On the number of irreducible characters in a finite group

By Tomoyuki Wada
(Received July 8, 1981 ; Revised August 11, 1982)

1. Introduction

Let F be an algebraically closed field of characteristic p, and G be a finite group with a Sylow p-subgroup P. Let B be a block ideal of the group algebra $F G$ which can be regarded as an indecomposable direct summand of $F G$ as an $F(G \times G)$-module. We denote by $k(G)$ and $l(G)$ the number of irreducible ordinary and modular characters in G, respectively (also by $k(B)$ and $l(B)$ the number of those in the block associated with $B)$.

In [15] the author introduced the invariant $n(B)$ that is the number of indecomposable direct summands of $B_{P \times P}$. In the present paper, we show that the inequality " $l(B) \leqq n(B)$ " holds, and this inequality is closely related to the well-known result that $k(G) \leqq|G: H| k(H)$ for any subgroup H of G (see [5], [7], [14]). In section 2, we shall obtain a modular version of the above well-known result that $l(G) \leqq|G: H| l(H)$ for any subgroup H of G. When $H=P$, our result $l(B) \leqq n(B)$ provides a more explicit consequence that $l(G) \leqq|P \backslash G / P|$ (the number of (P, P)-double cosets in G) which is proved in section 3. Furthermore, in section 3, we will investigate the case that the above equality holds. In this case, for example, every projective indecomposable $F G$-module in B has dimension $|P|$, and every irreducible $F G$-module in B has dimension a power of p.

Acknowledgement. The author is greatly indebted to Dr. T. Okuyama who pointed out that Theorem 1 holds, and the referee who pointed out and corrected the errors in the first version of Theorem 3. The proof of Theorem 3, Corollary 2 and Example are suggested by them. The author expresses his heartfelt gratitude to them.
2. Let M be a right $F G$-module, and H be a subgroup of G. We denote by $\operatorname{rad}_{H}(M)$ and $\operatorname{soc}_{H}(M)$ the radical and the socle of M as an $F H$-module. Let $r_{H}(M)$ and $s_{H}(M)$ denote the number of irreducible $F H$-constituents of $M / \operatorname{rad}_{H}(M)$ and $\operatorname{soc}_{H}(M)$, respectively.

Lemma 1. Let F be an algebraically closed field of arbitrary char-
acteristic, and let $\left\{L_{1}, L_{2}, \cdots, L_{l(G)}\right\}$ and $\left\{M_{1}, M_{2}, \cdots, M_{l(H)}\right\}$ be the sets of all non-isomorphic irreducible $F G$ and $F H$-modules, respectively. Then the following hold;

1) $r_{G}(V)=\sum_{j} \operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(V, L_{j}\right)$ and $s_{G}(V)=\sum_{j} \operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(L_{j}, V\right)$ for any $F G$-module V,
2) $\sum_{i} r_{G}\left(M_{i}{ }^{G}\right)=\sum_{j} s_{H}\left(L_{j}\right)$ and $\sum_{i} s_{G}\left(M_{i}{ }^{G}\right)=\sum_{j} r_{H}\left(L_{j}\right)$.

Proof. 1) is clear, and 2) is easy observation from 1) and Frobenius reciprocity theorem : $\operatorname{Hom}_{F G}\left(M_{i}{ }^{G}, L_{j}\right) \simeq \operatorname{Hom}_{F H}\left(M_{i}, L_{j H}\right)$ and $\operatorname{Hom}_{F G}\left(L_{j}, M_{i}{ }^{G}\right)$ $\simeq \operatorname{Hom}_{F H}\left(L_{j H}, M_{i}\right)$.

Lemma 2. Under the same notation as above, it holds that $r_{G}\left(M_{i}{ }^{G}\right) \leqq$ $|G: H|$ and $s_{G}\left(M_{i}^{G}\right) \leqq|G: H|$ for all i.

