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§ 0. Introduction

Seeley has defined complex powers of elliptic operators P on a
compact C* manifold £ without boundary and examined asymptotic behaviors
of the eigenvalues. For hypoelliptic operators satisfying, what is called,
strong (H) condition of Hérmander [6], Kumano-go and Tsutsumi have
constructed complex powers suitable for them.

In the present paper we shall discuss complex powers {P,},.¢ of a class
of pseudodifferential operators P on the manifold 2. Here the operator P
has a symbol which vanishes exactly of order M on the characteristic set
Y, that is, P belongs to OPL™¥(Q; 3) which is defined by Sjostrand [16].
Then a condition of hypoellipticity of P with loss of M/2 derivatives is well
known (see Boutet de Monvel [1], Boutet de Monvel-Grigis-Helffer and
Helffer [5]). Moreover, we shall develop asymptotic behaviors of the eigen-
values of P on the further hypotheses that P is self-adjoint and semibounded
from below. For this purpose we have to construct two kinds of complex
powers of P and use more convenient one for each situation.

For M=2, Menikoff-Sjéstrand [10], [11], [12], Sjostrand and Iwasaki

have studied asymptotic behaviors under various assumptions on X and
P. In particular and have treated more general non-semibounded
cases. Their methods are based on the construction of the heat kernel and
an application of Karamata’s Tauberian theorem. For general M, see also
Mohamed [13]. However our method is essentially due to the theory of
complex analysis (c.f. Smagin [18]). In order to carry out this, we shall
study the first singularity of the trace of P, In‘elliptic case, Trace (P, has
an extension to a meromorphic function in z in € with only simple poles
([15]). But in our case, even the first singularity is able to have a pole of
second order. Accordingly we have to extend Ikehara’s Tauberian theorem
(see Wiener [19]).

The plan of this paper is as follows. In §1 we give the precise defini-
tion of the operator mentioned above and a main theorem (Theorem 1. 2).
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In §2 taking applications of [Theorem 1.2 in §4 and §5 into consideration,
we construct two kinds of parametrices of P—{ for some {=C. In §3 we
construct two kinds of complex powers of P corresponding to them respec-
tively. In §4 we give a theorem on the first singularity of the trace of
P, In §5 we study asymptotic behaviors of the eigenvalues using the
results in § 4 and give an example.

We shall use the notations and results of pseudodifferential cperators, for

which we refer to [1], [2], Duistermaat-Hérmander and Hoérmander [7].

§ 1. Definitions and the main theorem

Let 2 be a compact C* manifold without boundary of dimension n and
J be a closed conic submanifold of codimension d in the cotangent bundle
minus the zero section T*Q\0.

DeriniTION 1.1. Let m be a real number and M be a non-negative
integer. The space OPL™(Q; 3) is the set of all pseudodifferential opera-
tors PeL™(Q) (see [6]) that for every local coordinate neighborhood V C 2,
P has a symbol o(P)=p of the form:

1Y) P~ L pnnd),

where om_j12(P)=pm-y2(x, &) are elements of C*(R*X(R™\0)) and positively-
homogeneous of degree m—j/2 in & (j integral) and satisfy:

(1.2) For every KCYV, there exists a constant Cx>0 such that
lpnlbgiz&f;’zg)l < CKdz‘(xs E)M_j s ] = 0, 1’ *tty M
and
(1. 3) LP_WTgT’Te)I > Crds(z, ¥
for (x, )€ KX (R™\0) and |&|>1.
Here
dit, = inf (12 ~al+g )
(a6 €]

is the distance from (x, —é—l> to 3. Note that ds is a positively-homogeneous

Junction of degree 0 in &.
The class of symbols satisfying (1.1), (1.2) and (1.3) in an open conic
set U in T*Q\O is denoted by SL™*(U; 3).
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We describe the following hypotheses (H. 1)~(H. 3).
(H.1) There exists a fixed proper closed convex cone I” in C such that

pn(x, )l for all (x,6T*2\0.

For every p€2, we define a differential operator with polynomial coeffi-
cients on R (c.f. [2]):
(1. 4) (P)( D)_M _1__<_a_>a i)ﬁ 12(0) Y= D

| WOV D)= 2 e at pT\oz) o) POV s

(H.2) There exists a ray [={{=2¢%; 1>0}C —I" such that for every {
in the ray, ¢,(P)(y, D,)—{ is an isomorphism from & onto &% where &
denotes the space of rapidly decreasing functions.

For every p,€2, we can choose a conic neighborhood U, of p, and
a local coordinate system in U, :

u= (ul, Ugy ***y ud) ) v = (vl’ Uyy **0y vZn—d)

where u; and v, are C* positively-homogeneous of degree 1 such that XN U,

is defined by w;=u,=---=u,=0. If we choose pseudodifferential operators
U, U,, -+, Uy of order 1 with symbols ¢(U;)=u;, we can write (in U,)
(1. 5) P= 3, A,z D,) Ulx, D,)"

lal<sM

where A, are classical pseudodifferential operators of order m—(M+|al)/2.
If we define

p= 2 alo)w

jal<M

where p=(0, v(z, £)) and a, are the principal symbols of A,, we have
(1. 6) p—peSL™"t1,
Note that p is uniquely determined modulo SL™**! and

o, (P)W, D)= % ao) (s, (V) D)) .

lal<M

If we write p= flj Pm_ji» we can define a function on N,X=T,(T*2\0)/
i=o

T,2 by the following formula :

For every XEN, 2, p(p, X)= i —(—Mi—j)TXM‘fﬁm_j/z(p) where X designs
j=o :

an extension of X to a neighborhood of p.
(H.3) p(p, X)eI'\{0} for every pc2 and XEN, 2.

