On measures which are continuous by certain translation

By Yuji TAKAHASHI and Hiroshi YAMAGUCHI (Received May 20, 1983)

§ 1. Introduction.

Let G be a LCA group with the dual group \hat{G} . We denote by m_G the Haar measure on G. For $x \in G$, δ_x denotes the point mass at x. Let M(G)and $L^1(G)$ be the measure algebra and the group algebra respectively. For a subset E of \hat{G} , $M_E(G)$ denotes the space of measures in M(G) whose Fourier-Stieltjes transforms vanish off E. For a closed subgroup H of G, H^{\perp} means the annihilator of H. Let μ be a measure in M(G). Then, as well known, the fact that $\mu \in L^1(G)$ can be caracterized by

(1.1)
$$\lim_{x\to 0} ||\mu - \mu * \delta_x|| = 0.$$

Our first purpose in this note is to characterize the class of measures μ in M(G) with the following property

(1.2)
$$\lim_{\substack{y \to 0 \\ y \in H}} ||\mu - \mu * \delta_y|| = 0.$$

When there is a continuous homomorphism ϕ from the reals R into G, deLeeuw and Glicksberg proved in [2] that ϕ -analytic measures $\mu \in M(G)$ satisfy $\lim_{t\to 0} ||\mu - \mu * \delta_{\phi(t)}|| = 0$. The second purpose in this paper is to give a theorem corresponding to theirs under our setting. As an extension of a theorem of Bochner, one of the authors proved in [8] that the product set of a Riesz set and a small p set is a small p set. As a corollary our second theorem, we shall prove that the product set of a small p set and a small q set is a small max (p, q) set. In section 2 we state our results, and we give their proofs in sections 3 and 4.

§ 2. Notations and Results.

DEFINITION 2.1. Let G be a LCA group and H a closed subgroup of G. A Borel set E in G is called a H-null set if $m_H(\{t \in H : t + x \in E\}) = 0$ for all $x \in G$.

DEFINITION 2.2. For a positive integer p, a closed set E in \hat{G} is called

a small p set if the following is satisfied: For each $\mu \in M_E(G)$, $\mu^p(=\mu*\mu*\dots*\mu \ (p \ times))$ belongs to $L^1(G)$. In particular, a small 1 set is called a Riesz set.

We denote by $M^+(G)$ the set of positive measures in M(G). For a closed subgroup H of G, let $M_{aH}(G)$ be the smallest L-ideal in M(G) containing all measures of the form $\rho*\nu$, where $\rho \in L^1(H)$ and $\nu \in M(G)$. By the definition, we note

(2.1)
$$M_{aH}(G) = \left\{ \mu \in M(G) : \frac{\mu \ll \rho * \nu \text{ for some } \rho \in L^1(H) \cap M^+(H)}{\text{and } \nu \in M^+(G)} \right\}.$$

A measure $\mu \in M(G)$ is called *H*-absolutely continuous if $\mu(E)=0$ for any Borel set *E* in *G* that is *H*-null. Let $L_H(G)$ be a *L*-ideal in M(G) consisting of all measures that are *H*-absolutely continuous. We shall say that $\mu \in M(G)$ translates *H*-continuously if $\lim_{\substack{y \to 0 \\ y \in H}} ||\mu - \mu * \delta_y|| = 0$. Our results are as

follows:

THEOREM I. Let G be a LCA group and H a closed subgroup of G. Then, for $\mu \in M(G)$, the following are equivalent:

- $(I) \quad \mu \in M_{aH}(G);$
- (II) $\mu \in L_H(G);$

(III) μ translates H-continuously.

THEOREM II. Let G and H be as in Theorem I. Let p be a positive integer and \tilde{E} a small p set in \hat{G}/H^{\perp} . Put $E=\pi^{-1}(\tilde{E})$, where $\pi: \hat{G} \rightarrow \hat{G}/H^{\perp}$ is the natural homomorphism. Then, for each $\mu \in M_E(G)$, μ^p translates H-continuously.