Proof. Let $M_{i}{ }^{G} / \operatorname{rad}\left(M_{i}{ }^{G}\right)=\oplus \underset{j}{\oplus} a_{i j} L_{j}$, and $\operatorname{soc}\left(M_{i}{ }^{G}\right)=\oplus_{j} b_{i j} L_{j}$. Then, from Frobenius reciprocity theorem, $a_{i j} \neq 0$ means that $M_{i} \leqq \operatorname{soc}_{H}\left(L_{j}\right)$, and also $b_{i j} \neq 0$ means that $M_{i} \leqq L_{j} / \operatorname{rad}_{H}\left(L_{j}\right)$. In particular, $a_{i j} \neq 0$ or $b_{i j} \neq 0$ implies that $\operatorname{dim} M_{i} \leqq \operatorname{dim} L_{j}$. Now, since

$$
|G: H| \operatorname{dim} M_{i}=\operatorname{dim} M_{i}{ }^{G} \geqq \operatorname{dim}\left(M_{i}{ }^{G} / \operatorname{rad}\left(M_{i}^{G}\right)\right)=\sum_{j} a_{i j} \operatorname{dim} L_{j},
$$

and $\quad|G: H| \operatorname{dim} M_{i}=\operatorname{dim} M_{i}{ }^{G} \geqq \operatorname{dim}\left(\operatorname{soc}_{G}\left(M_{i}{ }^{G}\right)\right)=\sum_{j} b_{i j} \operatorname{dim} L_{j}$,
we have that

$$
|G: H| \geqq \sum_{j} a_{i j} \operatorname{dim} L_{j} / \operatorname{dim} M_{i} \geqq \sum_{j} a_{i j}=r_{G}\left(M_{i}{ }^{G}\right),
$$

and $\quad|G: H| \geqq \sum_{j} b_{i j} \operatorname{dim} L_{j} / \operatorname{dim} M_{i} \geqq \sum_{j} b_{i j}=s_{G}\left(M_{i}{ }^{G}\right)$.
Theorem 1. It holds that $l(G) \leqq|G: H| l(H)$ for any subgroup H of G. Furthermore, suppose that equality holds, then $H \triangleleft G, G / H$ is abelian p^{\prime}-group and $G=C_{G}(h) H$ for any p^{\prime}-element h of H.

Proof. First statement fcllows from Lemmas 1, 2, since

$$
\begin{aligned}
& l(G) \leqq \sum_{j} r_{H}\left(L_{j}\right)=\sum_{i} s_{G}\left(M_{i}{ }^{G}\right) \leqq|G: H| l(H), \quad \text { or } \\
& l(G) \leqq \sum_{j} s_{H}\left(L_{j}\right)=\sum_{i} r_{G}\left(M_{i}^{G}\right) \leqq|G: H| l(H) .
\end{aligned}
$$

It is easy to find that equality holds if and only if $M_{i}{ }^{G}$ is completely reducible for all i, and $M_{i}{ }^{G}$ has exactly $t=|G: H|$ distinct irreducible constituents $L_{i i}, \cdots, L_{i t}$, where $L_{i j \mid H}=M_{i}$. Let M_{1} be the trivial $F H$-module, then each $L_{1 j}$ must be one dimensiona. Hence, $\cap \operatorname{Ker}\left(L_{1 j}\right)=H \geqq G^{\prime}$ and we have $H \triangleleft G, G / H$ is abelian. Since $O_{p}(G / H)$ is contained in the kernel of every
irreducible $F(G / H)$-module, this forces that G / H is a p^{\prime}-group. By Clifford's theorem, G acts trivially on each M_{i}. Then, G fixes each p-regular classes of H. This implies that $G=C_{G}(h) H$ for any p^{\prime}-element h of H.

