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\S 1. Introduction.

Let G be a LCA group with the dual group G. We denote by m_{G} the
Haar measure on G. For x\in G, \delta_{x} denotes the point mass at x. Let M(G)
and L^{1}(G) be the measure algebra and the group algebra respectively. For
a subset E of G, M_{E}(G) denotes the space of measures in M(G) whose
Fourier-Stieltjes transforms vanish off E. For a closed subgroup H of G,
H^{\perp} means the annihilator of H. Let \mu be a measure in M(G) . Then, as
well known, the fact that \mu\in L^{1}(G) can be caracterized by

(1. 1) \lim_{xarrow 0}||\mu-\mu*\delta_{x}||=0 .

Our first purpose in this note is to characterize the class of measures \mu in
M(G) with the following property

(1. 2)
\lim_{y\vec{e}H}||\mu-\mu*\delta_{y}||=01y0

When there is a continuous homomorphism \phi from the reals R into G,
deLeeuw and Glicksberg proved in [2] that \emptyset -analytic measures \mu\in M(G)

satisfy \lim_{tarrow 0}||\mu-\mu*\delta_{\phi(t)}||=0 . The second purpose in this paper is to give
a theorem corresponding to theirs under our setting. As an extension of
a theorem of Bochner, one of the authors proved in [8] that the product
set of a Riesz set and a small p set is a small p set. As a corollary our
second theorem, we shall prove that the product set of a small p set and
a small q set is a small max (p, q) set. In section 2 we state our results, and
we give their proofs in sections 3 and 4.

\S 2. Notations and Results.

DEFINITION 2. 1. Let G be a LCA group and H a closed subgroup of
G. A Borel set E in G is called a H-null set if m_{H}(\{t\in H:t+x\in E\})=0

for all x\in G .
DEFINITION 2. 2. For a positive integer p, a closed set E in G is called
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a small p set if the following is satisfied: For each \mu\in M_{E}(G) , \mu^{p}(=\mu*\mu*

\ldots*\mu (p times) ) belongs to L^{1}(G) . In particular, a s..mall 1 set is called a

Riesz set.

We denote by M^{+}(G) the set of positive measures in M(G) . For a
closed subgroup H of G, let M_{aH}(G) be the smallest L-ideal in M(G) con-
taining all measures of the form \rho*\nu , where \rho\in L^{1}(H) and \nu\in M(G) . By
the definition, we note

(2. 1) M_{aH}(G)=\{\mu\in M(G) : \mu\ll\rho*\nu forsomeand\nu\in M^{+}(G)\rho\in L^{1}(H)\cap M^{+}(H)\}

A measure \mu\in M(G) is called H-absolutely continuous if \mu(E)=0 for any
Borel set E in G that is H-null. Let L_{H}(G) be a L-ideal in M(G) con-
sisting of all measures that are H-absolutely continuous. We shall say that
\mu_{f}\in M(G) translates //-continuously if

\lim_{y\in H}yarrow 0||\mu-\mu*\delta_{y}||=0
. Our results are as

follows :

THEOREM I. Let G be a LCA group and H a closed subgroup of G.
Then, for \mu\in M(G) , the following are equivalent :

(I) \mu\in M_{aH}(G) ;
(II) \mu\in L_{H}(G) ;
(III) \mu translates H-continuously.

THEOREM II . Let G and H be as in Theorem I. Let p be a positive
integer and E a small p set in G/H^{L} . Put E=\pi^{-1}(E) , where \pi:Garrow\hat{G}/H^{\perp}

is the natural homomorphism. Then, for each \mu\in M_{E}(G) , \mu^{p} translates
H-continuously.

When p=1 , Theorem II can be considered as a theorem corresponding
to ([2], Theorem 3. 1, p. 186) because, by the classical F. and M. Riesz
theorem, the set of nonngeative real numbers is a Riesz set. Using Theorem
II, we obtain the following corollary, which is a slight extension of ([8],
Theorem 2, p. 277).

