Complex powers of a class of pseudodifferential operators and their applications

By Junichi Aramaki
(Received February 15, 1982 ; Revised December 2, 1982)

§ 0. Introduction

Seeley [15] has defined complex powers of elliptic operators P on a compact C^{∞} manifold Ω without boundary and examined asymptotic behaviors of the eigenvalues. For hypoelliptic operators satisfying, what is called, strong (H) condition of Hörmander [6], Kumano-go and Tsutsumi [9] have constructed complex powers suitable for them.

In the present paper we shall discuss complex powers $\left\{P_{z}\right\}_{z \in C}$ of a class of pseudodifferential operators P on the manifold Ω. Here the operator P has a symbol which vanishes exactly of order M on the characteristic set Σ, that is, P belongs to $O P L^{m, M}(\Omega ; \Sigma)$ which is defined by Sjöstrand [16]. Then a condition of hypoellipticity of P with loss of $M / 2$ derivatives is well known (see Boutet de Monvel [1], Boutet de Monvel-Grigis-Helffer [2] and Helffer [5]]. Moreover, we shall develop asymptotic behaviors of the eigenvalues of P on the further hypotheses that P is self-adjoint and semibounded from below. For this purpose we have to construct two kinds of complex powers of P and use more convenient one for each situation.

For $M=2$, Menikoff-Sjöstrand [10], [11], [12], Sjöstrand [17] and Iwasaki [8] have studied asymptotic behaviors under various assumptions on Σ and P. In particular [12] and [17] have treated more general non-semibounded cases. Their methods are based on the construction of the heat kernel and an application of Karamata's Tauberian theorem. For general M, see also Mohamed [13]. However our method is essentially due to the theory of complex analysis (c.f. Smagin [18]]. In order to carry out this, we shall study the first singularity of the trace of P_{z}. In elliptic case, Trace $\left(P_{z}\right)$ has an extension to a meromorphic function in z in \boldsymbol{C} with only simple poles ([15]). But in our case, even the first singularity is able to have a pole of second order. Accordingly we have to extend Ikehara's Tauberian theorem (see Wiener [19]).

The plan of this paper is as follows. In $\S 1$ we give the precise definition of the operator mentioned above and a main theorem (Theorem 1.2).

In $\S 2$ taking applications of Theorem 1. 2 in $\S 4$ and $\S 5$ into consideration, we construct two kinds of parametrices of $P-\zeta$ for some $\zeta \in \boldsymbol{C}$. In $\S 3$ we construct two kinds of complex powers of P corresponding to them respectively. In $\S 4$ we give a theorem on the first singularity of the trace of P_{z}. In $\S 5$ we study asymptotic behaviors of the eigenvalues using the results in $\S 4$ and give an example.

We shall use the notations and results of pseudodifferential operators, for which we refer to [1], [2], Duistermaat-Hörmander [4] and Hörmander [7].

§ 1. Definitions and the main theorem

Let Ω be a compact C^{∞} manifold without boundary of dimension n and Σ be a closed conic submanifold of codimension d in the cotangent bundle minus the zero section $T^{*} \Omega \backslash 0$.

Definition 1.1. Let m be a real number and M be a non-negative integer. The space $O P L^{m, M}(\Omega ; \Sigma)$ is the set of all pseudodifferential operators $P \in L^{m}(\Omega)$ (see [6]) that for every local coordinate neighborhood $V \subset \Omega$, P has a symbol $\sigma(P)=p$ of the form:

$$
\begin{equation*}
p(x, \xi) \sim \sum_{j=0}^{\infty} p_{m-j / 2}(x, \xi) \tag{1.1}
\end{equation*}
$$

where $\sigma_{m-j / 2}(P)=p_{m-j / 2}(x, \xi)$ are elements of $C^{\infty}\left(R^{n} \times\left(R^{n} \backslash 0\right)\right)$ and positivelyhomogeneous of degree $m-j / 2$ in ξ (j integral) and satisfy:
(1.2) For every $K \Subset V$, there exists a constant $C_{K}>0$ such that

$$
\frac{\left|p_{m-j / 2}(x, \xi)\right|}{|\xi|^{m-j / 2}} \leq C_{K} d_{\Sigma}(x, \xi)^{M-j}, \quad j=0,1, \cdots, M
$$

and

$$
\begin{equation*}
\frac{\left|p_{m}(x, \xi)\right|}{|\xi|^{m}} \geq C_{K} d_{\Sigma}(x, \xi)^{M} \tag{1.3}
\end{equation*}
$$

for $(x, \xi) \in K \times\left(R^{n} \backslash 0\right)$ and $|\xi| \geq 1$.
Here

$$
d_{\Sigma}(x, \xi)=\inf _{\left(x^{\prime}, \xi^{\prime}\right) \in \Sigma}\left(\left|x^{\prime}-x\right|+\left|\xi^{\prime}-\frac{\xi}{|\xi|}\right|\right)
$$

is the distance from $\left(x, \frac{\xi}{|\xi|}\right)$ to Σ. Note that d_{Σ} is a positively-homogeneous function of degree 0 in ξ.

The class of symbols satisfying (1.1), (1.2) and (1.3) in an open conic set U in $T * \Omega \backslash 0$ is denoted by $S L^{m, M}(U ; \Sigma)$.

We describe the following hypotheses (H.1)~(H.3).
(H. 1) There exists a fixed proper closed convex cone Γ in \boldsymbol{C} such that

$$
p_{m}(x, \xi) \in \Gamma \quad \text { for all } \quad(x, \xi) \in T * \Omega \backslash 0
$$

For every $\rho \in \Sigma$, we define a differential operator with polynomial coefficients on \boldsymbol{R}^{n} (c.f. [2]) :

$$
\begin{equation*}
\sigma_{\rho}(P)\left(y, D_{y}\right)=\sum_{j=0}^{M} \sum_{|\alpha+\beta|=M-j} \frac{1}{\alpha!\beta!}\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{\partial}{\partial \xi}\right)^{\beta} p_{m-j / 2}(\rho) y^{\alpha} D_{y}^{\beta} \tag{1.4}
\end{equation*}
$$

(H.2) There exists a ray $l=\left\{\zeta=\lambda e^{i \theta_{0}} ; \lambda \geq 0\right\} \subset-\Gamma$ such that for every ζ in the ray, $\sigma_{\rho}(P)\left(y, D_{y}\right)-\zeta$ is an isomorphism from \mathscr{S} onto \mathscr{S} where \mathscr{S} denotes the space of rapidly decreasing functions.

For every $\rho_{0} \in \Sigma$, we can choose a conic neighborhood $U_{\rho_{0}}$ of ρ_{0} and a local coordinate system in $U_{\rho_{0}}$:

$$
u=\left(u_{1}, u_{2}, \cdots, u_{d}\right), \quad v=\left(v_{1}, v_{2}, \cdots, v_{2 n-d}\right)
$$

where u_{i} and v_{j} are C^{∞} positively-homogeneous of degree 1 such that $\Sigma \cap U_{\rho_{0}}$ is defined by $u_{1}=u_{2}=\cdots=u_{d}=0$. If we choose pseudodifferential operators $U_{1}, U_{2}, \cdots, U_{d}$ of order 1 with symbols $\sigma\left(U_{j}\right)=u_{j}$, we can write (in $U_{\rho_{0}}$)

$$
\begin{equation*}
P=\sum_{|\alpha| \leq M} A_{\alpha}\left(x, D_{x}\right) U\left(x, D_{x}\right)^{\alpha} \tag{1.5}
\end{equation*}
$$

where A_{α} are classical pseudodifferential operators of order $m-(M+|\alpha|) / 2$. If we define

$$
\check{p}=\sum_{|\alpha| \leq M} a_{\alpha}(\rho) u^{\alpha}
$$

where $\rho=(0, v(x, \xi))$ and a_{α} are the principal symbols of A_{α}, we have

$$
\begin{equation*}
p-\breve{p} \in S L^{m, M+1} \tag{1.6}
\end{equation*}
$$

Note that \mathscr{P} is uniquely determined modulo $S L^{m, M+1}$ and

$$
\sigma_{\rho}(P)\left(y, D_{y}\right)=\sum_{|\alpha| \leq M} a_{\alpha}(\rho)\left(\sigma_{\rho}(U)\left(y, D_{y}\right)\right)^{\alpha}
$$

If we write $\check{p}=\sum_{j=0}^{M} \breve{p}_{m-j / 2}$, we can define a function on $N_{\rho} \Sigma=T_{\rho}\left(T^{*} \Omega \backslash 0\right) /$ $T_{\rho} \Sigma$ by the following formula:

For every $X \in N_{\rho} \Sigma, \tilde{p}(\rho, X)=\sum_{j=0}^{M} \frac{1}{(M-j)!} \tilde{X}^{M-j} \breve{p}_{m-j / 2}(\rho)$ where \tilde{X} designs an extension of X to a neighborhood of ρ.
(H. 3) $\tilde{p}(\rho, X) \in \Gamma \backslash\{0\}$ for every $\rho \in \Sigma$ and $X \in N_{\rho} \Sigma$.

Note that under the conditions (H.1) $\sim(\mathrm{H} .3), P$ is hypoelliptic with loss of $M / 2$ derivatives (see [2]), that is, for any distribution $f, \operatorname{Pf} \in H^{s}(\Omega)$
implies $f \in H^{s+m-M / 2}(\Omega)$ where $H^{s}(\Omega)$ is the Sobolev space.
Let $X^{m-M / 2}(\Omega ; \Sigma)$ be $\bigcap_{N} S^{m-N, M-2 N}(\Omega ; \Sigma)$, which abbreviately is written by $\bigodot^{m-M / 2}$. Then our main theorem is as follows.

Theorem 1.2. Assume that $P \in O P L^{m, M}(\Omega ; \Sigma)$ satisfies the hypotheses (H. 1) $\sim\left(\right.$ H. 3) and $m>M / 2$. Then we can define complex powers $\left\{P_{z}\right\}_{z \in c}$ of P in the following sense:
(i) $P_{z} \in O P S^{\text {mяez }, \text { Mrez }}(\Omega ; \Sigma)$,
(ii) $P_{1} \equiv P, P_{0} \equiv I$ (modulo $O P \mathscr{X}^{m-M / 2}(\Omega ; \Sigma)$,
(iii) $P_{z_{1}} P_{z_{2}} \equiv P_{z_{1}+z_{2}}$ (modulo analytic functions of z_{1} and z_{2} with values in $O P æ^{m^{\prime}-k^{\prime} / 2}(\Omega ; \Sigma)$ for any m^{\prime} and k^{\prime} such that $m^{\prime}>m \mathscr{R} e\left(z_{1}+z_{2}\right)$ and $m^{\prime}-k^{\prime} / 2>(m-M / 2) \mathscr{R} e\left(z_{1}+z_{2}\right)$,
(iv) For any real $s_{0}, \sigma\left(P_{z}\right)(x, \xi)$ is an analytic function of z on $\{z$; $\left.\mathscr{R e}<s_{0}\right\}$ with values in $S^{m s_{0}, M s_{0}}(\Omega ; \Sigma)$.

