A congruence between modular forms of half-integral weight

By Yoshitaka MAEDA (Received Aug. 12, 1982)

Introduction

In [7], Shimura showed a natural correspondence between modular forms of integral weight and those of half-integral weight. On the other hand, primitive modular forms have congruences, as discussed by Doi-Ohta [1], which are closely connected with the special values of the zeta functions associated with these forms (Doi-Hida [2] and Hida [3], [4]). Thus it is natural to ask whether these congruences of primitive forms of integral weight induce the same congruences of the corresponding forms of half-integral weight. The purpose of this paper is to show an affirmative example to the following problem of Hida:

For primitive forms F, $G \in S(2 k, 2 N)$ with a congruence $F \equiv G \mod \mathfrak{p}$, can one find corresponding eigenfunctions f, $g \in S((2 k+1)/2, 4 N)$ with \mathfrak{p} -integral Fourier coefficients such that $f \equiv g \mod \mathfrak{p}$ and $f \not\equiv 0 \mod \mathfrak{p}$? Here, \mathfrak{p} is a prime ideal of $\overline{\mathbf{Q}}$ and the congruence " $f \equiv g \mod \mathfrak{p}$ " means that all Fourier coefficients of f - g vanish modulo \mathfrak{p} .

The converse statement is trivial, that is, the congruence $f \equiv g \mod \mathfrak{p}$ and $f \not\equiv 0 \mod \mathfrak{p}$ implies the congruence $F \equiv G \mod \mathfrak{p}$ (see § 1).

We note here that the Fourier coefficients of the cusp form f are closely connected with the special values of a certain zeta function associated with F (Waldspurger [8] and Kohnen-Zagier [5]).

§ 1. The precise statement of the problem

For a positive integer N, put

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) | c \equiv 0 \mod N \right\},$$

$$\mathfrak{F} = \left\{ z \in \mathbf{C} | \operatorname{Im}(z) > 0 \right\}.$$

Further we put

$$\theta(z) = \sum_{n=-\infty}^{\infty} e(n^2 z)$$
,

$$j(\gamma,z) = \theta \left(rac{az+b}{cz+d} \right) / \theta(z)$$
 for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$,

where $e(z) = \exp(2\pi i z)$ ($z \in \mathfrak{F}$).

Given a non-negative element κ of $2^{-1}\mathbf{Z}$ and a Dirichlet character χ modulo N, we denote by $S(\kappa, N, \chi)$ the space of cusp forms of weight κ satisfying

$$f\left(\frac{az+b}{cz+d}\right) = \begin{cases} \chi(d)f(z)(cz+d)^{\kappa} & \text{if } \kappa \in \mathbb{Z}, \\ \chi(d)f(z)j(\gamma,z)^{2\kappa} & \text{if } \kappa \notin \mathbb{Z}, \end{cases}$$

for every $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$.

We assume 4|N if $\kappa \notin \mathbb{Z}$. We write simply $S(\kappa, N)$ for $S(\kappa, N, \lambda)$ if $\lambda = id$. Every element f of $S(\kappa, N, \lambda)$ has a Fourier expansion $f(z) = \sum_{n=1}^{\infty} a(n) e(nz)$ with $a(n) \in \mathbb{C}$.

Let $f(z) = \sum_{n=1}^{\infty} a(n) \ e(nz)$ and $g(z) = \sum_{n=1}^{\infty} b(n) \ e(nz)$ be elements of $S(\kappa, N, \chi)$ with algebraic a(n) and b(n) for all n. Then we call that f and g are congruent modulo a prime ideal \mathfrak{p} of \overline{Q} and write $f \equiv g \mod \mathfrak{p}$ if $a(n) \equiv b(n) \mod \mathfrak{p}$ for all n.

When $l \in \mathbb{Z}$, $F(z) = \sum_{n=1}^{\infty} A(n) e(nz) \in S(l, N, \chi)$ is called primitive if it satisfies the following conditions:

- (i) F is a common eigenfunction of all Hecke operators T(n) with A(1)=1;
- (ii) For every positive integer M such that M < N, M|N and χ is defined modulo M, we have $\langle F, H^t \rangle = 0$ for all $H \in S(l, M, \chi)$ and all positive integers t with tM|N.