COROLLARY. Let G_{1} and G_{2} be LCA groups. Let E_{1} be a small p set
in G_{1} and E_{2} a small q set in \hat{G}_{2} . Put r= \max(p, q) . Then E_{1}\cross E_{2} is a

small r set in G_{1}\hat{\oplus}G_{2} .
Proof. Evidently E_{1} and E_{2} are small r sets. Hence, for \mu\in M_{E_{1}\cross E_{l}}

(G_{1}\oplus G_{2}) , it follows from Theorem II that \mu^{r} translates G_{i} -continuously (i=
1,2) . Then we have lim ||\mu^{r}-\mu^{r}*\delta_{(x_{1},x_{2})}||=0 , which yields \mu^{r}\in L^{1}(G_{1}\oplus G_{2}) .

(x_{1},x_{2})arrow 0

This completes the proof.
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\S 3. Proof of Theorem I.

In this section, we prove Theorem I.

PROPOSITION 3. 1. For \mu\in M(G) , the following are equivalent:
(I) \mu\in M_{aH}(G) ;
(II) \mu translates H-continuously.

PROOF. (I)t\Rightarrow(II) : For \mu\in M_{aH}(G) , it follows from (2. 1) that there exist
\nu\in M^{+}(G) and \rho\in L^{1}(H)\cap M^{+}(H) such that \mu\ll\nu*\rho . Put \eta=\nu*\rho . Since \eta

translates H-continuously, we can verify that
(1) p\eta translates H-continuously

for all p\in Trig(G) . On the other hand, since \mu_{\backslash }^{\nearrow<\eta} , there exists a sequence
\{p_{n}\} in Trig (G) such that \lim_{narrow 0}||\mu-p_{n}\eta||=0 . Hence it follows from (1) that
\mu translates H-continuously.

(II)\subset\gg(I) : For each natural number n, there exists a symmetric open
neighborhood V_{n} of 0 in H such that \sup_{y\epsilon r_{n}}||\mu-\mu*\delta_{y}||<\frac{1}{n} . Let \omega_{n} be a
probability measure in L^{1}(H) with supp (\omega_{n})\subset V_{n} . Then we can verify that

|| \mu-\mu*\omega_{n}||\leq\sup||\mu-\mu*\delta_{y}||<\frac{1}{n} ,
y\epsilon r_{n}

which, together with \mu*\omega_{n}\in M_{aH}(G) , yields \mu\in M_{aH}(G) . This completes the
proof.

Lemma 3. 2. Let G be a LCA group and H a closed subgroup of G.
Let G_{0} be an open subgroup of G. Then, for \mu\in L_{H}(G) with supp (\mu)\subset G_{0},
we have \mu\in L_{H\cap G_{0}}(G_{0}) .

PROOF. Let K\subset G_{0} be a compact set that is H\cap G_{0}\cdot nu11 in G_{0} . We
note that K is H\cap G_{0}-null (in G). For each x\in G , since H\cap(K-x) is a
is a compact set in H, there exist y_{1} , \cdots , y_{n}\in H such that H \cap(K-x)\subset\bigcup_{i=1}^{n}

(H\cap G_{0}+y_{i}) . Put J_{i}=H\cap(K-x)\cap(H\cap G_{0}+y_{i}) . Then H\cap(K-x)=\cup J_{i}n .
i=1

Since J_{i}-y_{i}\subset(H\cap G_{0})\cap(K-x-y_{i}) , we have m_{H\cap G_{0}}(J_{i}-y_{i})=0 , so that m_{H}(J_{i})

=m_{H}(J_{i}-y_{i})=0 . Hence we have m_{H}(H \cap(K-x))=m_{H}(\bigcup_{i=1}^{n}J_{i})=0 . This
shows that K is H-null, Hence \mu(K)=0 . By regularity of \mu , we can verify
that \mu(E)=0 for any Borel set E\subset G_{0} which is H\cap G_{0}\cdot nu11 . This completes
the proof.

PROPOSITION 3. 3. Let G be a LCA group and H a closed subgroup
of G. Then L_{H}(G)=M_{aH}(G) .
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PROOF. We first prove M_{aH}(G)\subset LH(G) Let \mu\in M_{aH}(G) . Then by
(2. 1) there exist \nu\in M^{+}(G) and \rho\in L^{1}(H)\cap M^{+}(H) such that \mu\ll\rho*\nu . Let E
be a Borel set in G that is H-null. Then

\rho*\nu(E)=
.