Remark 1.3. If we put

$$
P_{z}^{\prime}=P_{z}+z\left(P-P_{1}\right)+(1-z)\left(I-P_{0}\right),
$$

then $\left\{P_{z}^{\prime}\right\}_{z \in C}$ satisfy (i), (ii), (iv) and (ii) $P_{1}^{\prime}=P, P_{0}^{\prime}=I$.
Here $S^{m, k}(\Omega ; \Sigma)$ denotes the symbol class of [1, p. 591] i. e. $a \in S^{m, k}(\Omega ; \Sigma)$ means that a is in $C^{\infty}\left(T^{*} \Omega \backslash 0\right)$ and for any vector fields $X_{1}, X_{2}, \cdots, X_{p}, Y_{1}, Y_{2}, \cdots$, Y_{q} with smooth coefficients on $T^{*} \Omega \backslash 0$, positively-homogeneous of degree 0 , the X_{j} being tangent to Σ,

$$
\left|X_{1} X_{2} \cdots X_{p} Y_{1} Y_{2} \cdots Y_{q} a\right| \leqslant r^{m} \rho_{\Sigma}^{k-q}
$$

where r is a positively-homogeneous function of degree 1 such that it is equal to 1 on the cosphere bundle and $\rho_{\Sigma}=\left(d_{\Sigma}^{2}+r^{-1}\right)^{1 / 2}$. Here we use the notation $f \leqslant g$ for C^{∞} positive functions f, g on $T^{*} \Omega \backslash 0$, if for any subcone $U \subset T * \Omega \backslash 0$ with compact basis and $\varepsilon>0$, there exists a constant C such that

$$
f \leq C g \text { in } U \text { when } r>\varepsilon
$$

Moreover we write $f \approx g$ if $f \leqslant g$ and $g \lesssim f$ (see also [1, p. 590]). Denote by $\operatorname{OPS}^{m, k}(\Omega ; \Sigma)$ the set of pseudodifferential operators corresponding to the symbols in $S^{m, k}(\Omega ; \Sigma)$. Then we remark that if M is a non-negative integer, we have $\operatorname{OPL}^{m, M}(\Omega ; \Sigma) \subset O P S^{m, M}(\Omega ; \Sigma)$.

§ 2. Construction of parametrices

In this section we shall introduce the operators defined by [2] and construct parametrices of $P-\zeta(\zeta \in l)$. There exists a unique differential operator on $N_{\rho} \Sigma$:

$$
\begin{equation*}
P_{\Sigma}=\sum_{|\alpha+\beta| \leq M} a_{\alpha \beta}(\boldsymbol{\rho}) u^{\alpha} D_{u}^{\beta} \tag{2.1}
\end{equation*}
$$

where $a_{\alpha \beta}$ are positively-homogeneous of degree $m-(M+|\alpha|-|\beta|) / 2$ such that

$$
(p \sharp q)^{\wedge}=P_{\Sigma} \check{q}
$$

for every $q \in S L^{m^{\prime}, M^{\prime}}$. Here \# means the composition of the symbols. In view of [2], if we put a matrix $A=\left(A_{j k}(\rho)\right)_{j, k=1,2, \cdots, d}$ where $A_{j k}(\rho)=\sum_{s=1}^{n} \frac{\partial u_{j}}{\partial \xi_{s}}(\rho)$ $\frac{\partial u_{k}}{\partial x_{s}}(\rho)$ are positively-homogeneous of degree 1 , we have that for every $q \in S^{m^{\prime}, M^{\prime}}$

$$
\begin{equation*}
(p \# q)-\sum_{\beta} \frac{i^{|\beta|}}{\beta!} D_{u}^{\beta} \check{p}\left(A D_{u}\right)^{\beta} q \in S^{m+m^{\prime}, M+M^{\prime}+1} . \tag{2.2}
\end{equation*}
$$

Now we shall construct a parametrix of $P-\zeta$ for every $\zeta \in l=\left\{\zeta=\lambda e^{i \theta_{0}}\right.$; $\lambda \geq 0\}$. (H. 1) ensures that we can define, for every $\zeta \in l$,

$$
q_{\xi}^{\prime}(x, \xi)=\left(p_{m}(x, \xi)-e^{i \theta_{0}}|\xi|^{m-M / 2}-\zeta\right)^{-1}
$$

Proposition 2.1. (i) q_{ζ}^{\prime} is analytic in ζ on l with values in $S^{-m,-M}$.
(ii) For any multi-indices $\alpha, \beta, D_{x}^{\alpha} D_{\xi}^{\beta} q_{5}^{\prime}$ is a linear combination of the form

$$
\left(q_{\xi}^{\prime}\right)^{k+1} h_{k}(0 \leq k \leq|\alpha|+|\beta|)
$$

where $h_{k} \in S^{m k-|\beta|, M k-|\alpha+\beta|}$ are independent of ζ. In particular there exists a constant C (independent of ζ) such that

$$
\left|q_{\xi}^{\prime}(x, \xi)\right| \leq C\left(|\zeta|+r^{m} \rho_{\Sigma}{ }^{M}\right)^{-1}
$$

(iii) $(p-\zeta) \# q_{\xi}^{\prime}-1=r_{\xi}^{\prime} \in S^{-1 / 2,-1}$. Here r_{5}^{\prime} is of the form $q_{\xi}^{\prime} r_{\xi}^{\prime \prime}$ and $r_{5}^{\prime \prime}$ is analytic on l such that for any multi-indices α, β, we have with a constant $C_{\alpha \beta}$ (independent of ζ)

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} r_{\xi}^{\prime \prime}\right| \leq C_{\alpha \beta} r^{m-1 / 2} \rho_{\Sigma}{ }^{M-1}
$$

This proposition follows easily from the symbol calculus.
Next we shall construct a parametrix near Σ. Under the hypothesis (H. 2), for any $\rho \in \Sigma$ and $\zeta \in l, \tilde{p}(\rho, X)-\zeta$ has an inverse $\tilde{q}_{z}(\rho, X)$ in the following sense (see [2]) : \tilde{q}_{t} satisfies

$$
\begin{equation*}
\sum_{\beta} \frac{i^{|\beta|}}{\beta!} D_{X}^{\beta}(\tilde{p}(\rho, X)-\zeta)\left(A(\rho) r(\rho)^{-2} D_{X}\right)^{\beta} \tilde{q}_{5}(\rho, X)=1 \tag{2.3}
\end{equation*}
$$

If we identify X with $u / r(\rho)$ and define $q_{\xi}(\rho, u)=q(\zeta ; \rho, u)=\tilde{q}_{\xi}(\rho, X)$, we have

Proposition 2.2. With the above notations, we have
(i) \tilde{q}_{t} is quasi-homogeneous of degree $-(m-M / 2)$ in the sense:

$$
\tilde{q}_{\lambda^{m-M / 2}}\left(\lambda \rho, \lambda^{-1 / 2} X\right)=\lambda^{-(m-M / 2)} \tilde{q}_{\xi}(\rho, X)
$$

(ii) q_{ξ} is an analytic function on l with values in $S^{-m,-M}$ such that for any multi-indices α, β, we have with a constant $C_{\alpha \beta}>0$ (independent of ζ)

$$
\left|D_{u}^{\alpha} D_{\rho}^{\beta} q_{\zeta}\right| \leq C_{\alpha \beta}\left(r^{m} \rho_{\Sigma}{ }^{M}+|\zeta|\right)^{-1} r^{-(|\alpha|+|\beta|)} \rho_{\Sigma}^{-|\alpha|}
$$

where $r=r(\rho), \rho_{\Sigma}=\frac{|u|}{r(\rho)}+r(\rho)^{-1 / 2}$.
(iii) $q_{\zeta}(\rho, u)=(\breve{p}(\rho, u)-\zeta)^{-1}$ modulo analytic functions on l with values in $S^{-m-1 / 2,-M-1}$.

Proof. Since

$$
\tilde{p}(\rho, X)-\zeta=\sum_{|\alpha| \leq M} a_{\alpha}(\rho) r(\rho)^{|\alpha|} X^{\alpha}-\zeta
$$

it is quasi-homogeneous of degree $m-M / 2$. Thus by the uniqueness of the inverse, (i) and the analyticity in (ii) are clear. From (2.3) we have

$$
\begin{equation*}
1=(\breve{p}(\rho, u)-\zeta) q_{\xi}(\rho, u)+\sum_{|\alpha| \leq M} \sum_{\substack{\mid \beta \beta \geq 1 \\ \beta \leq \alpha}}\binom{\alpha}{\beta}\left(a_{\alpha}(\rho) u^{\alpha-\beta}\right)\left(A(\rho) D_{u}\right)^{\beta} q_{\xi} \tag{2.4}
\end{equation*}
$$

Here if we note that the sum in the right hand side belongs to the set of analytic functions with values in $S^{-1,-2}$, we can solve (2.4) asymptotically. Thus let $q_{\zeta} \sim \sum_{k=0}^{\infty} q_{\zeta, k}$ modulo $\mathscr{X}^{-(m-M / 2)}$ where $q_{\zeta, k} \in S^{-m-k,-M-2 k}$, then we see from (H. 3) that $q_{\zeta, 0}=(\dddot{p}(\rho, u)-\zeta)^{-1}$ and for $k \geq 1, q_{\zeta, k}$ is a linear combination of the from $(\breve{p}(\rho, u)-\zeta)^{-(l+1)} r_{k, l}$ where $r_{k, l} \in S^{l m-k, l M-2 k}(2 \leq l \leq 2 k)$ are independent of ζ. So there exists $q_{t}^{0} \in S^{-m,-M}$ uniformly in ζ such that

$$
\sum_{|\alpha| \leq M} \sum_{\beta \leq \alpha} \frac{i^{|\beta|}}{\beta!} D_{u}^{\beta}\left(a_{\alpha}(\rho) u^{\alpha}-\zeta\right)\left(A(\rho) D_{u}\right)^{\beta} q_{\zeta}^{0}-1=h_{\zeta}
$$

where $h_{\zeta} \in \mathscr{X}^{0}$ uniformly in ζ and $|\zeta| h_{\zeta} \in \mathscr{X}^{m-M / 2}$. Again using (H. 2) we obtain $h_{\digamma}^{0} \in \mathscr{X}^{-(m-M / 2)}$ so that

$$
\sum_{|\alpha| \leq M} \sum_{\beta \leq \alpha} \frac{i^{|\beta|}}{\beta!} D_{u}^{\beta}\left(a_{\alpha}(\rho) u^{\alpha}-\zeta\right)\left(A(\rho) D_{u}\right)^{\beta} h_{\xi}^{0}=h_{\zeta}
$$

and $|\zeta| h_{\xi}^{0} \in \mathscr{X}^{0}$. Thus we see that (ii) and (iii) hold.
Remark 2.3. By the quasi-homogeneity of \tilde{q}_{ξ} and (H.3), we can extend \tilde{q}_{ζ} analytically to $\{\zeta ; \tilde{p}(\rho, X) \neq \zeta\}$ for all (ρ, X).

Define a pseudodifferential operator Q_{ζ} with the symbol:

$$
\sigma\left(Q_{t}\right)= \begin{cases}q_{5} & \text { in a conic neighborhood of } \Sigma, \\ q_{\xi}^{\prime} & \text { outside a conic neighborhood of } \Sigma .\end{cases}
$$

Here we use a standard partition of unity $\left\{\psi_{k}(x, \xi)\right\}_{k \in K}$ such that ψ_{k} are homogeneous of degree 0 and if $\operatorname{supp} \psi_{k} \cap \Sigma \neq \phi, q_{k}(\rho, u)$ is constructed in $\operatorname{supp} \psi_{k}$. Then by [1] and [2], we have

$$
(P-\zeta) Q_{\xi}-I=R_{\zeta}^{(1)},(P-\zeta) q_{\xi}^{\prime}\left(x, D_{x}\right)-I=R_{\xi}^{(2)}
$$

where $\sigma\left(R_{f}^{(1)}\right)$ is an analytic function with values in $S^{0,1}$ in a conic neighborhood of Σ and in $S^{-1 / 2,0}$ otherwise and where $\sigma\left(R_{\varepsilon}^{(2)}\right)$ in $S^{-1 / 2,-1}$ uniformly in ζ (c.f. [9]). Then we construct two parametrices of $P-\zeta$ as follows. If we put

$$
Q_{k, 0}^{(1)}=Q_{\xi}-q_{\xi}^{\prime}\left(x, D_{x}\right) R_{\xi}^{(1)}, Q_{\xi, 0}^{(2)}=q_{\xi}^{\prime}\left(x, D_{x}\right)-Q_{\xi} R_{\varepsilon}^{(2)}
$$

then we have

$$
(P-\zeta) Q_{\hbar, 0}^{(1)}-I=-R_{\xi}^{\prime} \in O P S^{-1 / 2,0} .
$$

If we put $Q_{6, j}^{(1)}=Q_{6,0}^{(1)}\left(R^{\prime}\right)^{j} \in O P S^{-m-j / 2,-\mu} j=0,1, \cdots$, we have

$$
(P-\zeta)\left(\sum_{j=0}^{N-1} Q_{\vdots, 1}^{(1)}\right)-I \in O P S^{-N / 2,0} .
$$

Thus we can construct a parametrix $\tilde{Q}_{\xi}^{(1)}$ of $P-\zeta$ such that $\sigma\left(\chi_{\dot{\ell}}^{(1)}\right)-\sum_{j=0}^{N-1} \sigma\left(Q_{k, j}^{(1)}\right)$ is analytic function on l with values in $S^{-m-N / 2,-M}$ for every N. Similarly we can also construct an another parametrix $\chi_{8}^{(2)}$ by using $Q_{5,0}^{(2)}$.

