A generalization of monodiffric function

By Shih Tong Tu

(Received November 22, 1982)

1. Introduction

The purpose of this paper is to introduce the generalized monodiffric functions, namely, p-monodiffric functions, and to prove some interesting properties of p monodiffric functions. When $p=1$, our results reduce to the classical theory of monodiffric functions which have been developed by Berzsenyi [1, 2], Kurowski [3] and the present author [4, 5].

2. Definition and Notation

Let \boldsymbol{C} be the complex plane, $D=\{z \in \boldsymbol{C} \mid z=x+i y\}$ where $x, y \in\{p j \mid j=$ $0,1,2, \cdots\}$ and $0<p \leq 1$ and $f: D \rightarrow \boldsymbol{C}$.

Definition 1. The p monodiffric residue of f at z is the value

$$
\begin{equation*}
M_{p} f(z)=(i-1) f(z)+f(z+i p)-i f(z+p) . \tag{2.1}
\end{equation*}
$$

Definition 2. The function f is said to be p monodiffric at z if $M_{p} f(z)=0$. The function f is said to be p monodiffric in D if it is p monodiffric at any point in D (denoted by $f \in M_{p}(D)$).

Definition 3. The p monodiffric derivative f^{\prime} of f is defined by

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{2 p}[(i-1) f(z)+f(z+p)-i f(z+i p)] . \tag{2.2}
\end{equation*}
$$

We also use the symbols $d f / d z$ or $D_{z} f$ to represent f^{\prime}. It is easy to see that $f^{\prime}(z)$ can be formulated in the following forms:

$$
\begin{equation*}
f^{\prime}(z)=\frac{f(z+p)-f(z)}{p} \quad \text { or } \quad f^{\prime}(z)=\frac{1}{i p}[f(z+i p)-f(z)] \tag{2.3}
\end{equation*}
$$

if $f \in M_{p}(D)$ at z.
Definition 4. The line integral of from z to $z+h p$ is defined by

$$
\int_{z}^{z+h p} f(t) d t= \begin{cases}h p f(z) & \text { if } \quad h=1 \text { or } i \tag{2.4}\\ -\int_{z+h p}^{z} f(t) d t & \text { if } \quad h=-1 \text { or }-i .\end{cases}
$$

More generally, if $\Omega=\left\{a=z_{0}, z_{1}, \cdots, z_{n}=b\right\}$ is a discrete curve in D, then the line integral of f from a to be along Ω is defined by

$$
\begin{equation*}
\int_{\Omega} f(t) d t=\int_{a}^{b} f(t) d t=\sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}} f(t) d t \tag{2.5}
\end{equation*}
$$

3. Property

The following properties follow directly from the above definitions.
Proposition 1. The line integral $\int_{a}^{b} f(t) d t$ is independent of path in D for every $a, b \in D$, if and only if, $f \in M_{p}(D)$.

Proposition 2. If $a \in D$ and f is p monodiffric in D, then the function F defined by $F(z)=\int_{a}^{z} f(t) d t$ for $z \in D$, is also p monodiffric in D, and $F^{\prime}(z)=f(z)$ for $z \in D$.

Proposition 3. If $f \in M_{p}(D)$, then $\int_{a}^{b} f^{\prime}(t) d t=f(b)-f(a)$.

4. The \boldsymbol{p} monodiffric exponential function

In [6] Isaacs introduced the monodiffric exponential function $E(z)=$ $(1+a)^{x}(1+i a)^{y}$ for $z=x+i y$ and $a \in \boldsymbol{C}$. We extend it to p monodiffric as follows: The p monodiffric exponential function $e_{p}^{a, z}$ is defined by $e_{p}^{a_{p}, z}=$ $(1+a p)^{j}(1+i a p)^{k}$ for $z=(j+i k) p$, where j and k are integers. It is not difficult to prove the following results.

