of P is F and P2=P. The additivity of P is proved by using the
distributive laws in E and F:
Let I, J, K and L be finite sets and a;;, by EF for any icl, j&J,
keK and IeL. Then

P(V Aay+V Aby)=P(V AV Alay+by))

i€l jeJ k€K I€L iel jeJ k€K Ie€L

=P<v V /\ (aij'l_bo(f)l))

iel jeJ keK leL

where Y =K’. Other assertions are also proved by invoking the distributive
law.

The following is a converse to [Theorem 1.

ProposiTiON 1. Let E be a vector lattice and let P be a positive
linear projection in E. Then the range PE of P is a quasi-sublattice of
E and P(\VV A ai) =¥ A ay; holds for any finite family {a;j}ic1,jcs of ele-

16l jeJ iel jeJ
ments of PE.

Proor. PE is indeed a quasi-sublattice of E and zVy=P(zVY), zAY=
P(xAy) hold for any x, yePE ([6] p. 214). Since

P(\/ /\aw>>P(/\azj)>P(/\ ai]) A ag;

i€l jeJ J€J

hold for any fixed i€l, P(V Aa;;)=¥ A a;. On the other hand, V A a;;

i€l jeJ i€l jeJ i€l jeJ

= A V @ (F=J%) implies

a6X 1€l

P(\/ A ai]) < P(\/ awm) < P(\/ aza(i)) Y Qi)

tel jeJ (174 ier
for any fixed s=2. Hence P(V Aay) <A Y auw =V A ay and hence

i€l jeJ €3 i€l 1€l jeJ
P(V Nai)) =¥ A a;.
i€l jeJ i€l jeJ .
Now we proceed to the study of Banach quasi-sublattices.
DEFINITION. A closed subspace F of a Banach lattice E is called a
Banach quasi-sublattice of E if F becomes a Banach lattice with respect to
the order and the norm induced by those of E, respectively.
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Note that a closed subspace F of a Banach lattice E is a Banach quasi-
sublattice of E if and only it is a quasi-sublattice of E and || |x|z||=]|x]|
holds for any x&F. By the definition, a closed sublattice of a Banach
lattice E is a Banach quasisublattice of E. An important non-trivial example
of a Banach quasi-sublattice is the range of a contractive positive projection.
In fact let P be a contractive positive projection in a Banach lattice E and
let F be the range of P. Then F is a quasi-sublattice of E and |z|r=P|x|
for x&F ([6] p. 214). Hence || |z|#/|=||P|z| ||<||z||. This implies || |z|#||=
||z|| since it always holds that |x|r>|x| for z&F. The space H described
in the introduction is a concrete example of such Banach quasi-sublattices.

On the other hand, certain Banach lattices admit no Banach quasi-
sublattices other than closed sublattices.

ProPoSITION 2. Suppose a Banach lattice E has a strictly monotone
norm, i.e., x, YyeE 0<x<y and ||x||=|ly|| imply x=y. Then any Banach
quasi-sublattice of E is a sublattice of E.

Proor. Let F be a Banach quasi-sublattice of E and x&F. Then
0<|z| <|z|r and ||z||=|| x| ||<]| [z|rl|=]|z||. By the assumption this implies
~ |z|=|z|s. The identity

1
VY =5 (z+y+1z—yls)

for x, yeF shows that F is a sublattice of E.

Concerning the analogues for general Banach quasi-sublattices of the
properties (ii) and (iii) in § 1, we have the following result. The (b)=>(a) part
of the proof is due to Professor T. Ando.

THEOREM 2. Let F be a Banach quasi-sublattice of a Banach lattice
E and let F be the closed sublattice of E generated by F. Then the follow-
ing are equivalent.

(a) There exists a closed ideal I of E for which the restriction x|y
of the canonical map n: E—E|I is isometric and lattice homomorphic with
respect to the lattice structures of F and E/L

(b) There exists a positive contractive projection P< <£(F) with range F.

Proor. (a)=>(b): Suppose a closed ideal I of E meet the condition in
(a) and let #: E—EJ/I be the natural map. Let {a;;};cs,jes be a finite family
of elements of F. Then

1y, AauliZ[|=(y Aaul|=[|A V2@

€I jeJ i€l jeJ i€l je&J
=[l=(y A@d|| =1, Aadll
i€l j&J i€l jeJ
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holds since x|z is isometric and lattice homomorphic. This shows that the
mapping P in can be uniquely extended to a contractive positive
projection from F to F, hence (b) holds.