§ 3. Construction of complex powers

In this section we shall construct complex powers $\left\{P_{z}^{(i)}\right\}_{z \in C}, i=1,2$ of P. Let $\widehat{Q}_{6}^{(i)}$ be the parametrices constructed in $\S 2$ of $P-\zeta(\zeta \in l)$ and let γ be a curve beginning at ∞, passing along l to a circle $|z|=\varepsilon_{0}$, then clockwise about the circle, and back to ∞ along l. If we choose ε_{0} sufficiently small, we may assume that $\sigma\left(\bar{Q}_{!}^{(i)}\right)$ are analytic on $l \cup\left\{|z| \leq \varepsilon_{0}\right\}$. Then we define operators $P_{(z)}^{(i)}$ with symbols $\sigma\left(P_{(z)}^{(i)}\right)$ by the formula:

$$
\begin{equation*}
\sigma\left(P_{(z)}^{(i)}\right)(x, \xi)=\frac{-1}{2 \pi i} \int_{r} \zeta^{z} \sigma\left(\tilde{Q}_{\left.\zeta^{(i)}\right)}(x, \xi) d \zeta, \quad i=1,2 .\right. \tag{3.1}
\end{equation*}
$$

When $\mathscr{R e z}<0$, we see easily from $\S 2$ that the integrals are absolutely convergent.

Proposition 3.1. Let \mathscr{R} ez <0. Then we have
(i) $\sigma\left(P_{(z)}^{(i)}\right) \in S^{\text {maez,Maez }}$ and

$$
\sigma\left(P_{(z)}^{(1)}\right)=\left\{\begin{array}{l}
\mu(z ; \rho, u)+r(z ; \rho, u) \quad \text { in a conic neighborhood of } \Sigma \\
\left(p_{m}-e^{i \theta_{0}}|\xi|^{m-M / 2}\right)^{\mathrm{z}} \quad \text { outside a conic neighborhood of } \Sigma
\end{array}\right.
$$

modulo analytic functions on $\{\mathscr{R} e z<0\}$ with values in $S^{\text {maez-1/2,мяez }}$ uniformly in wider sense in z. Here $r(z ; \rho, u)=r_{1}(z ; \rho, u) r_{2}(\rho, u), r_{1}$ is an analytic function on $\{\mathscr{R} e z<0\}$ with values in $S^{\text {meez-m,мяez-M }}$ uniformly in z and $r_{2} \in S^{m, M+1}$. Moreover

$$
\begin{equation*}
\mu(z ; \rho, u)=\frac{-1}{2 \pi i} \int_{r} \zeta^{z} q_{\xi}(\rho, u) d \zeta \tag{3.2}
\end{equation*}
$$

On the other hand

$$
\sigma\left(P_{(z)}^{(2)}\right)=\left(p_{m}-e^{i \theta_{0}}|\xi|^{m-M / 2}\right)^{z}
$$

modulo analytic functions on $\{\mathscr{R} e z<0\}$ with values in $S^{\text {mrez-1/2,Mrez-1 }}$ uniformly in wider sense in z.
(ii) For every k,

$$
\frac{d^{k}}{d z^{k}} \sigma\left(P_{(z)}^{(i)}\right)=\frac{-1}{2 \pi i} \int_{r}(\log \zeta)^{k} \zeta^{k} \sigma\left(\widehat{Q}_{\zeta}^{(i)}\right) d \zeta
$$

(iii) Let $\mathscr{R} e z_{0}<0$ and $m^{\prime}>m \mathscr{R} e z_{0}, m^{\prime}-k^{\prime} / 2>(m-M / 2) \mathscr{R} e z_{0}$. Then $\sigma\left(P_{(z)}^{(i)}\right)$ are analytic on a neighborhood of z_{0} with values in $S^{m^{\prime}, k^{\prime}}$.

Proof. For brevity we construct only in the case $i=1$ and drop out the index i. Let $Q_{\zeta, j}(j=0,1, \cdots)$ be the operators defined in $\S 2$. In a conic neighborhood of $\Sigma, \sigma\left(Q_{\zeta, j}\right)$ is of the form $(\dddot{p}(\rho, u)-\zeta)^{-1} r_{j}$ where $r_{j} \in S^{-j / 2,0}$ uniformly in ζ. Thus we have

$$
\begin{aligned}
I_{j}(z ; \rho, u) & =\frac{-1}{2 \pi i} \int_{r} \zeta^{z} \sigma\left(Q_{\zeta, j}\right)(\rho, u) d \zeta \\
& =\frac{-1}{2 \pi i} \int_{r} \zeta^{z}(\not{p}(\rho, u)-\zeta)^{-1} r_{j}(\zeta ; \rho, u) d \zeta
\end{aligned}
$$

By (H. 3) and quasi-homogeneity of $\check{p}(\rho, u)$,

$$
|\check{p}(\rho, u)| \geq C r^{m} \rho_{\Sigma}{ }^{M} .
$$

Moreover (H. 3) implies that

$$
|\check{p}(\rho, u)-\zeta| \gtrsim r^{m} \rho_{\Sigma}{ }^{M}+|\zeta|
$$

for all $\zeta \in l \cup\left\{|\zeta| \leq \frac{C}{2} r^{m} \rho_{\Sigma}{ }^{m}\right\}$. Let γ^{\prime} be a curve replaced the circle $|\zeta|=\varepsilon_{0}$ in γ with the circle $|\zeta|=\frac{C}{2} r^{m} \rho_{\Sigma}{ }^{M}$. By Remark 2.3, we may replace γ with γ^{\prime} where $\gamma^{\prime}=C_{1}+C_{2}+C_{3}$ such that

$$
\begin{array}{ll}
C_{1}: \zeta=-s e^{i \theta_{0}} & \text { if } \frac{C}{2} r^{m} \rho_{\Sigma}^{M} \leq s \leq+\infty, \\
C_{2}: \zeta=\frac{C}{2} r^{m} \rho_{\Sigma}{ }^{M} e^{-i \theta} & \text { if } \theta_{0} \leq \theta \leq \theta_{0}+2 \pi \quad \text { and } \\
C_{3}: \zeta=s e^{i \theta_{0}} & \text { if } \frac{C}{2} r^{m} \rho_{\Sigma}^{m} \leq s \leq+\infty .
\end{array}
$$

Put

$$
I_{j, k}=\frac{-1}{2 \pi i} \int_{c_{k}} \zeta^{z}(\not{p}(\rho, u)-\zeta)^{-1} r_{j}(\zeta ; \rho, u) d \zeta, \quad k=1,2,3 .
$$

Then we have

$$
\begin{aligned}
& \left|I_{j, 1}\right| \leq \tilde{C}_{1} r^{-j / 2} \int_{\frac{C_{2}}{2} r_{\rho_{\rho}}{ }^{M}}^{\infty} s^{s e z-1} d s \\
& \leq \tilde{C}_{2} r^{-j / 2} \frac{1}{\text { Rez }}\left[s^{\ell \ell z}\right] \frac{]_{\bar{Z}}^{\infty} r_{\rho_{P}}^{\infty}}{} \\
& \leq \tilde{C}_{3} r^{m e z-j / 2} \rho_{\Sigma}{ }^{\text {maez }}
\end{aligned}
$$

where $\tilde{C}_{1}, \tilde{C}_{2}$ and \tilde{C}_{3} are independent of x, ξ. Similarly we can estimate
 estimate the derivatives of I_{j}, we see $I_{j}(z ; \rho, u) \in S^{\text {meez-j/2,Msezz }}$. In particular, we have

$$
\sigma\left(Q_{\varepsilon, 0}\right)=q_{\xi}+r_{\xi}
$$

where $r_{\xi}=(p-\breve{p}) q_{\xi}^{\prime}(x, \xi)(\breve{p}-\zeta)^{-1}$ modulo analytic functions on l with values in $S^{-m-1 / 2,-M}$. Therefore we have (i) in a conic neighborhood of Σ. Outside a conic neighborhood of $\Sigma, \sigma\left(Q_{\varepsilon, j}\right)$ is of the form $q_{5}^{\prime} r_{j}$ where $r_{j} \in S^{-j / 2}$ uniformly in ζ for all $j=0,1, \cdots$. Now we have with a constant $C^{\prime}>0$

$$
\left.\left|p_{m}(x, \xi)-e^{i \theta_{0}}\right| \xi\right|^{m-M / 2} \mid \geq C^{\prime} r^{m} \rho_{\Sigma}{ }^{M} .
$$

Then (H. 1) implies that for all $\zeta \in l \cup\left\{|\zeta| \leq \frac{C^{\prime}}{2} r^{m} \rho_{\Sigma}{ }^{n}\right\}$,

$$
\left.\left|p_{m}(x, \xi)-e^{i \theta_{0}}\right| \xi\right|^{m-M / 2}-\xi\left|\gtrsim r^{m} \rho_{\Sigma}^{M}+|\zeta| .\right.
$$

Therefore by the same way as above we see that (i) holds. Finally (ii) follows from the fact that for any small $\varepsilon_{1}>0,\left|(\log \zeta)^{k}\right| \leq C_{k, \varepsilon_{1}}|\zeta|^{{ }^{1}}$ and (iii) is clear from (i).

Proposition 3.2. (i) Let $\mathscr{R e} \mathcal{z}_{1}<0$ and $\mathscr{R e} z_{2}<0$. Then we have

$$
\left.P_{\left(z_{1}\right)}^{(i)}\right) P_{\left(z_{2}\right)}^{(i)} \equiv P_{\left(z_{2}+z_{2}\right)}^{(i)} \quad i=1,2 .
$$

Here \equiv means that $\sigma\left(P_{\left(z_{1}\right)}^{(i)} P_{\left(z_{2}\right)}^{(i)}\right)-\sigma\left(P_{\left(z_{1}+z_{2}\right)}^{(i)}\right)$ are analytic functions in z_{1} and z_{2} with values in $\mathscr{X}^{m^{\prime}-k^{\prime} / 2}$ for any $m^{\prime}>m \mathscr{R} e\left(z_{1}+z_{2}\right)$ and $m^{\prime}-k^{\prime} / 2>(m-M / 2)$ $\mathscr{R e}\left(z_{1}+z_{2}\right)$.
(ii) For any $j>0$ integer, $P_{(-j)}^{(i)} \equiv\left(\widehat{Q}^{(i)}\right)^{j}$ where $\widetilde{Q}^{(i)}=\widehat{Q}_{0}^{(i)}$ are the parametrices of P.

