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On measures which are continuous by

certain translation
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§ 1. Introduction.

Let G be a LCA group with the dual group G. We denote by mg the
Haar measure on G. For &G, 4, denotes the point mass at z. Let M(G)
and LY(G) be the measure algebra and the group algebra respectively. For
a subset E of G, My(G) denotes the space of measures in M(G) whose
Fourier-Stieltjes transforms vanish off E. For a closed subgroup H of G,
H' means the annihilator of H. Let g be a measure in M(G). Then, as
well known, the fact that p= L'(G) can be caracterized by

(1.1) lirr(} |t —pxdz| =0 .

Our first purpose in this note is to characterize the class of measures g in
M(G) with the following property
(12 lim il =0.
YyeH

When there is a continuous homomorphism ¢ from the reals R into G,
deLeeuw and Glicksberg proved in that ¢-analytic measures pe M(G)
satisfy li£101||p—p*5¢(,)||=0. The second purpose in this paper is to give
a theorém corresponding to theirs under our setting. As an extension of
a theorem of Bochner, one of the authors proved in that the product
set of a Riesz set and a small p set is a small p set. As a corollary our
second theorem, we shall prove that the product set of a small p set and
a small g set is a small max (p, g) set. In section 2 we state our results, and
we give their proofs in sections 3 and 4.

§ 2. Notations and Results.

DEFINITION 2.1. Let G be a LCA group and H a closed subgroup of
G. A Borel set E in G is called a H-null set if mg(tcH: t+z=E})=0
for all z=G.

DEFINITION 2.2. For a positive integer p, a closed set E in G is called
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a small p set if the following is satisfied: For each pe Mg(G), pP(= pw*p*
xp (p times)) belongs to LN (G). In particular, a small 1 set is called a
Riesz set. ‘

We denote by M*(G) the set of positive measures in M(G). For a
closed subgroup H of G, let M,;(G) be the smallest L-ideal in M(G) con-

taining all measures of the form px, where p=L!(H) and ve M(G). By
the definition, we note *

(2.1) Mu(G) = J#EM(G); p<L pxv for some pELl(H)ﬂM+(H)] |
| and ve M (G) [

A measure p M(G) is called H-absolutely continuous if p(E)=0 for any
Borel set E in G that is H-null. Let Ly(G) be a L-ideal in M(G) con-
sisting of ‘all measures that are H-absolutely continuous. We shall say that
y)EM(G) translates H-continuously if lirgl ||t —p*d,||=0. Our results are as

) veH
follows :

THEOREM L. Let G be a LCA group and H a closed subgroup of G.
Then, for p= M(G), the following are equivalent :

(1) #EMu(G);

(1) peLx(G);

() p translates H-continuously.

THEOREM II. Let G and H be as in Theorem 1. Let p be a positive
integer and E a small p set in G/H-. Put E=z"\E), where n: G—G/H*
is the natural homomorphism. Then, for each peMy(G), u? translates
H-continuously.

When p=1, IT can be considered as a theorem corresponding
to ([2], Theorem 3.1, p. 186) because, by the classical F. and M. Riesz
theorem, the set of nonngeative real numbers is a Riesz set. Using

II, we obtain the following corollary, which is a slight extension of ([8],
Theorem 2, p. 277).

 CorOLLARY. Let G, and G, be LCA groups. Let E, be a small p set
in G, and E, a small q set in G, Put r=max(p,q). Then E,XE, is a

Y
small r set in G,PG,.

ERQQF'. -Evidently E, and E, are small r sets. Hence, for py& My .z
(Gi@PG), it follows from [Theorem| II that g translates G;-continuously (=
1,2). Then we have lim |[g"—p*0¢ ,||=0, which yields y"e LYG,PG,).

(x1,2,)—0

This completes-the proof.
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§ 3. Proof of Theorem I.

In this section, we prove I

ProrosiTioN 3.1. For pe M(G), the following are equivalent :
(I) }1652‘4;11((;);
(II) u translates H-continuously.

Proor. (I)(II): For pe M,x(G), it follows from (2. 1) that there exist
vEM*(G) and p€ L'(H)N M*(H) such that p<vxp. Put p=uv%p. Since 7

translates H-continuously, we can verify that
(1) pn translates H-continuously

for all p&Trig(G). On the other hand, since u<7, there exists a sequence
{pn} in Trig(G) such that lim ||g—p,5/|=0. Hence it follows from (1) that
n—0

¢ translates H-continuously.
(IDc>(D) :  For each natural number n, there exists a symmetric open

neighborhood V, of 0 in H such that sup!ly—ﬂ*%lK%. Let w, be a
veVy,
probability measure in L(H) with supp (0,)CV,. Then we can verify that

1
[l —pxon|| < sup [lp—ped, || < -,
VeV,
which, together with pxw,E M,u(G), yields p€ M,z(G). This completes the
proof.