(b)=>(a): Suppose P: F—F satisfy the condition in (b). Then P is
lattice homomorphic with respect to the lattice structure of F and F, respec-
tively. In fact, if we denote by F, the sublattice of E generated by F, Lemma
1 and [Proposition 1| imply that P|p is lattice homomorphic with respect
to the corresponding lattice structures, hence P is also lattice homomorphic.
Therefore, Ker P is a closed sublattice of F containing z+** —z* and |z|r— |z
for any zEF.

Let I be the closed ideal of E generated by Ker P. Then the above
observation implies that the natural map r: E—E/I satisfies n(x)* ==(zx*)=
m(x*t) for any xEF. Hence x| is lattice homomorphic with respect to
the lattice structure of F and E/I, respectively.

To see that z|r is isometric, it suffices to show ||z(z)||>[|z|| for positive
x€F, since for general xr&F

=@l =[] == =b]| = |=(1212]

and || |z|#||=||z]| hold. So let x&F be positive and w=I Then there
exists two sequences {Un}n,cy and {v,},cy satisfying u,€E, v,&Ker P and
|ty| <v, for any nE€N, and limwu,=u. Since z+wu,>x—v, (T+u,)* >

n—eo

(x—v,)* holds for any nEN. By the remark in the first paragraph of this
part of proof, the above inequality and the fact (x—uv,)*F imply ||(x+u,)*
|Z[(x—v.)* | Z|[P((x—va) )| [=[(P(x—va))**||=[l2l|. Thus we obtain ||z+u
IIZH(x+u)+1ll|i1im l(x+un)*]| =[x, which implies ||z(x)||>||x|l.

Next we turn to the problem of positive extension of linear functionals.
First we prepare the following

LEmMA 2. Let F be a Banach quasi-sublattice of a Banach lattice
E. Then ||xt*||=||x"|| holds for any x&EF.

Proor. For any x&F and non-negative integer n, put x,: =nx"t+
zeF. Since z,=(n+1)at*—x ~=naxtt+at—a7, |xulr=(n+ )"t +x>
(n+1D) gt +ax >natt+xt+x and |x,| <nzxtt+axt+x-. Therefore

e [ I [P
hence

”nx+++x++x‘” = ”(n+1) x**—{—x‘” .



88 S. Miyajima

Using this equality, we can inductively prove the following inequality
for any non-neagative integer n:

|lna™* +27|| < mf|2"|| 4|27 -

Dividing the above inequality by n and letting n—oco, we obtain ||z**||<
|lz*]l, hence |[x**]|=]||z*]|.

ProrosITION 3. Let F be a Banach quasi-sublattice of a Banach lattice
E. Then any positive linear functional ¢ on F has a norm preserving
extension to a positive linear functional on E.

Proor. Let p(x): =||¢|| ||x*]| for x€E. Then p is a sub-additive
positively homogeneous function on E, and ¢(x)<p(x) holds for any z=F,
since ¢ is positive and ||xz"t||=||z"|| by Lemma 2. It readily follows that
any Hahn-Banach extension ¢ of ¢ dominated by p meets the requirement
of the proposition.

§ 3. Quasi-sublattices of AM-spaces

ProrosITION 4. Let F be a quasi-sublattice of an AM-space E. Then
F is also an AM-space.

Proor. It suffices to show ||z+y||=max {||z||, |[y|]} for any z, yEF
satisfying £AyY=0 ([4] p. 22). Let xz, ¥ be such elements. Then |z—y|,=
z+Y, hence

49l = ||| z—vl#|| = llx—wll .

But |[z—y||<max {||z||, |ly|]} since E is an AM-space. Therefore ||z+7||<
max {||z||, ||y|]}, which implies ||z+¥y|/=max {||z||,|[y|]} since the converse
inequality is always valid for x, y>0.

TueoreM 3. Let F be a Banach quasi-sublattice of an AM-space E.
Then there exists a closed ideal 1 of E for which the restriction of the
canonical map n: E—E/I to F is isometric and lattice homomorphic with
respect to the lattice structures of F and EJI.

Proor. Let X:={f€E; f>0, [|f||<1} and Y: ={¢EF"; ¢>0, ||¢]|<
1}, where E' and F’ denote the Banach space dual of E and F, respectively,
which are also Banach lattices ([6] p. 85). Then X [resp. Y] is compact
with respect to the relative w*-topology, and the set X, [resp. Y] of the
non-zero extreme points of X [resp. Y] consists of lattice homomorphic
linear functionals on E [resp. F] ([4] p. 59). [Proposition 3 shows that the
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JX——)Y
lf"'_*flﬁ'

mapping is surjective. Since 77Y(¢) is a closed face of X for any oY,
7 H¢)N Xy is non-void ([3] p. 133).