\int_{G}\rho(_{\backslash }(E-x)\cap H)d\nu(x)

=0 ,

which yields \mu(E)=0 . Thus we have m_{aH}(G)\subset LH(G)

Next we prove L_{H}(G)\subset M_{aH}(G) . Let \mu\in L_{H}(G) . We may assume that
\mu is a positive measure because L_{H}(G) and M_{aH}(G) are L-spaces. Since \mu is
regular, there exists a \sigma-compact open subgroup G_{0} of G with supp (\mu)\subset G_{0} .
Put H_{0}=G_{0}\cap H. Then there exists a positive measure \omega\in L^{1}(H) with
supp (\omega)\subset H_{0} such that \omega\approx m_{H_{0}}

Clam A. \mu\ll\omega*\mu .
In fact, let E. be a Borel set in G with \omega*\mu(E)=0 . We have to show \mu(E)

=0. Since \mu \’and \omega*\mu are c\dot{o}ncentrated on G_{0} , we may assume that E\subset G_{0} .
Then, since \int_{G_{0}}\omega(E-x)d\mu(x)=0 , there exists a \sigma-compact set K in G_{0} with
the following properties:

(1) \mu(K^{c})=0 ;

(2) \omega(E-y)=0 for all y\in K .
Put V=H_{0}+K and E_{0}=V\cap E. Then
(3) E_{0} is H_{0}-null in G_{0} .
In fact, if x\in G_{0}\backslash V, then (E_{0}-x)\cap H_{0}=\emptyset . If x=h+y\in V(h\in H_{0}, y\in K) ,
then \{t\in H_{0} : t+x\in E_{0}\}\subset\{t\in H_{0} : t+y\in E\}-h . Hence (2) yields m_{H_{0}}((E_{0}-x)

\cap H_{0})=0 . Thus (3) follows. On the other hand, it follows from Lemma 3. 2
that \mu\in L_{H_{0}}(G_{0}) . Hence by (1) and (3) we have

\mu(E)=\mu(V^{c}\cap E)+\mu(V\cap E)=0 ,

which shows that the claim is satisfied. By Claim A we get \mu\in M_{ah}(G)

and the proof is complete.
Theorem I is obtained from Propositions 3. 1 and 3. 3.

\S 4. Proof of Theorem II.

In this section, we prove Theorem II.
LEMMA 4. 1. Let G be a LCA group. Let \mu and \nu be measures in

M(G. ) w..i.th \mu 1..\nu . Then n. there exists a \sigma-compact open subgroup \Gamma_{0} of G
su\dot{c}h that
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(1) \pi_{\Gamma}\perp(\mu)1\pi_{\Gamma}\perp(\nu)

for all open subgroups \Gamma of G with \Gamma\supset\Gamma_{0}, where \pi_{\Gamma}\perp:G\mapsto G/\Gamma^{\perp} is -th,.enatural homomorphism.

PROOF. We may assume that \mu and \nu are positive measures without
loss of generality. Since \mu\perp\nu , there exist compact sets E_{n}\uparrow and F_{n}\uparrow in G
with E_{n}\cap F_{n}=\emptyset such that

(2) \mu(G\backslash \bigcup_{n=1}^{\infty}E_{n})=0 and \nu(G\backslash \bigcup_{n=1}^{\infty}F_{n})=0

Then there exists a symmetric open neighborhood V_{n} of 0 in G such that
(3) (V_{n}+E_{n})\cap(V_{n}+F_{n})=\emptyset (n=1,2,3, \cdots)

Then, by the definition of compact-0pen topology, there exists a \sigma compact
open subgroup \Gamma_{0} of G such that

(4) \Gamma_{0}^{\perp}\subset\bigcap_{n=1}V_{n}t

Put E= \bigcup_{n=1}^{\infty}E_{n} and F_{-}^{-} \bigcup_{n=1}^{\infty}F_{n} . Then, for each open subgroup \Gamma of G with
\Gamma\supset\Gamma_{0} , (3) and (4) yiefd (\Gamma^{\perp}+E)\cap(\Gamma^{\perp}+F)=\emptyset . Hence \pi_{\Gamma}\perp(\mu) and \pi_{\Gamma}\perp(\nu) are
mutually singular because \pi_{\Gamma}\perp(\mu) and \pi_{\Gamma}\perp(\nu) are concentrated on \pi_{\Gamma-}|(E) and
\pi_{\Gamma}\perp(F) respectively. This completes the proof.