Here $H^t(z) = H(tz)$ and \langle , \rangle denotes the Petersson inner product on $S(l, N, \chi)$.

Now we fix a positive integer k. Let $F(z) = \sum_{n=1}^{\infty} A(n) e(nz)$ and $G(z) = \sum_{n=1}^{\infty} B(n) e(nz)$ be two primitive elements of $S(2k, N, \chi^2)$. Suppose that $f(z) = \sum_{n=1}^{\infty} a(n) e(nz)$ and $g(z) = \sum_{n=1}^{\infty} b(n) e(nz)$ are common eigenfunctions of Hecke operators $T(p^2)$ for all primes p of $S((2k+1)/2, N', \chi)$ for some level N' to which F and G correspond, respectively. We keep this notation and these assumptions throughout this section. Moreover, we assume that all a(n) and b(n) are algebraic. By Shimura [7, Theorem 1.9 and Corollary in p. 458], for every square-free positive integer t, we have

$$\sum_{n=1}^{\infty} a(tn^2)n^{-s} = a(t) \cdot \prod_{p} \left[1 - \chi(p) \left(\frac{-1}{p} \right)^k \left(\frac{t}{p} \right) p^{k-1-s} \right] \cdot \sum_{n=1}^{\infty} A(n) n^{-s}.$$

66 Y. Maeda

Especially, for all primes p we have

$$a(t) A(p) = a(tp^2) + \chi(p) \left(\frac{-1}{p}\right)^k \left(\frac{t}{p}\right) p^{k-1} a(t).$$

Consequently, if there exists a square-free positive integer t such that a(t) = b(t), then we have

$$a(t)\left\{A(p)-B(p)
ight\}=a(tp^2)-b(tp^2)$$
 .

From this we easily get the following

Proposition. Suppose $f \equiv g \mod \mathfrak{p}$ with a prime ideal \mathfrak{p} of $\bar{\mathbf{Q}}$, and further suppose that for some square-free positive integer t,

$$a(t) = b(t),$$

 $a(t) \not\equiv 0 \mod \mathfrak{p}.$

Then we have $F \equiv G \mod \mathfrak{p}$.

Thus we can naturally ask the following

PROBLEM. Under the same notation as above, if $F \equiv G \mod \mathfrak{p}$ with a prime ideal \mathfrak{p} of $\overline{\mathbf{Q}}$, can one find f and g with the following properties?:

- (1) f and g have p-integral Fourier coefficients;
- (2) For some square-free positive integer t,

$$a(t) = b(t),$$
 $a(t) \not\equiv 0 \mod \mathfrak{p};$

(3) $f \equiv g \mod \mathfrak{p}$.

REMARK. Suppose the above conditions are satisfied by f and g for some square-free positive integer t. For another square-free t' such that $a(t') \not\equiv 0 \mod \mathfrak{p}$, put $f' = b(t') \cdot f$ and $g' = a(t') \cdot g$. Then the above conditions are also satisfied by f' and g' for t'.

§ 2. An example

We take $S(8, 2 \cdot 13)$ and $S(9/2, 4 \cdot 13)$. We have $\dim_{\mathcal{C}} S(8, 2 \cdot 13) = \dim_{\mathcal{C}} S(9/2, 4 \cdot 13) = 23$ and the number of the primitive forms in $S(8, 2 \cdot 13)$ is 7. For an eigenvalue α of the Hecke operator T(3), we denote by $F(\alpha)$ the primitive form F of $S(8, 2 \cdot 13)$ such that $F|T(3) = \alpha \cdot F$. As the table (I) shows, $F(\alpha)$ is uniquely determined under this condition.

