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\S 0. Introduction

Seeley [15] has defined complex powers of elliptic operators P on a
compact C^{\infty} manifold \Omega without boundary and examined asymptotic behaviors
of the eigenvalues. For hypoelliptic operators satisfying, what is called,
strong (H) condition of H\"ormander [6], KumanO-go and Tsutsumi [9] have
constructed complex powers suitable for them.

In the present paper we shall discuss complex powers \{P_{z}\}_{z\in C} of a class
of pseudodifferential operators P on the manifold \Omega . Here the operator P
has a symbol which vanishes exactly of order M on the characteristic set
\Sigma , that is, P belongs to OPL^{m,M}(\Omega;\Sigma) which is defined by Sj\"ostrand [16].

Then a condition of hypoellipticity of P with loss of M/2 derivatives is well
known (see Boutet de Monvel [1], Boutet de Monvel-Grigis-Helffer [2] and
Helffer [5]) . Moreover, we shall develop asymptotic behaviors of the eigen-
values of P on the further hypotheses that P is self-adjoint and semibounded
from below. For this purpose we have to construct two kinds of complex
powers of P and use more convenient one for each situation.

ForM=2, Menikoff-Sj\"ostrand [10], [11], [12], Sj\"ostrand [17] and Iwasaki
[8] have studied asymptotic behaviors under various assumptions on \Sigma and
P. In particular [12] and [17] have treated more general non-semibounded
cases. Their methods are based on the construction of the heat kernel and
an application of Karamata’s Tauberian theorem. For general M, see also
Mohamed [13]. However our method is essentially due to the theory of
complex analysis (c . f. Smagin [18]). In order to carry out this, we shall
study the first singularity of the trace of P_{z} . In elliptic case, Trace (P_{z}) has
an extension to a meromorphic function in z in C with only simple poles
([15]). But in our case, even the first singularity is able to have a pole of
second order. Accordingly we have to extend Ikehara’s Tauberian theorem
(see Wiener [19]).

The plan of this paper is as follows. In \S 1 we give the precise defini-
tion of the operator mentioned above and a main theorem (Theorem 1. 2).
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In \S 2 taking applications of Theorem 1. 2 in \S 4 and \S 5 into consideration,
we construct two kinds of parametrices of P-\zeta for some \zeta\in C . In \S 3 we
construct two kinds of complex powers of P corresponding to them respec-
tively. In \S 4 we give a theorem on the first singularity of the trace of
P_{z} . In \S 5 we study asymptotic behaviors of the eigenvalues using the
results in \S 4 and give an example.

We shall use the notations and results of pseudodifferential operators, for
which we refer to [1], [2], Duistermaat-H\"ormander [4] and H\"ormander [7].

\S 1. Definitions and the main theorem

Let \Omega be a compact C^{\infty} manifold without boundary of dimension n and
\Sigma be a closed conic submanifold of codimension d in the cotangent bundle
minus the zero section T^{*}\Omega\backslash 0 .

DEFINITION 1. 1. Let m be a real number and M be a non-negative
integer. The space OPL^{m,M}(\Omega;\Sigma) is the set of all pseudodifferential opera-
tors P\in L^{m}(\Omega) (see [6]) that for every local coordinate neighborhood V\subset\Omega,
P has a symbol \sigma(P)=p of the form:
(1.1) p(x, \xi)\sim\sum_{f=0}^{\infty}p_{m-j/2}(x, \xi),\cdot

where \sigma_{m-j/2}(P)=p_{m-f/2}(x, \xi) are elements of C^{\infty}(R^{n}\cross(R^{n}\backslash 0)) and positively-
homogeneous of degree m-j/2 in \xi (j integral) and satisfy:

(1. 2) For every Kc\subseteq V, there exists a constant C_{K}>0 such that

\frac{|p_{m-j/2}(x,\xi)|}{|\xi|^{m-j/2}}\leq C_{K}d_{\Sigma}(x, \xi)^{M-f}’. j=0,1 , \cdots , M

and

(1. 3) \frac{|p_{m}(x,\xi)|}{|\xi|^{m}}\geq C_{K}d_{\Sigma}(x, \xi)^{M}

for (x, \xi)\in K\cross(R^{n}\backslash 0) and |\xi|\geq 1 .
Here

d_{\Sigma}(x, \xi)=,\inf_{(x,\xi)\epsilon\Sigma},(|x’-x|+|\xi’-\frac{\xi}{|\xi|}|)

is the distance from (x, \frac{\xi}{|\xi|}) to \Sigma . Note that d_{\Sigma} is a positively-homogeneous

function of degree 0 in \xi .
The class of symbols satisfying (1. 1), (1. 2) and (1. 3) in an open conic

set U in T^{*}\Omega\backslash 0 is denoted by SL^{m,M}(U;\Sigma) .
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We describe the following hypotheses (H. 1) \sim(H. 3) .
(H. 1) There exists a fixed proper closed convex cone \Gamma in C such that

p_{m}(x, \xi)\in\Gamma for all (x, \xi)\in T^{*}\Omega\backslash 0

For every \rho\in\Sigma , we define a differential operator with polynomial coeffi-
cients on R^{n}(c. f. [2]) :

(1. 4) \sigma_{\rho}(P)(y, D_{y})=\sum_{j=0}^{M}\sum_{|\alpha+\beta|=M-j}\frac{1}{\alpha!\beta!}(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial\xi})^{\beta}p_{m-j/2}(\rho)y^{\alpha}D_{y}^{\beta}

(H. 2) There exists a ray l=\{\zeta=\lambda e^{i\theta_{0}} ; \lambda\geq 0\}\subset-\Gamma such that for every \zeta

in the ray, \sigma_{\rho}(P)(y, D_{y})-\zeta is an isomorphism from \mathscr{S} onto \mathscr{S} where \mathscr{S}

denotes the space of rapidly decreasing functions.
For every \rho_{0}\in\Sigma , we can choose a conic neighborhood U_{\rho_{0}} of \rho_{0} and

a local coordinate system in U_{\rho_{0}} :

u=(u_{1}, u_{2}, \cdots, u_{d}),\cdot v=(v_{1}, v_{2^{ }},\cdots, v_{2n-d})

where u_{i} and v_{j} are C^{\infty} positively-homogeneous of degree 1 such that \Sigma\cap U_{\rho_{0}}

is defined by u_{1}=u_{2}=\cdots=u_{d}=0 . If we choose pseudodifferential operators
U_{1} , U_{2} , \cdots , U_{a} of order 1 with symbols \sigma(U_{j})=u_{j}, we can write (in U_{\rho_{0}})

(1. 5) P= \sum_{|\alpha|\leq M}A_{\alpha}(x, D_{x})U(x, D_{x})^{\alpha}

where A_{\alpha} are classical pseudodifferential operators of order m-(M+|\alpha|)/2 .
If we define

\check{p}=\sum_{\int\alpha|\leq M}a_{\alpha}(\rho)u^{\alpha}

where \rho=(0, v(x, \xi)) and a_{\alpha} are the principal symbols of A_{\alpha} , we have

(1. 6) p- \oint\in SL^{m,M+1} .
Note that p is uniquely determined modulo SL^{m,M+1} and

\sigma_{\rho}(P)(y, D_{y})=\sum_{|\alpha|\leq M}a_{a}(\rho)(\sigma_{\rho}(U)(y, D_{y}))^{\alpha}

If we write \not\simeq=\sum_{j=0}^{M}\delta_{m-j/2} , we can define a function on N_{\rho}\Sigma=T_{\rho}(T^{*}\Omega\backslash 0)/

T_{\rho}\Sigma by the following formula:

For every X \in N_{\rho}\Sigma,\tilde{p}(\rho, X)=\sum_{j=0}^{M}\frac{1}{(M-j)!}X^{M-f}\beta_{m-j/2}(\rho) where X designs

an extension of X to a neighborhood of \rho .
(H. 3) \tilde{p}(\rho, X)\in\Gamma\backslash \{0\} for every \rho\in\Sigma and X\in N_{\rho}\Sigma

Note that under the conditions (H. 1) \sim(H. 3) , P is hypoelliptic with loss
of M/2 derivatives (see [2]), that is, for any distribution f, Pf\in H^{s}(\Omega)
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implies f\in H^{s+m-M/2}(\Omega) where H^{s}(\Omega) is the Sobolev space.
Let x^{m-M/2}(\Omega;\Sigma) be \bigcap_{N}S^{m-N,M-2N}(\Omega;\Sigma) , which abbreviately is written

by x^{m-M/2} . Then our main theorem is as follows.

THEOREM 1. 2. Assume that P\in OPL^{m,M}(\Omega;\Sigma) satisfifies the hypotheses
(H. 1) \sim(H. 3) and m>M/2 . Then we can defifine complex powers \{P_{z}\}_{z\in C}. of
P in the following sense:

(i) P_{z}\in OPS^{maez,Maez}(\Omega;\Sigma)j

(ii) P_{1}\equiv P, P_{0}\equiv I (modulo OPX^{m-M/2}(\Omega;\Sigma) ,
(iii) P_{z_{1}}P_{z_{2}}\equiv P_{z_{1}+z_{2}} (modulo analytic functions of z_{1} and z_{2} with values

in OPX^{m’-k’/2}(\Omega;\Sigma) for any m’ and k’ such that m’>m\mathscr{B}ae(z_{1}+z_{2}) and
m’-k’/2>(m-M/2)\mathscr{B}ae(z_{1}+z_{2}) ,

(iv) For any real s_{0}, \sigma(P_{z})(x, \xi) is an analytic function of z on {z ;
\mathscr{B}e<s_{0}\} with values in S^{ms_{0},Ms_{0}}(\Omega;\Sigma) .