Note that Theorem 1 includes the well-known result $k(G) \leqq|G: H| k(H)$.
Lemma 3. Let $K \leqq H$ be subgroups of G, U and V be an $F H$ and FK-module, respectively, and F be any field. Then

1) $\quad r_{H}(U) \leqq r_{K}(U), s_{H}(U) \leqq s_{K}(U)$,
2) $\quad r_{K}(V) \leqq r_{H}\left(V^{H}\right), s_{K}(V) \leqq s_{H}\left(V^{H}\right)$.

Proof. 1). Let $\bar{U}=U / \operatorname{rad}_{H}(U) \simeq X_{1} \oplus \cdots \oplus X_{r_{H}(U)}$, where X_{i} is an irreducible $F H$-module. Set J_{K} to be the inverse image of $\operatorname{rad}_{K}(\bar{U})$ by the natural homomorphism from U to \bar{U}. Since $\operatorname{rad}_{K}(\bar{U}) \simeq \operatorname{rad}_{K}\left(X_{1}\right) \oplus \cdots \oplus$ $\operatorname{rad}_{K}\left(X_{r_{B}(U)}\right), U / J_{K}$ has at least $r_{H}(U)$ irreducible constituents. On the other hand, since U / J_{K} is completely reducible $F K$-module, $U / \operatorname{rad}_{K}(U)$ contains at least as many irreducible constituents as U / J_{K} does. Then, we have that $r_{H}(U) \leqq r_{K}(U)$. Second statement is clear from $\operatorname{soc}_{K}\left(\operatorname{soc}_{H}(U)\right) \leqq \operatorname{soc}_{K}(U)$.
2). Let $\overline{V^{H}}=V^{H} / \operatorname{rad}_{K}(V)^{H} \simeq\left(V / \operatorname{rad}_{K}(V)\right)^{H}$ and J_{H} be the inverse image of $\operatorname{rad}_{H}\left(\overline{V^{H}}\right)$ by the natural homomorphism from V^{H} to $\overline{V^{H}}$. Then V^{H} / J_{H} has at least $r_{K}(V)$ irreducible constituents. On the other hand, since V^{H} / J_{H} is completely reducible, $V^{H} / \operatorname{rad}_{H}\left(V^{H}\right)$ contains at least as many irreducible constituents as V^{H} / J_{H}. This shows that $r_{K}(V) \leqq r_{H}\left(V^{H}\right)$. Second statement is clear from $\operatorname{soc}_{H}\left(\left(\operatorname{soc}_{K}(V)\right)^{H}\right) \leqq \operatorname{soc}_{H}\left(V^{H}\right)$.

It follows from Lemma 3 that the following holds, but it may be wellknown, since it holds by another easy observation.

Corollary 1. Let $\operatorname{Irr}(G)$ and $\operatorname{IBr}(G)$ be the set of all irreducible ordinary and Brauer characters of G. Then

$$
\begin{aligned}
& \sum_{\zeta \in \operatorname{Irr}(H)} \zeta(1) \leqq \sum_{\chi \in \operatorname{Irr}(G)} \chi(1) \leqq|G: H|_{\zeta \in \operatorname{Irr}(H)} \zeta(1), \quad \text { and } \\
& \sum_{\varphi \in \operatorname{IBr}(H)} \phi(1) \leqq \sum_{\phi \in \operatorname{IBr}(G)} \phi(1) \leqq|G: H|_{\psi \in \operatorname{IBr}(H)} \psi(1) .
\end{aligned}
$$

Proof. Let F be an algebraically closed field of any characteristic, then it suffices to show the second statement. From Lemma 3, it holds that

$$
r_{H}(F H) \leqq r_{G}\left(F H^{G}\right)=r_{G}(F G) \leqq r_{H}(F G)=|G: H| r_{H}(F H)
$$

And, $r_{H}(F H), r_{G}(F G)$ coincides with the desired term in the second inequality.
3. Firstly, we will show the following theorem, which may be an unknown result in finite group theory.