Proposition 4. (a) $\frac{d^{n}}{d z^{n}} e_{p}^{a, z}=a^{n} e_{p}^{a, z}$, where $\frac{d^{n}}{d z^{n}}$ means n^{\prime} th p monodiffric derivative.

$$
\begin{equation*}
\text { (b) } \frac{d^{n}}{d z^{n}} e_{p}^{a, z} \in M_{p}(D) \text { for } n=0,1,2, \cdots \tag{4.1}
\end{equation*}
$$

Theorem 1. The solution of the p monodiffric difference equation

$$
\frac{d F}{d z}-a F(z)=0 \quad \text { with } \quad F(0)=c
$$

is given by the p monodiffric function

$$
F(z)=c e_{p}^{a, z} \quad \text { for every } \quad z \in D,
$$

where c is an arbitrary constant.
In general, we have

Theorem 2. Let $a_{1}, a_{2}, \cdots, a_{n}$ be distinct roots of

$$
\begin{equation*}
a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}=0 \tag{4.2}
\end{equation*}
$$

then the general solution to the n 'th order p monodiffric linear homogeneous difference equation

$$
\begin{equation*}
F^{(n)}(\boldsymbol{z})+c_{n-1} F^{(n-1)}(\boldsymbol{z})+\cdots+c_{n} F^{\prime}(\boldsymbol{z})+c_{0} F(\boldsymbol{z})=0 \tag{4.3}
\end{equation*}
$$

is $F(z)=\sum_{k=1}^{n} B_{k} e_{p}^{a_{k}, z}$
where the coefficients $B_{k}(k=1,2, \cdots, n)$ are arbitrary constants.
Proof. Let $F(z)=e_{p}^{a, z}$. Then from Proposition 4, we have

$$
\left(a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}\right) e_{p}^{a, z}=0
$$

Since, $a_{1}, a_{2}, \cdots, a_{n}$ are distinct roots of (4.2), we obtain that $e_{p}^{a_{k}, z}(k=1,2$, $\cdots, n)$ is a solution of (4.3). The general solution of (4.3) is $F(\boldsymbol{z})=\sum_{k=1}^{n} B_{k} e_{p}^{a_{k}, z}$, where $B_{k}(k=1,2, \cdots, n)$ are arbitrary constants.

5. The p monodiffic homogeneous difference equation of the n 'th order

In [4], the author shown that the monodiffric homogeneous difference equation of the n^{\prime} th order $\sum_{k=0}^{n}(-1)^{k} C_{k}^{n} f(z+n-k)(1-a)^{k}=0$ has monodiffric general solution (In [4], Theorem 2, page 48). Now we want to generalize this result to p monodiflic equation. We begin with the following propositions:

Proposition 5.

$$
\text { (a) } \begin{array}{r}
\frac{d}{d a} e_{p}^{a, z}=(1+a p)^{j=1}(1+i a p)^{k-1}\left\{z+i a(j+k) p^{2}\right\} \\
\text { for } z=(j+i k) p \tag{5.1}
\end{array}
$$

(b) $\frac{d}{d a} e_{p}^{a, z} \in M_{p}(D)$
where $\frac{d}{d a} e_{p}^{a, z}=\lim _{h \rightarrow a} \frac{e_{p}^{(a+h), z}-e_{p}^{a, z}}{h}$ for fixed point $z \in D$.
A proof is given by a straightforward calculation.
PROPOSITION 6. $F(z)=\frac{d}{d a} e_{p}^{a, z}$ is a solution of

$$
\begin{equation*}
\left(D_{z}-a\right)^{2} F(z)=0 \tag{5.3}
\end{equation*}
$$

and is also a solution of $\left(D_{z}-a\right)^{m} F(z)=0$ for any integer $m \geqq 2$.
Proof. Since, $F(z) \in M_{p}(D)$ we obtain $F^{\prime}(z)=\frac{1}{p}[F(z+p)-F(z)]$ and $F^{\prime \prime}(z)=\frac{1}{p}\left[F^{\prime}(z+p)-F^{\prime}(z)\right]=\frac{1}{p^{2}}[F(z+2 p)-2 F(z+p)+F(z)]$.
Now $\quad\left(D_{z}-a\right)^{2} F(z)=F^{\prime \prime}(z)-2 a F^{\prime}(z)+a^{2} F(z)$

$$
\begin{equation*}
=\frac{1}{p^{2}}\left[F(z+2 p)-2(1+a p) F(z+p)+(1+a p)^{2} F(z)\right] \tag{5.4}
\end{equation*}
$$

substituting (5.1) into the right-hand side of (5.4), we have $\left(D_{z}-a\right)^{2} F(z)=0$. Therefore, $\frac{d}{d a} e_{p}^{a, z}$ is a solution of (5.3). Furthermore, by the straightforward calculation, we get

$$
F^{\prime}(z)=(1+a p)^{j-1}(1+i a p)^{k-1}\left[1+(z+p+i p) a+i(j+k+1) a^{2} p^{2}\right]
$$

It is easy to verify that $M_{p} F^{\prime}(z)=0$, i. e., $F^{\prime}(z) \in M_{p}(D)$ and $\left(D_{z}-a\right)^{m} F(z)=$ $\left(D_{z}-a\right)^{m-2}\left(D_{z}-a\right)^{2} F(z)=0$ for $m \geqq 2$.