When p=1, Theorem II can be considered as a theorem corresponding to ([2], Theorem 3.1, p. 186) because, by the classical F. and M. Riesz theorem, the set of nonngeative real numbers is a Riesz set. Using Theorem II, we obtain the following corollary, which is a slight extension of ([8], Theorem 2, p. 277).

COROLLARY. Let G_1 and G_2 be LCA groups. Let E_1 be a small p set in \hat{G}_1 and E_2 a small q set in \hat{G}_2 . Put $r = \max(p, q)$. Then $E_1 \times E_2$ is a small r set in $G_1 \oplus G_2$.

PROOF. Evidently E_1 and E_2 are small r sets. Hence, for $\mu \in M_{E_1 \times E_2}$ $(G_1 \oplus G_2)$, it follows from Theorem II that μ^r translates G_i -continuously (i = 1, 2). Then we have $\lim_{(x_1, x_2) \to 0} ||\mu^r - \mu^r * \delta_{(x_1, x_2)}|| = 0$, which yields $\mu^r \in L^1(G_1 \oplus G_2)$. This completes the proof.

§ 3. Proof of Theorem I.

In this section, we prove Theorem I.

PROPOSITION 3.1. For $\mu \in M(G)$, the following are equivalent:

$$(1) \quad \mu \in M_{aH}(G);$$

(II) μ translates H-continuously.

PROOF. (I) \Rightarrow (II): For $\mu \in M_{aH}(G)$, it follows from (2.1) that there exist $\nu \in M^+(G)$ and $\rho \in L^1(H) \cap M^+(H)$ such that $\mu \ll \nu * \rho$. Put $\eta = \nu * \rho$. Since η translates *H*-continuously, we can verify that

(1) $p\eta$ translates *H*-continuously

for all $p \in \operatorname{Trig}(G)$. On the other hand, since $\mu \ll \eta$, there exists a sequence $\{p_n\}$ in $\operatorname{Trig}(G)$ such that $\lim_{n \to 0} ||\mu - p_n \eta|| = 0$. Hence it follows from (1) that μ translates *H*-continuously.

 $(II) \Rightarrow (I)$: For each natural number *n*, there exists a symmetric open neighborhood V_n of 0 in *H* such that $\sup_{y \in V_n} ||\mu - \mu * \delta_y|| < \frac{1}{n}$. Let ω_n be a probability measure in $L^1(H)$ with $\operatorname{supp}(\omega_n) \subset V_n$. Then we can verify that

$$||\mu-\mu*\omega_n|| \leq \sup_{y\in V_n} ||\mu-\mu*\delta_y|| < \frac{1}{n}$$
,

which, together with $\mu * \omega_n \in M_{aH}(G)$, yields $\mu \in M_{aH}(G)$. This completes the proof.

LEMMA 3.2. Let G be a LCA group and H a closed subgroup of G. Let G_0 be an open subgroup of G. Then, for $\mu \in L_H(G)$ with supp $(\mu) \subset G_0$, we have $\mu \in L_{H \cap G_0}(G_0)$.

PROOF. Let $K \subset G_0$ be a compact set that is $H \cap G_0$ -null in G_0 . We note that K is $H \cap G_0$ -null (in G). For each $x \in G$, since $H \cap (K-x)$ is a is a compact set in H, there exist $y_1, \dots, y_n \in H$ such that $H \cap (K-x) \subset \bigcup_{i=1}^n (H \cap G_0 + y_i)$. Put $J_i = H \cap (K-x) \cap (H \cap G_0 + y_i)$. Then $H \cap (K-x) = \bigcup_{i=1}^n J_i$. Since $J_i - y_i \subset (H \cap G_0) \cap (K - x - y_i)$, we have $m_{H \cap G_0}(J_i - y_i) = 0$, so that $m_H(J_i)$ $= m_H(J_i - y_i) = 0$. Hence we have $m_H(H \cap (K-x)) = m_H\left(\bigcup_{i=1}^n J_i\right) = 0$. This shows that K is H-null, hence $\mu(K) = 0$. By regularity of μ , we can verify that $\mu(E) = 0$ for any Borel set $E \subset G_0$ which is $H \cap G_0$ -null. This completes the proof.

