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A congruence between modular forms

of half-integral weight

By Yoshitaka MAEDA
(Received Aug. 12, 1982)

Introduction

In [7], Shimura showed a natural correspondence between modular forms
of integral weight and those of half-integral weight. On the other hand,
primitive modular forms have congruences, as discussed by Doi-Ohta [1],
which are closely connected with the special values of the zeta functions
associated with these forms (Doi-Hida [2] and Hida [3], [4]). Thus it is
natural to ask whether these congruences of primitive forms of integral
weight induce the same congruences of the corresponding forms of half-
integral weight. The purpose of this paper is to show an affirmative example
to the following problem of Hida:

For primitive forms F, GES(2 k, 2 N) with a congruence F=G mod p,
can one find corresponding eigenfunctions f, g=S(2k+1)/2,4 N) with p-
integral Fourier coefficients such that f=¢g modp and f#£0 modp?
Here, p is a prime ideal of Q and the congruence “f=¢ modp” means
that all Fourier coefficients of f—¢g vanish modulo p.

The converse statement is trivial, that is, the congruence f=¢g mod p
and f#0 mod p implies the congruence F=G modp (see §1).

We note here that the Fourier coefficients of the cusp form f are closely
connected with the special values of a certain zeta function associated with

F (Waldspurger and Kohnen-Zagier [5]).

§ 1. The precise statement of the problem

For a positive integer N, put

mm:{(j Z)ESLZ(ZHCEO mod N},

H= {zECIIm (2) >0} .

Further we put
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(&)= 5. e (n2),
i) =0(EE 0 or p=( Jerys,

where e (2)=exp (2riz) (2 9).
Given a non-negative element £ of 271Z and a Dirichlet character X modulo
N, we denote by S(x, N, X) the space of cusp forms of weight & satisfying

F az+b IX 2) (cz+d)* if keZ,
<Cz+d) lx(d>f( )J(T’ 2)% if k27,

for every r=(? 2>EEF0(N) .

We assume 4|N if k£Z. We write simply S(x, N) for S(x, N, X) if X=id..
Every element f of S(k, N, X) has a Fourier expansion f(2)=}7.,a(n)e(nz)
with a(n)eC.

Let f(2)=X = ja(n)e(nz) and g(2)=2 7 ,b(n)e(nz) be elements of Sk,
N, %) with algebraic a(n) and b(n) for all n. Then we call that f and ¢

are congruent modulo a prime ideal p of @ and write f=¢ mod p if a(n)=
b(n) modp for all »n. ,

When [€Z, F(2)=),2_A(n) e(nz)eS ([, N, %) is called primitive if it
satisfies the following conditions :

(i) F is a common eigenfunction of all Hecke operators 7 (n) with

(ii) For every positive integer M such that M<N, M|N and % is
defined modulo M, we have (F, H>=0 for all HES(l, M, Xx) and all posi-
tive integers ¢ with tM|N.

Here H!(2)=H(tz) and <, > denotes the Petersson inner product on
S (L, N, X). ‘ ' ' '

Now we fix a positive integer k. Let F(2)=2,7_,A (n) e (nz) and G (2)=
> = B(n) e(nz) be two primitive elements of S(2k, N, x?). Suppose that f(2)
=>*_a(n)e(nz) and ¢(2)=>,_,b(n)e(nz) are common eigenfunctions of
Hecke operators T (p?) for all primes p of S((2 k+1)/2, N', %) for some level
N’ to which F and G correspond, respectively. We keep this notation and
these assumptions throughout this section. Moreover, we assume that all
a(n) and b(n) are algebraic. By Shimura [7, Theorem 1.9 and Corollary
in p. 458], for every square-free positive integer ¢, we have

aatenter = a0 TL{ 110 S5 (5)pm ] Zaadn
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Especially, for all primes p we have

al) A(p)=alep)+20) ) (£) p-1a0).