Proof. As in the proof of Proposition 3.1, we prove only the case $i=1$ and drop out the index i. Since ζ^{-1} is a single valued function on γ,

$$
\sigma\left(P_{(-1)}\right)=-\frac{1}{2 \pi i} \int_{|\zeta|=\varepsilon_{0}} \zeta^{-1} \sigma\left(\tilde{Q}_{z}\right)(x, \xi) d \zeta
$$

Analyticity of $\sigma\left(\widetilde{Q}_{\varepsilon}\right)$ on $|\zeta| \leq \varepsilon_{0}$ implies $\sigma\left(P_{(-1)}\right)=\sigma(\widetilde{Q})$. Therefore it suffices to prove (i). If we put

$$
r_{N}(\zeta ; x, \xi)=\sum_{j=0}^{N-1} \sigma\left(Q_{\zeta, j}\right),
$$

then we have

$$
\left|\left(\sigma\left(\tilde{\chi}_{\varepsilon}\right)-r_{N}\right)\left({ }_{\beta}^{\alpha}\right)\right| \leq\left(|\zeta|+r^{m} \rho_{\Sigma}^{M}\right)^{-1} r^{-N / 2-|\alpha|} \rho_{\Sigma}^{-(|\alpha|+|\beta|)}
$$

uniformly in ζ. Since

$$
\sigma\left(P_{\left(z_{1}\right)} P_{\left(z_{z}\right)}\right)-\sum_{|\alpha|<N} \frac{1}{\alpha!} \sigma\left(P_{\left(z_{2}\right)}\right)^{(\alpha)} D_{x}^{\alpha} \sigma\left(P_{\left(z_{2}\right)}\right)
$$

is an analytic function with values in $S^{m^{\prime}, k^{\prime}}$ for any $m^{\prime}>m\left(\mathscr{R} e z_{1}+\mathscr{R} e z_{2}\right)-N$ and $m^{\prime}-k^{\prime} / 2>(m-M / 2) \mathscr{R e}\left(z_{1}+z_{2}\right)$, we see that

$$
T_{1}=\sigma\left(P_{\left(z_{2}\right)} P_{\left(z_{2}\right)}\right)-T_{2}
$$

where

$$
T_{2}=\sum_{|\alpha|<N} \frac{1}{\alpha!} \frac{1}{(2 \pi i)^{2}} \int_{r} \int_{r^{\prime}} \zeta_{1}^{2_{1}^{1}} \zeta_{2}^{\zeta_{2}^{2}} r_{N}\left(\zeta_{1} ; x, \xi\right)^{(\alpha)} D_{x}^{\alpha} r_{N}\left(\zeta_{2} ; x, \xi\right) d \zeta_{2} d \zeta_{1}
$$

is an analytic function in z_{1} and z_{2} with values in $S^{m^{\prime}, k^{\prime}}$. Here we may assume that γ^{\prime} is outside γ, but close to γ. In view of [9], if we define

$$
\begin{aligned}
K_{N}\left(\zeta_{1}, \zeta_{2}\right) & =r_{N}\left(\zeta_{1} ; x, \xi\right)-r_{N}\left(\zeta_{2} ; x, \xi\right) \\
& +\left(\zeta_{2}-\zeta_{1}\right)\left[\sum_{[r<N} \frac{1}{\gamma!} r_{N}\left(\zeta_{1} ; x, \xi\right)^{(r)} D_{x}^{\gamma} r_{N}\left(\zeta_{2} ; x, \xi\right)\right],
\end{aligned}
$$

we have

$$
\left|K_{N}\left(\zeta_{1}, \zeta_{2}\right)\right| \leq\left(\left|\zeta_{1}\right|+r^{m} \rho_{\Sigma}^{M}\right)^{-1}\left(\left|\zeta_{2}\right|+r^{m} \rho_{\Sigma}^{M}\right)^{-1} r^{m-N} \rho_{\Sigma}^{M-2 N} .
$$

Thus we have

$$
\begin{aligned}
T_{2} & =\frac{1}{(2 \pi i)^{2}} \int_{r} \int_{r^{\prime}} \zeta_{1}^{z_{1}} \zeta_{2}^{z_{2}}\left(\zeta_{2}-\zeta_{1}\right)^{-1}\left[r_{N}\left(\zeta_{1} ; x, \xi\right)-r_{N}\left(\zeta_{2} ; x, \xi\right)\right] d \zeta_{2} d \zeta_{1} \\
& +\frac{1}{(2 \pi i)^{2}} \int_{r} \int_{r^{\prime}} \zeta_{1}^{z_{1}} \zeta_{2}^{z_{2}}\left(\zeta_{2}-\zeta_{1}\right)^{-1} K_{N}\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{2} d \zeta_{1}
\end{aligned}
$$

Since

$$
-\frac{1}{2 \pi i} \int_{r} \zeta_{1}^{z_{1}}\left(\zeta_{2}-\zeta_{1}\right)^{-1} d \zeta_{1}=0, \quad-\frac{1}{2 \pi i} \int_{r^{\prime}} \zeta_{2}^{z_{2}}\left(\zeta_{2}-\zeta_{1}\right)^{-1} d \zeta_{2}=\zeta_{1}^{z_{2}}
$$

we have

$$
T_{2}-\left(-\frac{1}{2 \pi i} \int_{r} \zeta_{1}^{z_{1}+z_{2}} r_{N}\left(\zeta_{1} ; x, \xi\right) d \zeta_{1}\right) \in S^{m \operatorname{se}\left(z_{1}+z_{2}\right)-N, M \operatorname{Mec}\left(z_{1}+z_{2}\right)-2 N}
$$

On the other hand,

$$
\sigma\left(P_{\left(z_{1}+z_{2}\right)}\right)-\frac{-1}{2 \pi i} \int_{r} \zeta_{1}^{z_{1}+z_{2}} r_{N}\left(\zeta_{1} ; x, \xi\right) d \zeta_{1}
$$

is analytic in z_{1} and z_{2} with values in $S^{m^{\prime}, k^{\prime}}$. The proof is complete.
Proof of Theorem 1.2. For $i=1,2$, we set

$$
P_{z}^{(i)}= \begin{cases}P_{(z)}^{(i)} & \text { if } \mathscr{R} e z<0, \tag{3.3}\\ P^{k} P_{(z-k)}^{(i)} & \text { if } k \text { is an integer such that }-1 \leq \mathscr{R} e z-k<0 .\end{cases}
$$

Then we shall show that Theorem 1. 2 is valid for each $\left\{P_{z}^{(i)}\right\} i=1,2$. Let $\left\{P_{z}\right\}$ be one of them. First we have

$$
P_{1}=P^{2} P_{(-1)} \equiv P^{2} \widetilde{Q} \equiv P \quad \text { and } \quad P_{0}=P P_{(-1)} \equiv P \widetilde{Q} \equiv I
$$

If $\mathscr{R} e z<0, P_{z-1}=P_{(z)} P_{(-1)} \equiv P_{z} \widetilde{Q} \equiv P_{(-1)} P_{(z)} \equiv \widetilde{Q} P_{z}$. Thus P_{z} commutes with \widetilde{Q} and therefore $P_{z} P \equiv P P_{z}$ if $\mathscr{R e z}<0$. Consequently if $-1 \leq \mathscr{R} e z_{1}-k_{1}<0$ and $-1 \leq \mathscr{R} e z_{2}-k_{2}<0$, we have

$$
\begin{aligned}
P_{z_{1}} P_{z_{2}} & \left.=P^{k_{1}} P_{\left(z_{1}-k_{1}\right)}\right)^{k_{2}} P_{\left(z_{2}-k_{2}\right)} \\
& \equiv P^{k_{1}+k_{2}} P_{\left(\left(z_{1}+z_{2}\right)-\left(k_{1}+k_{2}\right)\right)} .
\end{aligned}
$$

When $-1 \leq \mathscr{R e}\left(z_{1}+z_{2}\right)-\left(k_{1}+k_{2}\right)<0$, it is equal to $P_{z_{1}+z_{2}}$. When $-2 \leq$ $\mathscr{R} e\left(z_{1}+z_{2}\right)-\left(k_{1}+k_{2}\right)<-1$, we have

$$
P_{\left(z_{1}+z_{2}\right)-\left(k_{1}+k_{2}\right)} \equiv \tilde{Q} P_{\left(z_{1}+z_{2}\right)-\left(k_{1}+k_{2}\right)+1}
$$

So it is equal to $P_{z_{1}+z_{2}}$. Thus Theorem 1.2 follows from Proposition 3.1, 3.2 and (3.3).

$\S 4$. The first singularity of the trace of \boldsymbol{P}_{z}

In this and next section, we assume that, as in $\S 1, \Sigma$ and P satisfy
(H. 1) $\sim($ H. 3) with $\Gamma=$ non-negative real line and Ω has a fixed positive C^{∞} density $d \Omega$.

The following definitions of the densities are due to [13]. For every $\rho \in \Sigma$ we define the Lebesgue measure $d X_{\rho}$ on $N_{\rho} \Sigma$ by :

$$
\int_{M-\operatorname{Hess} g_{m}(\rho)(X)<1} d X_{\rho}=1
$$

where M-Hess $p_{m}(\rho)(X)=\frac{1}{M!}\left(\tilde{X}^{M} p_{m}\right)(\rho)$ and \tilde{X} is an extension of X to a neighborhood of ρ. Note that $d X_{\rho}$ is positively-homogeneous of degree $m d / M$ in the sense: If for every $\rho \in \Sigma, f_{\rho}(X)$ is defined on $N_{\rho} \Sigma$,

$$
\int_{N_{2 \rho} e^{2}} f_{\lambda \rho}(X) d X_{2 \rho}=\lambda^{m d / M} \int_{N_{\rho} z^{2}} f_{\rho}(X) d X_{\rho} .
$$

In a conic neighborhood of Σ, we choose a local coordinates (u, v) so that (u, v) is as in the beginning in $\S 2$ and $d x d \xi=r(\rho)^{-n} d v d u(\rho=(0, v(x, \xi)))$. Define a positive C^{∞} density $d \rho$ on Σ by

$$
d \rho=\left.\left\{\int_{\left.|\alpha|\right|_{M} ^{\Sigma}=a_{\alpha}(\rho) u^{\alpha_{<}}<1} d u\right\} r(\rho)^{-n} d v\right|_{\Sigma} .
$$

Then $d \rho$ is homogeneous of degree ($M n-m d) / M$ in the same sense as above and we have $d x d \xi=d X_{\rho} d \rho$.

According to Schwartz' kernel theorem, each pseudodifferential operator P has a distribution kernel $K(x, y) d \Omega_{y}$ on $\Omega \times \Omega$:

$$
\langle P u, v\rangle=\langle K, u \otimes v\rangle \quad \text { for all } \quad u, v \in C^{\infty}(\Omega)
$$

where $u \otimes v(x, y)=u(x) v(y)$.
In the present section, we investigate the first singularity of the trace:

$$
\operatorname{Trace}\left(P_{z}^{(i)}\right)=\int_{\Omega} K_{z}^{(i)}(x, x) d \Omega_{x} \quad i=1,2
$$

where $K_{z}^{(i)}(x, y) d \Omega_{y}$ are the kernels of complex powers $P_{z}^{(i)}$. Then we have
Theorem 4.1. (i) Trace $\left(P_{z}^{(i)}\right)$ is analytic on

$$
\left\{z ; \mathscr{R} e z<\min \left(-\frac{n}{m},-\frac{2 n-d}{2 m-M}\right)\right\} .
$$

(ii) There are three cases on the first singularity:
(I) If $m d>M n$, Trace $\left(P_{z}^{(2)}\right)$ has the first singularity which is a pole of order 1 at $z=-\frac{n}{m}$ and the residue is equal to

$$
\begin{equation*}
-\frac{1}{m}(2 \pi)^{-n} \int_{S^{*} \Omega} P_{m}(\omega)^{-\frac{n}{m}} d \tilde{\omega} \tag{4.1}
\end{equation*}
$$

where $S^{*} \Omega$ is the cosphere bundle and d $\tilde{\omega}$ is a density on $S^{*} \Omega$ defined by $d x d \xi=r^{n-1} d r d \tilde{\omega}$.
(II) If $m d=M n$, Trace $\left(P_{z}^{(1)}\right)$ has the first singularity which is a pole of order 2 at $z=-\frac{n}{m}\left(=-\frac{2 n-d}{2 m-M}\right)$. The coefficient of $\left(z+\frac{n}{m}\right)^{-2}$ in the Laurent expansion is equal to

$$
\begin{equation*}
\frac{1}{M(m-M / 2)}(2 \pi)^{-n} \int_{\Sigma \cap S^{*} \Omega} \int_{S N_{\omega} \Sigma}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) X^{\alpha}\right)^{-\frac{n}{m}} d X_{\omega} d \omega \tag{4.2}
\end{equation*}
$$

where $S N_{\omega} \Sigma=\left\{X \in N_{\omega} \Sigma\right.$; M-Hess $\left.p_{m}(\omega)(X)=1\right\}$ and $d \omega$ is a density on $\Sigma \cap S^{*} \Omega$ defined by $d \rho=r^{-1} d r d \omega$. Note that $d \rho$ is homogeneous of degree 0 in this case.
(III) If $m d<M n$, Trace $\left(P_{z}^{(1)}\right)$ has the first singularity which is a pole of order 1 at $z=-\frac{2 n-d}{2 m-M}$ and the residue is equal to

$$
\begin{equation*}
-\frac{1}{(m-M / 2)}(2 \pi)^{-n} \int_{\Sigma \cap S^{*} \Omega} \int_{N_{\omega} \Sigma} \mu\left(-\frac{2 n-d}{2 m-M} ; \omega, X\right) d X_{\omega} d \omega \tag{4.3}
\end{equation*}
$$