REMARK 1. 3. If we put

P_{z}’=P_{z}+z(P-P_{1})+(1-z)(I-P_{0}) ,

then \{P_{z}’\}_{z\in C} satisfy (i), (ii), (iv) and (ii)’ P_{1}’=P, P_{0}’=I.
Here S^{m,k}(\Omega;\Sigma) denotes the symbol class of [1, p. 591] i . e . a\in S^{m,k}(\Omega;\Sigma)

means that a is in C^{\infty}(T^{*}\Omega\backslash 0) and for any vector fields X_{1} , X_{2}, \cdots , X_{p} , Y_{1} , Y_{2}, \cdots ,
Y_{q} with smooth coefficients on T^{*}\Omega\backslash 0 , positively-homogeneous of degree 0,
the X_{j} being tangent to \Sigma ,

|X_{1}X_{2}\cdots X_{p}Y_{1}Y_{2}\cdots Y_{q}a|\leq r^{m}\rho_{\Sigma}^{k-q}

where r is a positively-homogeneous function of degree 1 such that it is
equal to 1 on the cosphere bundle and \rho_{\Sigma}=(d_{\Sigma}^{2}+r^{-1})^{1/2}. Here we use the
notation f\leq g for C^{\infty} positive functions f, g on T^{*}\Omega\backslash 0 , if for any subcone
U\subset T^{*}\Omega\backslash 0 with compact basis and \epsilon>0 , there exists a constant C such that

f\leq Cg in U when r>\epsilon .
Moreover we write f\approx g if f\leq g and g\leq f (see also [1, p. 590]). Denote by
OPS^{m,k}(\Omega;\Sigma) the set of pseudodifferential operators corresponding to the
symbols in S^{m,k}(\Omega;\Sigma) . Then we remark that if M is a non-negative integer,
we have OPL^{m,M}(\Omega;\Sigma)\subset OPS^{m,M}(\Omega;\Sigma) .

\S 2. Construction of parametrices

In this section we shall introduce the operators defined by [2] and
construct parametrices of P-\zeta(\zeta\in l) . There exists a unique differential
operator on N_{\rho}\Sigma :
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(2. 1) P_{\Sigma}= \sum_{|\alpha+\beta|\leq M}a_{\alpha\beta}(\rho)u^{\alpha}D_{u}^{\beta}

where a_{a\beta} are positively-homogeneous of degree m-(M+|\alpha|-|\beta|)/2 such that

(p\# q)^{\wedge}=P_{\Sigma}\check{q}

for every q\in SL^{m’,M’} Here \# means the composition of the symbols. In

view of [2], if we put a matrix A=(A_{jk}(\rho))_{j,k=1,2,\cdots,d} where A_{jk}( \rho)=\sum_{s=1}^{n}\frac{\partial u_{f}}{\partial\xi_{s}}(\rho)

\frac{\partial u_{k}}{\partial x_{s}}(\rho) are positively-homogeneous of degree 1, we have that for every

q\in S^{m’,M’}

(2. 2) (p \# q)-\sum_{\beta}\frac{i^{I\beta I}}{\beta!}D_{u}^{\beta}\check{p}(AD_{u})^{\beta}q\in S^{m+m’,M+M’+1} .

Now we shall construct a parametrix of P-\zeta for every \zeta\in l=\{\zeta=\lambda e^{i\theta_{0}} ;
\lambda\geq 0\} . (H. 1) ensures that we can define, for every \zeta\in l,

q_{\zeta}’(x, \xi)=(p_{m}(x, \xi)-e^{i\theta_{0}}|\xi|^{m-M/2}-\zeta)^{-1}

PROPOSITION 2. 1. ( i) q_{\zeta}’ is analytic in \zeta on l with values in S^{-m,-M}.
(ii) For any multi-indices \alpha, \beta, D_{x}^{a}D_{\xi q_{\zeta}}^{\beta\prime} is a linear combination of the

form
(q_{\zeta}’)^{k+1}h_{k}(0\leq k\leq|\alpha|+|\beta|)

where h_{k}\in S^{mk-1\beta|,Mk-|\alpha+\beta|} are independent of \zeta . In particular there exists
a constant C (independent of \zeta) such that

|q_{\zeta}’(x, \xi)|\leq C(|\zeta|+r^{m}\rho_{\Sigma}^{M})^{-1}\downarrow

(iii) (p-\zeta)\# q_{\zeta}’-1=r_{\zeta}’\in S^{-1/2,-1} . Here r_{\zeta}’ is of the form q_{\zeta}’r_{\zeta}’ and r_{\zeta}’ is
analytic on l such that for any multi-indices \alpha, \beta , we have with a constant
C_{\alpha\beta} (independent of \zeta)

|D_{x}^{\alpha}D_{\xi}^{\beta}r_{\dot{\zeta}}’|\leq C_{a\beta}r^{m-1/2}\rho_{\Sigma}^{M-1} .
This proposition follows easily from the symbol calculus.
Next we shall construct a parametrix near \Sigma . Under the hypothesis

(H. 2), for any \rho\in\Sigma and \zeta\in l,\tilde{p}(\rho, X)-\zeta has an inverse \tilde{q}_{\zeta}(\rho, X) in the
following sense (see [2]) : \tilde{q}_{C} satisfies

(2. 3) \sum_{\beta}\frac{i^{1\beta I}}{\beta!}D_{X}^{\rho}(\tilde{p}(\rho, X)-\zeta)(A(\rho)r(\rho)^{-2}D_{X})^{\beta}\tilde{q}_{C}(\rho, X)=1

If we identify X with u/r(\rho) and define q_{\zeta}(\rho, u)=q(\zeta;\rho, u)=\tilde{q}_{\zeta}(\rho, X) , we have
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PROPOSITION 2. 2. With the above notations, we have
(i) \tilde{q}_{\zeta} is quasi-homogeneous of degree -(m-M/2) in the sense:

\tilde{q}_{\lambda^{m-M/2_{\zeta}}}(\lambda\rho, \lambda^{-1/2}X)=\lambda^{-(m-M/2)}\tilde{q}_{\zeta}(\rho, X)

(ii) q_{C} is an analytic function on l with values in S^{-m,-M} such that
for any multi-indices \alpha, \beta , we have with a constant C_{\alpha\beta}>0 {independent of \zeta)

|D_{u}^{a}D_{\rho}^{\beta}q_{\zeta}|\leq C_{\alpha\beta}(r^{m}\rho_{\Sigma}^{M}+|\zeta|)^{-1}r^{-(|\alpha|+I\beta|)}\rho_{\Sigma}^{-|\alpha|}

where r=r(\rho) , \rho_{\Sigma}=\frac{|u|}{r(\rho)}+r(\rho)^{-1/2} .

(iii) q_{\zeta}(\rho, u)=(p(\rho, u)-\zeta)^{-1} modulo analytic functions on l with values
in S^{-m-1/2,-M-1} .

PROOF. Since

\tilde{p}(\rho, X)-\zeta=\sum_{|\alpha|\leq M}a_{\alpha}(\rho)r(\rho)^{|\alpha|}X^{\alpha}-\zeta’.

it is quasi-homogeneous of degree m-M/2. Thus by the uniqueness of the
inverse, (i) and the analyticity in (ii) are clear. From (2. 3) we have

(2. 4) 1=( \check{p}(\rho, u)-\zeta)q_{\zeta}(\rho, u)+\sum_{|\alpha|\leq M\downarrow\beta}\sum_{I\geq 1} \beta\leq\alpha’(_{\beta}^{\alpha})(a_{\alpha}(\rho)u^{\alpha-\beta})(A(\rho)D_{u})^{\beta}q_{C} .

Here if we note that the sum in the right hand side belongs to the set of
analytic functions with values in S^{-1,-2}, we can solve (2. 4) asymptotically.

Thus let q_{\zeta} \sim\sum_{k=0}^{\infty}q_{C,k} modulo X^{-tm-M/2)} where q_{\zeta,k}\in S^{-m-k,-M-2k} , then we see

from (H. 3) that q_{\zeta,0}=( \oint(\rho, u)-\zeta)^{-1} and for k\geq 1 , q_{C,k} is a linear combination of
the from (\check{p}(\rho, u)-\zeta)^{-(l+1)}r_{k,l} where r_{k,l}\in S^{lm-k,lM-2k}(2\leq l\leq 2k) are independent
of \zeta . So there exists q_{\zeta}^{0}\in S^{-m,-M} uniformly in \zeta such that

\sum_{|\alpha|\leq M}\sum_{\beta\leq a}\frac{i^{1\beta I}}{\beta!}D_{u}^{\beta}(a_{\alpha}(\rho)u^{\alpha}-\zeta)(A(\rho)D_{u})^{\beta}q_{\zeta}^{0}-1=h_{C}

where h_{\zeta}\in X^{0} uniformly in \zeta and |\zeta|h_{\zeta}\in X^{m-M/2} . Again using (H. 2j we
obtain h_{\zeta}^{0}\in X^{-(m-M/2)} so that

\sum_{|\alpha|\leq M}\sum_{\beta\leq\alpha}\frac{i^{I\beta 1}}{\beta!}D_{u}^{\beta}(a_{\alpha}(\rho)u^{\alpha}-\zeta)(A(\rho)D_{u})^{\beta}h_{\zeta}^{0}=h_{\zeta}

and |\zeta|h_{\zeta}^{0}\in X^{0} . Thus we see that (ii) and (iii) hold.

REMARK 2. 3. By the quasi-homogeneity of \tilde{q}_{C} and (H. 3), we can extend
\tilde{q}_{C} analytically to \{\zeta;\tilde{p}(\rho, X)\neq\zeta\} for all (\rho, X) .