Put Xi: =r"Y(Y)N X, and I: = {z€E; f(|z|)=0 for any feX;}. Then
I is clearly a closed ideal of E which meets the requirement of Theorem,
as we shall see below.

First we verify the equality ||z(z)||=||z|| for xEF, where r: E—E/I
is the natural map. This follows from the following two observations :

(i) For any z€F, y&l and fEX,, |lz+y||>|flz+y)|=|F(x) hold
since f(y)=

(ii) For any z€F ||zl =|| |zlsll =sup {¢(|2lr); ¢ Yy =sup {|¢(z)];
geY}=sup {| f(z)|; fEX)} hold, where the third equality is due to the
fact that ¢eY; is lattice homomorphic on F, and the last equality holds
since 7(X)=Y,.

To see that x|r is lattice homomorphic with respect to the lattice struc-
ture of F and E/I, it suffices to note that for any z, y=F and feX,

Favy—zvy) =r(f) (xVy) —flxVy) =r(f) (@ Vr(F) @) —F2) V. )
=0

hold and hence zvVy—zVvyesL

CoROLLARY 1. Let F be a closed subspace of an AM-space E. Then
F is a Banach quasi-sublattice of E if and only if there exists a closed

sublattice F of E and a contractzve positive projection Pe<£(F) with
F=PF.

Proor. The “if part” readily follows from the remark after the defini-
tion of Banach quasi-sublattices. On the other hand let F be a Banach
quasi-sublattice of E and let F' be the closed sublattice of E generated by
F. Then and imply that there exists a contractive
positive projection P .« (F) with F=PF.

In case E is realized as a closed sublattice of the Banach lattice C(K)
(K: a compact Hausdorff space), we have the following

CorOLLARY 2. Let K be a compact Hausdorff space and let E be a
closed sublattice of C(K). Then for any Banach quasi-sublattice F of E,
there exists a closed subset K, of K such that F| k. ={zlx,; xEF} is a
sublattice of C(K,) and ||z||=||z|,|| holds for any xEF. Moreover if F
contains the constant functions, there exist a compact Hausdorff space K,,
a continuous surjection p : Ke—K, and a continuous mapping p: K— M7 (M,)
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(M} (K) denotes the space of probability Radon measures on K, endowed
with the relative w*-topology) satisfying the following conditions :

(i) The mapping p*: gr>gop gives an isometric lattice isomorphism
from C(K;) onto Flg,.

(ii) For any z€F and s€K,

2(s) = | p(alx) dps
holds, where , denotes the value of p at s.

Proor. Let X, Y, X, and Y, be defined as in the proof of
3, and let 7: X—Y be the restriction map, i.e., 7(¢) : =¢|r for p€X. Then
as noted in the proof of [Theorem 3, 7(X;)>Y;. On the other hand consider
the evaluation mapping ¢: K— X which maps s€K to the functional E= x>
z(s). Then ¢(K)DX, since ¢(K)U {0} is compact and its closed convex hull
is X. Therefore the closed subset Ky: =(ro¢)7'(Y,) of K satisfies 7o¢ (Kg) D Y.
This implies that Flg, is a sublattice of C(K,) and that ||z||=]|z|#|| holds
for any z<F, which in turn implies that Flg, is closed in C(K. This
proves the first part of the Corollary.

Assume now F contains the constant functions. Let the equivalence
relation ~ on K, be defined by s~t if and only if x(s)=x(¢) holds for any
zEF. Let K,;: =K,/~ be the quotient space and let p: K;—K, be the
canonical surjection. Then K, is a compact Hausdorff space ([5] pp. 125-
126) and the Stone-Weierstrass theorem implies that the mapping p*: g
gop gives an isometric lattice isomorphism from C(K,) onto Flg,.

On the other hand, the first part of the proof shows that the mapping
t: z—>x|r is an isometric lattice isomorphism from F onto F|x. Hence
r~lop* is an isometric lattice isomorphism from C(K)) onto F. It is easy
to see that for any s K there exists a unique probability Radon measure
¢s on X; which satisfies

Sgd,us = (c1op¥) () (5)

for any g=C(K,). That the mapping y: se Ky, A1 (K,) is continuous
and that the assertion (i) in the Corollary holds are clear from the con-
struction of ;.

ReEMARK. In an unpublished note [I], Professor T. Ando studied the
structure of certain subspaces of a Banach lattice. Among his results, the
following is closely related to our results in § 3:

If a closed linear subspace F of a Banach lattice E satisfies the following
conditions (i), (ii) and (iii), then F is the range of a positive projection.



(i)
(ii)
(iii)

[1]

[2]
[3]
[4]

[5]
(6]
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F is a quasi-sublattice of E;

The sublattice generated by F is dense in E;
E:F_'E+.
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