Proposition 7. Let $H(z)=\frac{d^{2}}{d a^{2}} e_{p}^{a, z}$ for $z=(j+i k) p$. Then we have
(a) $H(z)=(1+a p)^{j-2}(1+i a p)^{k-2}$

$$
\begin{equation*}
\left\{z^{2}+(k-j) p^{2}+2 i z(j+k-1) a p^{2}-(j+k)(j+k-1) a^{2} p^{4}\right\} \tag{5.5}
\end{equation*}
$$

(b) $H(z) \in M_{p}(D)$,
(c) $\left(D_{z}-a\right)^{3} H(z)=0$,
(d) $\left(D_{z}-a\right)^{m} H(z)=0$ for $m \geqq 3$.

Proof. For fix z, we differentiate $\frac{d}{d a} e_{p}^{a, z}$ with respect to a directly, the conclusion of (a) follows. Now we shall prove (b). Rewriting $M_{p} H(z)=$ $(i-1) H(z)+H(z+i p)-i H(z+p)$ into the form $M_{p} H(z)=(1+a p)^{j-2}(1+i a p)^{k-2}$ $\left[A+B a+C a^{2}+D a^{3}\right]$ where the branket [] is the form of the polynomial in a and A, B, C and D are constants, then we obtain $A=0, B=0, C=0$ and $D=0$, and $\left(D_{z}-a\right)^{3} H(z)=H(z+3 p)-3(1+a p) H(z+2 p)+3(1+a p)^{2} H(z+p)-$ $(1+a p)^{3} H(z)$.

To prove (c), we rewrite $\left(D_{z}-a\right)^{3} H(z)$ into the form $\left(D_{z}-a\right)^{3} H(z)=(1+$ $a p)^{j+1}(1+i a p)^{k-2}\left[E z^{2}+F z+G\right]$, then $E=0, F=0$ and $G=0$. The proof of (d) is obvious. This completes the proof. p monodiffric homogeneous difference equation of the n 'th order is of the form $\left(D_{z}-a\right)^{n} f(z)=0$ or

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k} C_{k}^{n}(1+a p)^{k} f(z+(n-k) p)=0 \tag{5.9}
\end{equation*}
$$

where $C_{k}^{n}=\frac{n!}{(n-k)!k!}$.
From the results of Proposition 6 and 7, we have the general solutions of (5.9) for $n=2$ and $n=3$ respectively as follows :

Proposition 8.
(a) p monodiffric homogeneous difference equation of the second order

$$
\sum_{k=0}^{2}(-1)^{k} C_{k}^{2} f(z+(2-k) p)(1+a p)^{k}=0
$$

has p monodiffric general solution of the form

$$
f(z)=c_{0} e_{p}^{a, z}+c_{1} \frac{d}{d a} e_{p}^{a, z}
$$

(b) p monodiffric homogeneous difference equation of the third order

$$
\sum_{k=0}^{3}(-1)^{k} C_{k}^{3} f(z+(3-k) p)(1+a p)^{k}=0
$$

has p monodiffric general solution of the form

$$
f(z)=c_{0} e_{p}^{a, z}+c_{1} \frac{d}{d a} e_{p}^{a, z}+c_{2} \frac{d^{2}}{d a^{2}} e_{p}^{a, z},
$$

where the coefficients $c_{i}(i=0,1,2)$ are arbitrary constants.
With the observation of the above Proposition 8, we have the following more general result.