Here $\mu(z ; \rho, X)$ is defined by:

$$
\mu(z ; \rho, X)=\frac{-1}{2 \pi i} \int_{r} \zeta^{z} \tilde{q}_{z}(\rho, X) d \zeta
$$

For the proof we have to use the following
Lemma 4.2. Let p_{z} be an analytic function on $\{\mathscr{R e z}<0\}$ with values in $S^{\text {meez-j,Mrez-k }}$ uniformly in z and $m>M / 2$. Define

$$
F(z)=(2 \pi)^{-n} \iint_{T_{*} \Omega} p_{z}(x, \xi) d x d \xi .
$$

(i) Let the support of p_{z} be outside a conic neighborhood of Σ. Then $F(z)$ is analytic on $\left\{\mathscr{R e z}<-\frac{n}{m}+\frac{j}{m}\right\}$.
(ii) With the notation of §2, we put

$$
E_{1}=\left\{(x, \xi) ;|u| \leq \varepsilon|v| \leq|u|^{2}\right\} \quad \text { and } \quad E_{2}=\left\{(x, \xi) ; \varepsilon|v| \geq|u|^{2}\right\}
$$

for a small $\varepsilon>0$.
(ii. 1) Let the support of p_{z} be in E_{1}. When $m d>M n, F(z)$ is analytic on $\left\{\mathscr{R} e z<-\frac{n}{[m}\right\}$ if $j=k=0$ and on $\left\{\mathscr{R} e z \leq-\frac{n}{m}\right\}$ if $2 j=k>0$ or $j>0, k=0$.

When $m d \leq M n, F(z)$ is analytic on $\left\{\mathscr{R e z} \leq-\frac{2 n-d}{2 m-M}\right\}$ if $2 j>k \geq 0$ and on $\left\{\mathscr{R} e z<-\frac{2 n-d}{2 m-M}\right\}$ if $2 j=k \geq 0$. For $j=0, k=-1, F(z)$ is analytic on $\left\{\mathscr{R e z} \leq-\frac{2 n-d}{2 m-M}\right\}$ when $m d<M n$.
(ii. 2) Let the support of p_{z} be in E_{2}. Then $F(z)$ is analytic on $\left\{\mathscr{R} e z<-\frac{2 n-d}{2 m-M}+\frac{2 j-k}{2 m-M}\right\}$.

Proof. By the hypothesis, there exists a constant $C>0$ (independent of z) such that

$$
\left|p_{z}\right| \leq C r^{\text {meez-j }} \rho_{\Sigma}^{\text {Mrez }-k}
$$

and note that for every bounded set B,

$$
(2 \pi)^{-n} \int_{B} p_{z}(x, \xi) d x d \xi
$$

is an entire function. In the case (i) $\rho_{\Sigma} \approx d_{\Sigma}+r^{-1 / 2} \gtrsim 1$ in supp p_{z} and hence $\rho_{\Sigma} \approx 1$. These facts imply

$$
r^{m s e z-j} \rho_{\Sigma}^{\text {Mrez-k }} \approx r^{m e z-j}
$$

Therefore letting $\mathscr{R e z} \leq b$,

$$
\int_{r \geq 1} r^{m \text { mez-j }} \rho_{\Sigma}^{M M e z-k} d x d \xi \leq C^{\prime} \int_{1}^{\infty} r^{m b-j+n-1} d r
$$

for some constant C^{\prime} (independent of z). Thus (i) holds.
In the case (ii.1), we see $r \approx|v|$ and so $\rho_{\Sigma} \gtrsim \frac{|u|}{|v|}$. Therefore letting $a \leq \mathscr{R} e z \leq b$, we have for some $\delta>0$

$$
\begin{aligned}
& \int_{r \geq \delta} r^{m \pi e z-j} \rho_{\Sigma}^{M \pi e z-k} d x d \xi \\
& \\
& \quad \leq C^{\prime} \int_{1 / e}^{\infty} s^{(m b-M a)-j+k+n-d-1} d s \int_{\sqrt{-s}}^{\iota s} t^{M a-k+d-1} d t \\
&
\end{aligned} \quad \leq\left\{\begin{array}{lll}
C^{\prime \prime} \int_{1 / \varepsilon}^{\infty} s^{m b-j+n-1} \log s d s & \text { if } \quad M a-k+d \geq 0, \\
C^{\prime \prime} \int_{1 / \varepsilon}^{\infty} s^{(m b-M a / 2)-j+k / 2+n-d / 2-1} d s & \text { if } \quad M a-k+d<0
\end{array}\right.
$$

where C^{\prime} and $C^{\prime \prime}$ are some constants independent of z. Thus (ii. 1) holds.
In the case (ii. 2), we see $r \approx|v|$ and $\rho_{\Sigma} \approx|v|^{-1 / 2}$. Since

$$
r^{m \Re e z-j} \rho_{\Sigma}^{M r e z-k} \leq C|v|^{(m-M / 2) \Re e z-j+k / 2}
$$

where C is a constant (independent of z), we have for $\mathscr{R} e z \leq b$,

$$
\begin{aligned}
& \int_{r \geq \delta} r^{m e e z-j} \rho_{\Sigma}^{M r e z-k} d x d \xi \\
& \quad \leq C^{\prime} \int_{1 / \varepsilon}^{\infty} s^{(m-M / 2) b-j+k / 2+n-d-1} d s \int_{0}^{\sqrt{\varepsilon s}} t^{d-1} d t \\
& \quad \leq C^{\prime \prime} \int_{1 / \varepsilon}^{\infty} s^{(m-M / 2) b-j+k / 2+n-d / 2-1} d s
\end{aligned}
$$

where C^{\prime} and $C^{\prime \prime}$ are some constants independent of z. Thus (ii. 2) holds.
Proof of Theorem 4. 1.
Since (i) is clear from Lemma 4.2, we shall prove (ii).
(I) The case : $m d>M n$ (therefore $\left.-\frac{n}{m}<-\frac{2 n-d}{2 m-M}\right)$.

In this case we use $\sigma\left(P_{z}^{(2)}\right)$. Then we can write

$$
\sigma\left(P_{z}^{(2)}\right)=\left(p_{m}(x, \xi)+|\xi|^{m-M / 2}\right)^{z}+p_{1}(z ; x, \xi)
$$

where $p_{1} \in S^{\text {meez-1/2, Meez-1 }}$ uniformly in z. By Lemma 4.2,

$$
\int p_{1}(z ; x, \xi) d x d \xi
$$

is analytic on $\mathscr{R e z} \leq-\frac{n}{m}$. Therefore we may examine

$$
(2 \pi)^{-n} \int_{r \geq 1}\left(p_{m}(x, \xi)+|\xi|^{m-M / 2}\right)^{z} d x d \xi
$$

Since $\left(p_{m}(x, \xi)+|\xi|^{m-M / 2}\right)^{z}=p_{m}(x, \xi)^{z}+p_{2}(z ; x, \xi)$ where $\left|p_{2}(z ; x, \xi)\right| \leq C_{\star}|\xi|^{(m-\mu / 2)}$ e $p_{m}(x, \xi)^{z-\varepsilon}$ for a small $\varepsilon>0$, it is sufficient to consider

$$
(2 \pi)^{-n} \int_{r \geq 1} p_{m}(x, \xi)^{z} d x d \xi
$$

Note that the integral is defined when $-\frac{d}{M}<\mathscr{R} e z<-\frac{n}{m}$. Since, for $\mathscr{R} e z<-\frac{n}{m}$,

$$
\begin{aligned}
& (2 \pi)^{-n} \int_{r \geq 1} p_{m}(x, \xi)^{z} d x d \xi \\
& \quad=\int_{1}^{\infty} r^{m z+n-1} d r(2 \pi)^{-n} \int_{S^{*} \Omega} p_{m}(\omega)^{z} d \tilde{\omega} \\
& \quad=\frac{-1}{m z+n}(2 \pi)^{-n} \int_{S^{*} \Omega} p_{m}(\omega)^{z} d \tilde{\omega}
\end{aligned}
$$

we see that $\operatorname{Trace}\left(P_{z}\right)$ has the first singularity at $z=-\frac{n}{m}$ which is a pole of order 1 and the residue is equal to (4.1). The proof of that case is complete.

In the case $m d \leq M n$, we use $\sigma\left(P_{2}^{(1)}\right)$. First we want to show that the integral

$$
(2 \pi)^{-n} \iint_{r^{*}} \sigma\left(P_{z}^{(1)}\right)(x, \xi) d x d \xi
$$

is analytic on $\left\{\mathscr{R e z}<-\frac{2 n-d}{2 m-M}\right\}$ and has a pole of order 1 or 2 at $z=-\frac{2 n-d}{2 m-M}$ as the first singularity if $m d<M n$ or $m d=M n$ respectively. For this purpose we say that a function $f(z ; x, \xi)$ is negligible if

$$
(2 \pi)^{-n} \iint_{T_{0} \cdot \Omega} f(z ; x, \xi) d x d \xi
$$

is analytic on $\left\{\mathscr{R e z}<-\frac{2 n-d}{2 m-M}\right\}$ and is extended analytically to $\{\mathscr{R e z} \leq$ $\left.-\frac{2 n-d}{2 m-M}\right\}$ when $m d<M n$ or has at most a pole of order 1 at $z=-\frac{2 n-d}{2 m-M}$ as the first singularity when $m d=M n$. By Proposition 3.1 and Lemma 4.2, it is clear that

$$
\sigma\left(P_{z}^{(1)}\right)= \begin{cases}\mu(z ; \rho, u)+r(z ; \rho, u) & \text { in a conic neighborhood of } \Sigma, \\ \left(p_{m}+|\xi|^{m-\mu / 2}\right)^{z} & \text { outside a conic neighborhood of } \Sigma\end{cases}
$$

modulo negligible terms.
In $\S 2$ we used the partition of unity $\left\{\psi_{k}(z, \xi)\right\}_{k \in K}$ such that ψ_{k} are homogeneous of degree 0 and if supp $\psi_{k} \cap \Sigma \neq \phi, q_{5}(\rho, u)$ in $\S 2$ is constructed in $\operatorname{supp} \psi_{k}$. When supp $\psi_{k} \cap \Sigma=\phi$, by the same way as the case (I) we see that $\left(p_{m}+|\xi|^{m-M / 2}\right)^{z} \psi_{k}(x, \xi)$ is negligible. Let supp $\psi_{k} \cap \Sigma \neq \phi$. Since $r(z ; \rho, u)$ $\in S^{\text {maez,Mez }+1} \subset S^{\text {maez, Msezz }}$, Lemma 4.2 implies that $r(z ; \rho, u) \psi_{k}$ are negligible when $m d<M n$. In the case $m d=M n$, we can write

$$
\begin{aligned}
r(z ; \rho, u) & =\frac{-1}{2 \pi i} \int_{r} \zeta^{z} \frac{p-\breve{p}}{(\breve{p}-\zeta)\left(p_{m}+|\xi|^{m-M / 2}-\zeta\right)} d \zeta \\
& \equiv \frac{-1}{2 \pi i} \int_{r} \zeta^{z} \frac{p_{m}-\breve{p}_{m}}{\left(\breve{p}_{m}+|\xi|^{m-M / 2}-\zeta\right)\left(p_{m}+|\xi|^{m-M / 2}-\zeta\right)} d \zeta \\
& =\left(p_{m}+|\xi|^{m-\mu / 2}\right)^{z}-\left(\breve{p}_{m}+|\xi|^{m-\mu / 2}\right)^{z} \\
& \equiv p_{m}{ }^{z}-\breve{p}_{m}{ }^{z} \quad \text { modulo negligible terms. }
\end{aligned}
$$