Define a pseudodifferential operator Q_{\zeta} with the symbol:
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\sigma(Q_{\zeta})=\int q_{\zeta} in a conic neighborhood of \Sigma ,
|q_{\zeta}’ outside a conic neighborhood of \Sigma

Here we use a standard partition of unity \{\psi_{k}(x, \xi)\}_{k\in K} such that \psi_{k} are
homogeneous of degree 0 and if supp \psi_{k}\cap\Sigma\neq\phi, q_{\zeta}(\rho, u) is constructed in
supp \psi_{k} . Then by [1] and [2], we have

(P-\zeta)Q_{\zeta}-I=R_{\zeta}^{(1)} , (P-\zeta)q_{\zeta}’(x, D_{x})-I=R_{\zeta}^{(2)}

where \sigma(R_{\zeta}^{(1)}) is an analytic function with values in S^{0,1} in a conic neigh-
borhood of \Sigma and in S^{-1/2,0} otherwise and where \sigma(R_{\zeta}^{(2)}) in S^{-1/2,-1} uniformly
in \zeta(c. f. [9]) . Then we construct two parametrices of P-\zeta as follows.
If we put

Q_{\zeta,0}^{(1)}=Q_{\zeta}-q_{\zeta}’(x, D_{x})R_{\zeta}^{(1)} , Q_{\zeta,0}^{(2)}=q_{\zeta}’(x, D_{x})-Q_{\zeta}R_{\zeta}^{(2)}

then we have
(P-\zeta)Q_{\zeta,0}^{(1)}-I=-R_{\zeta}’\in OPS^{-1/2,0} .

If we put Q_{\zeta,j}^{(1)}=Q_{\zeta,0}^{(1)}(R’)^{j}\in OPS^{-m-f/2,-M}j=0,1 , \cdots , we have

(P- \zeta)(\sum_{j=0}^{N-1}Q_{\zeta,j}^{(1)})-I\in OPS^{-N/2,0} .

Thus we can construct a parametrix Q_{\zeta}^{(1)} of P-\zeta such that \sigma(Q_{\zeta}^{(1)})-\sum_{j=0}^{N-1}\sigma(Q_{\zeta,j}^{(1)})

is analytic function on l with values in S^{-m-N/2,-M} for every N. Similarly
we can also construct an another parametrix Q_{\zeta}^{(2)} by using Q_{\zeta.0}^{(2)} .

\S 3. Construction of complex powers

In this section we shall construct complex powers \{P_{z}^{(i)}\}_{z\in C} , i=1,2 of
P. Let Q_{\zeta}^{(i)} be the parametrices constructed in \S 2 of P-\zeta(\zeta\in l) and let
\gamma be a curve beginning at \infty , passing along l to a circle |z|=\epsilon_{0} , then clockwise
about the circle, and back to \infty along 1. If we choose \epsilon_{0} sufficiently small,
we may assume that \sigma(Q_{r}^{(i)}.) are analytic on l\cup\{|z|\leq\epsilon_{0}\} . Then we define
operators P_{(z)}^{(i)} with symbols \sigma(P_{(z)}^{(i)}) by the formula :

(3. 1) \sigma(P(\begin{array}{l}iz\end{array})())(x, \xi)=\frac{-1}{2\pi i}\int_{\gamma}\zeta^{z}\sigma(Q_{\zeta}^{(i)})(x, \xi)d\zeta,\cdot i=1,2 .
When \mathscr{B}ez<0 , we see easily from \S 2 that the integrals are absolutely
convergent.

PROPOSITION 3. 1. Let \mathscr{B}aez<0 . Then we have
(i) \sigma(P_{(z)}^{(i)})\in S^{maez,Maez} and
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\sigma(P_{(z)}^{(1)})=/\mu(z;\rho, u)+r(z;\rho, u) in a conic neighborhood of \Sigma

|(p_{m}-e^{i\theta_{0}}|\xi|^{m-M/2})^{z} outside a conic neighborhood of \Sigma

modulo analytic functions on \{\mathscr{B}aaez<0\} with values in S^{maez-1/2,M9ez} uni-
formly in wider sense in z. Here r(z;\rho, u)=r_{1}(z;\rho, u)r_{2}(\rho, u) , r_{1} is an
analytic function on \{\mathscr{B}aez<0\} with values in S^{maez-m,Maez-M} uniformly in
z and r_{2}\in S^{m,M+1} . Moreover

(3. 2) \mu(z;\rho, u)=\frac{-1}{2\pi i}\int_{\gamma}\zeta^{z}q_{\zeta}(\rho, u)d\zeta

On the other hand
\sigma(P_{(z)}^{(2)})=(p_{m}-e^{i\theta_{0}}|\xi|^{m-M/2})^{z}

modulo analytic functions on \{\mathscr{B}aez<0\} with values in S^{maez-1/2,Maez-1} uni-
formly in wider sense in z.

(ii) For every k,

\frac{d^{k}}{dz^{k}}\sigma(P_{(z)}^{(i)})=\frac{-1}{2\pi i}\int_{\gamma}(\log\zeta)^{k}\zeta^{k}\sigma(Q_{\zeta}^{(i)})d\zeta t

(iii) Let \mathscr{B}aez_{0}<0 and m’>m\mathscr{B}aez_{0}, m’-k’/2>(m-M/2)\mathscr{B}aez_{0} . Then
\sigma(P_{(z)}^{(i)}) are analytic on a neighborhood of z_{0} with values in S^{m’,k’}

PROOF. For brevity we construct only in the case i=1 and drop out the
index i. Let Q_{\zeta,j}(j=0,1, \cdots) be the operators defined in \S 2. In a conic
neighborhood of \Sigma , \sigma(Q_{\zeta,f}) is of the form ( \oint(\rho, u)-\zeta)^{-1}r_{j} where r_{f}\in S^{- f/2,0}

uniformly in \zeta . Thus we have

I_{j}(z; \rho, u)=\frac{-1}{2\pi i}\int_{r^{b}}rz\sigma(Q_{\zeta,f})(\rho, u)d\zeta

= \frac{-1}{2\pi i}\int_{\gamma}\zeta^{z}(\check{p}(\rho, u)-\zeta)^{-1}r_{j}(\zeta;\rho, u)d\zeta 1

By (H. 3) and quasi-homogeneity of \not\simeq(\rho, u) ,

|\beta(\rho, u)|\geq Cr^{m}\rho_{\Sigma}^{M}

Moreover (H. 3) implies that

|\check{p}(\rho, u)-\zeta|\geq r^{m}\rho_{\Sigma}^{M}+|\zeta|

for all \zeta\in l\cup\{|\zeta|\leq\frac{C}{2}r^{m}\rho_{\Sigma}^{M}\} . Let \gamma’ be a curve replaced the circle |\zeta|=\epsilon_{0}

in \gamma with the circle | \zeta|=\frac{C}{\underline{9}}r^{m}\rho_{\Sigma}^{M}. By Remark 2. 3, we may replace \gamma with
\gamma’ where \gamma’=C_{1}+C_{2}+C_{3} such that
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C_{1} : \zeta=-se^{i\theta_{0}} if \frac{C}{2}r^{m}\rho_{\Sigma}^{M}\leq s\leq+\infty ,

C_{2} : \zeta=\frac{C}{2}r^{m}\rho_{\Sigma}^{M}e^{-i\theta} if \theta_{0}\leq\theta\leq\theta_{0}+2\pi and

C_{3} : \zeta=se^{i\theta_{0}} if \frac{C}{2}r^{m}\rho_{\Sigma}^{M}\leq s\leq+\infty

Put

I_{j,k}= \frac{-1}{2\pi i}\int_{c_{k}}\zeta^{z}(\not\simeq(\rho, u)-\zeta)^{-1}r_{j}(\zeta;\rho, u).d\zeta j k=1,2,3c

Then we have

|I_{f,1}| \leq C_{1}r^{-j/2}\int_{\frac{c}{2}r^{m}\rho\Sigma^{M}}^{\infty}s^{aez-1}ds

\leq C_{2}r^{-j/2}\frac{1}{\mathscr{B}ez}[s^{aez}]_{\frac{c}{2}r^{m_{\rho\Sigma}M}}^{\infty}

\leq C_{3}r\rho\Sigma maez-j/2Maez

where C_{1} , C_{2} and C_{3} are independent of x, \xi . Similarly we can estimate
I_{j,3} . Moreover we have easily |I_{j,2}|\leq C_{4}r^{maez-f/2}\rho_{2}^{Maez} . Since we can also
estimate the derivatives of I_{j} , we see I_{j}(z;\rho, u)\in S^{naez-J/2,Maez} . In particular,
we have

\sigma(Q_{\zeta,0})=q_{C}+r_{\zeta}

where r_{\zeta}=(p-p)q_{\zeta}’(x, \xi)(\check{p}-\zeta)^{-1} modulo analytic functions on l with values
in S^{-m-1/2,-M} . Therefore we have (i) in a conic neighborhood of \Sigma . Outside
a conic neighborhood of \Sigma, \sigma(Q_{\zeta,f}) is of the form q_{\zeta}’r_{j} where r_{f}\in S^{-f/2}

uniformly in \zeta for all j=0,1 , \cdots . Now we have with a constant C’>0

|p_{m}(x, \xi)-e^{i\theta_{0}}|\xi|^{m-M/2}|\geq C’r^{m}\rho\Sigma^{M}

Then (H. 1) implies that for all \zeta\in l\cup\{|\zeta|\leq\frac{C’}{2}r^{m}\rho_{\Sigma}^{M}\},\cdot

|p_{m}(x, \xi)-e^{i\theta_{0}}|\xi|^{m-M/2}-\zeta|\geq r^{m}\rho_{\Sigma}^{M}+|\zeta|

Therefore by the same way as above we see that (i) holds. Finally (ii)
follows from the fact that for any small \epsilon_{1}>0 , |(\log\zeta)^{k}|\leq C_{k,e_{1}}|\zeta|.1 and (iii)
is clear from (i).

PROPOSITION 3. 2. ( i) Let \mathscr{B}aez_{1}<0 and \mathscr{B}aez_{2}<0 . Then we have
P((\begin{array}{l})z_{1}\end{array})iP(\begin{array}{l})z_{2}\end{array})(i\equiv P_{(z_{1}+z_{2})}^{(i)} i=1,2 .
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Here\equiv means that \sigma(P((\begin{array}{l})z_{1}\end{array})iP(i(\begin{array}{l})z_{2}\end{array}))-\sigma(P_{(z_{1}+z_{2})}^{(i)}) are analytic functions in z_{1} and
z_{2} with values in x^{m’-k’/2} for any m’>m\mathscr{B}e(z_{1}+z_{2}) and m’-k’/2>(m-M/2)
\mathscr{B}ae(z_{1}+z_{2}) .