Note that under the conditions (H.1)~(H. 3), P is hypoelliptic with loss
of M2 derivatives (see [2]), that is, for any distribution f, Pf& H%2)
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implies f& H**™#/2()) where H*(2) is the Sobolev space.
Let ™42 (Q; 5) be NS™VH=2N(Q; 3) which abbreviately is written
N

by #™ M2 Then our main theorem is as follows.

THEOREM 1.2. Assume that PEOPL™(Q; X) satisfies the hypotheses
(H.1)~(H. 3) and m>M]|2. Then we can define complex powers {P},cc of
P in the following sense:

(i) P,eOpSme=ra=(Q; %),

(ii) P,=P, P,=1I (modulo OPZ™¥%(Q2; J),

(i) P, P, =P, ., (modulo analytic functions of 2z, and 2, with values
in OPX™=*/2(Q; 3) for any m' and kK such that m' >mARBe(z,+2,) and
m — K [2>(m— M/2) Re(z,+ 25),

(iv) For any real s, o(P,)(x, &) is an analytic function of z on {z;
Re< sy with values in S™-"%(Q; 3).

ReEmARK 1.3. If we put
P =P,+2(P-P)+(1—2)(I-PF),

then {P}},c satisfy (i), (i), (iv) and (iiy Pi=P, Py=L

Here S™*(2 ; Y) denotes the symbol class of [1, p. 591] i.e. ac.S™*(2; %)
means that a is in C*(T*Q\0) and for any vector fields X, X;, .-+, X,, Y3, Yo, -,
Y, with smooth coefficients on T*Q\0, positively-homogeneous of degree 0,
the X, being tangent to 2,

|X1X2"’XpY1 Yz"' anl éf‘mpzk"q

where r is a positively-homogeneous function of degree 1 such that it is
equal to 1 on the cosphere bundle and p;=(di+7")"2 Here we use the
notation f<g for C* positive functions f, g on T*Q\0, if for any subcone
UcT*2\0 with compact basis and ¢>0, there exists a constant C such that

f<Cg in U when r>e¢.

Moreover we write f~g if f<g and g<f (see also [1, p. 590]). Denote by
OPS™*(Q; X) the set of pseudodifferential operators corresponding to the

symbols in S™*(2; 3). Then we remark that if M is a non-negative integer,
we have OPL™Y(Q; Y)COPS™¥(Q; X).

§ 2. Construction of parametrices

In this section we shall introduce the operators defined by and
construct parametrices of P—{({cl). There exists a unique differential
operator on N,X:
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(2.1) Pr= 2. aylp)uDj
la+B|<M

where a,; are positively-homogeneous of degree m —(M+|a] —|f|)/2 such that

(r¥q9)” =P:q

for every q&SL™ ™. Here # means the composition of the symbols. In

view of [2], if we put a matrix A=(A;(0));x-12..c Where Az(0)= Z‘ auj( o)

ou

—aic-(p) are positively-homogeneous of degree 1, we have that for every
8

qeS™ M
(2.2) (P89 — Z ‘31 Dip(AD,) qeSmim Htat,

Now we shall construct a parametrix of P—{ for every {cl={{=12¢";
2>0}. (H.1) ensures that we can define, for every (&,

Gt (. &) = (pm(z, §) — e ¢ H72 —()

-1

ProrositiON 2.1. (i) ¢f iés analytic in { on | with values in S—™ ¥,
(ii) For any multi-indices a, B, Dz DEq. is a linear combination of the
form

(ge)*" hie (0 <k <[al +]B])

where h,&S™*1PME-1etb gre independent of {. In particular there exists
a constant C (independent of {) such that

lgt( 8)| < CE +rmps.

(i) (p—Q¥q—1=r,eS V2" Here 1} is of the form ¢irl! and rl is
analytic on [ such that for any multi-indices a, B, we have with a constant

C.; (independent of ()
|DaDﬁ ”l <C 7,.m 1/2 M—

This proposition follows easily from the symbol calculus.

Next we shall construct a parametrix near 3. Under the hypothesis
(H.2), for any peX and (&l p(p, X)—{ has an inverse §.(o, X) in the
following sense (see [2]): §, satisfies

zlﬂl

2.3 Xgy Di(Ble, X)~C) (Al0) () *Dx) acle, X) =1

If we identify X with u/r(p) and define g.(p, ) =q({; p, v)=§.(0, X), we have
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ProprosITION 2.2. With the above notations, we have
(i) §. is quasi-homogeneous of degree —(m— M]2) in the sense :
q —M/2c<2p’2 I/ZX) -—1 (m—M/2) (p X)

(ii) qc s an analytic function on | with values in S™™ ™ such that
for any multi-indices a, B, we have with a constant C,,>0 (independent of )

1Dz Digd < Cuplr™ o+ [E1) 70514190 57

where r=r(p), ps= Iztl) +7(p)~V2

(i)  gc(o, 2)=(P(p, w)— &)™t modulo analytic functions on | with values
in S—m—l/Z,—M—l.

Proor. Since

Blo, X)—C= 2. a.lp) r(0)*' X*—(,

lel<M

it is quasi-homogeneous of degree m— M/2. Thus by the uniqueness of the
inverse, (i) and the analyticity in (ii) are clear. From (2.3) we have

(2.4) 1=($(0,0—C) qelo )+ % % (5] (alo) w*) (A() Do)l g
IRISMIP‘JSZC} IB

Here if we note that the sum in the right hand side belongs to the set of
analytic functions with values in S™%~2 we can solve (2.4) asymptotically.