Since $p_{m}{ }^{z}-\breve{p}_{m}{ }^{z}$ is homogeneous of degree m, we can write

$$
\iint_{r \geq 1}\left(p_{m}^{z}-\check{p}_{m}^{z}\right) \psi_{k} d x d \xi=\int_{1}^{\infty} r^{m z+n-1} d r \int_{S^{*} \Omega} p_{z}^{2}(\omega) \psi_{k}(\omega) d \tilde{\omega}
$$

where $\left|p_{z}^{2}(\omega)\right| \leq C d_{\Sigma}(\omega)^{\text {Mrez }+1}$. Since we may assume $d_{\Sigma}(\omega) \leq \delta$ for some $\delta>0$ in supp ψ_{k}, it is negligible. Moreover since $\psi_{k}(x, \xi)=\psi_{k \mid \Sigma}+\psi_{k}^{\prime}(x, \xi)$ where $\psi_{k}^{\prime} \in S^{0,1}$, by the same way as above $\mu(z ; \rho, u) \psi_{k}^{\prime}$ is negligible. Thus we may examine

$$
I(z)=(2 \pi)^{-n} \int_{\Sigma \cap(r \geq 1\}} \int_{N_{\rho} \Sigma} \mu(z ; \rho, X) d X_{\rho} d \rho
$$

By the quasi-homogeneity of $\tilde{q}_{\xi}(\rho, X)$, we have

$$
\mu(z ; \rho, X)=r^{(m-M / 2) z} \mu\left(z ; r^{-1} \rho, r^{1 / 2} X\right)
$$

Since $d X_{\rho}$ and $d \rho$ are positively-homogeneous of degree $m d / M$ and ($M n-$ $m d) / M$ respectively, we have, for $\mathscr{R} e z<-\frac{2 n-d}{2 m-M}$,

$$
\begin{aligned}
I(z) & =\int_{1}^{\infty} r^{(m-\boldsymbol{M} / 2) z+m d / \boldsymbol{M}+(M n-m d) / M-d / 2-1} d r(2 \pi)^{-n} \int_{S^{*} \Sigma} \int_{N_{\omega} \Sigma} \mu(z ; \omega, X) d X_{\omega} d \omega \\
& =\frac{-1}{(m-M / 2) z+n-d / 2}(2 \pi)^{-n} \int_{S^{*} \Sigma} \int_{N_{\omega} \Sigma} \mu(z ; \omega, X) d X_{\omega} d \omega
\end{aligned}
$$

Next we consider

$$
\int_{N_{\omega} z} \mu(z ; \omega, X) d X_{\omega}
$$

If we define, for any $X \in N_{\omega} \Sigma,|X|_{\omega}=\left(M \cdot \operatorname{Hess} p_{m}(\omega)(X)\right)^{1 / M}$, we see that

$$
\int_{|X|_{\omega} \leq 1} \mu(z ; \omega, X) d X_{\omega}
$$

is an entire function and put

$$
\int_{|X|_{\omega} \geq 1} \mu(z ; \omega, X) d X_{\omega}=\int_{|X|_{\omega} \geq 1}\left(\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) X^{\alpha}\right)^{z}+r_{1}(z ; \omega, X)\right) d X_{\omega}
$$

where $r_{1}(z ; \omega, X)=\mu(z ; \omega, X)-\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) X^{a}\right)^{z} . \quad$ By (2.3), we have

$$
\begin{aligned}
& \tilde{q}_{\xi}(\omega, X)-(\tilde{p}(\omega, X)-\zeta)^{-1}=(\tilde{p}(\omega, X)-\zeta)^{-1} \\
& \quad\left(\sum_{|\beta| \geq 1} \frac{i^{|\beta|}}{\beta!} D_{X}^{\beta} \tilde{p}(\omega, X)\left(A(\omega) D_{X}\right)^{\beta} \tilde{q}_{\xi}(\omega, X)\right) .
\end{aligned}
$$

Noting $\tilde{p}(\omega, X) \geq|X|_{\omega}^{M}$ and $\left|\tilde{q}_{\xi}(\omega, X)\right| \leq|X|_{\omega}^{-M}$ for large $|X|_{\omega}$ uniformly in ζ, we see that $\mu(z ; \omega, X)-\tilde{p}(\omega, X)^{z}=O\left(|X|_{\omega}^{\text {Mitez-1 }}\right)$ as $|X|_{\omega} \rightarrow \infty$. Moreover since it is clear that $\tilde{p}(\omega, X)^{z}-\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) X^{\alpha}\right)^{z}=O\left(|X|_{\omega}^{M_{\omega} \text { gez }-1}\right)$ as $|X|_{\omega} \rightarrow \infty$, we see
that $r_{1}(z ; \omega, X)=O\left(|X|_{\omega}^{\text {MRez-1 }}\right)$ as $|X|_{\omega} \rightarrow \infty$. Therefore by the same way as Lemma 4.2 the integral of $r_{1}(z ; \rho, X)$ is analytic on $\left\{\mathscr{R} e z \leq-\frac{d}{M}\right\}$. Thus we may consider, for $\mathscr{R} e z<-\frac{d}{M}$

$$
I_{1}(z)=\int_{|X|_{\omega} \geq 1}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) X^{\alpha}\right)^{z} d X_{\omega}
$$

Let $\mathscr{R} e z<-\frac{d}{M}$. Since $I_{1}(z)$ is equal to

$$
\begin{aligned}
& \int_{1}^{\infty} s^{M z+d-1} d s \int_{S N_{\omega} \Sigma}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) Y^{\alpha}\right)^{z} d Y_{\omega} \\
& \quad=\frac{1}{M z+d} \int_{S N_{\omega^{\Sigma}}}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) Y^{\alpha}\right)^{z} d Y_{\omega}
\end{aligned}
$$

where $S N_{\omega} \Sigma=\left\{X \in N_{\omega} \Sigma ;|X|_{\omega}=1\right\}, I_{1}(z)$ is analytic on $\mathscr{R} e z<-\frac{d}{M}$ and has the first singularity at $z=-\frac{d}{M}$ which is a pole of order 1 and the residue is equal to

$$
-\frac{1}{M} \int_{S N_{\omega} \Sigma}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) Y^{\alpha}\right)^{-\frac{d}{M}} d Y_{\omega}
$$

Thus we have the case (II) and (III) as follows.
(II) The case : $m d=M n$ (therefore $\left.-\frac{2 n-d}{2 m-M}=-\frac{n}{m}=-\frac{d}{M}\right)$. In this case we can write $I(z)$

$$
\begin{aligned}
& =\frac{1}{(m-M / 2) z+n-d / 2}(2 \pi)^{-n}\left[\frac{1}{M z+d} \int_{S^{*} \Sigma} \int_{S N_{\omega} \Sigma}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) Y^{\alpha}\right)^{z} d Y_{\omega}\right. \\
& \quad+F(z, \omega)] d \omega
\end{aligned}
$$

where $F(z, \omega)$ is analytic on $\left\{\mathscr{R e} e z \leq-\frac{d}{M}\right\}$. Therefore $I(z)$ has the first singularity at $z=-\frac{n}{m}$ which is a pole of order 2 and the coefficient of $\left(z+\frac{n}{m}\right)^{-2}$ in the Laurent expansion of $I(z)$ is equal to (4.2).
(III) The case : $m d<M n$ (therefore $\left.-\frac{2 n-d}{2 m-M}<-\frac{n}{m}\right)$.

In this case since $-\frac{2 n-d}{2 m-M}<-\frac{d}{M}, I(z)$ has the first singularity at
$z=-\frac{2 n-d}{2 m-M}$ which is a pole of order 1 and the residue is equal to (4.3). The proof is complete.

§ 5. Asymptotic behaviors of the eigenvalues of P

In this section we assume that Σ and P satisfy (H.1) $\sim(\mathrm{H} .3)$ with $\Gamma=$ nonnegative real line as in $\S 4$ and $m>M / 2$. Moreover we assume :
(H. 4) P is formally self-adjoint, i. e. for every $u, v \in C^{\infty}(\Omega)$,

$$
\int_{\Omega} P u \bar{v} d \Omega=\int_{\Omega} u \overline{P v} d \Omega
$$

where $d \Omega$ is a fixed positive density on Ω.
Under (H. 1) $\sim(\mathrm{H} .3)$ and (H. 4), P is hypoelliptic with loss of $M / 2$ derivatives. Therefore we can regard P as an unbounded self-adjoint operator on $L^{2}(\Omega)$ with the domain $\left\{u \in L^{2}(\Omega) ; P u \in L^{2}(\Omega)\right\}$ and P has only eigenvalues of finite multiplicity whose limit point can be $\pm \infty$. Moreover we assume
(H. 5) P is semibounded from below.

Thus without loss of generality we may assume that the sequence of the eigenvalues is: $1 \leq \lambda_{1} \leq \lambda_{2}<\cdots, \lim _{k \rightarrow \infty} \lambda_{k}=\infty$ with repetition according to multiplicity. Let $N(\lambda)$ be the number of eigenvalues $\leq \lambda$, that is, $N(\lambda)=\sum_{\lambda_{k} \leq \lambda} 1$. It is well known that

$$
\operatorname{Trace}\left(P_{z}^{(i)}\right)=\int_{\Omega} K_{z}^{(i)}(x, x) d \Omega_{x}=\sum_{k=0}^{\infty} \lambda_{k}^{z} \quad i=1,2
$$

Then we have the asymptotic formula for $N(\lambda)$.
Theorem 5.1. (c.f. [13]) (I) If $m d>M n$, then we have

$$
\lim _{\lambda \rightarrow \infty} N(\lambda) \lambda^{-\frac{n}{m}}=(2 \pi)^{-n} \int_{p_{m}(x, \xi) \leq 1} d x d \xi
$$

(II) If $m d=M n$, then we have

$$
\lim _{\lambda \rightarrow \infty} \frac{N(\lambda) \lambda^{-\frac{n}{m}}}{\log \lambda}=\frac{n}{m(n-d / 2)}(2 \pi)^{-n} \int_{S^{*} \Sigma} d \omega
$$

(III) If $m d<M n$, then we have

$$
\lim _{\lambda \rightarrow \infty} N(\lambda) \lambda^{-\frac{2 n-d}{2 m-M}}=\frac{M n-m d}{M(n-d / 2)}(2 \pi)^{-n} \int_{\mu(\rho) \geq 1} d \rho
$$

where

$$
\mu(\rho)=\int_{N_{\rho} \Sigma} \mathscr{R} e \mu\left(-\frac{2 n-d}{2 m-M} ; \rho, X\right) d X_{\rho}
$$

and note that $\mu(\rho)$ is homogeneous of degree ($m d-M n$)/M.
For the proof of this theorem, we use the following lemma and proposition.

Lemma 5.2. Let d μ be a measure on the right half axis in \boldsymbol{R} defined by a non-negative monotone increasing function μ with $\mu(0)=0$. Assume that

$$
F(w)=\int_{0}^{\infty} e^{-w x} d \mu(x)
$$

is convergent for Rew >1 (hence analytic). Moreover assume that there exist complex numbers $A_{1}, A_{2}, \cdots, A_{p}$ such that

$$
H(w)=F(w)-\sum_{j=1}^{p} \frac{A_{j}}{(w-1)^{j}}
$$

is continuous on the closed half plane $\mathscr{R} e w \geq 1$. Then we have

$$
\lim _{x \rightarrow \infty} \frac{\mu(x)}{x^{p-1} e^{x}}=\mathscr{R} e A_{p} .
$$

Note that this lemma is an extension of Ikehara's Tauberian theorem which is treated the case $p=1$ (c.f. [19]). The proof is essentially based on Donoghue [3].