(ii) For any j>0 integer, P\{_{-j)}^{i)}\equiv(Q^{(i)})^{j} where Q^{(i)}=Q_{0}^{(i)} are the parame-
trices of P.

PROOF. As in the proof of Proposition 3. 1, we prove only the case
i=1 and drop out the index i. Since \zeta^{-1} is a single valued function on \gamma ,

\sigma(P_{(-1)})=-\frac{1}{2\pi i}\int_{IC1=}.0\zeta^{-1}\sigma(Q_{\zeta})(x,\cdot\xi)d\zeta

Analyticity of \sigma(Q_{\zeta}) on |\zeta|\leq\epsilon_{0} implies \sigma(P_{(-1)})=\sigma(Q) . Therefore it suffices
to prove (i). If we put

r_{N}( \zeta;x, \xi)=\sum_{f=0}^{N-1}\sigma(Q_{\zeta,f})’.

then we have

|(\sigma(Q_{C})-r_{N})^{(\alpha)}(\beta)|\leq.(|\zeta|+r^{m}\rho_{\Sigma}^{M})^{-1}r^{-N/2-|\alpha|}\rho_{\Sigma}^{-(|\alpha|+1\beta|)}

uniformly in \zeta . Since

\sigma(P_{(z_{1})}P_{(z_{2})})-\sum_{|\alpha|<N}\frac{1}{\alpha!}\sigma(P_{(t_{1})})^{(\alpha)}D_{x}^{\alpha}\sigma(P_{(z_{2})})

is an analytic function with values in S^{m’,k’} for any m’>m(\mathscr{B}ez_{1}+\mathscr{B}ez_{2})-N

and m’-H/2>(m-M/2)\mathscr{B}e(z_{1}+z_{2}) , we see that

T_{1}=\sigma(P_{(z_{1})}P_{(z_{2})})-T_{2}

where

T_{2}= \sum_{\alpha 1I<N}\frac{1}{\alpha!}\frac{1}{(2\pi i)^{2}}\int_{\gamma}\int_{r’}\zeta_{1}^{z}‘\zeta_{2^{2}}^{z}r_{N}(\zeta_{1} _{;} _{x}

is an analytic function in z_{1} and z_{2} with values in S^{m’,k’} Here we may
assume that \gamma’ is outside \gamma, but close to \gamma . In view of [9], if we define

K_{N}(\zeta_{1}, \zeta_{2})=r_{N}(\zeta_{1} ; x, \xi)-r_{N}(\zeta_{2} ; x, \xi)

+( \zeta_{2}-\zeta_{1})[\sum_{|\gamma|<N}\frac{1}{\gamma!}r_{N}(\zeta_{1} _{;} _{x} ,

we have

|K_{N}(\zeta_{1}, \zeta_{2})|\backslash ^{Y’}(\wedge\cdot|\zeta_{1}|+r^{m}\rho_{E}^{M})^{-1}(|\zeta_{2}|+r^{m}\rho_{\Sigma}^{M})^{-1}r^{m-N}\rho_{E}^{M-2N}

Thus we have
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T_{2}=^{\frac{1}{(2\pi i)^{2}}\downarrow_{\gamma}\int_{\gamma’}\zeta_{1}^{z_{1}}\zeta_{2^{2}}^{z}(\zeta_{2}-\zeta_{1})^{-1}[r_{N}(\zeta_{1} }

.

+ \frac{1}{(2\pi i)^{2}}\int_{\gamma}\int_{\gamma’}\zeta_{1}^{z_{1}}\zeta_{2}^{z_{2}}(\zeta_{2}-\zeta_{1})^{-1}K_{N}(\zeta_{1}, \zeta_{2})d\zeta_{2}d\zeta_{1}

Since

- \frac{1}{2\pi i}\int_{\gamma}\zeta_{1}^{z}’(\zeta_{2}-\zeta_{1})^{-1}d\zeta_{1}=0 , - \frac{1}{2\pi i}\int_{\gamma’}\zeta_{2}^{z_{2}}(\zeta_{2}-\zeta J^{-1}d\zeta_{2}=\zeta_{1^{2}}^{z} ,

we have

T_{2}-(_{-} \frac{1}{2\pi i}\int_{\gamma}\zeta_{1}^{z_{1}+z_{2}}r_{N}(\zeta_{1} _{;} _{X}

On the other hand,

\sigma(P_{(z_{1}+z_{2})})-\frac{-1}{2\pi i}\int_{\gamma}\zeta_{1}^{z_{1}+z_{2}}r_{N}(\zeta_{1};^{x}

is analytic in z_{1} and z_{2} with values in S^{m’,k’} The proof is complete.

PROOF OF THEOREM 1. 2. For i=1,2, we set

(3. 3) P_{z}^{(i)}=\{

P_{(z}^{(i}\} if \mathscr{B}aez<0 ,
P^{k}P_{(z-k)}^{(i)} if k is an integer such that - 1\leq \mathscr{B}ez-k<0 .

Then we shall show that Theorem 1. 2 is valid for each \{P_{z}^{(i)}\}i=1,2 . Let
\{P_{z}\} be one of them. First we have

P_{1}=P^{2}P_{(-1)}\equiv P^{2}Q\equiv P and P_{0}=PP_{(-1)}\equiv PQ\equiv I

If \mathscr{B}ez<0 , P_{z-1}=P_{(z)}P_{(-1)}\equiv P_{z}Q\equiv P_{(-1)}P_{(z)}\equiv QP_{z} . Thus P_{z} commutes with Q
and therefore P_{z}P\equiv PP_{z} if \mathscr{B}ez<0 . Consequently if -1\leq \mathscr{B}aez_{1}-k_{1}<0 and
-1\leq \mathscr{B}aez_{2}-k_{2}<0 , we have

P_{z_{1}}P_{z_{2}}=P^{k_{1}}P_{(z_{1}-k_{1})}P^{k_{2}}P_{(z_{2}-k_{2})}

\equiv P^{k_{1}+k_{2}}P_{((z_{1}+z_{2})-(k_{1}+k_{2}))}

When -1\leq \mathscr{B}e(z_{1}+z_{2})-(k_{1}+h)<0 , it is equal to P_{z_{1}+z_{2}} . When -2\leq
\mathscr{B}ae(z_{1}+z_{2})-(k_{1}+h)<-1 , we have

P_{(z_{1}+z_{2})-(k_{1}+k_{2})}\equiv\tilde{Q}P_{(z_{1}+z_{2})-(k_{1}+k_{2})+1}

So it is equal to P_{z_{1}+z_{2}} . Thus Theorem 1. 2 follows from Proposition 3. 1,
3. 2 and (3. 3).

\S 4. The first singularity of the trace of P_{z}

In this and next section, we assume that, as in \S 1, \Sigma and P satisfy
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(H. 1) \sim(H. 3) with \Gamma= non-negative real line and 12 has a fixed positive
C^{\infty} density dQ.

The following definitions of the densities are due to [13]. For every
\rho\in\Sigma we define the Lebesgue measure dX_{\rho} on N_{\rho}\Sigma by:

\int_{M- Hessp_{m^{(_{\rho})(X)<1}}}dX_{\rho}=1

where M-Hess p_{m}( \rho)(X)=\frac{1}{M!}(X^{M}p_{m})(\rho) and X is an extens\dot{l}on of X to

a neighborhood of \rho . Note that dX_{\rho} is positively-homogeneous of degree
md/M in the sense: If for every \rho\in\Sigma, f_{\rho}(X) is defined on N_{\rho}\Sigma,

\int_{N_{\lambda\rho}\Sigma}f_{\lambda\rho}(X)dX_{\lambda\rho}=\lambda^{md/M}\int_{N_{\rho}\Sigma}f_{\rho}(X)dX_{\rho} .

In a conic neighborhood of \Sigma, we choose a local coordinates (u, v) so that
(u, v) is as in the beginning in \S 2 and dxd\xi=r(\rho)^{-n}dv du (\rho=(0, v(x,\xi))) .
Define a positive C^{\infty} density d\rho on \Sigma by

d \rho=\{\int_{|\alpha|=\tau r^{a_{\alpha}(_{\rho})u^{\alpha}<1}}\sum_{\wedge}du\}r(\rho)^{-n}dv|_{\Sigma} .

Then d\rho is homogeneous of degree (Mn-md)/M in the same sense as above
and we have dxd\xi=dX_{\rho}d\rho .

According to Schwartz’ kernel theorem, each pseudodifferential operator
P has a distribution kernel K(x, y)d\Omega_{y} on \Omega\cross\Omega :

(Pu, v\rangle =\langle K, u\otimes v\rangle for all u, v\in C^{\infty}(\Omega)

where u\otimes v(x, y)=u(x)v(y) .
In the present section, we investigate the first singularity of the trace :

Trace (P_{z}^{(i)})= \int_{\rho}K_{z}^{(i)}(x, x)d\Omega_{x} i=1,2

where K_{z}^{(i)}(x, y)d\Omega_{y} are the kernels of complex powers P_{z}^{(i)} . Then we have

THEOREM 4. 1. ( i) Trace (P_{z}^{(i)}) is analytic on

\{z;\mathscr{B}ez<\min ( \frac{n}{m}, - \frac{2n-d}{2m-M})\} .

(ii) There are three cases on the fifirst singularity:
(I) If mdyMn, Trace (P_{z}^{(2)}) has the fifirst singularity which is a pole

of order 1 at z=- \frac{n}{m} and the residue is equal to
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(4. 1) - \frac{1}{m}(2\pi)^{-n}\int_{S^{*}\Omega}P_{m}(\omega)^{-}\frac{n}{m}d\tilde{\omega}

where S^{*}\Omega is the cosphere bundle and d\tilde{\omega} is a density on S^{*}\Omega defifined by
dxd\xi=r^{n-1}drd\tilde{\omega} .