Proposition 9. $\frac{d^{n}}{d a^{n}} e_{p}^{a, z} \in M_{p}(D)$
Proof. Let $E(a, z)=e_{p}^{a, z}, E_{a}^{(n)}(a, z)=\frac{d^{n}}{d a^{n}} e_{p}^{a, z}$ for $n \in N$.
From Proposition 6 and 7, (5.10) is true for $n=1$ and $n=2$. Suppose it holds for $n=k$, then $M_{p} E_{a}^{(k)}(a, z)=0$, so that

$$
\begin{aligned}
& (i-1) E_{a}^{(k)}(a, z)+E_{a}^{(k)}(a, z+i p)-i E_{a}^{(k)}(a, z+p)=0 \\
& (i-1) E_{a}^{(k)}(a+h, z)+E_{a}^{(k)}(a+h, z+i p)-i E_{a}^{(k)}(a+h, z+p)=0
\end{aligned}
$$

Substracting the first from the second of above equalities and dividing by h, we have

$$
\begin{aligned}
(i-1) & \frac{E_{a}^{(k)}(a+h, z)-E_{a}^{(k)}(a, z)}{h}+\frac{E_{a}^{(k)}(a+h, z+i p)-E_{a}^{(k)}(a, z+i p)}{h} \\
& -i \frac{E_{a}^{(k)}(a+h, z+p)-E_{a}^{(k)}(a, z+p)}{h}=0
\end{aligned}
$$

Tending h to 0 , we get

$$
(i-1) E_{a}^{(k+1)}(a, z)+E_{a}^{(k+1)}(a, z+i p)-i E_{a}^{(k+1)}(a, z+p)=0
$$

Thus, $M_{p} E_{a}^{(k+1}(a, z)=0$ for fixed $z \in D$.
Proposition 10. $\left(D_{z}-a\right)^{n} \frac{d^{n-1}}{d a^{n-1}} e_{p}^{a, z}=0 \quad$ for $n=1,2,3, \cdots$.
Proof. It is true for $n=1$. Suppose it is true for $n=k$, i. e.

$$
\left(D_{z}-a\right)^{k} \frac{d^{k-1}}{d a^{k-1}} e_{p}^{a, z}=0 .
$$

Fixing z and differentiating with respect to a, we have

$$
\left(D_{z}-a\right)^{k} \frac{d^{k}}{d a^{k}} e_{p}^{a, p}-k\left(D_{z}-a\right)^{k-1} \frac{d^{k-1}}{d a^{k-1}} e_{p}^{a, z}=0 .
$$

Applying $D_{z}-a$, we have

$$
\left(D_{z}-a\right)^{k+1} \frac{d^{k}}{d a^{k}} e_{p}^{a, z}=k\left(D_{z}-a\right)^{k} \frac{d^{k-1}}{d a^{k-1}} e_{p}^{a, z}=0 .
$$

By induction, the proof is complete. In summary of the above developments we have

Theorem 4. p monodiffric homogeneous difference equation of the $n^{\prime} t h$ order $\sum_{k=0}^{n}(-1)^{k} C_{k}^{n}(1+a p)^{k} f(z+(n-k) p)=0$ has p monodiffric general solution $f(z)=\sum_{k=0}^{n-1} c_{k} \frac{d^{k}}{d a^{k}} e_{p}^{a, z}$, where the coefficients $c_{k}(k=0,1, \cdots, n-1)$ are arbitrary constants.

Theorem 5. The general solution to the homogeneous p monodiffric difference equation of the n^{\prime} 'th order

$$
F^{(n)}(z)+c_{n-1} F^{(n-1)}(z)+\cdots+c_{1} F^{\prime}(z)+c_{0} F(z)=0
$$

is $\quad F(z)=\sum_{k=1}^{p} \sum_{j=0}^{m_{k}-1} B_{k, j} \frac{d^{j}}{d a_{k}^{j}} e_{p}^{a_{k}, z}$,
where $a_{1}, a_{2}, \cdots, a_{p}$ with multiplicities $m_{1}, m_{2}, \cdots, m_{p}$ respectively are the roots of $a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}=0$ and the coefficients $B_{k, j}$ are arbitrary constants.

References

[1] G. Berzsenyi: Line integrals for monodiffric functions, J. Math. Anal. Appl. 30 (1970), 99-112.
[2] G. Berzsenyi: Convolution products of monodiffric functions, J. Math. Anal. Appl. 37 (1972), 271-287.
[3] G. J. Kurowski: Further results in the theory of monodiffric functions, Pacific J. Math. 18 (1966), 139-147.
[4] S. T. Tu: Higher order monodiffric difference equations, Hokkaido Math. J. 7 (1978), 43-48.
[5] S. T. Tu: Monodiffric function theory and formal power series, J. Math. Anal. Appl. 84 (1981), 595-613.
[6] R. P. Isaacs: Monodiffric functions, Natl. Bur. Stand. Appl. Math. Ser. 18 (1952), 257-266.

Department of Mathematics
Chung Yuan Christian University