Proof. Let Rew >1. Then the integration by parts leads to

$$
G(w)=\frac{1}{w} \int_{0}^{\infty} e^{-w x} d \mu(x)=\int_{0}^{\infty} e^{-w x} \mu(x) d x .
$$

If we put

$$
\frac{1}{w}=\sum_{k=0}^{p-1}(-1)^{k}(w-1)^{k}+g(w),
$$

we see that $g(w)$ has the zero of order p at $w=1$. Therefore we can write

$$
G(w)=\sum_{j=1}^{p} \frac{A_{j}^{\prime}}{(w-1)^{j}}+h(w)
$$

where $h(w)$ is analytic on $\mathscr{R} e w>1$ and continuous on $\mathscr{R} e w \geq 1$ and $A_{p}^{\prime}=A_{p}$. Next put $b(x)=e^{-x} \mu(x)$ and for $\varepsilon>0$,

$$
a_{s}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<0, \\
e^{-s x} & \text { if } & x>0 .
\end{array}\right.
$$

If we take $w=1+\varepsilon+i \xi$ (ξ real), then we have

$$
G(w)=\int_{0}^{\infty} e^{-s x} b(x) e^{-i t x} d x=\left(a_{t} b\right)^{\wedge}(\xi) .
$$

Here ${ }^{\wedge}$ means the Fourier transformation. Since

$$
\frac{(j-1)!}{(\varepsilon+i \xi)^{j}}=\left(x^{j-1} a_{\star}\right)(\xi),
$$

we have

$$
\left(a_{\imath} b\right)^{\wedge}(\xi)=\sum_{j=1}^{p} \frac{A_{j}^{\prime}}{(j-1)!}\left(x^{j-1} a_{\imath}\right)^{\wedge}(\xi)+h(1+\varepsilon+i \xi) .
$$

Therefore by the definition of the Fourier transformation of \mathscr{S}^{\prime}, for any $\phi \in \mathscr{S}$,

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s x} b(x) \hat{\phi}(x) d x \\
& \quad=\sum_{j=1}^{p} \frac{A_{j}^{\prime}}{(j-1)!} \int_{0}^{\infty} x^{j-1} e^{-x x} \hat{\phi}(x) d x+\int_{-\infty}^{\infty} h(1+\varepsilon+i \xi) \phi(\xi) d \xi .
\end{aligned}
$$

Now select $\phi(\xi) \in C_{0}^{\infty}(\boldsymbol{R})$ such that $\hat{\phi}(x) \geq 0$ and $\int \hat{\phi}(x) d x=1$, and then replace $\phi(\xi)$ in the above with $\phi(\xi) e^{i y \xi}$. Then we have

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s x} b(x) \hat{\phi}(x-y) d x \\
& \quad=\sum_{j=1}^{p} \frac{A_{j}^{\prime}}{(j-1)!} \int_{0}^{\infty} x^{j-1} e^{-\iota x} \hat{\phi}(x-y) d x+\int_{-\infty}^{\infty} h(1+\varepsilon+i \xi) \phi(\xi) e^{i y \xi} d \xi .
\end{aligned}
$$

As $\varepsilon \rightarrow 0$, each integral on the right hand side converges to a finite limit because of the integrability of $\hat{\phi}$ and the continuity of h on $\mathscr{R e w} \geq 1$. Since the integral on the left is positive and increasing as $\varepsilon \rightarrow 0$, Beppo-Levi's theorem implies that the limit is integrable. If we take the real part in the above, then we have

$$
\begin{aligned}
& \int_{0}^{\infty} b(x) \hat{\phi}(x-y) d x \\
& \quad=\mathscr{R} e\left[\sum_{j=1}^{p} \frac{A_{j}^{\prime}}{(j-1)!} \int_{0}^{\infty} x^{j-1} \hat{\phi}(x-y) d x+\int_{-\infty}^{\infty} h(1+i \xi) \phi(\xi) e^{-i y \xi} d \xi\right] .
\end{aligned}
$$

As $y \rightarrow+\infty$, the last integral on the right hand side converges to 0 by the Riemann-Lebesgue lemma. Since

$$
\int_{0}^{\infty} x^{j-1} \hat{\phi}(x-y) d x=\sum_{k=0}^{j-1}(j-1) y^{j-1-k} \int_{-y}^{\infty} x^{t} \hat{\phi}(x) d x,
$$

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{1}{y^{p-1}} \int_{0}^{\infty} b(x) \hat{\phi}(x-y) d x=\frac{\mathscr{R} e A_{p}}{(p-1)!} \int_{-\infty}^{\infty} \hat{\phi}(x) d x=\frac{\mathscr{R} e A_{p}}{(p-1)!} \tag{A}
\end{equation*}
$$

When $x>x^{\prime}>0, b(x) \geq e^{x^{\prime}-x} b\left(x^{\prime}\right)$. Therefore

$$
\begin{gathered}
\int_{0}^{\infty} b(x) \hat{\phi}(x-y) d x=\int_{0}^{y} b(x) \hat{\phi}(x-y) d x+\int_{y}^{\infty} b(x) \hat{\phi}(x-y) d x \\
\geq b(y) \int_{y}^{\infty} e^{-(x-y)} \hat{\phi}(x-y) d x=b(y) \int_{0}^{\infty} e^{-x} \hat{\phi}(x) d x
\end{gathered}
$$

Hence, from (A),

$$
\begin{equation*}
\varlimsup_{y \rightarrow \infty} \frac{b(y)}{y^{p-1}} \leq \frac{\mathscr{R} e A_{p}}{\int_{0}^{\infty} e^{-x} \hat{\phi}(x) d x(p-1)!} \tag{B}
\end{equation*}
$$

Here for $\hat{\phi}(x)$ we substitute $\delta \hat{\phi}(\delta x-\sqrt{\delta})=\hat{\psi}(x)$, which is also a positive function in \mathscr{S} with the integral equal to 1 and if $\delta \rightarrow 0$,

$$
\int_{0}^{\infty} e^{-x} \hat{\psi}(x) d x
$$

converges to 1 . Then we have

$$
\varlimsup_{y \rightarrow \infty} \frac{b(y)}{y^{p-1}} \leq \frac{\mathscr{R e} A_{p}}{(p-1)!} .
$$

Next we decompose

$$
\int_{0}^{\infty} b(x) \hat{\phi}(x-y) d x=\int_{-y}^{\infty} b(x+y) \hat{\phi}(x) d x=\int_{-y}^{-1}+\int_{-1}^{0}+\int_{0}^{\infty}=\sum_{k=1}^{3} I_{k}(y) .
$$

Since

$$
\begin{aligned}
& \frac{1}{y^{p-1}} I_{1}(y) \leq \sup _{x>0} \frac{b(x)}{x^{p-1}} \int_{-y}^{-1}\left(\frac{x}{y}+1\right)^{p-1} \hat{\phi}(x) d x \\
& \frac{1}{y^{p-1}} I_{2}(y) \leq \frac{b(y)}{y^{p-1}} \int_{-1}^{0} e^{-x} \hat{\phi}(x) d x
\end{aligned}
$$

and

$$
\frac{1}{y^{p-1}} I_{3}(y) \leq \sup _{x \geq y} \frac{b(x)}{x^{p-1}} \int_{0}^{\infty}\left(\frac{x}{y}+1\right)^{p-1} \hat{\phi}(x) d x
$$

from (A) and (B) we have

$$
\begin{aligned}
& \frac{\mathscr{R} e A_{p}}{(p-1)!} \int_{-\infty}^{\infty} \hat{\phi}(x) d x \\
& \quad \leq \sup _{x>0} \frac{b(x)}{x^{p-1}} \int_{-\infty}^{-1} \hat{\phi}(x) d x+\lim _{y \rightarrow x} \frac{b(y)}{y^{p-1}} \int_{-1}^{0} e^{-x} \hat{\phi}(x) d x \\
& \quad+\frac{\mathscr{R} e A_{p}}{(p-1)!} \int_{0}^{\infty} \hat{\phi}(x) d x .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{\mathscr{R} e A_{p}}{(p-1)!} \int_{-\infty}^{0} \hat{\phi}(x) d x \\
& \quad \leq \sup _{x>0} \frac{b(x)}{x^{p-1}} \int_{-\infty}^{-1} \hat{\phi}(x) d x+\lim _{y \rightarrow \infty} \frac{b(y)}{y^{p-1}} \int_{-1}^{0} e^{-x} \hat{\phi}(x) d x
\end{aligned}
$$

Replacing $\hat{\phi}(x)$ with $\varepsilon \hat{\phi}(\varepsilon x)$ and letting $\varepsilon \rightarrow \infty$,

$$
\frac{\mathscr{R} e A_{p}}{(p-1)!} \int_{-\infty}^{0} \hat{\phi}(x) d x \leq \lim _{y \rightarrow \infty} \frac{b(y)}{y^{p-1}} \int_{-\infty}^{0} \hat{\phi}(x) d x
$$

Thus we have

$$
\frac{\mathscr{R} e A_{p}}{(p-1)!} \leq \lim _{y \rightarrow \infty} \frac{b(y)}{y^{p-1}}
$$

This completes the proof.
Proposition 5.3. Let $\sum_{k=1}^{\infty} \lambda_{k}^{z}$ be convergent for $\mathscr{R e z}<s_{0}(<0)$, hence analytic. Assume that there exist complex numbers $A_{1}, A_{2}, \cdots, A_{p}$ such that

$$
\sum_{k=1}^{\infty} \lambda_{k}^{z}-\sum_{j=1}^{p} \frac{A_{j}}{\left(z-s_{0}\right)^{j}}
$$

is continuous on $\mathscr{R e z} \leq s_{0}$. Then we have

$$
\lim _{\lambda \rightarrow \infty} \frac{(-1)^{p-1} s_{0} N(\lambda) \lambda^{s_{0}}}{(\log \lambda)^{p-1}}=\frac{\mathscr{R} e A_{p}}{(p-1)!} .
$$

Proof of Propositon 5. 3.
Let $s_{0}<0$ and

$$
f(z)=\int_{1}^{\infty} x^{-\frac{z}{s_{0}}} d \alpha(x)
$$

where $\alpha(x)$ is the number of eigenvalues such that $\left(\lambda_{k}\right)^{-s_{0}} \leq x$. Then $\alpha(x)$ is monotone increasing and $f(z)=\sum_{k=1}^{\infty} \lambda_{k}^{z}$. By the hypotheses, $f(z)$ is analytic on $\mathscr{R} e z<s_{0}$ and

$$
f(z)-\sum_{j=1}^{p} \frac{A_{j}}{\left(z-s_{0}\right)^{j}}
$$

is continuous on $\mathscr{R e z} \leq s_{0}$. If we put $\mu(x)=\alpha\left(e^{x}\right), \frac{z}{s_{0}}=w$ and $F(w)=f(z)$, we see that

$$
F(x)=\int_{0}^{\infty} e^{-w x} d \mu(x)
$$

is analytic on Rew >1 and

$$
F(w)-\sum_{j=1}^{p} \frac{B_{j}}{(w-1)^{j}}\left(B_{j}=\frac{A_{j}}{s_{0}{ }^{j}}\right)
$$

is continuous on \mathscr{R} erv ≥ 1. Thus if we apply Lemma 5.2, we see

$$
\lim _{x \rightarrow \infty} \frac{\alpha(x)}{x(\log x)^{p-1}}=\frac{\mathscr{R e} A_{p}}{(p-1)!s_{0}^{p}} .
$$

Taking $x=\lambda^{-s_{0}}$, we have

$$
\lim _{\lambda \rightarrow \infty} \frac{(-1)^{p-1} s_{0} N(\lambda) \lambda^{s_{0}}}{(\log \lambda)^{p-1}}=\frac{\mathscr{R e} A_{p}}{(p-1)!} .
$$