Lemma 4. 2. Let G be a metrizable LCA group and H a closed sub-
group of G. Let p be a positive integer and E a small p set in G/H^{\perp} .
Put E=\pi^{-1}(E) , where \pi : G\mapsto G/H^{\perp} is the natural homomorphism. Then
for \mu\in M_{E}(G) , \mu^{p} translates H-continuously.

PROOF. Since \mu is regular, there exists a \sigma-compact open subgroup G’
of G with supp (\mu)\subset G’ We define a map \tau:(G’+H)/H\mapsto G’/G’\cap H by
\tau(x+H)=X+G’\cap H(x\in G’) . Then \tau is a topological isomorphism (cf. [5],
(5. 33) Theorem, p. 44). Let \beta:G’\mapsto G’/G’\cap H be the natural homomor-
phism, and put \eta’=\beta(|\mu|) . Then, by the theory of disintegration (cf. [1],
Th\’eor\‘eme 1, p. 58), there exists a family \{\lambda_{\dot{y}}\}_{\dot{y}\in G’/G’\cap H} of measures in M(G’)
with the following properties:

(1) \dot{y}\mapsto\lambda_{\dot{y}}(f) is a Borel measurable function for each bounded
Borel function f on G’ ;

(2) ||\lambda_{\dot{y}}||\leq 1 ;

(3) supp (\lambda_{\dot{y}})\subset\beta^{-1}(\dot{y}) ;
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(4) \mu(f)=\int_{G’/G’\cap H}\lambda_{\dot{y}}(f)d\eta’(.\dot{y}) for each bounded Borel f
We define measures \mu_{x}\in M(G)(\dot{y}\in G/H) as follows :

(5) \mu_{x}=\{\begin{array}{l}\lambda_{\tau(x)}0 for \dot{x}\not\in(G’+H)/H\end{array}

for \dot{x}\in(G’+H)/H

We define a measure \eta\in M^{+}((G’+H)/H) by \tau(\eta)=\eta’ , and we regard \eta as
a measure in M^{+}(G/H) . Let \alpha:G\mapsto G/H be the natural homomorphism.
Then by (1)-(4) the following are satisfied :

(6) \dot{x}\mapsto\mu_{x}(f) is a Borel measurable function for each bounded
Borel function f on G ;

(7) ||\mu_{x}||\leq 1 ;

(8) supp (\mu_{x})\subset\alpha^{-1}(\dot{x})\cap G’ ;

(9) \mu(f)=\int_{G/H}\mu_{x}(f)d\eta(\dot{x}) for each bounded Borel function f on G .

Since G’ is \sigma-compact metrizable, there exists a countable dense set \mathscr{A}=

\{f_{m}\} in C_{0}(G’) . Then by (6) and Lusin’s theorem, for each natural number
n, there exists a compact set K_{n}\subset supp(\eta) with the following properties:

(10) \eta(K_{n^{C}})<\frac{1}{n} ;

(11) \dot{x}\mapsto\mu_{x}(f_{m}) is continuous on K_{n} for all f_{m}\in \mathscr{A} ;

(12) \eta(V\cap K_{n})>0 for each \dot{x}\in K_{n} and each neighborhood V of \dot{x} .
Since C_{0}(G)|_{G’}=C_{0}(G’) and \mathscr{A} is dense in C_{0}(G’) , it follows from (8) and
(11) that

(13) \dot{x}\mapsto\mu_{i}(f) is continuous on K_{n} for all f\in C_{0}(G) .
Claim B. \mu_{x}\in M_{E}(G) for all \dot{x}^{\backslash }\in K_{n}(n=1,2,3, \cdots)

In fact, let f be a function in L^{1}(G) with supp (f)\subset E^{c} . Then

0= \int_{\hat{G}}\hat{\mu}(\gamma)f(\gamma)d\gamma

(14) = \int_{G}\hat{f}(x)d\mu(x)

= \int_{G/H}\mu_{x}(\hat{f})d\eta(\dot{x})t (by (9))