n	F(-87)	$F\bigg(\frac{87+\sqrt{2305}}{2}\bigg)$	$F\bigg(\frac{87-\sqrt{2305}}{2}\bigg)$	F(-27)	F(-39)	$F(-6+7\sqrt{105})$	$F(-6-7\sqrt{105})$
2	23	2^3	23	23	-2^{3}	-2^{3}	-2^{3}
3	-87	$\frac{87 + \sqrt{2305}}{2}$	$\frac{87 - \sqrt{2305}}{2}$	-27	-39	$-6+7\sqrt{105}$	$-6-7\sqrt{105}$
5	321	$\frac{215+5\sqrt{2305}}{2}$	$\frac{215 - 5\sqrt{2305}}{2}$	-245	385	$-73 + 36\sqrt{105}$	$-73 - 36\sqrt{105}$
7	-181	$\frac{705 - 49\sqrt{2305}}{2}$	$\frac{705+49\sqrt{2305}}{2}$	-587	-293	$-890 + 27\sqrt{105}$	$-890-27\sqrt{105}$
11	7782	$\frac{614 - 190\sqrt{2305}}{2}$	$\frac{614 + 190\sqrt{2305}}{2}$	-3874	-5402	$5452 + 90\sqrt{105}$	$5452 - 90\sqrt{105}$
13	133	133	133	-13^{3}	133	-133	-133

Table (I). Fourier coefficients of the primitive forms of S(8, 2.13)

Now we can find a prime ideal $\mathfrak p$ of ar Q such that

$$F(-87) \equiv F\left(\frac{87 + \sqrt{2305}}{2}\right) \bmod \mathfrak{p}, \qquad \mathfrak{p}|433.$$

Put $h = \sum_{n=1}^{\infty} \operatorname{tr}(T(n)) e(nz)$, where $\operatorname{tr}(T(n))$ denotes the trace of the Hecke operator T(n) on $S(4, 4\cdot 13)$. We calculate $\operatorname{tr}(T(n))$ by the Eichler-Selberg trace formula. Then by Shimura [6, Remark 3.46], we have $h \in S(4, 4\cdot 13)$. Further for every positive integer m and every prime p or p=1, put

$$h(m, p) = [(h|T(m)) \cdot \theta]|T(p^2),$$

where T(m) denotes the Hecke operator on $S(4, 4\cdot 13)$ and $T(p^2)$ denotes the Hecke operator on $S(9/2, 4\cdot 13)$. Then h(m, p) belongs to $S(9/2, 4\cdot 13)$ and we can show through the explicit computation that the space $S(9/2, 4\cdot 13)$ is spanned by all h(m, p) with the following (m, p):

We write such forms as $h^{(1)}, \dots, h^{(23)}$. They have all rational integral Fourier coefficients. Put

$$c(h^{(1)}, \dots, h^{(23)}) = \sum_{n=1}^{\infty} c(n) e(nz), \qquad c(n) \in C^{23}.$$

Then we can show the 25 vectors c(1), ..., c(25) span C^{23} and therefore $\{h^{(1)}, \dots, h^{(23)}\}$ forms a basis of $S(9/2, 4\cdot 13)$. Thus every cusp form $f = \sum_{n=1}^{\infty} a(n) e(nz)$ of $S(9/2, 4\cdot 13)$ is uniquely determined by its Fourier coefficients

68 Y. Maeda

 $a(1), \cdots, a(25)$. Explicit calculation using this basis shows that the eigen space of the $T(3^2)$ on $S(9/2, 4\cdot 13)$ with the eigenvalue α of the T(3) in the table (I) is one-dimensional. Thus every nonzero cusp form belonging to this space must be a common eigenfunction of all Hecke operators $T(p^2)$. Let us pick one of these forms with 433-integral Fourier coefficients and denote it by $f(\alpha)$. The Fourier coefficients of $f(\alpha)$ of our choice are listed in the table (II). Thus $f(\alpha)$ corresponds to $F(\alpha)$ in the sence of Shimura [7]. As the table (II) shows, the second Fourier coefficients of $h_0=240 \cdot f(-87)$ and $h_1=13 \cdot f\left(\frac{87+\sqrt{2305}}{2}\right)$ coincide with each other. Let us take the prime ideal \mathfrak{p} with $\mathfrak{p}|433$ and $F(-87) \equiv F\left(\frac{87+\sqrt{2305}}{2}\right)$ mod \mathfrak{p} as mentioned before. Then these forms h_0 and h_1 do not vanish modulo \mathfrak{p} . Now we will prove that

$$h_0 \equiv h_1 \mod \mathfrak{p}$$
.