PROPOSITION 3.3. Let G be a LCA group and H a closed subgroup of G. Then $L_H(G) = M_{aH}(G)$.

PROOF. We first prove $M_{aH}(G) \subset L_H(G)$. Let $\mu \in M_{aH}(G)$. Then by (2.1) there exist $\nu \in M^+(G)$ and $\rho \in L^1(H) \cap M^+(H)$ such that $\mu \ll \rho * \nu$. Let E be a Borel set in G that is H-null. Then

$$\rho * \nu(E) = \int_{a} \rho((E-x) \cap H) d\nu(x)$$
$$= 0,$$

which yields $\mu(E) = 0$. Thus we have $m_{aH}(G) \subset L_H(G)$.

Next we prove $L_H(G) \subset M_{aH}(G)$. Let $\mu \in L_H(G)$. We may assume that μ is a positive measure because $L_H(G)$ and $M_{aH}(G)$ are L-spaces. Since μ is regular, there exists a σ -compact open subgroup G_0 of G with supp $(\mu) \subset G_0$. Put $H_0 = G_0 \cap H$. Then there exists a positive measure $\omega \in L^1(H)$ with supp $(\omega) \subset H_0$ such that $\omega \approx m_{H_0}$.

Clam A. $\mu \ll \omega * \mu$.

In fact, let *E* be a Borel set in *G* with $\omega * \mu(E) = 0$. We have to show $\mu(E) = 0$. Since μ and $\omega * \mu$ are concentrated on G_0 , we may assume that $E \subset G_0$. Then, since $\int_{G_0} \omega(E-x) d\mu(x) = 0$, there exists a σ -compact set *K* in G_0 with the following properties:

$$(1) \qquad \mu(K^c) = 0;$$

(2)
$$\omega(E-y) = 0$$
 for all $y \in K$.

Put $V = H_0 + K$ and $E_0 = V \cap E$. Then

 $(3) E_0 ext{ is } H_0- ext{null in } G_0.$

In fact, if $x \in G_0 \setminus V$, then $(E_0 - x) \cap H_0 = \emptyset$. If $x = h + y \in V(h \in H_0, y \in K)$, then $\{t \in H_0 : t + x \in E_0\} \subset \{t \in H_0 : t + y \in E\} - h$. Hence (2) yields $m_{H_0}((E_0 - x) \cap H_0) = 0$. Thus (3) follows. On the other hand, it follows from Lemma 3.2 that $\mu \in L_{H_0}(G_0)$. Hence by (1) and (3) we have

$$\mu(E)=\mu(V^c\cap E)+\mu(V\cap E)=0$$
 ,

which shows that the claim is satisfied. By Claim A we get $\mu \in M_{ah}(G)$ and the proof is complete.

Theorem I is obtained from Propositions 3.1 and 3.3.

§4. Proof of Theorem II.

In this section, we prove Theorem II.

LEMMA 4.1. Let G be a LCA group. Let μ and ν be measures in M(G) with $\mu \perp \nu$. Then there exists a σ -compact open subgroup Γ_0 of \hat{G} such that

 $(1) \qquad \qquad \pi_{\Gamma^{\perp}}(\mu) \perp \pi_{\Gamma^{\perp}}(\nu)$

for all open subgroups Γ of \hat{G} with $\Gamma \supset \Gamma_0$, where $\pi_{\Gamma^{\perp}}: G \mapsto G/\Gamma^{\perp}$ is the natural homomorphism.

PROOF. We may assume that μ and ν are positive measures without loss of generality. Since $\mu \perp \nu$, there exist compact sets $E_n \uparrow$ and $F_n \uparrow$ in G with $E_n \cap F_n = \emptyset$ such that

(2)
$$\mu\left(G\setminus\bigcup_{n=1}^{\infty}E_n\right)=0 \text{ and } \nu\left(G\setminus\bigcup_{n=1}^{\infty}F_n\right)=0.$$