Thus let qc~i gcx modulo Z~™¥/? where g, &S5 ™ % ~¥"%, then we see
k=0

from (H. 3) that g, ,=(p(p, ) —&)! and for k>1, q. is a linear combination of

the from (B(p, u) — )~ %P7y, where r;,, €S *H-2 (2 <] <2k) are independent

of {. So there exists gf&S™ ¥ uniformly in { such that

zlﬂl

%, g1 Difalo) w =) (Alp) D) =1 =he

la[<M b<a
where h,eZ° uniformly in { and |{|h,eZ™ % Again using (H.2) we
obtain Ale £~ ™ ¥/? 5o that
zlﬁl 5
5, Z g Difade) w—t) (Alp) Do he=he

and [{| i€ #°. Thus we see that (ii) and (iii) hold.

RemARK 2.3. By the quasi-homogeneity of g, and (H. 3), we can extend
g, analytically to {¢; p(p, X)#¢} for all (p, X).

Define a pseudodifferential operator Q. with the symbol:
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Q)= g in a conic neighborhood of ¥,
lq{ outside a conic neighborhood of Y.

Here we use a standard partition of unity {¢;(x, £)}rex such that ¢ are
homogeneous of degree 0 and if supp ¢xN2+#¢, g0, ) is constructed in
supp ¢». Then by and [2], we have

(P—8) Q— R, (P-¢) q¢l(x, D)—I=R®

where ¢(R{’) is an analytic function with values in S%! in a conic neigh-
borhood of ¥ and in S™V2° otherwise and where ¢(R{?®) in S~¥%-1 uniformly
in { (c.f. [9]). Then we construct two parametrices of P—{ as follows.
If we put

Qev = Qc—qilx, Do) R, Q= qi(x, Do) — QR

then we have
(P—0) Q¥ —I= —R.eOPS-v20,
If we put Q) =QW"(R)€QPS™ %" j=(,1,---, we have

(P—0) (tz gpj) — [€OPS§-¥no,

Thus we can construct a parametrix Q¢ of P—¢ such that ¢(Q{)— jZ_:O a(Q)

is analytic function on [/ with values in S~ ¥2~¥ for every N. Similarly
we can also construct an another parametrix QO by using Q®.

§ 3. Construction of complex powers

In this section we shall construct complex powers {P{®},cc, =1, 2 of
P. Let Q% be the parametrices constructed in §2 of P—{ ({<l) and let
7 be a curve beginning at oo, passing along [ to a circle |z| =&, then clockwise
about the circle, and back to co along I. If we choose ¢, sufficiently small,
we may assume that o(Q{) are analytic on [U{|z|<e}. Then we define
operators P{}} with symbols ¢(P{{}) by the formula:

(3.1) o(P) (x, &) = jrcz o0 (2,8 de,  i=1,2.

2m

When %e2<0, we see easily from §2 that the integrals are absolutely
convergent.

ProposITION 3.1. Let Rez<0. Then we have
(1) ( 8;) Smaez Maez and
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= Ip(z; p,w)+r(z; pyu) in a conic neighborhood of 2
l(pm—e“olélm‘mz)z outside a conic neighborhood of %

modulo analytic functions on {Rez<0} with values in Sm*e1/2M2¢% yp;-
formly in wider sense in z. Here r(z; p,u)=ri(z; p,u) rlo,u), 1 is an
analytic function on {Rez<0} with values in Sm*™M*= M yniformly in
2 and r,&S™**,  Moreover

3.2 s pw)=ga | Calo) L.
On the other hand
o(P) = (p—l€[ ")
modulo analytic functions on {Rez<0} with values in Sm#—V2MAE=1 ypi.
formly in wider sense in z.
(ii) For every k,
d* k (D
< + | tog or 0(00)
(il) Let Rezo<0 and ml >mRez,, m — K [2>(m — M|2) Rez,. Then
o(P{Y) are analytic on a neighborhood of 2, with values in S™*

P) =5

Proor. For brevity we construct only in the case =1 and drop out the
index 7. Let Q; (j=0,1,:--) be the operators defined in §2. In a conic
neighborhood of X, ¢(Q; ;) is of the form (p(p, u)—§)~'r; where r,&5 /20

uniformly in {. Thus we have

L(z3 0,4 =g | €0(Qe) 1) e

= 2mi j & (Blo W —8) ' rilC; oW L.
By (H.3) and quasi-homogeneity of $(p, %),

B0, )| = Crmps™.
Moreover (H. 3) implies that

[B(o, 10—t = ps+ ¢
for all ¢ EZU{]CI S—g-rmpsM}. Let ¥ be a curve replaced the circle || =¢,

in y with the circle [{] =gr”‘ ps”. By Remark 2.3, we may replace y with
7 where 7 =C;+GC,+C; such that
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| . C .
Ci: L= —set if 77"”“02 <s< 400,
C psMe :
C— et lf 00£0_<_00+21r and

Cs: L =set if —g—r’”pzﬂgsg-l-oo.