(II) If md=Mn, Trace (P_{z}^{(1)}) has the fifirst singularity which is a pole

of order 2 at z=- \frac{n}{m}(=-\frac{2n-d}{2m-M}) . The coefficient of (z+ \frac{n}{m})^{-2} in the

Laurent expansion is equal to

(4. 2) \frac{1}{M(m-M/2)}(2\pi)^{-n}\int_{\Sigma ns*0}\int_{SN_{\omega}E}(\sum_{|\alpha|=M}a_{\alpha}(\omega)X^{\alpha})^{-\frac{n}{m}}dX_{\omega}d\omega

where SN_{\omega}\Sigma= {X\in N_{\omega}\Sigma;M-Hess p_{m}(\omega)(X)=1} and d\omega is a density on
\Sigma\cap S^{*}\Omega defifined by d\rho=r^{-1}drd\omega . Note that d\rho is homogeneous of degree
0 in this case.

(III) If md<Mn , Trace (P_{z}^{(1)}) has the fifirst singularity which is a pole

of order 1 at z=- \frac{2n-d}{2m-M} and the residue is equal to

(4. 3) - \frac{1}{(m-M/2)}(2\pi)^{-n}\int_{\Sigma ns*0}\int_{N_{\omega}E}\mu(_{-}\frac{2n-d}{2m-M} ; \omega , X)dX_{\omega}d\omega 1

Here \mu(z ; \rho, X) is defifined by :

\mu(z;\rho, X)=\frac{-1}{2\pi i}\int_{\gamma}\zeta^{z}\tilde{q}_{\zeta}(\rho, X)d\zeta

For the proof we have to use the following

Lemma 4. 2. Let p_{z} be an analytic function on \{\mathscr{B}ez<0\} with values
in S^{maez-j,M9ez-k} uniformly in z and m>M/2 . Defifine

F(z)=(2 \pi)^{-n}\int\int_{\tau*0}p_{z}(x, \xi)dxd\xi_{1}

(i) Let the support of p_{z} be outside a conic neighborhood of \Sigma . Then

F(z) is analytic on \{\mathscr{B}ez<-\frac{n}{m}+\frac{j}{m}\} .

(ii) With the notation of \S 2, we put

E_{1}=\{(x, \xi);|u|\leq\epsilon|v|\leq|u|^{2}\} and E_{2}=\{(x, \xi);\epsilon|v|\geq|u|^{2}\}

for a small \epsilon>0 .
(ii. 1) Let the support of p_{z} be in E_{1} . When md>Mn, F(z) is analytic

on \{\mathscr{B}aez<-\frac{n}{\xi {}^{t1}m}\} if j=k=0 and on \{\mathscr{B}aez\leq-\frac{n}{m}\} if 2j=k>0 or j>0 , k=0.
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When md\leq Mn , F(z) is analytic on \{\mathscr{B}aez\leq-\frac{2n-d}{2m-M}\} if 2j>k\geq 0 and on

\{\mathscr{B}ez<-\frac{2n-d}{2m-M}\} if 2j=k\geq 0 . For j=0, k=-1, F(z) is analytic on

\{\mathscr{B}ez\leq-\frac{2n-d}{2m-M}\} when md<Mn .
(ii. 2) Let the support of p_{z} be in E_{2} . Then F(z) is analytic on

\{\mathscr{B}ez<-\frac{2n-d}{2m-M}+\frac{2j-k}{2m-M}\} .

PROOF. By the hypothesis, there exists a constant C>0 (independent
of z) such that

|p_{z}|\leq Cr^{maez-f}\rho_{2}^{Maez-k}

and note that for every bounded set B,

(2 \pi)^{-n}\int_{B}p_{z}(x, \xi)dxd\xi

is an entire function. In the case (i) \rho_{\Sigma}\approx d_{\Sigma}+r^{-1/2}\geq 1 in supp p_{z} and hence
\rho_{\Sigma}\approx 1 . These facts imply

r^{maez-j}\rho_{\Sigma}^{Maez-k}\approx r^{maez-f}

Therefore letting \mathscr{B}aez\leq b,

\int_{r\geq 1}r^{maez-j}\rho_{\Sigma}^{Maez-k}dxd\xi\leq C’\int_{1}^{\infty}r^{mb-f+n-1}dr

for some constant C’ (independent of z). Thus (i) holds.
In the case (ii. 1) , we see r\approx|v| and so \rho_{\Sigma}\geq\frac{|u|}{|v|} . Therefore letting

a\leq \mathscr{B}ez\leq b, we have for some \delta>0

\int_{r\geq\delta}r^{maez-j}\rho_{\Sigma}^{Maez-k}dxd\xi

\leq C’\int_{1/e}^{\infty}s^{(mb-Ma)-f+k+n-d-1}ds\int_{\sqrt\overline{\cdot s}}^{\epsilon s}t^{Ma-k+d-1}dt

\leq\{

C’ \int_{1/\epsilon}^{\infty}s^{mb-j+n-1}\log sds if Ma-k+d\geq 0 ,

C’ \int_{1/_{\epsilon}}^{\infty}s^{(mb-Ma/2)-j+k/2\dagger n-a/2-1}ds if Ma-k+d<0

where C’ and C’ are some constants independent of z. Thus (ii. 1) holds.
In the case (ii. 2) , we see r\approx|v| and \rho_{2}\approx|v|^{-1/2}. Since

r^{maez-f}\rho_{\Sigma}^{Maez-k}\leq C|v|^{(m-M/2)aez-f+k/2}
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where C is a constant (independent of z), we have for \mathscr{B}ez\leq b,

\int_{r\geq\delta}r^{m9ez-j}\rho_{\Sigma}^{Maez-k}dxd\xi

\leq C’\int_{1/_{\epsilon}}^{\infty}s^{(m-M/2)b-j+k/2+n-d-1}ds\int_{0}^{l\overline{*s}}t^{d-1}dt

\leq C’\int_{1/}^{\infty}\text{\’{e}} s^{(m-M/2)b-j+k/2+n-a/2-1}ds

where C’ and C’ are some constants independent of z. Thus (ii. 2) holds.

PROOF OF THEOREM 4. 1.
Since (i) is clear from Lemma 4. 2, we shall prove (ii).

(I) The case : md>Mn( therefore-\frac{n}{m}<-\frac{2n-d}{2m-M}) .
In this case we use \sigma(P_{z}^{(2)}) . Then we can write

\sigma(P_{z}^{(2)})=(p_{zn}(x, \xi)+|\xi|^{m-M/2})^{z}+p_{1}(z;x, \xi)

where p_{1}\in S^{naez-1/2,Maez-1} uniformly in z. By Lemma 4. 2,

\int p_{1}(z;x, \xi)dxd\xi

is analytic on \mathscr{B}ez\leq-\frac{n}{m} . Therefore we may examine

(2 \pi)^{-n}\int_{r\geq 1}(p_{m}(x, \xi)+|\xi|^{m-M/2})^{z}dxd\xi

Since (p_{m}(x, \xi)+|\xi|^{m-M/2})^{z}=p_{m}(x, \xi)^{z}+p_{2}(z;x, \xi) where |p_{2}(z;x, \xi)|\leq C.|\xi|^{tm-M/2)} .
p_{m}(x, \xi)^{z-e} for a small \epsilon>0 , it is sufficient to consider

(2 \pi)^{-n}\int_{r\geq 1}p_{m}(x, \xi)^{z}dxd\xi

Note that the integral is defined when - \frac{d}{M}<\mathscr{B}ez<-\frac{n}{m} . Since, for

\mathscr{B}ez<-\frac{n}{m},

(2 \pi)^{-n}\int_{r\geq 1}p_{m}(x, \xi)^{z}dxd\xi

= \int_{1}^{\infty}r^{mz+n-1}dr(2\pi)^{-n}\int_{s*0}p_{m}(\omega)^{z}d\tilde{\omega}

=^{\frac{-1}{mz+n}(2\pi)^{-n}I_{s*\rho}^{p_{m}(\omega)^{z}d\tilde{\omega}}\prime}.
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we see that Trace (P_{z}) has the first singularity at z=- \frac{n}{m} which is a pole

of order 1 and the residue is equal to (4. 1). The proof of that case is
complete.

In the case md\leq Mn , we use \sigma(P_{z}^{(1)}) . First we want to show that the
integral

(2 \pi)^{-n}\int\int_{\tau\cdot 0}\sigma(P_{z}^{(1)})(x, \xi)dxd\xi

is analytic on \{\mathscr{B}ez<-\frac{2n-d}{2m-M}\} and has a pole of order 1 or 2 at

2n-d
z=-\overline{2m-M} as the first singularity if md<Mn or md=Mn respectively.

For this purpose we say that a function f(z;x, \xi) is negligible if

(2 \pi)^{-n}\int\int_{T^{*}\Omega}f(z;x, \xi)dxd\xi

is analytic on \{\mathscr{B}aaez<-\frac{2n-d}{2m-M}\} and is extended analytically to \{\mathscr{B}ez\leq

- \frac{2n-d}{2m-M}\} when md<Mn or has at most a pole of order 1 at z=- \frac{2n-d}{2m-M}

as the first singularity when md=Mn. By Proposition 3. 1 and Lemma 4. 2,
it is clear that

\sigma(P_{z}^{(1)})=\{

\mu(z;\rho, u)+r(z;\rho, u) in a conic neighborhood of \Sigma ,
(p_{m}+|\xi|^{m-M/2})^{z} outside a conic neighborhood of \Sigma

modulo negligible terms.
In \S 2 we used the partition of unity \{\psi_{k}(z, \xi)\}_{k\in K} such that \psi_{k} are

homogeneous of degree 0 and if supp \psi_{k}\cap\Sigma\neq\phi, q_{\zeta}(\rho, u) in \S 2 is constructed
in supp \psi_{k} . When supp \psi_{k}\cap\Sigma=\phi, by the same way as the case (I) we see
that (p_{m}+|\xi|^{m-M/2})^{z}\psi_{k}(x, \xi) is negligible. Let supp \psi_{k}\cap\Sigma\neq\phi . Since r(z;\rho, u)

\in S^{maez,Maez+1}\subset S^{maez,Maez}, Lemma 4. 2 implies that r(z;\rho, u)\psi_{k} are negligible
when md<Mn . In the case md=Mn, we can write

r(z; \rho, u)=\frac{-1}{2\pi i}\int_{\gamma}\zeta^{z}\frac{p-\check{p}}{(\not\simeq-\zeta)(p_{m}+|\xi|^{m-M/2}-\zeta)}d\zeta

\equiv\frac{-1}{2\pi i}\int_{\gamma}\zeta^{z}\frac{p_{m}-\phi_{m}}{(\beta_{m}+|\xi|^{m-M/2}-\zeta)(p_{m}+|\xi|^{m-M/2}-\zeta)}d\zeta

=(p_{m}+|\xi|^{n\iota-M/2})^{z}-(p_{m}+|\xi|^{m-M/2})^{z}

\equiv p_{m}^{z}-\check{p}_{m}^{z} modulo negligible terms.