Consequently, if there exists a square-free positive integer ¢ such that a(f)=
b(t), then we have

a(t) {A(p)— B(p)} = altp)—b(ep?) .
From this we easily get the following

PROPOSITION. Suppose f=¢g mod p with a prime ideal p of Q, and
Surther suppose that for some square-free positive integer t,

a(t) =b(),
a(t)#0 mod p.
Then we have F=G mod p.
Thus we can naturally ask the following
ProBLEM. Under the same notation as above, if F=G modp with
a prime ideal p of Q, can one find f and g with the following properties? :
(1) f and g have p-integral Fourier coefficients ;
(2) For some square-free positive integer t,
a(t)=b(@),
a(t)#0 mod p;
(3) f=¢ modp.

REMARK. Suppose the above conditions are satisfied by f and ¢ for
some square-free positive integer ¢. For another square-free ¢ such that
a(t')£0 modp, put f'=b()+f and ¢ =a()-g. Then the above conditions
are also satisfied by 7 and ¢’ for ?#.

§2. An example

We take 5(8,2-13) and §(9/2,4.13). We have dim.S(8,2.13)=dim,
S(9/2,4-13)=23 and the number of the primitive forms in S(8,2:13) is 7.
For an eigenvalue a of the Hecke operator 7(3), we denote by F(a) the
primitive form F of S(8,2:13) such that F|T(3)=a-F. As the table (I)

shows, F(a) is uniquely determined under this condition.
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Table (Il. Fourier coefficients of the primitive forms of S(8, 2:13)

n |F(—87) F<87+‘é%b_5> F(87"“2/m> F(—27)| F(—39) | F(—6+74105) | F(—6—74/105)

2| 2 23 23 23 _23 —23 _23

3| a7 | STHAB | SRS | g7 39| 61706 | —6-74i05

5 321 215+52“/ 2305 215”52*/23—05 —245| 385 | _734364105 | —73—364105

7| —181 705'42‘/2%5 705“2“/% —587 | —293 | —890+274105 | —890—274105
11| 7782 614‘120‘/2%5 614+15;°‘/m 3874 | —5402 | 54524904105 | 5452— 904105
13| 13 133 138 —138 | 13 —133 —133

Now we can find a prime ideal p of @ such that

_SJﬂzzﬂ)i) modp,  p[433.

Put h=>2_,tr(T (n)) e(nz), where tr(7T (n) denotes the trace of the
Hecke operator T (n) on S(4,4:13). We calculate tr(7'(n)) by the Eichler-
Selberg trace formula. Then by Shimura [6, Remark 3. 46], we have h&.S

(4,4.13). Further for every positive integer m and every prime p or p=1,
put

F(—87)EF(

him, ) =[(hIT (m)-6]|T (%),
where T (m) denotes the Hecke operator on S(4,4.13) and T (p? denotes
the Hecke operator on S(9/2,4:13). Then A (m, p) belongs to S(9/2, 4-13)
and we can show through the explicit computation that the space S(9/2, 4.13)
is spanned by all A (m, p) with the following (m, p):

(L, 1), (1,2), (1,3), (1,13), (2,1), (2,2), (2,3), (3, 1), 3,2), (4 1), (4,2), (5,1),
(5,2), (6,1), (7, 1), (8 1), (9,1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (16, 1).

We write such forms as A®,..., h®. They have all rational integral

Fourier coefficients. Put
(B0, -, h) = D7 el e (n2),  eln)EC™.
Then we can show the 25 vectors ¢(1), ---, ¢(25) span C? and therefore

{h®, ..., h®} forms a basis of .5(9/2,4-13). Thus every cusp form f=323.,
a(n) e(nz) of S(9/2,4.13) is uniquely determined by its Fourier coefficients
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a(l), --+, a(25). Explicit calculation using this basis shows that the eigen
space of the 7' (3?) on .§(9/2,4-13) with the eigenvalue a of the T'(3) in the
table (I) is one-dimensional. Thus every nonzero cusp form belonging to this
space must be a common eigenfunction of all Hecke operators 7T (p?). Let
us pick one of these forms with 433-integral Fourier coefficients and denote
it by f(@). The Fourier coefficients of f(a) of our choice are listed in the
table (II). Thus f(a) corresponds to F(a) in the sence of Shimura [7]. As
the table (II) shows, the second Fourier coefficients of h,=240.f(—87) and

h,=13. f(ﬁ%g—oé—) coincide with each other. Let us take the prime ideal

87442305
2
Then these forms A and A, do not vanish modulo p. Now we will prove

that

p with p|433 and F(—87)EF(

) mod p as mentioned before.

ho=h, modp.