Put

—1 _
L= [, €l =0 "rs(Cs pdl, k=123,

Then we have

[ 4] SGT‘MS: o S¥ids

-Q‘TmPZ'

[ Sénz] Qrmu M

) 1
_<_ 627.—.7/2 Tron
< Cs ymRez—;j/2 psMaez

where C,, C, and C; are independent of z, & Similarly we can estimate
I;5. Moreover we have easily |I;,| <Cyrm#e—i/2p M2 Since we can also
estimate the derivatives of I ;» We see I (z; p, u) & Smaes—i/2M2ez . In particular,
we have

U(Qc,o) =q+7¢

where r.=(p—p) ¢l(z, &) (p—{)! modulo analytic functions on ! with values
n S~™V2-¥  Therefore we have (i) in a conic neighborhood of 3. Outside
a conic neighborhood of X, ¢(Q; ;) is of the form g{ r; where r;&S-7?
uniformly in ¢ for all j=0,1,---. Now we have with a constant C’' >0

|m(, &) — etlgme| > C'rm p

v

C
2 TmpzM} ’

Then (H. 1) implies that for all CEZU{IC[ <

|om(, &) — (|22 — | = 7m0, M+ L]

Therefore by the same way as above we see that (i) holds. Finally (ii)
follows from the fact that for any small ¢ >0, |(log {)* <C;, [¢|" and (i)
is clear from (i).

ProrosiTion 3.2. (i) Let Rez,<0 and Rez,<0. Then we have
P((;'))P(l) P(z+z) i:1,2-

(zz) -
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Here = means that ¢(P{)P{2,)—a(P{,,,) are analytic functions in 2, and
2, with values in ™ %" for any m' >mRBe(z+2,) and m! —k [2>(m— M/2)
Re(z+ 2,).

(ii) For any j>0 integer, PP, =(Q®)! where Q@ =0 are the parame-
trices of P.

ProOF. As in the proof of Proposition 3.1, we prove only the case
i=1 and drop out the index 7. Since {!is a single valued function on 7,

oP)= g7 | to( @)z 8)

21

Analyticity of (3, on |{|<e, implies o(P_y)=0(Q). Therefore it suffices
to prove (i). If we put

(Ca x’ ) jZ (QC j)
then we have

I( Q‘ ) | (18] +7rm o M)ty N/2=lal g = el tifd
uniformly in {. Since

1
0(Puy Pay)— 2. 2l C (Pey)® Dio(Pey)

laj <N

is an analytic function with values in S™* for any m' >m(Rez,+ Rez) — N
and m' —Fk [2>(m— M|2) Re(z+2,), we see that

Ti=o (P (zl)P <z,)) —T,

where

1 1
T,= Z

]al<N—aT (277.'i>2

[ [ etors(s 2. Dirs(e; 2,8) dad

is an analytic function in 2, and 2, with values in S$™-*. Here we may
assume that 7 is outside 7, but close to 7. In view of [9], if we define

Ky(Cy, &) =7rx(C1s x,8)—1nl(les x,8)

1
He0) 5 s 589 Dirs(les 28],

we have

| Ko | S (1G] +7m05%) 7 ([Gal 477 p,2) 2 rm=Y o 2N

Thus we have
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1
T, = (2mi)? _\ S Ch G5 (Ce— Cl)—l[rN(Cl; z,§)—ry(le; 5)] dt,d¢,
1 -1
+ —(Z—{Z)TST ST' Cll CZE(CZ_CI) KN(CI! Cz) dCdeI .
Since
1 1 B
~ 2mi f (C—07dG=0, - Z—MS 3 (C—C) Ml = Lo,
we have

1
T2_ (_ __S Cid—zz vy (Cl DX E) dc1>ESm,ste(zﬁz,)—N,Mae(z,+zz)—2N .
7

2r

On the other hand,

—1
",(P(zﬁzz))— 2—77-"&‘ Chtary(Ces x,6) dE,

is analytic in 2, and 2, with values in S™*. The proof is complete.
Proor oF THEOREM 1.2. For 1=1, 2, we set
3.3) P® = {P((g'g | if #e2<0,
PrP{ ., if k is an integer such that —1<%ez—£k<0.

Then we shall show that [Theorem 1|. 2 is valid for each {P®} i=1,2. Let
{P,} be one of them. First we have
P1 PP(I)"‘PZQ P and Po PP(I)_—PQ I

If #ez<0, P,_,=P,, P(_DEP,QEP(_I) P(Z)EQPZ. Thus P, commutes with Q
and therefore P,P=P P, if #¢2<0. Consequently if —1<%ez —k <0 and
—1<Rez,—k,<0, we have
le Pzz = Pl P(z‘-—kl) szP(zz—kz)
= Pkl+k2P((zl+z2)-—(kl+kz)) .
When — 1< Reo(2+ 2) — (k4 k) <0, it is equal to P,,,. When —2<
Re(2+25) — (ki + k) < —1, we have

P (2,+2,) -k, +ky) = QP (2, +2,) — (&, +k,) +1 +

So it is equal to P,,,. Thus [Theorem 1.2 follows from Proposition 3.1,
3.2 and (3. 3).

§4. The first singularity of the trace of P,

In this and next section, we assume that, as in §1, ¥ and P satisfy
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(H.1)~(H. 3) with I'= non-negative real line and 2 has a fixed positive
C* density d9Q.

The following definitions of the densities are due to [13]. For every
pEZX we define the Lebesgue measure dX, on N,X by:

S dx, =1
M-Hessp, () (X) <1
where M- Hess pn(p) (X)=7T14—,(XMpm) (o) and X is an extension of X to

a neighborhood of p. Note that dX, is positively-homogeneous of degree
mdfM in the sense: If for every p&2, f,(X) is defined on N,Z,

SW Fu(X) dX, = W,MLPS £(X) dX, .