Theorem 2. Let B be a block of G, then it holds that $l(B) \leqq n(B)$,
in particular $l(G) \leqq|P \backslash G / P|$.
We can take some way to prove this theorem, and at first we consider $r_{G \times G}(B)$ and $s_{G \times G}(B)$ as a block ideal B is an $F(G \times G)$-module. Next, in the proof of Theorem 3, we will show a more brief method which is owed to Dr. Okuyama.

Lemma 4. Let F be a field of characteristic p, and B be a block ideal of $F G$. Then $n(B)=r_{P \times P}(B)=s_{P \times P}(B)$.

Proof. Let $[P x P]$ denote the $F(P \times P)$-module whose basis consists of all elements of a (P, P)-double coset $P x P$ of G. Then, every indecomposable direct summand of $B_{P \times P}$ is isomorphic to some $[P x P$] (see [8], p. 105). Since $[P x P]$ is a transitive permutation module over $F(P \times P)$, we have that $s_{P \times P}([P x P])=1$ and hence $s_{P \times P}(B)=n(B)$. Furthermore, since $[P x P]$ is cyclic over $F(P \times P)$, it is a homomorphic image of $F(P \times P)$. As $F(P \times P)$ has the unique maximal submodule $\operatorname{rad}_{P \times P}(F(P \times P))$, a homomorphic image does so. Therefore, $r_{P \times P}([P x P])=1$, and hence $r_{P \times P}(B)=n(B)$.

Proof of Theorem 2. Let F be an algebraically closed field of characteristic p, and $J(B)$ be the Jacobson radical of the ring B, then $J(B)=$ $\operatorname{rad}_{1 \times G}(B) \geqq \operatorname{rad}_{G \times G}(B)$. Therefore, $l(B)=r_{G \times G}(B / J(B)) \leqq r_{G \times G}(B)$. Then, Lemmas 3, 4 imply that $r_{G \times G}(B) \leqq r_{P \times P}(B)=n(B)$.

By another consideration of socle, it holds that $l(B)=s_{G \times G}(B)$. Because, let $l(J(F G))=I$ be the left annihilator of $J(F G)$ which is a two-sided ideal, and let e be a primitive idempotent of $F G$, then $I e \simeq \widehat{e I}$ as a left $F G$-module (where $\hat{e I}$ is the dual of $e I$), since $F G$ is a symmetric algebra. Therefore, we have that $I e I \simeq \widehat{e I} \otimes_{F} e I$ as an $F(G \times G)$-module. Then B contains exactly $l(B)$ non-isomorphic irreducible $F(G \times G)$-submodules $I e_{1} I, \cdots, I e_{l(B)} I$. Thus, we establishes that $s_{G \times G}(B)=l(B)$. Hence, Lemmas 3, 4 imply that $l(B)=$ $s_{G \times G}(B) \leqq s_{P \times P}(B)=n(B)$.

In the following, we shall investigate the structure of a block B when equality $l(B)=n(B)$ holds. For example, if $G=S_{4}, p=2$ and B is the principal 2 -block, then $l(B)=n(B)=2$, and furthermore, $\phi_{1}(1)=1, \phi_{2}(1)=2$ for $\phi_{i} \in \operatorname{IBr}(B)$ and $\Phi_{1}(1)=\Phi_{2}(1)=8$, where Φ_{i} is the character afforded by the projective indecomposable $F G$-module corresponding to ϕ_{i}. Now, we have the following theorem.

Theorem 3. Let F_{P} be the trivial FP-module, and e be the block idempotent corresponding to B. Then, the following are equivalent;

1) $l(B)=n(B)$,
2) $F_{P}{ }^{G} \cdot e$ is completely reducible and multiplicity-free,
3) $\operatorname{dim}_{F} U=|P|$ for all projective indecomposable $F G$-module U in B. Furthermore, if one of the above conditions holds, then
4) $\operatorname{dim}_{F} L=a$ power of p for all irreducible $F G$-module L in B.