Then there exists a symmetric open neighborhood V_n of 0 in G such that

(3)
$$(V_n + E_n) \cap (V_n + F_n) = \emptyset$$
 $(n = 1, 2, 3, \dots).$

Then, by the definition of compact-open topology, there exists a σ -compact open subgroup Γ_0 of \hat{G} such that

$$(4) \qquad \Gamma_0^{\perp} \subset \bigcap_{n=1}^{\infty} V_n \, .$$

Put $E = \bigcup_{n=1}^{\infty} E_n$ and $F = \bigcup_{n=1}^{\infty} F_n$. Then, for each open subgroup Γ of \hat{G} with $\Gamma \supset \Gamma_0$, (3) and (4) yield $(\Gamma^{\perp} + E) \cap (\Gamma^{\perp} + F) = \emptyset$. Hence $\pi_{\Gamma^{\perp}}(\mu)$ and $\pi_{\Gamma^{\perp}}(\nu)$ are mutually singular because $\pi_{\Gamma^{\perp}}(\mu)$ and $\pi_{\Gamma^{\perp}}(\nu)$ are concentrated on $\pi_{\Gamma^{\perp}}(E)$ and $\pi_{\Gamma^{\perp}}(F)$ respectively. This completes the proof.

LEMMA 4.2. Let G be a metrizable LCA group and H a closed subgroup of G. Let p be a positive integer and \tilde{E} a small p set in \hat{G}/H^{\perp} . Put $E = \pi^{-1}(\tilde{E})$, where $\pi : \hat{G} \mapsto \hat{G}/H^{\perp}$ is the natural homomorphism. Then for $\mu \in M_E(G)$, μ^p translates H-continuously.

PROOF. Since μ is regular, there exists a σ -compact open subgroup G'of G with $\operatorname{supp}(\mu) \subset G'$. We define a map $\tau : (G' + H)/H \mapsto G'/G' \cap H$ by $\tau(x+H) = X+G' \cap H$ ($x \in G'$). Then τ is a topological isomorphism (cf. [5], (5.33) Theorem, p. 44). Let $\beta : G' \mapsto G'/G' \cap H$ be the natural homomorphism, and put $\eta' = \beta(|\mu|)$. Then, by the theory of disintegration (cf. [1], Théorème 1, p. 58), there exists a family $\{\lambda_{ij}\}_{ij\in G'/G'\cap H}$ of measures in M(G')with the following properties :

- (1) $\dot{y} \mapsto \lambda_{\dot{y}}(f)$ is a Borel measurable function for each bounded Borel function f on G';
- $(2) \qquad ||\lambda_{j}|| \leq 1;$
- (3) $\operatorname{supp}(\lambda_{i}) \subset \beta^{-1}(\dot{y});$

(4)
$$\mu(f) = \int_{G'/G' \cap H} \lambda_{\dot{y}}(f) \, d\eta'(\dot{y})$$
 for each bounded Borel f .

We define measures $\mu_x \in M(G)$ $(\dot{y} \in G/H)$ as follows:

(5)
$$\mu_{\dot{x}} = \begin{cases} \lambda_{r(\dot{x})} & \text{for } \dot{x} \in (G'+H)/H \\ 0 & \text{for } \dot{x} \notin (G'+H)/H. \end{cases}$$

We define a measure $\eta \in M^+((G'+H)/H)$ by $\tau(\eta) = \eta'$, and we regard η as a measure in $M^+(G/H)$. Let $\alpha: G \mapsto G/H$ be the natural homomorphism. Then by (1)-(4) the following are satisfied:

(6)
$$\dot{x} \mapsto \mu_{\dot{x}}(f)$$
 is a Borel measurable function for each bounded
Borel function f on G ;

$$(7) \qquad ||\mu_{x}|| \leq 1;$$

$$(8) \qquad ext{ supp } (\mu_{\dot{x}}) \subset \alpha^{-1}(\dot{x}) \cap G';$$

(9) $\mu(f) = \int_{G/H} \mu_{\dot{x}}(f) \, d\eta(\dot{x})$ for each bounded Borel function f on G.