Let E be the subspace of $S(9/2, 4\cdot 13)$ consisting of the eigenfunctions of $T(2^2)$ with an eigenvalue 8. Let $g_0=13649181\cdot h(1,1)$ and g the orthogonal projection of g_0 to E. By expressing g explicitly as a linear combination of the above basis $\{h^{(i)}\}$, we find all the Fourier coefficients of g are 433-adic integers. Since the space E is spanned by f(-87), $f\left(\frac{87+\sqrt{2305}}{2}\right)$, $f\left(\frac{87-\sqrt{2305}}{2}\right)$ and f(-27), we can express $g=a\cdot f(-87)+b\cdot f\left(\frac{87+\sqrt{2305}}{2}\right)+c\cdot f\left(\frac{87-\sqrt{2305}}{2}\right)+d\cdot f(-27)$

$$y=a\cdot y (-\delta t)+b\cdot y \left(\frac{1}{2}\right)+t\cdot y \left(\frac{1}{2}\right)$$

with a, b, c, $d \in \bar{Q}$ listed below:

$$a = \frac{4307941508}{433},$$

$$b = \frac{2592113149717 + 107114327957\sqrt{2305}}{2^5 \cdot 5 \cdot 433 \cdot 461},$$

$$c = \frac{2592113149717 - 107114327957\sqrt{2305}}{2^5 \cdot 5 \cdot 433 \cdot 461},$$

$$d = -34193796.$$

Now a and b are not p-integral, while c and d are prime to p, because our prime 433 is decomposed into the product of two different prime factors in $Q(\sqrt{2305})$ and we have

$$N(2592113149717 + 107114327957\sqrt{2305})$$

= $2^9 \cdot 3^2 \cdot 7^2 \cdot 13^2 \cdot 17^4 \cdot 173 \cdot 433 \cdot 461 \cdot 179243$.

Therefore, there exist two rational integers a' and b' which are prime to \mathfrak{p} and

$$a' \cdot f(-87) \equiv b' \cdot f\left(\frac{87 + \sqrt{2305}}{2}\right) \mod \mathfrak{p}.$$

By comparing the second Fourier coefficients of these forms, we have $13 \cdot a' \equiv 240 \cdot b' \mod \mathfrak{p}$. Consequently we conclude $h_0 \equiv h_1 \mod \mathfrak{p}$.

The idea of the proof is based on the discussion of [2].

§ 3. Miscellaneous remarks

- (1) The Fourier coefficients of $F\left(\frac{87+\sqrt{2305}}{2}\right)$ and F(-27) coincide modulo $\mathfrak{p}, \, \mathfrak{p}|13$, within the limit of the table (I). However, the table (II) shows that $f\left(\frac{87+\sqrt{2305}}{2}\right)$ and f(-27) can never be congruent modulo \mathfrak{p} in the sence of the Problem in § 1. (Observe the third Fourier coefficients of these forms.) It seems that the Problem is negative for the congruence divisor \mathfrak{p} which divides the level N.
- (2) From the table (II), we observe that f(-87), $f\left(\frac{87+\sqrt{2305}}{2}\right)$ and f(-39) have the following property:
 - (+) The n-th Fourier coefficient vanishes whenever $\left(\frac{n}{13}\right) = 1$.

On the other hand, for f(-27) and $f(-6+7\sqrt{105})$, we see that:

(-) The n-th Fourier coefficient vanishes whenever
$$\left(\frac{n}{13}\right) = -1$$
.

In fact, it can be shown by the result of Waldspurger [8, Théorème 1] that $f(\alpha)$ has the property (\pm) according as the parity of the eigenvalue $\pm 13^{3}$ of the T(13) for $F(\alpha)$. Moreover, the analogous assertion also holds for the other prime factor 2 of the level $4\cdot 13$:

The n-th Fourier coefficient of $f(\alpha)$ vanishes whenever $n \equiv 1 \mod 8$ or $n \equiv 5 \mod 8$, according as the parity of the eigenvalue $\pm 2^s$ of the T(2) for $F(\alpha)$.