Proof. Firstly, in order to prove our theorem, we will review that $l(B) \leqq n(B)$ by a different way from the proof of Theorem 2. Let us set $M=F_{P}{ }^{G}$. Then, we have that

$$
n(B)=\operatorname{dim}_{F} \operatorname{Hom}_{F G}(M e, M e)
$$

For, it holds that $\operatorname{Hom}_{\dot{F} G}(M e, M e) \simeq \operatorname{Hom}_{F G}(M e, M) \simeq \operatorname{Hom}_{F P}\left(M e_{P}, F_{P}\right)$, by Frobenius reciprocity theorem. Since $F G e \simeq \bigoplus_{i=1}^{n(B)}\left[P x_{i} P\right]$ for some $P x_{i} P$ in G, we have from Mackey decomposition that

$$
M e_{P} \simeq F_{P} \bigotimes_{F P}\left(\bigoplus_{i}\left[P x_{i} P\right]\right) \simeq \bigoplus_{i}\left(F_{\left.P^{x_{i \cap P}}\right)^{P}}\right.
$$

Thus, our assertion holds, since $\operatorname{dim}_{F} \operatorname{Hom}_{F P}\left(\left(F_{P} x_{i \cap P}\right)^{P}, F_{P}\right)=1$.
Let $L_{1}, \cdots, L_{l(B)}$ denote all non-isomorphic irreducible $F G$-modules in B, then $\operatorname{soc}_{G}(M e)$ and $M e / \operatorname{rad}_{G}(M e)$ contains every L_{i}, respectively. Therefore, $\operatorname{dim}_{F} \operatorname{Hom}_{F G}(M e / \operatorname{rad}(M e), \operatorname{soc}(M e)) \geqq l(B)$, and hence we have the following composite homomorphism

$$
M e \xrightarrow{n a t .} M e / \operatorname{rad}(M e) \longrightarrow \operatorname{soc}(M e) \xrightarrow{\text { inc. }} M e
$$

where nat. is the natural epimorphism, and inc. is the inclusion map. Thus we have that $n(B)=\operatorname{dim}_{F} \operatorname{Hom}_{F G}(M e, M e) \geqq \operatorname{dim}_{F} \operatorname{Hom}_{F G}(M e / \operatorname{rad}(M e), \operatorname{soc}(M e))$ $\geqq l(B)$.
$1) \Leftrightarrow 2)$. Above argument implies that $l(B)=n(B)$ if and only if $\mathrm{Me} /$ $\operatorname{rad}(M e) \simeq \operatorname{soc}(M e) \simeq L_{1} \oplus \cdots \oplus L_{l(B)} \quad$ (multiplicity-free) and $M e=\operatorname{soc}(M e)$.
$2) \leftrightarrows$ 3). Suppose that $M e \simeq L_{1} \oplus \cdots \oplus L_{l(B)}$. Then, Nakayama's relation (see p. 603 in [3]) implies that $U_{P} \simeq F P$ for all projective indecomposable $F G$-module U in B. Hence, 3) holds.
$3) \Rightarrow 2$). Suppose that $\operatorname{dim}_{F} U=|P|$ for all U in B. Then, from Nakayama's relation, $M e$ contains every L_{i}, as composition factor, exactly once. Therefore, it follows from Frobenius reciprocity theorem that $M e$ must be completely reducible and isomorphic to $L_{1} \oplus \cdots \oplus L_{l(B)}$.

The last statement is proved as follows. Suppose that $M e \simeq L_{1} \oplus \cdots \oplus$ $L_{l(B)}$, then Fronemius reciprocity theorem means that $L_{i P}$ is an indecomposable $F P$-module. Since $L_{i} \mid F_{P}{ }^{G}$, we have from Mackey decomposition that
 it holds that $\operatorname{dim}_{F} L_{i}=\left|P: P^{x} \cap P\right|$. This completes the proof of Theorem 3.