In a conic neighborhood of Y, we choose a local coordinates (u, v) so that
(u,v) is as in the beginning in §2 and dxdf=r(p)"dvdu (o =(0, v(xE))).
Define a positive C* density dp on ¥ by

dp = {Sl )X Maa(p)u“<1du} (o)™ dvl;.

Then dp-' is homogeneous of degree (Mn—md)/M in the same sense as above

and we have dxdé=dX,dp.

According to Schwartz’ kernel theorem, each pseudodifferential operator
P has a distribution kernel K(x,¥y)d?2, on 2x8:

{Pu, v) = (K, u@v) for all «, v&eC>(Q)
where uXv(z,y) = u(x) v(Yy).

In the present section, we investigate the first singularity of the trace:

Trace (P¥) = S KO(x, 0d2 i=1,2

2
where K{(x,¥y) d2, are the kernels of complex powers P», Then we have

THEOREM 4.1. (i) Trace(P®) is analytic on

X n 2n—d
{z ; Rez<min (— P m)} .
(ii) There are three cases on the first singularity :
(1) If md>Mn, Trace (P?) has the first singularity which is a pole

n . .
of order 1 at Z=—" and the residue is equal to
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(4.1) _ %(27:)—71 Swpm(wr%d@

where S*Q is the cosphere bundle and da is a density on S*Q defined by
dx dé=r""' dr da.
(II) If md=Mn, Trace (P®) has the first singularity which is a pole
_ —2
of order 2 at 2= — %(: — —5-:;—_%) The coefficient of (z—i— %) in the

Laurent expansion is equal to

42 gy 0 o D0 X E XA

la|=M

where SN, ={XEN,Y; M-Hess p,(0w)(X)=1} and dw is a density on
2NS*Q defined by do=r"' drdw. Note that dp is homogeneous of degree
0 in this case.

(Il) If md< Mn, Trace (P®) has the first singularity which is a pole

of order 1 at 2= — % and the residue is equal to
1 2n—d
(4 3) - m(zn)_nSSnS,ng 2{}(.—- —zm s W, X) an d(t) .

Here p(z; p, X) is defined by :

1
ples 0, X) = 5o | Cado, X L.

For the proof we have to use the following

LEmMMA 4.2. Let p, be an analytic function on {#e2<0} with values
in Smre=iMre—k yniformly in 2 and m>MJ2. Define

Fa=ea ([ pinededs.

(i) Let the support of p, be outside a conic neighborhood of 3. Then

F(2) is analytic on {%ez< ——Z;—l——:;}.
(ii) With the notation of § 2, we put
E={z8; lul<clv|<|ul?} and E={(z8); elv|>|ul}

for a small ¢>0.
(i.1) Let the support of p, be in E. When md>Mn, F(2) is analytic

on {%ez< —-%} if j=k=0 and on {%ezg— ~::l—} if 2j=k>0 or j>0, k=0.
’
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When md<Mn, F(2) is analytic on {%ezé_— 227722%{4—} if 2)>k>0 and on
{ 2n—d

,%&z<——m} if 2)=k>0. For j=0, k=—1, F(2) is analytic on

{%ezg — %} when md< Mn.
(ii. 2) Let the support of p, be in E,. Then F(2) is analytic on

on—d 25—k
ez — =5 + 220}

Proor. By the hypothesis, there exists a constant C>0 (independent
of 2) such that

Ipzl S Crmglez—-j pEMQez—k

and note that for every bounded set B,

a7 pun e dude

is an entire function. In the case (i) p;=~d;+7r"V2>1 in supp p, and hence
ps=1. These facts imply

rmmz—j pEMmz—k ~ rmmz—-j

Therefore letting #ez<b,
S rmaez—j Pz‘Mmz_k dx dE S CI Soormb-j+n—1dr
r>1 1

for some constant C’' (independent of z). Thus (i) holds.

In the case (ii. 1), we see r=~|v| and so p,>IL’ Therefore letting

L
a<lRez<b, we have for some 6>0 '

S‘ >6rm9!ez—j ‘ozﬂaez—k dx dE
r2

<C Sw

(2]
S(mb-—Ma) —Jjtkt+tn—d—1 dss tMa"‘k+d—ldt
1/e s

Y8

C"Soj smbmitn-llog s ds if Ma—k+d>0,
< 1/e

CII ‘ro S(mb—Ma/Z)—j+k/2+n—d/2—1 dS lf Ma _ k + d< O

1/e

where C' and C"” are some constants independent of 2. Thus (ii. 1) holds.
In the case (ii. 2), we see r~|v| and py;~|v|~¥% Since

rmaez—j poaez—k < Cl.vl (m—M/2) Rez—j+k/2
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where C is a constant (independent of 2), we have for Zez<b,

s rmaez—j pEMaez-k dx ds
>4

vs$
t1dt

00
S C’S S(m—M/2) b—j+k/2+n-—d—1dss
1/e 0

[o0]

< C” S §Mm—M/2)b—j+k/2+n—d/2—1 dS
1/s
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where ' and C” are some constants independent of z. Thus (ii. 2) holds.

Proor or THEOREM 4. 1.

Since (i) is clear from Lemma 4. 2, we shall prove (ii).

(I) The case: md>Mn (therefore— % < — Z_Zmn_EdH)

In this case we use ¢(P®). Then we can write

o(P?) = (pul(z, O+ 1E" 2 +p1(2; 2,¢)

where p,eSm#e-12¥2¢-1 ypiformly in 2. By Lemma 4. 2,

Spl(z; z, §) dx df
is analytic on .%azé-—;nz—. Therefore we may examine

en | (pale §+lgl ) dzde.