Since G' is σ -compact metrizable, there exists a countable dense set $\mathscr{A} = \{f_m\}$ in $C_0(G')$. Then by (6) and Lusin's theorem, for each natural number n, there exists a compact set $K_n \subset \text{supp}(\eta)$ with the following properties :

(10)
$$\eta(K_n^c) < \frac{1}{n};$$

(11) $\dot{x} \mapsto \mu_{\dot{x}}(f_m)$ is continuous on K_n for all $f_m \in \mathscr{A}$;

(12) $\eta(V \cap K_n) > 0$ for each $\dot{x} \in K_n$ and each neighborhood V of \dot{x} . Since $C_0(G)|_{G'} = C_0(G')$ and \mathscr{A} is dense in $C_0(G')$, it follows from (8) and

(11) that

(13) $\dot{x} \mapsto \mu_{\dot{x}}(f)$ is continuous on K_n for all $f \in C_0(G)$.

Claim B. $\mu_{\dot{x}} \in M_E(G)$ for all $\dot{x} \in K_n$ $(n = 1, 2, 3, \cdots)$.

In fact, let f be a function in $L^1(\hat{G})$ with $\operatorname{supp}(f) \subset E^c$. Then

(14)

$$0 = \int_{\hat{a}} \hat{\mu}(\gamma) f(\gamma) d\gamma$$

$$= \int_{a} \hat{f}(x) d\mu(x)$$

$$= \int_{a/H} \mu_{\dot{x}}(\hat{f}) d\eta(\dot{x}).$$
(by (9))

For $\gamma_* \in H^{\perp}$, we define $f_{r_*} \in L^1(\hat{G})$ by $f_{r_*}(\gamma) = f(\gamma - \gamma_*)$. Then since $H^{\perp} + f(\gamma - \gamma_*)$.

114

 $E^{c} \subset E^{c}$, we have supp $(f_{r_{*}}) \subset E^{c}$. Hence (14) yields

$$\begin{split} 0 &= \int_{G/H} \mu_{\dot{x}}(\hat{f}_{\tau_{*}}) \, d\eta(\dot{x}) \\ &= \int_{G/H} \int_{G} (-x, \gamma_{*}) \, \hat{f}(x) \, d\mu_{\dot{x}}(x) \, d\eta(\dot{x}) \\ &= \int_{G/H} (-\dot{x}, \gamma_{*}) \int_{G} \hat{f}(x) \, d\mu_{\dot{x}}(x) \, d\eta(\dot{x}) \qquad (by \ (8)) \\ &= \int_{G/H} (-\dot{x}, \gamma_{*}) \, \mu_{x}(\hat{f}) \, d\eta(\dot{x}) \, . \end{split}$$

Since γ_* is an arbitrary element in H^{\perp} , we have

(15)
$$0 = \int_{G/H} p(\dot{x}) \, \mu_{\dot{x}}(\hat{f}) \, d\eta(\dot{x}) \quad \text{for all} \quad p \in \operatorname{trig}(G/H) \, .$$

Since Trig (G/H) is dense in $L^1(\eta)$ and $\dot{x} \mapsto \mu_{\dot{x}}(\hat{f})$ is a bounded Bore function, we have

$$\mu_{\dot{x}}(\hat{f})=0$$
 $\eta- ext{a. a. }\dot{x}\in G/H$,

which, together with (13), yields

$$\int_{\hat{G}} \hat{\mu}_{\dot{x}}(\gamma) f(\gamma) \, d\gamma = \mu_{\dot{x}}(\hat{f}) = 0 \quad \text{for all} \quad \dot{x} \in K_n$$

Since f is any function in $L^1(\hat{G})$ with $\operatorname{supp}(f) \subset E^c$, we have $\hat{\mu}_{\hat{x}} = 0$ on E^c for all $\hat{x} \in K_n$ and the claim follows.

By (10) and Claim B we have

(16)
$$\mu_{\dot{x}} \in M_E(G)$$
 η -a. a. $\dot{x} \in G/H$.