Remark 1. In the proof of Theorem 3, it is showed that if $l(B)=n(B)$, then $L_{P} \simeq\left(F_{P}{ }^{x} \cap P\right)^{P}$ for all irreducible $F G$-module L in B. This means that, in our situation $l(B)=n(B)$, every irreducible $F G$-module in B has a vertex $P \cap P^{x}$ for some x in G.

Corollary 2. Let B be a block of G with defect group D such that $D \triangleleft P$ for some $P \in \operatorname{Syl}_{p}(G)$. Suppose that $l(B)=n(B)$, then the following hold.

1) $Z(D) \leqq O_{p}(G \bmod \operatorname{Ker} B)$, in particular, if D is abelian, then D Ker $B \triangleleft G$,
2) there exists a p-solvable subgroup $N \triangleleft G$ such that $D \in \operatorname{Syl}_{p}(N)$, in particular, if $D=P$, then G is p-solvable.

Proof. Our assumption $l(B)=n(B)$ implies that for every irreducible $F G$-module L in $B, L_{P} \simeq F_{Q}{ }^{P}$, where Q is a vertex of L in P. By Knörr we can choose a defect group D as $C_{D}(Q) \leqq Q \leqq D$, in particular $Z(D) \leqq Q$ (see [11]). In our situation, we may take $P \triangleright D$. Hence $Z(D) \triangleleft P$, and this follows that $Z(D) \leqq \bigcap_{L \in B} \operatorname{Ker} L=O_{P}(G \bmod \operatorname{Ker} B)$ from Mackey decomposition. Thus 1) holds.
2). Let us set $H=O_{p}(G \bmod \operatorname{Ker} B)$ and $\bar{G}=G / H$. Then, every block \bar{B} of \bar{G} which is contained in B satisfies that $l(\bar{B})=n(\bar{B})$. For, let τ be the cannonical algebra homomorphism from $F G$ onto $F \bar{G}$, and e be the block idempotent of B, then there exists an $F G$-homomorphism from $F_{P}{ }^{G} \cdot e$ onto $F_{\bar{P}}{ }^{\bar{G}} \tau(e)$ (i. e., $\left.i d \otimes \tau\right)$. On the other hand, since $l(B)=n(B)$, we have that $F_{P}{ }^{G} \cdot e$ is completely reducible and multiplicity-free. This means that $F_{\bar{P}}{ }^{\bar{G}} \tau(e)$ is so as an $F \bar{G}$-module. Let \bar{e} be the block idempotent of \bar{B}, then $F_{\bar{P}}{ }^{\bar{G}} \cdot \bar{e}$ is also completely reducible and multiplicity-free, since it is a direct summand of $F_{\bar{P}}^{\bar{P}} \tau(e)$. Hence our assertion holds. Therefore, if we take \bar{B} with defect group \bar{D}, then the same argument in 1) shows that $Z(\bar{D}) \leqq$ $O_{p}(\bar{G} \bmod \operatorname{Ker} \bar{B}) . \quad$ Repeating this argument, we have 2).

On the converse that 4$)(\rho 1)$ in theorem 3 , we have the following.
Corollary 3. Let B be a block of G with abelian defect group D such that $D \triangleleft P$ for some $P \in \operatorname{Syl}_{p}(G)$. Then the following are equivalent.

1) $\operatorname{dim}_{F} L=|P: D|$ and $\operatorname{dim}_{F} U=|P|$ for all irreducible $F G$-module L and projective indecomposable $F G$-module U in B.
2) $\operatorname{dim}_{F} L=|P: D|$ for all L in B.
3) $\operatorname{dim}_{F} U=|P|$ for all U in B.