For \mathcal{T}*\in H^{\perp} , we define f_{\gamma_{*}}\in L^{1}(G) by f_{\gamma_{*}}(\gamma)=f(\gamma-\gamma_{*}) . Then since H^{\perp}+
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E^{c}\subset E^{c}, we have supp (f_{\gamma_{*}})\subset E^{c} . Hence (14) yields

0= \int_{G/H}\mu_{x}(\hat{f}_{\gamma})d\eta(\grave{x})

= \int_{G/H}\int_{G}(-x, \gamma_{*})\hat{f}(x)d\mu_{x}(x)d\eta(\dot{x})

= \int_{G/H}(-\grave{x}, \gamma_{*})\int_{G}\acute{f}(x)d\mu_{x}(x)d\eta(.\dot{x}) (by (8))

= \int_{G/H}(-\dot{x}, \gamma_{*})\mu_{x}(\acute{f})d\eta(\dot{x})t

Since \mathcal{T}*is an arbitrary element in H^{\perp} , we have

(15) 0= \int_{G/H}p(\grave{x})\mu_{x}(\acute{f})d\eta(\dot{x}) for all p\in trig(G/H)

Since Trig (G/H) is dense in L^{1}(\eta) and \dot{x}\mapsto\mu_{x}(\hat{f}) is a bounded Bore function,
we have

\mu_{x}(\hat{f})=0
\eta-a . a.\dot{x}\in G/H ,

which, together with (13), yields

\int_{\hat{G}}\hat{\mu}_{x}(\gamma)f(\gamma)d\gamma=\mu_{x}(\acute{f})=0 for all \dot{x}\in K_{n}

Since f is any function in L^{1}(\hat{G}) with supp (f)\subset E^{c} , we have \hat{\mu}_{x}=0 on E^{c}

for all \dot{x}\in K_{n} and the claim follows.
By (10) and Claim B we have

(16) \mu_{x}\in M_{E}(G) \eta- a . a.\grave{x}\in G/H

On the other hand, by (8), there exist \xi_{i}\in M(H) and x\in G with \alpha(x)=\dot{x}

such that \mu_{x}=\xi_{x}*\delta_{x} . Then (16) yields
\xi_{x}\in M_{\tilde{E}}(H)

\eta- a . a.\dot{x}\in G/H ,

hence it follows from ([8], Lemma 1) that

(17) \xi_{x_{1}}*\cdots*\xi_{x_{p}}\in L^{1}(H) (\eta\cross \cdots x \eta)- a . a . (X_{1}^{ },\cdots, x_{p})\in(G/H)^{p} .

We note the following (cf. [8], Claims 2 and 3 in Theorem 1) :

(18) \mu^{p}(f)=\int_{G/H}\cdots\int_{G/H}\mu_{x_{1}}*\cdots*\mu_{x_{p}}(f)d\eta(\dot{x}_{1})\cdots d\eta(\dot{x}_{p})

for f\in C_{0}(G) . Let \{t_{n}\} be a sequence in H which converges to 0. Then
(17) yields \lim_{narrow\infty}||\mu_{i_{1}}*\cdots*\mu_{x_{p}}-\mu_{x_{1}}*\cdots*\mu_{x_{p}}*\delta_{\iota_{n}}||=0(\eta\cross\cdots\cross\eta)- a . a . (\dot{X}_{1}^{ },\cdots,\dot{X}_{p})\in

(G/H)^{p} . Hence, by (18) and Lebesgue’s convergence theorem, we have
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\lim_{narrow\infty}||\mu^{p}-\mu^{p}*\delta_{t_{n}}||

\leq\lim_{narrow\infty}\int_{G/H}\cdots\int_{G/H}||\mu_{z_{1}}*\cdots*\mu_{x_{p}}-\mu_{x_{1}}*\cdots*\mu_{x_{p}}*\delta_{t_{n}}||d\eta(\dot{x}_{1})\cdots d\eta(x_{p}^{*})

=0 .
Since H is metrizable, this shows that \mu^{p} translates H-continuously and the
proof is complete.