On the other hand, by (8), there exist $\xi_x \in M(H)$ and $x \in G$ with $\alpha(x) = \dot{x}$ such that $\mu_x = \xi_x * \delta_x$. Then (16) yields

$$\xi_{\dot{x}} \in M_{\widetilde{E}}(H)$$
 η -a. a. $\dot{x} \in G/H$,

hence it follows from ([8], Lemma 1) that

(17)
$$\xi_{\dot{x}_1} \ast \cdots \ast \xi_{\dot{x}_p} \in L^1(H) \qquad (\eta \times \cdots \times \eta) \text{-a. a. } (x_1, \cdots, x_p) \in (G/H)^p$$

We note the following (cf. [8], Claims 2 and 3 in Theorem 1):

(18)
$$\mu^p(f) = \int_{G/H} \cdots \int_{G/H} \mu_{\dot{x}_1} * \cdots * \mu_{\dot{x}_p}(f) \, d\eta(\dot{x}_1) \cdots d\eta(\dot{x}_p)$$

for $f \in C_0(G)$. Let $\{t_n\}$ be a sequence in H which converges to 0. Then (17) yields $\lim_{n\to\infty} ||\mu_{x_1}*\cdots*\mu_{x_p}-\mu_{x_1}*\cdots*\mu_{x_p}*\delta_{t_n}||=0$ $(\eta\times\cdots\times\eta)$ -a. a. $(\dot{x}_1,\cdots,\dot{x}_p)\in$ $(G/H)^p$. Hence, by (18) and Lebesgue's convergence theorem, we have

$$\begin{split} \lim_{n \to \infty} ||\mu^p - \mu^p * \delta_{t_n}|| \\ &\leq \lim_{n \to \infty} \int_{G/H} \cdots \int_{G/H} ||\mu_{\dot{x}_1} * \cdots * \mu_{\dot{x}_p} - \mu_{\dot{x}_1} * \cdots * \mu_{\dot{x}_p} * \delta_{t_n}|| \, d\eta(\dot{x}_1) \cdots d\eta(\dot{x}_p) \\ &= 0 \, . \end{split}$$

Since H is metrizable, this shows that μ^p translates H-continuously and the proof is complete.

Now we prove Theorem II. Suppose μ^p does not translate *H*-continuously. Then by Theorem I we have $\mu^p \notin M_{aH}(G)$. Hence there exist $\xi_1 \in M_{aH}(G)$ and a nonzero measure $\xi_2 \in M_{aH}(G)^{\perp}$ such that $\mu^p = \xi_1 + \xi_2$. Let ω be a positive measure in $L^1(H)$ such that $\omega(V) > 0$ for all neighborhoods V of 0 in H. Then $|\xi_2| \perp \omega * |\xi_2|$. Hence by Lemma 4.1 there exists a σ -compact open subgroup Γ of \hat{G} such that

$$(1) \qquad \qquad \pi_{\Gamma^{\perp}}(\xi_2) \neq 0 \quad \text{and} \quad \pi_{\Gamma^{\perp}}(|\xi_2|) \perp \pi_{\Gamma^{\perp}}(\omega) * \pi_{\Gamma^{\perp}}(|\xi_2|) ,$$

where $\pi_{\Gamma^{\perp}}: G \mapsto G/\Gamma^{\perp}$ is the natural homomorphism. Put $\tilde{H} = \pi_{\Gamma^{\perp}}(H)$ and $\tilde{G} = \pi_{\Gamma^{\perp}}(G)$. Then, since Γ^{\perp} is compact, \tilde{H} is a closed subgroup of \tilde{G} .

Claim 1.
$$\pi_{\Gamma^{\perp}}(M_{aH}(G)) \subset M_{a\widetilde{H}}(\widetilde{G})$$
.

In fact, the claim follows from the fact that $\pi_{\Gamma^{\perp}}(L^1(H)) \subset L^1(\tilde{H})$.

Claim 2. $\pi_{\Gamma^{\perp}}(\mu^p) \not\in M_{a\widetilde{H}}(\widetilde{G})$.