Let E be the subspace of .5(9/2,4+13) consisting of the eigenfunctions
of T (2% with an eigenvalue 8. Let g,=13649181.A(1, 1) and ¢ the orthogonal
projection of g, to E. By expressing ¢ explicitly as a linear combination of
the above basis {h®}, we find all the Fourier coefficients of ¢ are 433-adic
87 +«/‘2§ﬁ>

integers. Since the space E is spanned by f(—87), f < 5

f< 87 —v 2305

5 ) and f{—27), we can express

g:a-f(—87)+b-f(———~—-—87+‘ém)+af<—87—“;—%TS)—Pd-f(—W)

with a, b, ¢, d=Q listed below :

4307941508
a= 433 ’
b= 2592113149717 + 1071143279574 2305
- 25.5+.433.461 ’
. _ 2592113149717 —1071143279574 2305
25.5.433 461 ’
d = —34193796.

Now a and & are not p-integral, while ¢ and d are prime to p, because our
prime 433 is decomposed into the product of two different prime factors

in QW 2305) and we have
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N (2592113149717 +1071143279574 2305 )
—29.32.72.132.174.173.433.461.179243.

Thetefore, there exist two rational integers @’ and & which are prime to p and

df (—87) = f(%) mod p.

By comparing the second Fourier coefficients of these forms, we have 13.d
=240.5 modp. Consequently we conclude hy=h; mod p.

The idea of the proof is based on the discussion of [2].

§ 3. Miscellaneous remarks

(1) The Fourier coefficients of F (&"‘_*/22_30_5> and F(—27) coincide

modulo p, p|13, within the limit of the table (I). However, the table (I)

shows that f( 87_“/22&) and f(—27) can never be congruent modulo p

in the sence of the Problem in §1. (Observe the third Fourier coefhicients
of these forms.) It seems that the Problem is negative for the congruence

divisor p which divides the level N.

(2) From the table (II), we observe that f(—87), f(
f(—39) have the following property :

m+g%%>aﬁ

(4+) The n-th Fourier coefficient vanishes whenever (13> 1.

On the other hand, for f(—27) and f(—6+74 105), we see that:

(=) The n-th Fourier coefficient vanishes whenever (13> —1.

In fact, it can be shown by the result of Waldspurger [8, Théoreme 1]
that f(a) has the property () according as the parity of the eigenvalue
+133 of the T (13) for F(a). Moreover, the analogous assertion also holds
for the other prime factor 2 of the level 4:13:

The n-th Fourier coefficient of f(a) vanishes whenever n=1 mod 8 or
n=>5 mod 8, according as the parity of the eigenvalue *2°® of the T (2) for
F (a).

We calculated the Fourier coefficients of f(a) up to 500 (by HITAC
M-200H, Hokkaido University Computing Center), and here we list these
coefhcients 1 to 100 :
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Table (11).

n F(=87)  f(87+42305)2)  f(—27) F(—39) F(—6+74105)

1 0 0 0 0 8

2 13 240 0 1 0

3 0 0 1 0 —167+134/ 105

4 0 0 0 —64

5 76 —650-+104 2305 0 0 0

6 —-29 —20+5247§(E 0 15 0

7 47 1820—284 2305 0 -9 0

8 104 1920 0 -8 0

9 0 0 0 0 —264+564 105
10 0 0 5 0 505—99y 105
11 —352 —4000+1284 2305 0 —32 0
12 0 0 8 0 1336—1044 105
13 52 3310+824 2305 -8 0 0

14 0 0 13 0 —1799+2374 105
15 —331 7300—2604/ 2305 0 45 0

16 0 0 0 0 512

17 0 0 0 0 3592 —3844 105
18 —780 169201204 2305 0 —12 0

19 188 —16640—4164 2305 0 60 0

20 608 —5200+ 804 2305 0 0 0
21 644 —18330—1024 2305 0 0 0

22 0 0 —12 0 —1132+364/ 105
23 0 0 —44 0 —8332+708y 105
24 —232 —160+4164 2305 0 -120 0