Proof. 1) $\Rightarrow 2$) is clear. 2) $\Rightarrow 3$). Our assumption implies that L_{P} is indecomposable and isomorphic tc $F_{D}{ }^{P}$. Since $D \triangleleft P$, it follows from Mackey decomposition that $D \operatorname{Ker} B \triangleleft G$ (see Theorem (4A) in [15]). We may
assume that $\operatorname{Ker} B=1$. Let $\bar{G}=G / D$, then it is easy to see that every L must be contained in a block of defect 0 of \bar{G}. Therefore, every projective cover \bar{U} of L as an $F \bar{G}$-module has dimension $|P: D|$. Hence, every U in B has dimension $\left.\left.|D| \operatorname{dim}_{F} \bar{U}=|P| . ~ 3\right) \leftrightharpoons 1\right)$. From Corollary 2, 1) we have that D Ker $B \triangleleft G$. This implies that $n(B)=v(B)$ (see Theorem (3 A) in [15]). Then it follows from Theorem 3 that $l(B)=v(B)$, and this means that our assertion 1) holds (see Proposition (2C) in [15]).

Corollary 4. Let G be a p-solvable group. Then the statements $1), 2), 3)$ and 4) are equivalent.

Proof. 4) \Rightarrow 3) immediately follows from Theorem (2 B) of Fong's [6].
Remark 2. If $D \nVdash P$, then there exists an example that Corollary 2 does not hold. Let $G=S_{5}, p=2$ and B be the block of defect 1, then $l(B)=n(B)$. but $Z(D)$ is not normal in G.

Further results on completely reducibility of $F_{P}{ }^{G} \cdot e$ are investigated in [10], [12] and [12]. In [12], the group in which $F_{P}{ }^{G}$ is completely reducible is called p-radical group.

Example. 4) $\Rightarrow 1$) in Theorem 3 need not hold in general. Let $G=S L$ $\left(2,2^{n}\right), p=2$ and B be the principal block, then $\phi(1)$ is a power of 2 for all $\phi \in \operatorname{IBr}(B)$ (see p. 588 in [2]). However $l(B)=2^{n}-1<n(B)=2^{n+1}-3$ for $n \geqq 2$ (it is verified from Proposition (2B) in [15] and character table of $S L\left(2,2^{n}\right)$).

In p-solvable group G, it is interesting to determine the structure of G whose principal block B has the property that $l(B)=n(B)$. It is hoped to obtain something about p-length of G, but we have only the following.

ThEOREM 4. Let G be a p-solvable group, B_{0} be the principal block of G. Let $1 \leqq O_{p^{\prime}}(G) \leqq O_{p^{\prime} p}(G) \leqq \cdots \leqq\left(^{*}\right)$ be the lower p-series of G. Then the following are equivalent.

1) $\phi(1)$ is a power of p for all $\phi \in \operatorname{IBr}\left(B_{0}\right)$.
2) Let $\bar{G}=G / O_{p^{\prime}}(G)$. Then, each p^{\prime}-factor \bar{H} / \bar{K} appeared in $\left(^{*}\right)$ is abelian, and for each p^{\prime}-composition factor \bar{L} / \bar{N} of \bar{G} which is afforded by a refinement of $\left.{ }^{*}\right), \bar{L}$ acts trivially on $\operatorname{IBr}(\bar{N})$.
3) Each p^{\prime}-factor \bar{H} / \bar{K} appeared in $\left(^{*}\right)$ is abelian, and every $\psi \in \operatorname{IBr}(\bar{K})$ is extendible to \bar{H}.

Proof. We may assume that $O_{p^{\prime}}(G)=1$, and hence for any subnormal subgroup L of $G, O_{p^{\prime}}(L)=1$ and L has only the principal block.
$1) \bigsqcup 2$). Let H / K be a p^{\prime}-factor appeared in (*). Let $\theta \in \operatorname{IBr}(H / K)$, then θ has p^{\prime}-degree. On the other hand, the theorem of Clifford implies
that $\operatorname{IBr}(H)$ satisfies 1). This follows that θ is linear, and H / K is abelian.
Let L / N be a p^{\prime}-composition factor satisfying the condition in 2), then since L is subnormal in $G, \operatorname{IBr}(L)$ satisfies 1). Then, again, the theorem of Clifford means that L acts trivially on $\operatorname{IBr}(N)$.
$2) \Rightarrow 3)$. It is known the following lemma by the same way of \boldsymbol{C} characters (for details, refer to sections 51, 53 in [3] and section 11 in [9]).