Since p_{m}^{z}- \oint_{m}^{z} is homogeneous of degree m, we can write
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\int\int_{r\geq 1}(p_{m}^{z}-\check{p}_{zn}^{z})\psi_{k}dxd\xi=\int_{1}^{\infty}r^{mz+n-1}dr\int_{S^{*}\Omega}p_{z}^{2}(\omega)\psi_{k}(\omega)d\tilde{\omega}

where |p_{z}^{2}(\omega)|\leq Cd_{\Sigma}(\omega)^{Maez+1} . Since we may assume d_{\Sigma}(\omega)\leq\delta for some \delta>0

in supp \psi_{k} , it is negligible. Moreover since \psi_{k}(x, \xi)=\psi_{k\mathfrak{l}\Sigma}+\psi_{k}’(x, \xi) where
\psi_{k}’\in S^{0,1}, by the same way as above \mu(z;\rho, u)\psi_{k}’ is negligible. Thus we
may examine

I(z)=(2 \pi)^{-n}\int_{\Sigma\cap 1r\geq 1I}\int_{N_{\rho}\Sigma}\mu(z;\rho, X)dX,d\rho .

By the quasi-homogeneity of \tilde{q}_{\zeta}(\rho, X) , we have
\mu(z;\rho, X)=r^{(zn-M/2)z}\mu(z;r^{-1}\rho, r^{1/2}X)

Since dX_{\rho} and d\rho are positively-homogeneous of degree md/M and (Mn-
md)/M respectively, we have, for \mathscr{B}ez<-\frac{2n-d}{2m-M},

I(z)= \int_{1}^{\infty}r^{(m-M/2)z+md/M+(Mn-md)/M-a/2-1}dr(2\pi)^{-n}\int_{S^{5}\Sigma}\int_{N_{\omega}E}\mu(z;\omega, X)dX_{\omega}d\omega

= \frac{-1}{(m-M/2)z+n-d/2}(2\pi)^{-n}\int_{S^{*}\Sigma}\int_{N_{\omega}\Sigma}\mu(z;\omega, X)dX_{\omega}d\omega .

Next we consider

\int_{N_{\omega}\Sigma}\mu(z;\omega, X)dX_{\omega}

If we define, for any X\in N_{\omega}\Sigma, |X|_{\omega}=(M-Hess p_{m}(\omega)(X))^{1/M}, we see that

\int_{1X1_{\omega}\leq 1}\mu(z;\omega, X)dX_{\omega}

is an entire function and put

\int_{1X1_{\omega}\geq 1}\mu(z;\omega, X)dX_{\omega}=\int_{1XI_{\omega}\geq 1}((\sum_{|\alpha|=M}a_{a}(\omega)X^{\alpha})^{z}+r_{1}(z;\omega, X))dX_{\omega}

where r_{1}(z; \omega, X)=\mu(z;\omega, X)-(\sum_{|\alpha|=M}a_{\alpha}(\omega)X^{\alpha})^{z} . By (2. X) , we have

\tilde{q}_{\zeta}(\omega, X)-(\tilde{p}(\omega, X)-\zeta)^{-1}=(_{\backslash }\tilde{p}(\omega, X)-\zeta)^{-1}

( \sum_{|\beta|\geq 1}\frac{i^{I\beta 1}}{\beta!}D_{X}^{\beta}\tilde{p}(\omega, X)(A(\omega)D_{X})^{\beta}\tilde{q}_{\zeta}(\omega, X))

Noting \tilde{p}(\omega, X)\geq|X|_{\omega}^{M} and |\tilde{q}_{C}(\omega, X)|\leq|X|_{\omega}^{-M} for large |X|_{\omega} uniformly in \zeta ,
we see that \mu(z;\omega, X)-\tilde{p}(\omega, X)^{z}=O(|X|_{\omega}^{Maez-1}) as |X|_{\omega}arrow\infty . Moreover since
it is clear that \tilde{p}(\omega, X)^{z}-(\sum_{|\alpha|=M}a_{a}(\omega)X^{\alpha})^{z}=O(|X|_{\omega}^{M{?} ez-1}) as |X|_{\omega}arrow\infty , we see
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that r_{1}(z;\omega, X)=O(|X|_{\omega}^{Maez-1}) as |X|_{\omega}arrow\infty . Therefore by the same way as

Lemma 4. 2 the integral of r_{1}(z;\rho, X) is analytic on \{\mathscr{B}aaez\leq-\frac{d}{M}\} . Thus

we may consider, for \mathscr{B}aaez<-\frac{d}{M}

I_{1}(z)= \int_{1XI_{\omega}\geq 1}(\sum_{|\alpha|=M}a_{\alpha}(\omega)X^{\alpha})^{z}dX_{\omega\prime}

Let \mathscr{B}aaez<-\frac{d}{M} . Since I_{1}(z) is equal to

\downarrow_{1}^{\prime\infty}s^{Mz+a-1}ds\int_{SN_{\omega}\Sigma}(\sum_{|\alpha|=M}a_{a}(\omega)Y^{\alpha})^{z}dY_{\omega}

= \frac{1}{Mz+d}\int_{SN_{\omega}2}(\sum_{|a|=M}a_{\alpha}(\omega)Y^{\alpha})^{z}dY_{\omega}

where SN_{\omega}\Sigma=\{X\in N_{\omega}\Sigma;|X|_{\omega}=1\} , I_{1}(z) is analytic on \mathscr{B}aaez<-\frac{d}{M} and has

the first singularity at z=- \frac{d}{M} which is a pole of order 1 and the residue
is equal to

- \frac{1}{M}\int_{SN_{\omega}\Sigma}(\sum_{|\alpha|=M}a_{\alpha}(\omega)Y^{\alpha})^{-}\frac{a}{M}dY_{\omega} .

Thus we have the case (II) and (III) as follows.

(II) The case : md=Mn( therefore-\frac{2n-d}{2m-M}=-\frac{n}{m}=-\frac{d}{M}) .
In this case we can write I(z)

= \frac{1}{(m-M/2)z+n-d/2}(2\pi)^{-n}[\frac{1}{Mz+d}\int_{SZ}.\int_{SN_{\omega}2}(\sum_{|\alpha|=M}a_{\alpha}(\omega)Y^{\alpha})^{z}dY_{\omega}

+F(z, \omega)]d\omega

where F(z, \omega) is analytic on \{\mathscr{B}aez\leq-\frac{d}{M}\} . Therefore I(z) has the first

singularity at z=- \frac{n}{m} which is a pole of order 2 and the coefficient of

(z+ \frac{n}{m})^{-2} in the Laurent expansion of I(z) is equal to (4. 2).

(III) The case : md<Mn( therefore-\frac{2n-d}{2m-M}<-\frac{n}{m}) .

In this case since - \frac{2n-d}{2m-M}<-\frac{d}{M} , I(z) has the first singularity at
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z=- \frac{2n-d}{2m-M} which is a pole of order 1 and the residue is equal to (4. 3).

The proof is complete.

\S 5. Asymptotic behaviors of the eigenvalues of P

In this section we assume that \Sigma and P satisfy (H. 1) \sim(H. 3) with \Gamma=

nonnegative real line as in \S 4 and m>M/2 . Moreover we assume:
(H. 4) P is formally self-adjoint, i . e . for every u, v\in C^{\infty}(\Omega) ,

\int_{\Omega}Pu\overline{v}d\Omega=\int_{\Omega}u\overline{Pv}d\Omega

where d\Omega is a fixed positive density on 12.
Under (H. 1) \sim(H. 3) and (H. 4), P is hypoelliptic with loss of M/2 derivatives.
Therefore we can regard P as an unbounded self-adjoint operator on L^{2}(\Omega)

with the domain \{u\in L^{2}(\Omega);Pu\in L^{2}(\Omega)\} and P has only eigenvalues of finite
multiplicity whose limit point can be \pm\infty . Moreover we assume

(H. 5) P is semibounded from below.

Thus without loss of generality we may assume that the sequence of the
eigenvalues is : 1\leq\lambda_{1}\leq\lambda_{2}<\cdots , h.m\lambda_{k}=\infty with repetition according to multi-

karrow\infty

ph.city. Let N(\lambda) be the number of eigenvalues \leq\lambda, that is, N( \lambda)=\sum_{\lambda_{k}\leq\lambda}1 .
It is well known that

Trace (P_{z}^{(i)})= \int_{\rho}K_{z}^{(i)}(x, x)d\Omega_{x}=\sum_{k=0}^{\infty}\lambda_{k}^{z} i=1,2 .

Then we have the asymptotic formula for N(\lambda) .

THEOREM 5. 1. (c. f. [13]) ( I) If md>Mn , then we have

\lim_{\lambdaarrow\infty}N(\lambda)\lambda^{-}\frac{n}{m}=(2\pi)^{-n}\int_{p_{m^{(x,\xi)\leq 1}}}dxd\xi_{l}

(II) If md=Mn, then we have

\lim_{\lambdaarrow\infty}\frac{N(\lambda)\lambda^{-^{\frac{n}{m}}}}{1og\lambda}=\frac{n}{m(n-d/2)}(2\pi)^{-n}\int_{S^{*}\Sigma}d\omega r

(III) If md<Mn , then we have

\lim_{\lambdaarrow\infty}N(\lambda)\lambda^{-^{\frac{2n-d}{2m-M}}}=\frac{Mn-md}{M(n-d/2)}(2\pi)^{-n}\int_{\mu^{(}\rho^{)}\geq 1}d\rho

where
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\mu(\rho)=\int_{N_{\rho}\Sigma}\mathscr{B}ae\mu(-\frac{2n-d}{2m-M} ; \rho, X)dX_{\rho}

and note that \mu(\rho) is homogeneous of degree (md-Mn)/M.
For the proof of this theorem, we use the following lemma and prop0-

sition.