Now we prove Theorem II. Suppose \mu^{p} does not translate H-continu-
ously. Then by Theorem I we have \mu^{p}\not\in M_{aH}(G) . Hence there exist \xi_{1}\in

M_{aH}(G) and a nonzero measure \xi_{2}\in M_{aH}(G)^{\perp} such that \mu^{p}=\xi_{1}+\xi_{2} . Let \omega

be a positive measure in L^{1}(H) such that \omega(V)>0 for all neighborhoods
V of 0 in H. Then |\xi_{2}|\perp\omega*|\xi_{2}| . Hence by Lemma 4. 1 there exists a \sigma -

compact open subgroup \Gamma of G such that

(1) \pi_{\Gamma}\perp(\xi_{2})\neq 0 and \pi_{\tau\perp}(|\xi_{2}|)\perp\pi_{\Gamma}\perp(\omega)*\pi_{\Gamma}\perp(|\xi_{2}|) ,

where \pi_{\Gamma}\iota:G\mapsto G/\Gamma^{\perp} is the natural homomorphism. Put \tilde{H}=\pi_{\Gamma}\perp(H) and
G=\pi_{\Gamma}\perp(G) . Then, since \Gamma^{\perp} is compact, \tilde{H} is a closed subgroup of G.

Claim 1. \pi_{\Gamma’arrow}(M_{aH}(G))\subset M_{a\tilde{ff}}(G)t

In fact, the claim follows from the fact that \pi_{\Gamma}\downarrow(L^{1}(H))\subset L^{1}(\tilde{H}) .
Claim 2. \pi_{\Gamma^{\llcorner}}(\mu^{p})\not\in M_{aff}(G) .

By Claim 1, it is sufficient to prove that \pi_{\Gamma}\perp(\xi_{2})\not\in M_{aff}(G) . Suppose \pi_{\Gamma}\perp(\xi_{2})

\in M_{a\Xi}(G) . Then, by Theorem I, |\pi_{r\perp}(\xi_{2})| translates \tilde{H}-continuously. On
the other hand, by the choice of \omega, we note that \pi_{\Gamma}\perp(\omega)(V)>0 for any
neighborhood V of 0 in \tilde{H}. Hence we have

|\pi_{\Gamma}\perp(\xi_{2})|\ll\pi_{\Gamma^{1}}(\omega)*|\pi_{\Gamma}\perp(\xi_{2})| ,

which contradicts (1). Thus the claim follows.
Put E_{0}=E\cap\Gamma- Let \alpha:\Gamma+H^{\perp}arrow(\Gamma+H^{\perp})/H^{\perp} and \beta:\Gammaarrow\Gamma/\Gamma\cap H^{\perp} be

the natural homomorphisms, and let \tau:(\Gamma+H^{\perp})/H^{\perp}arrow\Gamma/\Gamma\cap H^{\perp} be a topologi-
cal isomorphism given by \tau(\gamma+H^{\perp})=\gamma+\Gamma\cap H^{\perp} for \gamma\in\Gamma (cf. [5], (5. 33)
Theorem, p. 44). We note \tau\circ\alpha|_{\Gamma}=\beta .

Claim 3. \beta(E_{0}) is a small p set in \Gamma/\Gamma\cap H^{\perp} .
In fact, since \beta^{-1}(\beta(E_{0}))=E_{0}+\Gamma\cap H^{\perp}=E_{0}, \beta(E_{0}) is a closed set, hence \alpha(E_{0})=

\tau^{-1}(\beta(E_{0})) is also closed. Thus, since \alpha(E_{0})\subset\pi(E)=E, \alpha(E_{0}) is a small p set
in (\Gamma+H^{\perp})/H^{\perp} . Hence \beta(E_{0})=\tau(\alpha(E_{0})) is a small p set in \Gamma/\Gamma\cap H^{\perp} , and
the claim follows.
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We note that G is metrizable and the annihilator of \Gamma\cap H^{\perp} in G coin-
cides with \tilde{H}. Thus, since \pi_{\Gamma}\perp(\mu)\in M_{E_{0}}(G) and E_{0}=\beta^{-1}(\beta(E_{0})) , it follows
from Claim 3 and Lemma 4. 2 that \pi_{r\perp}(\mu^{p})=\pi_{r\perp}(\mu)^{p} translates \tilde{H}-continuously.
This contradicts Claim 2 and Theorem I, and the proof is complete.
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