Since (pm(z, &)+ |E|™ M2 =p,(z, £+ ps(z; z, £) where |ps(z; , &) <C.|&| ™2/

Pm(x, £ for a small ¢>0, it is sufficient to consider

a7 pula erdeds.

Note that the integral is defined when —%<%ez<—%. Since, for
n
%52<_7’
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we see that Trace (P,) has the first singularity at Z=— which is a pole
of order 1 and the residue is equal to (4.1). The proof of that case is
complete.

In the case md<Mn, we use o(P{). First we want to show that the
integral

xy ([ otP®) (2.0 du e

is analytic on {.%ez<—2—2m7—1—:—%} and has a pole of order 1 or 2 at

2n—d o :
z:_—27n71:—M— as the first singularity if md<<Mn or md= Mn respectively.

For this purpose we say that a function f(z; z, &) is negligible if

en([, fes w9 drae

is analytic on {%ez< ——2—27—:—};{7} and is extended analytically to {.%azg

_sz%%} when md< Mn or has at most a pole of order 1 at 2= —%‘:—3\1—/[

as the first singularity when md=Mn. By Proposition 3.1 and Lemma 4. 2,
it is clear that

o(PY) = f u(z; p,u)+7r(z; pyu) in a conic neighborhood of Y,
|( Dmt |G| M2 outside a conic neighborhood of ¥

modulo negligible terms.

In §2 we used the partition of unity {¢y(2, &)}rex such that ¢, are
homogeneous of degree 0 and if supp ¢,NI+#¢, g.(p, u) in § 2 is constructed
in supp ¢5. When supp ¢, N2 =¢, by the same way as the case (I) we see
that ( pm+ 6™ 27 ¢y (x, €) is negligible. Let supp ¢ NI +#¢. Since r(2; p, u)
€ Smacs.Maestl C GmaezMaez [ emma 4.2 implies that 7(2; p, ) ¢ are negligible
when md<Mn. In the case md=Mn, we can write

-1 %
rles ) = | S =g (po gy
27t ),> (Pmt1EI™ M2 —L) (pm+|E[mH2—()

= (P €174 — (B -+ 6]

= Pu® — P’ modulo negligible terms.

Since pn*—pn* is homogeneous of degree m, we can write
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SSTZI(P *—Pud) prdx df = s rmz+n—1drs ‘api(w) Or(w) déd

where |p?(0)| <Cds(w)"*1, Since we may assume d;(w)<d for some §>0
in supp ¢4, it is negligible. Moreover since ¢u(x, &) = Qu:+¢r(x, §) where
¢S, by the same way as above p(z; p,u) ¢ is negligible. Thus we
may examine

I(2) = (Zn)_”sm( . g _ plz; 0, X)dX,dp.
rz [

By the quasi-homogeneity of §(p, X), we have
ples o X)=roumep(e; 1, 7).

Since dX, and dp are positively-homogeneous of degree md/M and (Mn—

md)/ M respectively, we have, for Zez< — —%,

I(z) :S 7 (m—M/D 2+ md/ M+ (Mn—md) /M—d/2—1 dr(Zﬂ)_"S S p(z; o, X) dX.dw
S*x

1 N,z

—1 _ _ |
= b e 2, s 0 X dX.do,

Next we consider

S u(z; @ X)dX, .
N,z
If we define, for any X&N., 2, | X|,=(M-Hess pn(w) (X))"¥, we see that

Smwgly(z; o, X) dX,

is an entire function and put

glxlwg#(z; o, X S <<M 3y Xa> +7r(2; o X)) X,
where r(2; o, X)=p(2z; o, X)—( a.(w) X*. By (2.3), we have

lal=M
e X)~(plen X)= )" = (plen 0=0)
(J“; 79 r Did(o, X) (A(e) Dx)' g, X)) :

Noting p(w, X)>|X|¥ and |§(w, X)| <|X|;¥ for large |X]|, uniformly in ¢,

we see that p(z; w, X)—plo, X=0(] X|¥*=-1) as | X|,—oo. Moreover since

it is clear that p(w, X)*—( Y, a.(w) X =O(| X|¥**") as |X|,—o0, we see
jal=M
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that r(z; o, X)=0(] X|¥*!) as | X|,—c0. Therefore by the same way as

Lemma 4. 2 the integral of r(2; p, X) is analytic on {%ezg—%}. Thus

we may consider, for Zez< M

h(z)= S 1x1,>1 (la|Z=:Maa(w) Xa>de“’ )

Let Rez< —%. Since I(2) is equal to

Soo sMzt+d—1 dsS

1 SN, 2‘<[al=M

a,( )Y«) dy,

Mz+d SSN £ Vgl Maa Ya> ax,

where SN, Y={XeN,2%; | X|.=1}, I,(2) is analytic on %ez< ——-—% and has

; ) . d c oy - .
the first singularity at 2= — M which is a pole of order 1 and the residue

is equal to

_%I—S‘SNJ(MEMCI"(O)) Y- way. .

Thus we have the case (II) and (III) as follows.
2n—d n d
(I) The case: md=Mn |therefore — M= m =" M/

In this case we can write I(2)

1 1 2
= m—M2)zFn—dJ2 <2")'"[ Matd SS.JSM (5,0 Y)ay.
+F(z, a))] do

where F(z, ) is analytic on {%ezé—%}. Therefore I(z) has the first
singularity at z:—*:;— which is a pole of order 2 and the coefficient of
-2
(z—l— %) in the Laurent expansion of I(2) is equal to (4. 2).
() The case: md< Mn (therefore — Q%:LM< —%\)
In thi : 2n—d d I2) h he fi noular:
n this case since ~om—M < - M (2) has the first singu arity at
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_ 2n—d
=T om—M
The proof is complete.

which is a pole of order 1 and the residue is equal to (4. 3).