LEMMA 5. 2. Let d\mu be a measure on the right half axis in R defifined
by a non-negative monotone increasing function \mu with \mu(0)=0 . Assume that

F(w)= \int_{0}^{\infty}e^{-wx}d\mu(x)

is convergent for \mathscr{B}ew>1 (hence analytic). Moreover assume that there
exist complex numbers A_{1}, A_{2}, \cdots , A_{p} such that

H(w)=F(w)- \sum_{j=1}^{p}\frac{A_{f}}{(w-1)^{j}}

is continuous on the closed half plane \mathscr{B}ew\geq 1 . Then we have

\lim_{xarrow\infty}\frac{\mu(x)}{x^{p-1}e^{x}}=\mathscr{B}aeA_{p} .

Note that this lemma is an extension of Ikehara’s Tauberian theorem
which is treated the case p=1 (c. f. [19]) . The proof is essentially based
on Donoghue [3].

PROOF. Let \mathscr{B}ew>1 . Then the integration by parts leads to

G(w)= \frac{1}{w}\int_{0}^{\infty}e^{-wx}d\mu(x)=\int_{0}^{\infty}e^{-wx}\mu(x)dx .

If we put

\frac{1}{w}=\sum_{k=0}^{p-1}(-1)^{k}(w-1)^{k}+g(w) ,

we see that g(w) has the zero of order p at w=1 . Therefore we can write

G(w)= \sum_{j=1}^{p}\frac{A_{j}’}{(w-1)^{j}}+h(w)

where h(w) is analytic on \mathscr{B}ew>1 and continuous on \mathscr{B}aaew\geq 1 and A_{p}’=A_{p} .
Next put b(x)=e^{-x}\mu(x) and for \epsilon>0 ,

a_{*}(x)=\{
0 if x<0,\cdot

e^{-\cdot x} if x>01
If we take w=1+\epsilon+i\xi (\xi real), then we have
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G(w)= \int_{0}^{\infty}e^{-ex}b(x)e^{-i\xi x}dx=(a_{e}b)^{\wedge}(\xi) .

Here \wedge means the Fourier transformation. Since

\frac{(j-1)!}{(\epsilon+i\xi)^{j}}=(x^{j-1}a_{\epsilon})(\xi) ,

we have

(a_{\epsilon}b)^{\wedge}( \xi)=\sum_{j=1}^{p}\frac{A_{j}’}{(j-1)!}(x^{j-1}a_{*})^{\wedge}(\xi)+h(1+\epsilon+i\xi) .

Therefore by the definition of the Fourier transformation of \mathscr{S}’ , for any
\phi\in \mathscr{S} ,

\int_{0}^{\infty}e^{-\text{\’{e}} x}b(x)\hat{\phi}(x)dx

= \sum_{j=1}^{p}\frac{A_{j}’}{(j-1)!}\int_{0}^{\infty}x^{j-1}e^{-ex}\hat{\phi}(x)dx+\int_{-\infty}^{\infty}h(1+\epsilon+i\xi)\phi(\xi)d\xi .

Now select \phi(\xi)\in C_{0}^{\infty}(R) such that \hat{\phi}(x)\geq 0 and \int\hat{\phi}(x)dx=1 , and then
replace \phi(\xi) in the above with \phi(\xi)e^{iy\xi} . Then we have

\int_{0}^{\infty}e^{-ex}b(x)\hat{\phi}(x-y)dx

= \sum_{j=1}^{p}\frac{A_{j}’}{(j-1)!}\int_{0}^{\infty}x^{j-1}e^{-\epsilon x}\hat{\phi}(x-y)dx+\int_{-\infty}^{\infty}h(1+\epsilon+i\xi)\phi(\xi)e^{iy\xi}d\xi 1

As \epsilonarrow 0 , each integral on the right hand side converges to a finite limit
because of the integrability of \hat{\phi} and the continuity of h on \mathscr{B}ew\geq 1 . Since
the integral on the left is positive and increasing as \epsilonarrow 0 , BeppO-Levi’s
theorem implies that the limit is integrable. If we take the real part in the
above, then we have

.|_{0}^{\infty}b(x)\hat{\phi}(x-y)dx

= \mathscr{B}ae[\sum_{j=1}^{p}\frac{A_{j}’}{(j-1)!}\int_{0}^{\infty}x^{j-1}\hat{\phi}(x-y)dx+\int_{-\infty}^{\infty}h(1+i\xi)\phi(\xi)e^{-iy\xi}d\xi] .

As yarrow+\infty , the last integral on the right hand side converges to 0 by the
Riemann-Lebesgue lemma. Since

\int_{0}^{\infty}x^{j-1}\hat{\phi}(x-y)dx=\sum_{k=0}^{j-1}(_{k}^{j-1})y^{j-1-k}\int_{-y}^{\infty}x^{k}\hat{\phi}(x)dx ,

(A) \lim_{yarrow\infty}\frac{1}{y^{p-1}}\int_{0}^{\infty}b(x)\hat{\phi}(x-y)dx=\frac{\mathscr{B}eA_{p}}{(p-1)!}\int_{-\infty}^{\infty}\hat{\phi}(x)dx=\frac{\mathscr{B}eA_{p}}{(p-1)!}r
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When x>x\acute{>}0 , b(x)\geq e^{x’-x}b(d) . Therefore

\int_{0}^{\infty}b(x)\hat{\phi}(x-y)dx=\int_{0}^{y}b(x)\hat{\phi}(x-y)dx+\int_{y}^{\infty}b(x)\hat{\phi}(x-y)dx

\geq b(y)\int_{y}^{\infty}e^{-(x-y)}\hat{\phi}(x-y)dx=b(y)\int_{0}^{\infty}e^{-x}\hat{\phi}(x)dx .

Hence, from (A),

(B)
\varlimsup_{yarrow\infty}\frac{b(y)}{y^{p-1}}\leq\frac{\mathscr{B}aeA_{p}}{\int_{0}^{\infty}e^{-x}\hat{\phi}(x)dx(p-1)!}

Here for \hat{\phi}(x) we substitute \delta\hat{\phi}(\delta x-\sqrt{\delta})=\hat{\psi}(x) , which is also a positive func-
tion in \mathscr{S} with the integral equal to 1 and if \deltaarrow 0 ,

\int_{0}^{\infty}e^{-x}\hat{\psi}(x)dx

converges to 1. Then we have

\varlimsup_{yarrow\infty}\frac{b(y)}{y^{p-1}}\leq\frac{\mathscr{B}eA_{p}}{(p-1)!}

Next we decompose

\int_{0}^{\infty}b(x)\hat{\phi}(x-y)dx=\int_{-y\nu}^{\infty}b(x+y)\hat{\phi}(x)dx=|_{-y}^{-1}+\int_{-1}^{0}+\int_{0}^{\infty}=\sum_{k=1}^{3}I_{k}(y)c

Since

\frac{1}{y^{p-1}}I_{1}(y)\leq\sup_{x>0}\frac{b(x)}{x^{p-1}}\int_{-y}^{-1}(\frac{x}{y}+1)^{p-1}\hat{\phi}(x)dx ,

\frac{1}{y^{p-1}}I_{2}(y)\leq\frac{b(y)}{y^{p-1}}\int_{-1}^{0}e^{-x}\hat{\phi}(x)dx

and

\frac{1}{y^{p-1}}I_{3}(y)\leq\sup_{x\geq y}\frac{b(x)}{x^{p-1}}\int_{0}^{\infty}(\frac{x}{y}+1)^{p-1}\hat{\phi}(x)dx ,

from (A) and (B) we have

\frac{\mathscr{B}aaeA_{p}}{(p-1)!}\int_{-\infty}^{\infty}\hat{\phi}(x)dx

\leq\sup_{x>0}\frac{b(x)}{x^{p-1}}\int_{-\infty}^{-1}\hat{\phi}(x)dx+\varliminf_{yarrow x}\frac{b(y)}{y^{p-1}}\int_{-1}^{0}e^{-x}\hat{\phi}(x)dx

+ \frac{\mathscr{B}aaeA_{p}}{(p-1)!}\int_{0}^{\infty}\hat{\phi}(x)dx .
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Therefore

\frac{\mathscr{B}eA_{p}}{(p-1)!}\int_{-\infty}^{0}\hat{\phi}(x)dx

\leq\sup_{x>0}\frac{b(x)}{x^{p-1}}\int_{-\infty}^{-1}\hat{\phi}(x)dx+\varliminf_{yarrow\infty}\frac{b(y)}{y^{p-1}}\int_{-1}^{0}e^{-x}\hat{\phi}(x)dx .

Replacing \hat{\phi}(x) with \epsilon\hat{\phi}(\epsilon x) and letting \epsilonarrow\infty ,

\frac{\mathscr{B}aeA_{p}}{(p-1)!}\int_{-\infty}^{0}\hat{\phi}(x)dx\leq\varliminf_{yarrow\infty}\frac{b(y)}{y^{p-1}}\int_{-\infty}^{0}\hat{\phi}(x)dx .

Thus we have

\frac{\mathscr{B}eA_{p}}{(p-1)!}\leq\varliminf_{yarrow\infty}\frac{b(y)}{y^{p-1}}

This completes the proof.