We calculated the Fourier coefficients of $f(\alpha)$ up to 500 (by HITAC M-200H, Hokkaido University Computing Center), and here we list these coefficients 1 to 100:

Table (II).

n	f(-87)	$f((87+\sqrt{2305})/2)$	f(-27)	f(-39)	$f(-6+7\sqrt{105})$
1	0	0	0	0	8
2	13	240	0	1	0
3	0	0	1	0	$-167+13\sqrt{105}$
4	0	0	0	0	-64
5	76	$-650+10\sqrt{2305}$	0	0	0
6	-29	$-20+52\sqrt{2305}$	0	15	0
7	47	$1820 - 28\sqrt{2305}$	0	-9	0
8	104	1920	0	-8	0
9	0	0	0	0	$-264+56\sqrt{105}$
10	0	0	5	0	$505 - 99\sqrt{105}$
11	-352	$-4000+128\sqrt{2305}$	0	-32	0
12	0	0	8	0	$1336 - 104\sqrt{105}$
13	5 2	$3310 + 82\sqrt{2305}$	-8	0	0
14	0	0	13	0	$-1799 + 237\sqrt{105}$
15	-331	$7300 - 260\sqrt{2305}$	0	45	0
16	0	0	0	0	512
17	0	0	0	0	$3592 - 384\sqrt{105}$
18	-780	$16920 + 120\sqrt{2305}$	0	-12	0
19	188	$-16640 - 416\sqrt{2305}$	0	60	0
20	608	$-5200+80\sqrt{2305}$	0	0	0
21	644	$-18330-102\sqrt{2305}$	0	0	0
22	0	0	-12	0	$-1132 + 36\sqrt{105}$
23	0	0	-44	0	$-8332 + 708\sqrt{105}$
24	-232	$-160+416\sqrt{2305}$	0	-120	0
25	0	0	0	0	$-1584 + 288\sqrt{105}$
26	1612	$-1840 + 224\sqrt{2305}$	7	-52	$-5421 + 351\sqrt{105}$
27	0	0	-27	0	$10557 \!-\! 1247 \sqrt{\ 105}$
28	376	$14560 - 224\sqrt{2305}$	0	72	0
29	0	0	-40	0	0
30	0	0	65	0	$573 + 321\sqrt{105}$
31	-1444	$-57480 - 504\sqrt{2305}$	0	12	0
32	832	15360	0	64	0
33	0	0	0	24	0

Table (II) Continued

n	f(-87)	$f((87+\sqrt{2305})/2)$	f(-27)	f(-39)	$f(-6+7\sqrt{105})$
34	-1843	$13160 + 728\sqrt{2305}$	0	129	0
35	0	0	-105	0	$-8321 + 939\sqrt{105}$
36	0	0	0	0	$2112 - 448\sqrt{105}$
37	124	$16610 - 1378\sqrt{2305}$	0	. 0	0
38	0	0	114	0	$19658 - 2478\sqrt{105}$
39	-715	$13980 - 732\sqrt{2305}$	-44	-195	$-1612 + 260\sqrt{105}$
40	0	0	40	0	$-4040+792\sqrt{105}$
41	0	0	0	-280	0
42	0	0	77	0	$-943 + 469\sqrt{105}$
43	0	0	-5	0	$10947 - 225\sqrt{105}$
44	-2816	$-32000+1024\sqrt{2305}$	0	256	0
45	-4560	$-34300+380\sqrt{2305}$	0	0	0
46	-422	$119080 - 104\sqrt{2305}$	0	-270	0
47	1849	$-58340+100\sqrt{2305}$	0	129	0
48	0	0	64	0	$-10688 + 832\sqrt{105}$
49	0	0	0	0	$-9864 + 216\sqrt{105}$
50	5798	$55800 + 600\sqrt{2305}$	0	510	0
51	0	0	31	0	$2855 + 307\sqrt{105}$
5 2	416	$26480 + 656\sqrt{2305}$	-64	0	0
53	0	0	40	0	0
54	2523	$59060 + 2252\sqrt{2305}$	0	-585	0
55	0	0	-40	0	$632 - 1512\sqrt{105}$
56	0	0	104	0	$14392 - 1896\sqrt{105}$
57	0	0	0	480	0
58	1242	$-147400 + 2792\sqrt{2305}$	0	18	0
59	13652	$1040 - 880\sqrt{2305}$	0	-556	0
60	-2648	$58400 - 2080\sqrt{2305}$	0	-360	0
61	0	0	-104	0	0
62	0	, 0	-10	0	$-43330+3894\sqrt{105}$
63	-5358	$-2240+448\sqrt{2305}$	0	594	0
64	0	0	0	0	-4096
65	0	0	0	520	$-11024+1560\sqrt{105}$
66	.0	0	90	0	$21346 - 182\sqrt{105}$