§ 5. Asymptotic behaviors of the eigenvalues of P

In this section we assume that Y and P satisfy (H.1)~(H. 3) with I'=
nonnegative real line as in § 4 and m>M/2. Moreover we assume :

(H.4) P is formally self-adjoint, i.e. for every u, vEC®(%),
S Puod$? =S uPvdQ
Q2 Q2

where df2 is a fixed positive density on £.

Under (H. 1)~(H. 3) and (H. 4), P is hypoelliptic with loss of M/2 derivatives.
Therefore we can regard P as an unbounded self-adjoint operator on L*%)
with the domain {xe L¥R); Puc L*2)} and P has only eigenvalues of finite
multiplicity whose limit point can be +oco. Moreover we assume

(H.5) P is semibounded from below.

Thus without loss of generality we may assume that the sequence of the
eigenvalues is: 1<, <2< -+, lim 4,=oco with repetition according to multi-

k—o0

plicity. Let N() be the number of eigenvalues <2, that is, N(3)= 2, 1.

Ap<2
It is well known that

=]

Trace (P%) :S KO(x, 2)d2 =5 22 i=1,2.
Q2 k=0
Then we have the asymptotic formula for N(4).
THEOREM 5.1. (c.f. [13]) (I) If md>Mn, then we have
lim N(3) - = (zn)—ns
P Dy (2,81

(I) If md=Mn, then we have

dx dft.

. N@ar= _  n o
lim et = ) 2" o

(II) If md< Mn, then we have

. _2n—d . Mn—md
lim N 7m=xt = 310 — g2y

eay| dp

#(p) >1

where



218 J. Aramaki

2n—d
(o) = SNPE 9539#(— o — M © X) dX,

and note that p(p) is homogeneous of degree (md— Mn)/M.
For the proof of this theorem, we use the following lemma and propo-
sition.

LEMMA 5.2. Let dy be a measure on the right half axis in R defined
by a non-negative monotone increasing function p with p(0)=0. Assume that

F(w) = 5:0 e du(x)

is convergent for Rew>1 (hence analytic). Moreover assume that there

exist complex numbers A, Ay, -+, Ap such that
_ 2 A
H(w) = F(w)— 12:31 (w—1)7

is continuous on the closed half plane Rew>1. Then we have

lim x”( D _ g0 A,.

—1
200 TPLE"

Note that this lemma is an extension of Ikehara’s Tauberian theorem
which is treated the case p=1 (c.f. [19]). The proof is essentially based
on Donoghue [3].

Proor. Let #ew>1. Then the integration by parts leads to

Glw) = %U—fe-mdp(x) - S:oe‘”’” () dz.
If we put
= 5 (1P w— (),

we see that g(w) has the zero of order p at w=1. Therefore we can write

Aj

G(w ):ZJ( 1)7 +h(w)

where h(w) is analytic on #Zew>1 and continuous on Zew>1 and A,=A,.
Next put b(x)=e*y(x) and for ¢>0,

:JO if <0,
le“”” if x>0.

If we take w=1+¢+1i§ (¢ real), then we have
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G(w) = S e b(x) e dx = (a, b (8) .

0

Here © means the Fourier transformation. Since

. |
U=l (imray ),

we have

G—=1! (x7a,) (§)+h(l+e+i€).

Therefore by the definition of the Fourier transformation of %', for any
o,

S:oe‘””b(x) é(2) dx

) (jiqi) 1 S:oxj_le_‘xsg(x) dzx+ So;h(l +e+1€) ¢(§) d§ .

Mrs

J

Now select ¢(&)€Cy(R) such that ¢(x)>0 and §f(x)dr=1, and then
replace ¢(¢) in the above with ¢(¢)e?**. Then we have

[Tt ba—y) dz

=BTl e e de [ pbetio o ovs.

As ¢—0, each integral on the right hand side converges to a finite limit
because of the integrability of ¢ and the continuity of A on %Zew>1. Since
the integral on the left is positive and increasing as ¢—0, Beppo-Levi’s
theorem implies that the limit is integrable. If we take the real part in the
above, then we have

["b(2) flz—) dz

J0

:%e[zp] (jiq/{)!s 21 (x—y) dx—{-‘g h(1+1€) ¢(8) e“'yedé].

j=1

As y—+ oo, the last integral on the right hand side converges to 0 by the
Riemann-Lebesgue lemma. Since

[rage—y dz=2 (I yt|" 2y dz,

1 oo n ggAp ® . _ '%gAP
()l | e de= 5o |7 @ de= 2y
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When x> >0, b(x)>e*2b(2). Therefore

[0 dla—y) dz={ () f(z—v) dz+ | b0 fle—v) d

0

>b) | e le—y)dz=bw) | e*lx)dz.

Y 0

Hence,‘ from (A),

(B) o b(y) _ ReA,

= VT Mg datp-yt

Here for ¢(z) we substitute 36(62—+ 8)=d(2), which is also a positive func-
tion in & with the integral equal to 1 and if §—0,

Sw e d(x) dx
0
converges to 1. Then we have

— bly) _ ReA
lim o1 < (1)1 -

Next we decompose

S:b(x) da—y)de=|" ba+y a) = O+ _ .