By Claim 1, it is sufficient to prove that $\pi_{\Gamma^{\perp}}(\xi_2) \notin M_{a\widetilde{t}}(\widetilde{G})$. Suppose $\pi_{\Gamma^{\perp}}(\xi_2) \in M_{a\widetilde{t}}(\widetilde{G})$. Then, by Theorem I, $|\pi_{\Gamma^{\perp}}(\xi_2)|$ translates \widetilde{H} -continuously. On the other hand, by the choice of ω , we note that $\pi_{\Gamma^{\perp}}(\omega)(\widetilde{V}) > 0$ for any neighborhood \widetilde{V} of 0 in \widetilde{H} . Hence we have

 $\left|\pi_{\Gamma^{\perp}}(\xi_2)\right| \ll \pi_{\Gamma^{\perp}}(\omega) * \left|\pi_{\Gamma^{\perp}}(\xi_2)\right|,$

which contradicts (1). Thus the claim follows.

Put $E_0 = E \cap \Gamma$. Let $\alpha : \Gamma + H^{\perp} \rightarrow (\Gamma + H^{\perp})/H^{\perp}$ and $\beta : \Gamma \rightarrow \Gamma/\Gamma \cap H^{\perp}$ be the natural homomorphisms, and let $\tau : (\Gamma + H^{\perp})/H^{\perp} \rightarrow \Gamma/\Gamma \cap H^{\perp}$ be a topological isomorphism given by $\tau(\gamma + H^{\perp}) = \gamma + \Gamma \cap H^{\perp}$ for $\gamma \in \Gamma$ (cf. [5], (5.33) Theorem, p. 44). We note $\tau \circ \alpha|_{\Gamma} = \beta$.

Claim 3. $\beta(E_0)$ is a small p set in $\Gamma/\Gamma \cap H^{\perp}$.

In fact, since $\beta^{-1}(\beta(E_0)) = E_0 + \Gamma \cap H^{\perp} = E_0$, $\beta(E_0)$ is a closed set, hence $\alpha(E_0) = \tau^{-1}(\beta(E_0))$ is also closed. Thus, since $\alpha(E_0) \subset \pi(E) = \tilde{E}$, $\alpha(E_0)$ is a small p set in $(\Gamma + H^{\perp})/H^{\perp}$. Hence $\beta(E_0) = \tau(\alpha(E_0))$ is a small p set in $\Gamma/\Gamma \cap H^{\perp}$, and the claim follows.

We note that \tilde{G} is metrizable and the annihilator of $\Gamma \cap H^{\perp}$ in \tilde{G} coincides with \tilde{H} . Thus, since $\pi_{\Gamma^{\perp}}(\mu) \in M_{E_0}(\tilde{G})$ and $E_0 = \beta^{-1}(\beta(E_0))$, it follows from Claim 3 and Lemma 4.2 that $\pi_{\Gamma^{\perp}}(\mu^p) = \pi_{\Gamma^{\perp}}(\mu)^p$ translates \tilde{H} -continuously. This contradicts Claim 2 and Theorem I, and the proof is complete.

References

- [1] N. BOURBAKI: Intégration, Éléments de Mathématique, Livre VI, Ch 6, Paris, Herman, 1959.
- [2] K. DELEEUW and I. GLICKSBERG: Quasi-invariance and analyticity of measures on compact groups, Acta Math, 109 (1963), 179-205.
- [3] I. GLICKSBERG: Fourier-Stieltjes transforms with small supports, Illinois. J. Math, Vol. 9 (1965), 418-427.
- [4] C. C. GRAHAM and O. C. MCGEHEE: Essay in Commutative Harmonic Analysis, Springer-Verlag, New York-Heidelberg-Berlin, 1979.
- [5] E. HEWITT and K. A. ROSS: Abstract Harmonic Anaysis I, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [6] L. PIGNO and S. SAEKI: Fourier-Stieltjes transforms which vanish at infinity, Math. Z, 141 (1975), 83-91.
- [7] W. RUDIN: Fourier Analysis on Groups, Interscience, New York, 1962.
- [8] H. YAMAGUCHI: On the product of a Riesz set and a small p set, Proc. Amer. Math. Soc, Vol. 81 (1981).
- [9] H. YAMAGUCHI: A property of Some Fourier-Stieltjes Transforms, Pacific. J. Math. Vol. 108, No. 1 (1983), 243-256.

Yuji Takahashi Department of Mathematics Hokkaido University Sapporo, Japan

Hiroshi Yamaguchi Department of Mathematics Josai University Sakado, Saitama, Japan