Table (II) Continued

Table (11) Continued					
n	f(-87)	$f((87+\sqrt{2305})/2)$	f(-27)	f(-39)	$f(-6+7\sqrt{105})$
67	4392	$-64240 + 848\sqrt{2305}$	0	-24	0
68	0	0	0	0	$-28736 + 3072\sqrt{105}$
69	0	0	-8	0	0
70	-875	$-139900 - 4420\sqrt{2305}$	0	105	0
71	17681	$168460 - 2060\sqrt{2305}$	0	55	0
72	-6240	$135360 + 960\sqrt{2305}$	0	96	0
73	0	0	0	-120	0
74	0	0	-157	0	$17823 - 1701\sqrt{105}$
75	0	0	-120	0	$40456 - 5336\sqrt{105}$
7 6	1504	$-133120 - 3328\sqrt{2305}$	0	-480	0
77	0	0	8	0	0
78	6318	$40600 - 1592\sqrt{2305}$	77	-234	$28249 - 2899\sqrt{105}$
79	0	0	-12	0,	$-7564 + 2052\sqrt{105}$
80	4864	$-41600+640\sqrt{2305}$	0	0	0
81	0	0	0	0	$25248 - 2184\sqrt{105}$
82	0	0	-286	0	$31658 - 3150\sqrt{105}$
83	756	$-84960 + 2304\sqrt{2305}$	0	52	0
84	5152	$-146640 - 816\sqrt{2305}$	0	0	0
85	2868	$-108550+3590\sqrt{2305}$	0	0	0
86 -	-28139	$-57460 - 1900\sqrt{2305}$	0	1049	0
87	0	0	536	0	$-35464 + 2968\sqrt{105}$
88	0	0	-96	0	$9056 - 288\sqrt{105}$
89	0	0	0	-1648	0
90	0	0	-270	0	$-89430+6802\sqrt{105}$
91	-6916	$207120 - 1584\sqrt{2305}$	35	-1092	$20683 + 1287\sqrt{105}$
92	0	0	-352	0	$66656 - 5664\sqrt{105}$
93	8424	$245160 - 3240\sqrt{2305}$	0	0	0
94	0	0	-505	0	$-8213 - 729\sqrt{105}$
95	0	0	140	0	$-50036+5628\sqrt{105}$
96	-1856	$-1280 + 3328\sqrt{2305}$	0	960	0
97	0	0	0	408	0
98	-6812	$2280 - 5880\sqrt{2305}$	0	-636	0
99	21120	$-134480 + 7024\sqrt{2305}$	0	384	0
100	0	0	0	0	$12672 - 2304\sqrt{105}$

References

- [1] K. DOI and M. OHTA: On some congruences between cusp forms on $\Gamma_0(N)$, in "Modular functions of one variable V", Lecture Notes in Math. 601 (1976), Springer, 91-105.
- [2] K. Doi and H. Hida: On a certain congruence of cusp forms and the special values of their Dirichlet series, unpublished (1979).
- [3] H. HIDA: Congruences of cusp forms and special values of their zeta functions, Invent. math. 63 (1981), 225-261.
- [4] H. HIDA: On congruence divisors of cusp forms as factors of the special values of their zeta functions, Invent. math. 64 (1981), 221-262.
- [5] W. KOHNEN and D. ZAGIER: Values of L-series of modular forms at the center of the critical strip, Invent. math. 64 (1981), 175-198.
- [6] G. SHIMURA: Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, No. 11, Iwanami Shoten and Princeton Univ. Press, 1971.
- [7] G. SHIMURA: On modular forms of half integral weight, Ann. of Math. 97 (1973), 440-481.
- [8] J.-L. WALDSPURGER: Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. pures et appl. 60 (1981), 375-484.

Department of Mathematics Hokkaido University