—y -y -1 0 k=1
Since
1 b(z) (-1 -1,
k) <sup 22 (2 1) g0y,
1 by) (0 _
b < i [ b de
and
1 b(z) [~ =
k) <sw o [(E+1) bl dx,
from (A) and (B) we have
ReA, (= ,
b -1 . b 0 a
< sup xfff)l S_ocgzi(x) dz+lim —g;%g_le—w(x) dz
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Therefore
ReA 0,
(=11 || d@aa
b(x) (1 ., . by (0 _ .,
<sup 5 s_wgb(x) da-+lim y,,_)l S_le *d(2) dz.

Replacing ¢(x) with ed(ex) and letting e— oo,

'%314 0 n . b 0 )

(R dz < lim yfff)l [ s az.
Thus we have

ReA, b(y)

(p—1) T =lm-pr.

This completes the proof.

ProposiTION 5.3. Let i‘ A2 be convergent for Rez < sy(<0), hence
k=1

analytic. Assume that there exist complex numbers Ay, As, -+, A, such that

o » A
S A=)
k=1

7 (2—s)

is continuous on Rez<s, Then we have
I (=11 sN(A) 2>  ReA,
e (ogd7" T (p=D)I

Proor orF ProrosiToN 5. 3.
Let 5,<0 and

*00

£&)=|

where a(z) is the number of eigenvalues such that (%) *<x. Then a(x)

1 P da(x)

is monotone increasing and f(2)= >, 2. By the hypotheses, f(2) is analytic
k=1
on Hez<s, and

) 3

(z—s0)?

is continuous on Zez<s, If we put p(z)=ale’), s—i=w and F(w)=f(2),

we see that

F(z) = Sme—wwd,.e(x)

0
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is analytic on Zew>1 and

B _ 4y
Fw) = jf:'l (w—1)7 (Bj s )
is continuous on Zew>1. Thus if we apply Lemma 5.2, we see

lim «(z) Re
e Z(log )P0 T (p—1) s °

Taking £=4"%, we have

L (CD N ged,
T (ogArt T (p-DT

This completes the proof of [Proposition 5.3,
Proor or THEOREM 5. 1.

The case (1): Since

Smpm(w)—%d(az m Se‘f’mw'f)dxa%:ns dx dt,

Py (2,0<1

it is easy from [Proposition 5. 3.

The case (II): If we put

v(t) = dX.,

S T a (X<t
laf=M
and let 7~V¥¢t—¢, then we have v(t)=t¥¥y(1)=¢¥¥. On the other hand we

have

1 d
M F(W>sSNmz<|a|:Ma"(w) Y> wdY,
Since
ol i) o()

we have
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j (3 alo Y«)“%dya,:d.
SN2 \a[=M

If we note %—L and apply Proposition 5.2, we see that (II) holds.

The case (III): In this case we have

.
1l >1

r —(md—Mn)/M—1 dr dw
S’l‘(p)(md_Mn)/My(w)Zl <‘0) (p) ‘

_ M
~ Mn—md

M
o Mn md Sstg ((0) d(t).

Thus applying [Proposition 5.3 we see that (III) holds. This completes the
proof of [Theorem 5. 1.

If we take 2=2, in Theorem 5.1, we can also give the asymptotic
formula which is an extension of to the hypoelliptic case.

CoroLLARY 5.4. (1) If md>Mn, then we have

_ _ M/ (Mn-md)
sS‘E [7“ (md M’IL)/M]I(J)(M) dw

lim iz = (27:)-"5 dzdt.

koo P (2,0 <1

(II) If md=Mn, then we have

. kl;% _ n n

lm Jog 7 = mm—dj2) ") L.,d““
() If md< Mn, then we have

—d Mn—md n
Rl R W

k—oo

ExAMPLE. Let 2 be a compact C* Riemannian manifold of dimension
n>1 with the metric Z‘ g,k( z)dz?dx* and its volume element dQ=g"?dx
(g=det (g;x). Let ¢ZEC°°( ) 1=1, 2, ---,d (d<n) such that ¢, are real valued
and d¢;, dg,, -+, dpy are linearly 1ndependent at 2,={zx€2; ¢(x)=0, 1=
1,2,---,d}. Define

n ) N
. —1/2 1/2 ik
J{ilg 3z, (0"*07) 5 .-

where ¢= Z¢2 and (9’*)=(gs)"'. We consider the operator
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P=A4,+V—4

where 4 is the Laplace-Beltrami operator on £ (c.f. Nordin [14]). Then
for peX={(z, 8 eT*\0; z€2} =a"1(2), we have

0P D) =( 3 52 (e ) £ 07 (x0) )
+01(N/?j) (0) -

where 7 is the natural projection T7*Q2\0—%2. Thus ¢,(P)(y, D,) is an iso-
morphism from & onto & and satisfies (H.1)~(H.5). Therefore we have

lim N(3) 2-@-a/2

A+-00

_ _7:13/—2 (2n) SS‘ESNMS(Hess #(7(0) (X)+1) " dX.do

where $*3 = {p =(x,6)ed; r(x, &= x/jg,llgj"(x) &6, = 1}. Since |X|, =
{Hess ¢(r(w)) (X)+1}¥%, the right hand side is equal to

0

1 _,'d2)I'n—d)
:m(Zﬂ) 2I'(n—dJ2) Ss'zSIXIfldX"dw'

By the definitions of dX, and dw, we see

S dX,=d
1x1,=1
and
L dw = (the volume of the unit sphere in R?) X
X

(the surface area of the unit sphere in R“)XS dQ|,, .
gl

Thus we have

. o . 2_(17,—1) n.—(n—d)/2[’(n_d)
lim N &% = —pr oy P F1—dj2) S o, @,
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