25 0 0 0 0 —15844-2884 105
26 1612 —1840+2244/ 2305 7 —52 —542143514 105
27 0 0 —27 0 10557 —12474/ 105
28 376 14560 —2244/ 2305 0 72 0

29 0 0 —40 0 0

30 0 0 65 0 57343214105
31 —1444 —57480—5044 2305 0 12 0

32 832 15360 64 0

33 0 0 24 0
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Table (II) Continued

F(=87)  F(®T+42306)2)  F(—27) F(—39) F(—6+74105)
34 —1843 131604728y 2305 0 129 0
35 0 0 —105 0 —8321+939¢ 105
36 0 0 0 0 21124484105
37 124 16610—13784 2305 0 0 0
38 0 0 114 0 19658 —2478y 105
39 —715 13980—7324 2305 ~ —44 —195 —16124-2604 105
40 0 0 40 0 —4040+7924 105
41 0 0 0 —280 0
42 0 0 77 0 —943+44694 105
43 0 0 -5 0 10947 —2254 105
4  —2816 —32000+410244/ 2305 256 0
45  —4560 —34300+ 3804 2305 0 0
46 —422 119080 —1044/ 2305 0 —270 0
47 1849 —58340+1004 2305 0 129 0
48 0 0 64 0 —10688+8324 105
49 0 0 0 0 —9864+-2164 105
50 5798 5580046004 2305 0 510 0
51 0 0 31 0 28554-3074 105
52 416 2648046564 2305 ~ —64 0 0
53 0 0 40 0 0
54 2523 59060422524 2305 0 —585 0
55 0 0 —40 0 632—15124 105
56 0 0 104 0 14392—18964 105
57 0 0 0 480 0
58 1242 —147400+427924 2305 0 18 0
59 13652 1040—8804 2305 0 —556 0
60  —2648 58400 —20804 2305 0 —360 0
61 0 0 —104 0 0
62 0 0 —10 0 —43330438944 105
63  —5358 —2240+44484 2305 594 0
64 0 0 0 —4096
65 0 0 0 520  —11024+415604 105
66 0 0 90 0 213461824 105
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Table (II) Continued

n F(—87)  f((B7+42305)2)  fF(—27) £(—39) F(—6+74105)
67 4392 — 64240+ 8484 2305 0 —24 0

68 0 0 0 0 —28736+30724 105
69 0 0 -8 0 0

70 —875  —139900—44204 2305 0 105 0

71 —17681 168460 —20604 2305 0 55 0

72 —6240 13536049604 2305 0 96 0

73 0 0 0 —120 0

74 0 0 —157 0 17823—1701y 105
75 0 0 —120 0 40456 —53364 105
76 1504 —133120—3328y 2305 0 —480 0

77 0 0 8 0 0

78 6318 40600— 15924 2305 77 —234 2824928994 105
79 0 0 —12 0  —7564+2052y 105
80 4864 —41600+6404 2305 0 0 0

81 0 0 0 0 25248 —21844 105
82 0 0 —286 0 31658 —31504 105
83 756 —84960-+2304y 2305 0 52 o
84 5152  —146640—8164 2305 0 0 0

85 2868  —108550+ 35904 2305 0 0 0

86 —28139  —57460—19004 2305 0 1049 0

87 0 0 536 0 —35464+429684 105
88 0 0 —96 0 9056 —2884 105
89 0 0 0 —1648 0

90 0 0 —270 0  —89430+68024 105
91  —6916 20712015844 2305 35 —1092 20683412874 105
92 0 0 —352 0 66656 — 56644 105
93 8424  245160—32404 2305 0 0 0

94 0 0 —505 0 -—8213—729«/@
95 0 0 140 0 —50036+5628y 105
96  —1856 —1280+ 33284 2305 0 960 0

97 0 0 ' 0 408 0

98  —6812 2280—58804/ 2305 0 —636 0

99 21120  —134480+4-70244 2305 0 384 0

100 0 0 0 0 12672—23044 105
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