This completes the proof of Proposition 5.3.
Proof of Theorem 5. 1.
The case (I): Since

$$
\int_{S^{*} \Omega} p_{m}(\omega)^{-\frac{n}{m}} d \tilde{\omega}=\frac{m}{\Gamma\left(\frac{n}{m}\right)} \int e^{-p_{m}(x, \xi)} d x d \xi=n \int_{p_{m}(x, \xi) \leq 1} d x d \xi
$$

it is easy from Proposition 5.3.
The case (II): If we put

$$
\nu(t)=\int_{|\alpha|=M} a_{\alpha}(\omega) X^{\alpha}<t \mid
$$

and let $\lambda^{-1 / M} t \rightarrow t$, then we have $\nu(t)=t^{d / M} \nu(1)=t^{d / M}$. On the other hand we have

$$
\begin{aligned}
\int \exp & \left(-\sum_{|\alpha|=M} a_{\alpha}(\omega) X^{\alpha}\right) d X_{\omega} \\
& =\int \exp \left(-|X|_{\omega}^{M} \sum_{|\alpha|=M} a_{\alpha}(\omega)\left(\frac{X}{|X|_{\omega}}\right)^{\alpha}\right) d X_{\omega} \\
& =\frac{1}{M} \int_{0}^{\infty} e^{-s} s^{\frac{d}{M^{\prime}}-1} d s \int_{S N_{\omega} \Sigma}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) Y^{\alpha}\right)^{-\frac{d}{M}} d Y_{\omega} \\
& =\frac{1}{M} \Gamma\left(\frac{d}{M}\right) \int_{S N_{\omega} \Sigma}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) Y^{\alpha}\right)^{-\frac{d}{M}} d Y_{\omega}
\end{aligned}
$$

Since

$$
\int \exp \left(-\sum_{|\alpha|=M} a_{\alpha}(\omega) X^{\alpha}\right) d X_{\omega}=\int_{0}^{\infty} e^{-t} d \nu(t)=\frac{d}{M} \Gamma\left(\frac{d}{M}\right),
$$

we have

$$
\int_{S N_{\omega} \Sigma}\left(\sum_{|\alpha|=M} a_{\alpha}(\omega) Y^{\alpha}\right)^{-\frac{d}{M}} d Y_{\omega}=d
$$

If we note $\frac{d}{M}=\frac{n}{m}$ and apply Proposition 5.2 , we see that (II) holds.
The case (III) : In this case we have

$$
\begin{array}{rl}
\int_{\mu(\rho) \geq 1} & d \rho \\
& =\int_{r(\rho)(m d-M n) / M}^{\mu^{\prime}(\omega) \geq 1} \\
& =\frac{M}{M n-m d} \int_{S^{*} \Sigma}\left[r^{-(m d-M n) / M}\right]_{0}^{\mu(\omega)^{M /(M n-m d)}} d \omega \\
& =\frac{M}{M n-m d} \int_{S^{*} \Sigma} \mu(\omega) d \omega
\end{array}
$$

Thus applying Proposition 5.3 we see that (III) holds. This completes the proof of Theorem 5.1.

If we take $\lambda=\lambda_{k}$ in Theorem 5.1 , we can also give the asymptotic formula which is an extension of [15] to the hypoelliptic case.

Corollary 5.4. (I) If $m d>M n$, then we have

$$
\lim _{k \rightarrow \infty} k \lambda_{k}^{-\frac{n}{m}}=(2 \pi)^{-n} \int_{p_{m}(x, \xi) \leq 1} d x d \xi .
$$

(II) If $m d=M n$, then we have

$$
\lim _{k \rightarrow \infty} \frac{k \lambda_{k}^{-\frac{n}{m}}}{\log \lambda_{k}}=\frac{n}{m(n-d / 2)}(2 \pi)^{-n} \int_{S^{*} \Sigma} d \omega
$$

(III) If $m d<M n$, then we have

$$
\lim _{k \rightarrow \infty} k \lambda_{k}^{-\frac{2 n-d}{2 m-M}}=\frac{M n-m d}{M(n-d / 2)}(2 \pi)^{-n} \int_{\mu(\rho) \geq 1} d \rho
$$

Example. Let Ω be a compact C^{∞} Riemannian manifold of dimension $n>1$ with the metric $\sum_{j, k=1}^{n} g_{j k}(x) d x^{j} d x^{k}$ and its volume element $d \Omega=g^{1 / 2} d x$ $\left(g=\operatorname{det}\left(g_{j k}\right)\right)$. Let $\phi_{i} \in C^{\infty}(\Omega) i=1,2, \cdots, d(d<n)$ such that ϕ_{i} are real valued and $d \phi_{1}, d \phi_{2}, \cdots, d \phi_{d}$ are linearly independent at $\Omega_{1}=\left\{x \in \Omega ; \quad \phi_{i}(x)=0, i=\right.$ $1,2, \cdots, d\}$. Define

$$
\Delta_{\phi}=-\sum_{j, k=1}^{n} g^{-1 / 2} \frac{\partial}{\partial x_{j}}\left(\phi g^{1 / 2} g^{j k}\right) \frac{\partial}{\partial x_{k}}
$$

where $\phi=\sum_{i=1}^{d} \phi_{i}^{2}$ and $\left(g^{j k}\right)=\left(g_{j k}\right)^{-1}$. We consider the operator

$$
P=\Delta_{\varphi}+\sqrt{-\Delta}
$$

where Δ is the Laplace-Beltrami operator on Ω (c.f. Nordin [14]]. Then for $\rho \in \Sigma=\left\{(x, \xi) \in T^{*} \Omega \backslash 0 ; x \in \Omega_{1}\right\}=\pi^{-1}\left(\Omega_{1}\right)$, we have

$$
\begin{aligned}
\sigma_{\rho}(P)\left(y, D_{y}\right) & =\left(\sum_{j, k=1}^{n} \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}}(\pi(\rho)) y_{j} y_{k}\right)\left(\sum_{j, k=1}^{n} g^{j k}(\pi(\rho)) \xi_{j} \xi_{k}\right) \\
& +\sigma_{1}(\sqrt{-\Delta})(\rho) .
\end{aligned}
$$

where π is the natural projection $T^{*} \Omega \backslash 0 \rightarrow \Omega$. Thus $\sigma_{\rho}(P)\left(y, D_{y}\right)$ is an isomorphism from \mathscr{S} onto \mathscr{S} and satisfies (H.1) $\sim(\mathrm{H} .5)$. Therefore we have

$$
\left.\begin{array}{rl}
\lim _{x \rightarrow \infty} & N(\lambda) \lambda^{-(n-d / 2)} \\
& =\frac{1}{n-d / 2}(2 \pi)^{-n} \int_{S^{\bullet} \cdot} \int_{N_{\omega} \Sigma}(H e s s
\end{array}(\pi(\omega))(X)+1\right)^{-(n-d / 2)} d X_{\omega} d \omega
$$

where $S^{*} \Sigma=\left\{\rho=(x, \xi) \in \Sigma ; r(x, \xi)=\sqrt{\sum_{j, k=1}^{n} g^{j k}(x) \xi_{j} \xi_{k}}=1\right\}$. Since $|X|_{\bullet}=$ $\{\text { Hess } \phi(\pi(\omega))(X)+1\}^{1 / 2}$, the right hand side is equal to

$$
\begin{aligned}
& \frac{1}{n-d / 2}(2 \pi)^{-n} \int_{s^{*} \Sigma} \int_{|X|_{\omega}=1} \int_{0}^{\infty}\left(s^{2}+1\right)^{-(n-d / 2)} s^{d-1} d s d X_{\omega} d \omega \\
& \quad=\frac{1}{n-d / 2}(2 \pi)^{-n} \frac{\Gamma(d / 2) \Gamma(n-d)}{2 \Gamma(n-d / 2)} \int_{s^{*} \Sigma} \int_{|X|_{\omega}=1} d X_{\omega} d \omega .
\end{aligned}
$$

By the definitions of $d X_{\omega}$ and $d \omega$, we see

$$
\int_{\mid X_{\omega}=1} d X_{\omega}=d
$$

and

$$
\begin{aligned}
& \left.\int_{S^{*} \Sigma} d \omega=\text { the volume of the unit sphere in } \boldsymbol{R}^{d}\right) \times \\
& \quad\left(\text { the surface area of the unit sphere in } \boldsymbol{R}^{n}\right) \times\left.\int_{\Omega_{1}} d S\right|_{\Omega_{1}} .
\end{aligned}
$$

Thus we have

$$
\lim _{\lambda \rightarrow \infty} N(\lambda) \lambda^{-(n-d / 2)}=\left.\frac{2^{-(n-1)} \pi^{-(n-d) / 2} \Gamma(n-d)}{\Gamma(n / 2) \Gamma(n+1-d / 2)} \int_{\Omega_{1}} d \Omega\right|_{\Omega_{1}} .
$$

References

[1] Boutet de Monvel, L.: Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math., 27 (1974), 585-639.
[2] Boutet de Monvel, L., Grigis, A. and Helffer, B.: Paramétrices d'opérateurs pseudo-différentiels a caractéristiques multiples, Astérisque, 34-35 (1976), 93-121.
[3] Donoghue, W.: Distributions and Fourier transforms, Acad. Press, New York (1969).
[4] Duistermati, J. J. and Hörmander, L.: Fourier integral operators II, Acta Math. 128 (1972), 183-269.
[5] HELfFER, B.: Invariant associés à une classe d'operateurs pseudo-différentiels et applications à L'hypoellipticite, Ann. Inst. Fourier, Grenoble, 26 (1976), 55-70.
[6] HÖRMANDER, L.: Pseudodifferential operators and hypoelliptic equations, Amer. Math. Soc. Symp. Pure Math. 10 (1967), 138-183.
[7] HÖRmander, L.: Fourier integral operators I, Acta Math., 127 (1971), 79-183.
[8] IWASAKI, C. and IWASAKI, N.: Parametrix for a degenerate parabolic equation and its application to the asymptotic behavior of spectral functions for stationary problems, Publ. of RIMS, Kyoto Univ. 17 (1981), 577-655.
[9] Kumano-go, H. and Tsutsumi, C.: Complex powers of hypoelliptic pseudodifferential operators with applications, Osaka J. Math. 10 (1973), 147-174.
[10] Menikoff, A. and SJöstrand, J.: On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235 (1978), 55-85.
[11] MEnikoff, A. and SJöStrand, J.: On the eigenvalues of a class of hypoelliptic operators II, Springer Lecture note 755 (1978), 201-247.
[12] Menikoff, A. and SJöstrand, J.: The eigenvalues of hypoelliptic operators III. The non semibounded case, J. Analyse Math. 35 (1979), 123-150.
[13] MOHAMED, A.: Etude spectrale d'opérateurs hypoelliptiques a caractéristiques multiple, Jour. "Equations aux derivees partielles" Saint Jean de Monts, juin 1981.
[14] Nordin, C.: The asymptotic distribution of the eigenvalues of a degenerate elliptic operator, Ark. Mat. 10 (1972), 9-21.
[15] Seeley, R. T.: Complex powers of a elliptic operators, Singular iutegrals, Proc. Symposia Pure Math. 10 (1967), 288-307.
[16] SjÖSTRAND, J.: Parametrices for pseudodifferential operators with multiple characteristics, Arkiv för Mat. 12 (1974), 85-130.
[17] SJöSTRAND, J.: On the eigenvalues of a class of hypoelliptic operators IV, Ann. Inst. Fourier, Grenoble, 30-2 (1980), 109-169.
[18] Smagin, S. A.: Fractional powers of hypoelliptic operators in R^{n}, Soviet Math. Dokl. 14 (1973), No 2, 585-588.
[19] Wiener, N.: Tauberian theorems, Ann. of Math., 33 (1932), 1-100.
Department of Mathematical Science
Faculty of Science and Engineering Tokyo Denki University