PROPOSITION 5. 3. Let \sum_{k=1}^{\infty}\lambda_{k}^{z} be convergent for \mathscr{B}ez <s_{0}(<0) , hence

analytic. Assume that there exist complex numbers A_{1} , A_{2}, \cdots , A_{p} such that

\sum_{k=1}^{\infty}\lambda_{k}^{z}-\sum_{j=1}^{p}\frac{A_{j}}{(z-s_{0})^{j}}

is continuous on \mathscr{B}aez\leq s_{0} . Then we have

\lim_{\lambdaarrow\infty}\frac{(-1)^{p-1}s_{0}N(\lambda)\lambda^{s_{0}}}{(1og\lambda)^{p-1}}=\frac{\mathscr{B}aeA_{p}}{(p-1)!}1

PROOF OF PROPOSITON 5. 3.
Let s_{0}<0 and

f(z)= \downarrow_{1}^{\infty}.x^{-}d\frac{z}{s_{0}}\alpha(x)

where \alpha(x) is the number of eigenvalues such that (\lambda_{k})^{-s_{0}}\leq x. Then \alpha(x)

is monotone increasing and f(z)= \sum_{k=1}^{\infty}\lambda_{k}^{z} . By the hypotheses, f(z) is analytic

on \mathscr{B}aez<s_{0} and

f(z)- \sum_{j=1}^{p}\frac{A_{f}}{(z-s_{0})^{j}}

is continuous on \mathscr{B}ez\leq s_{0} . If we put \mu(x)=\alpha(e^{x}) , \frac{z}{s_{0}}=w and F(w)=f(z),

we see that

F(x)= \int_{0}^{\infty}e^{-wx}d\mu(x)
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is analytic on \mathscr{B}aew>1 and

F(w)- \sum_{j=1}^{p}\frac{B_{j}}{(w-1)^{j}}(B_{j}=\frac{A_{j}}{s_{0^{j}}})

is continuous on \mathscr{B}ew\geq 1 . Thus if we apply Lemma 5. 2, we see

\lim_{xarrow\infty}\frac{\alpha(x)}{x(1ogx)^{p-1}}=\frac{\mathscr{B}aaeA_{p}}{(p-1)!s_{0}^{p}}

Taking x=\lambda^{-s_{0}} , we have

\lim_{\lambdaarrow\infty}\frac{(-1)^{p-1}s_{0}N(\lambda)\lambda^{s_{0}}}{(1og\lambda)^{p-1}}=\frac{\mathscr{B}aaeA_{p}}{(p-1)!}

This completes the proof of Proposition 5. 3.
PROOF OF THEOREM 5. 1.

The case ( I) : Since

\int_{S^{l}\Omega}p_{m}(\omega)^{-}\frac{n}{m}d\tilde{\omega}=\frac{m}{\Gamma(\frac{n}{m})}\int e^{-pm^{(x,\xi)}}dxd\xi=n\int_{p_{m^{(x,\xi)\leq 1}}}dxd\xi

,

it is easy from Proposition 5. 3.

The case (II) : If we put

\nu(t)=\int ^{dX_{\omega}}|\alpha|^{\sum_{=M}a_{\alpha}(_{\omega})X^{\alpha}<t}

”

and let \lambda^{-1/M}t- t, then we have \nu(t)=t^{a/M}\nu(1)=t^{a/M} . On the pther hand we
have

\int\exp(-\sum_{|\alpha|=M}a_{\alpha}(\omega)X^{a})dX_{\omega}

= \int\exp(-|X|_{\omega}^{M}\sum_{|\alpha|=M}a_{\alpha}(\omega)(\frac{X}{|X|_{\omega}})^{a})dX_{\omega}

= \frac{1}{M}\int_{0}^{\infty}e-s^{\frac{a}{M}}s^{-1}ds\int_{SN_{\omega}\Sigma}(\sum_{|\alpha|=M}a_{\alpha}(\omega)Y^{\alpha})^{-\frac{a}{M}}dY_{\omega}

= \frac{1}{M}\Gamma(\frac{d}{M})\int_{SN_{\omega}\Sigma}(\sum_{|a|=M}a_{\alpha}(\omega)Y^{a})^{-}\frac{d}{M}dY_{\omega} .

Since

\int\exp(-\sum_{|\alpha|=M}a_{\alpha}(\omega)X^{\alpha})dX_{\omega}=\int_{0}^{\infty}e^{-t}d\nu(t)=\frac{d}{M}\Gamma(\frac{d}{M}) ,

we have
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\int_{SN_{\omega}\Sigma}(\sum_{/\alpha|=M}a_{\alpha}(\omega)Y^{\alpha})^{-}d\frac{a}{M}Y_{\omega}=d\backslash

If we note \frac{d}{M}=\frac{n}{m} and apply Proposition 5. 2, we see that (II) holds.

The case (III): In this case we have

\int_{\mu^{(}\rho^{)}\geq 1}d\rho

= \int_{r(_{\rho})^{(md-Mn)/M_{\mu^{(}\omega)\geq 1}}}r(\rho)^{-(ma-Mn)/M-1}dr(\rho)d\omega

= \frac{M}{Mn-md}\int_{S^{*}E}[r^{-(ma-Mn)/M}]_{0}^{\mu(\omega)^{M/(Mn-md)}}d\omega

= \frac{M}{Mn-md}\int_{S^{*}\Sigma}\mu(\omega)d\omega .

Thus applying Proposition 5. 3 we see that (III) holds. This completes the
proof of Theorem 5. 1.

If we take \lambda=\lambda_{k} in Theorem 5. t , we can also give the asymptotic
formula which is an extension of [15] to the hypoelliptic case.

COROLLARY 5. 4. ( I) If md>Mn, then we have

\lim_{karrow\infty}k\lambda_{k}^{-\frac{n}{m}}=(2\pi)^{-n}\int_{p_{m^{(x,\xi)\leq 1}}}dxd\xi .

(II) If md=Mn, then we have

\lim_{karrow\infty}\frac{k\lambda_{k}^{-}\frac{n}{m}}{1og\lambda_{k}}=\frac{n}{m(n-d/2)}(2\pi)^{-n}\int_{S^{l}\Sigma}d\omega .

(III) If md<Mn , then we have

\lim_{karrow\infty}k\lambda_{k}^{-}\frac{2n-d}{2m-M}=\frac{Mn-md}{M(n-d/2)}(2\pi)^{-n}\int_{\mu^{(}\rho^{)}\geq 1}d\rho .

EXAMPLE. Let \Omega be a compact C^{\infty} Riemannian manifold of dimension

n>1 with the metric \sum_{j,k=1}^{n}g_{jk}(x)dx^{j}dx^{k} and its volume element d12=g^{1/2}dx

(g=\det(g_{jk})) . Let \phi_{i}\in C^{\infty}(\Omega)i=1,2 , \cdots , d(d<n) such that \phi_{i} are real valued
and d\phi_{1} , d\phi_{2}, \cdots , d\phi a are linearly independent at \Omega_{1}=\{x\in\Omega;\phi_{i}(x)=0 , i=
1,2, \cdots , d\} . Define

\Delta_{\phi}=-\sum_{j,k=1}^{n}g^{-1/2}\frac{\partial}{\partial x_{j}}(\phi g^{1/2}g^{jk})\frac{\partial}{\partial x_{k}}

where \phi=\sum_{i=1}^{a}\phi_{i}^{2} and (g^{jk})=(g_{jk})^{-1} . We consider the operator
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P=\Delta_{\phi}+\sqrt{-\Delta}

where \Delta is the Laplace-Beltrami operator on \Omega (c . f. Nordin [14]). Then
for \rho\in\Sigma=\{(x, \xi)\in T^{*}\Omega\backslash 0;x\in\Omega_{1}\}=\pi^{-1}(\Omega_{1}) , we have

\sigma_{\rho}(P)(y, D_{y})=(\sum_{j,k=1}^{n}\frac{\partial^{2}\phi}{\partial x_{j}\partial x_{k}}(\pi(\rho))y_{f}y_{k})(\sum_{j,k=1}^{n}g^{jk}(\pi(\rho))\xi_{j}\xi_{k})

+\sigma_{1}(\sqrt{-\Delta})(\rho)

where \pi is the natural projection T^{*}\Omega\backslash 0- \Omega . Thus \sigma_{\rho}(P)(y, D_{y}) is an is0-
morphism from \mathscr{S} onto \mathscr{S} and satisfies (H. 1) \sim(H. 5) . Therefore we have

\lim_{\lambdaarrow\infty}N(\lambda)\lambda^{-(n-d/2)}

= \frac{1}{n-d/2}(2\pi)^{-n}\int_{S^{*}\Sigma}\int_{N_{\omega}\Sigma}(Hess\phi(\pi(\omega))(X)+1)^{-(n-a/2)}dX_{\omega}d\omega

where s*\Sigma=\{\rho=(x, \xi)\in\Sigma;r(x, \xi)=\sqrt{\sum^{n}g^{jk}(x)\xi_{j}\xi_{k}}f,k=1=1\} . Since |X|_{\omega}=

{Hess\phi(\pi(\omega))(X)+1\rangle^{1/2}, the right hand side is equal to

\frac{1}{n-d/2}(2\pi)^{-n}\int_{S^{*}\Sigma}\int_{1XI_{\omega}=1}\int_{0}^{\infty}(s^{2}+1)^{-(n-a/2)}s^{d-1}dsdX_{\omega}d\omega/

= \frac{1}{n-d/2}(2\pi)^{-n}\frac{\Gamma(d/2)\Gamma(n-d)}{2\Gamma(n-d/2)}\int_{S^{l}\Sigma}\int_{|X|1}=dX_{\omega}d\omega\omega .

By the definitions of dX_{\omega} and d\omega, we see

\int_{1X\mathfrak{l}_{\omega}=1}dX_{\omega}=d

and

\int_{S^{l}\Sigma}d\omega= (the volume of the unit sphere in R^{a}) \cross

(the surface area of the unit sphere in R^{n}) \cross\int_{\Omega_{1}}d\Omega|_{D_{1}}

Thus we have

\lim_{\lambdaarrow\infty}N(\lambda)\lambda^{-(n-a/2)}=\frac{2^{-(n-1)}\pi^{-(n-d)/2}\Gamma(n-d)}{\Gamma(n/2)\Gamma(n+1-d/2)}\int_{\Omega_{1}}d\Omega|_{0_{1}}
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