Lemma 5. Let F be an algebraically closed field of any characteristic, $H \triangleleft G$ and G / H be cyclic. Suppose ψ is a G-invariant irreducible F character (Brauer character) of H, then ψ is extendible to G.

Let H / K be a p^{\prime}-factor appeared in (*). Then 2) implies that every composition factor L / N of H / K is cyclic, and every $\psi \in \operatorname{IBr}(N)$ is L-invariant. Hence it follows from Lemma 5 that ψ is extendible to L. Repeating this process, we have that every irreducible Brauer character of K is extendible to H.
$3) \leftrightarrows 1$). Let H be the maximal subgroup appeared in $(*)$. Then H satisfies the condition 3), and hence $\operatorname{IBr}(H)$ satisfies 1) by induction on $|G|$.

If $|G: H|$ is a power of p, then U^{G} is indecomposable for every indecomposable FH -module U by Green's theorem (p. 337 in [4]). Then it follows from Nakayama's relation that $\phi_{H}=\phi \in \operatorname{IBr}(H)$ or $\phi_{H}=\phi_{1}+\cdots+\phi_{r}$, where ψ_{i} are distinct G-conjugate irreducible Brauer characters of H and $r=\left|G: I_{G}\left(\psi_{1}\right)\right|$ which devides $|G: H|(=$ a power of $p)$. This implies that $\phi(1)$ is a power of p for every $\phi \in \operatorname{IBr}(G)$.

If $|G: H|$ is prime to p, then 3) implies that every $\psi \in \operatorname{IBr}(H)$ is extendible to G. Hence $\operatorname{IBr}(G)$ satisfies 1). This completes the proof of Theorem 4.

References

[1] BRAUER, R.: Notes on representations of finite groups I. Jour. London Math. Soc. (2), 13 (1976) 162-166.
[2] Brauer, R. and Nesbitt, C.: On the modular characters of groups. Ann. Math., 42 (1941) 556-590.
[3] CURTIS and Reiner: Representation Theory of Finite Groups and Associative Algebras. Interscience, New York, 1962.
[4] Dornhoff, L.: Group Representation Theory B. Dekker, New York, 1972.
[5] ERNEST, J.: Central intertwining numbers for representations of finite groups. Trans. Amer. Math. Soc., 99 (1961) 499-508.
[6] Fong, P.: Solvable groups and modular representation theory. Trans. Amer. Math. Soc., 103 (1962) 484-494.
[7] Gallagher, P. X.: The number of conjugacy classes in a finite group. Math. Zeit., 118 (1970) 175-179.
[8] Green, J. A.: Blocks of modular representations. Math. Zeit., 79 (1962) 100-115.
[9] IsAAcs, I. M.: Character Theory of Finite Groups. Academic, New York, 1976.
[10] KNÖRR, R.: Semi-simplicity, induction and restriction for modular representations in finite groups. Jour. Alg., 48 (1977) 347-367.
[11] KNÖRr, R.: On the vertices of irreducible modules. Ann. Math., 110 (1979) 487-499.
[12] Motose, K. and Ninomiya, Y.: On the subgroup H of a group G such that $J(K H) K G>J(K G)$. Math. Jour. Okayama Univ., 17 (1975 171-176.
[13] OKUYAMA, T.: Some remarks on p-block of finite groups. Hokkaido Math. Jour., 9 (1980) 175-178.
[14] SAH, C.-H.: Automorphisms of finite groups. J. Alg., 10 (1968) 47-68.
[15] WADA, T.: Blocks with a normal defect group. Hokkaido Math. Jour., 10 (1981) 319-332.

Tokyo University of Agriculture and Technology