LEmMMA 3.2. Let G be a LCA group and H a closed subgroup of G.
Let Gy be an open subgroup of G. Then, for pe Ly(G) with supp (W) CG,,
we have ﬂELHmGO(G()).

Proor. Let KCG, be a compact set that is HNGynull in G,, We:
note that K is HN Gynull (in G). For each z€G, since HN(K—ux) is a

is a compact set in H, there exist ¥, -+, ¥, H such that HN(K—z)C U
=1

Since J;—y, C(HN Gy) N (K—x—¥,), we have mung, (Ji—y:) =0, so that mg(J,)
=mgu(J;—y;) =0. Hence we have my(HN(K—2x))= mH< LnJl Ji) =0. This
e .

shows that K is H-null, hence #(K)=0. By regularity of y, we can verify
that #(E)=0 for any Borel set EC G, which is HN Gy-null. This completes
the proof. . _

ProposITION 3.3. Let G be a LCA group and H a closed subgroup
of G. Then Ly(G)=M,u(G).
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Proor. We first prove M, 5(G)C Ly(G). Let p=M,x(G). Then by
(2.1) there exist v M*(G) and pe L'(H)N M*(H) such that u< p*v. Let E
be a Borel set in G that is H-null. Then

ow(E) = 'Sép((E—x) N H)dv(z)
=0 ,

which yields p#(E)=0. Thus we have m,(G)C Lx(G).

~Next we prove Ly(G)C Myu(G). Let p& Ly(G). We may assume that
¢ is a positive measure because Ly(G) and Myx(G) are L-spaces. Since y is
regular, there exists a g-compact open subgroup G, of G with supp (¢) CG,.
Put H,=G,NH. Then there exists a positive measure o< L!(H) with
supp (w) C-H, such that w=mg .

Clam A. pL wxp .
In fact, let E be a Borel set in G with wxu(E)=0. We have to show u(E)
=0. Since p and w*y are concentrated on G, we may assume that ECG,,

Then, since Sgow(E——x) dp(x)=0, there exists a g-compact set K in G, with
the following properties :

(1) p(K)=0;

(2) o(E—y)=0 for all yeK.
Put V=Hy+K and E,=VNE. Then
(3) E, is Hynull in G,.

In fact, if z€G,\V, then (E,—x)NH,=0. If z=h+ycsV(heH,, yeK),
then {{EH,: t+x€E}C{t€H,: t+y€E}—h. Hence (2) yields my ((E,—x)
N Hy)=0. Thus (3) follows. On the other hand, it follows from Lemma 3. 2
that ue Ly (G,). Hence by (1) and (3) we have

pE)=pVeNE)+p(VNE)=0,

which shows that the claim is satisfied. By Claim A we get p& M, (G)
and the proof is complete.

I is obtained from Propositions 3.1 and B.3.

§4. Proof of Theorem IL

- In this section, we prove IL

LemMA 4.1. Let G be a LCA group. Let p and v be measures in
M(G) with ply. Then there exists a g-compact open subgroup I'y of G
such that
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(1) er(ﬂ”-ﬂri( )
Sfor all open subgroups I' of G with I'DI,, where nrr: GG/t is the

natural homomorphism.

Proor. We may assume that g and v are positive measures without
loss of generality. Since g v, there exist compact sets E, 1 and F, 1 in G
with E,N F,=@ such that :

(2) #(G\nQIEn) =0 and u(G\n[]an) —

Then there exists a symmetric open neighborhood V, of 0 in G such that
(3) (Voat+E)N(V,+F,) =0 n=12,3,--).

Then, by the definition of compact-open topology, there exists a o-compact
open subgroup I’y of G such that

(4) TicnvV,.
n=1

Put E= UE and F= UF Then, for each open subgroup I' of G with
I'or,, ( ) and (4) yleld (IM+E)N(I4F)=0. Hence r.(y) and zp(v )‘ar,e

mutually singular because z.(¢) and z,.(v) are concentrated on r,.(E) and
7ri(F) respectively. This completes the proof.

LEMMA 4.2. Let G be a metrizable LCA group and H a closed sub-
group of G. Let p be a positive integer and E a small p set in G/H-
Put E=n"Y(E), where n: G—~G/H" is the natural homomorphism. Then
Sfor neMy(G), p? translates H-continuously.

ProOF. Since p is regular, there exists a ¢-compact open subgroup G’

of G with supp(4)CG'. We define a map r: (G'+H)/H~G/G' NH by

t(z+ H)=X+G' N H (x€G'). Then 7 is a topological isomorphism (cf. [5],
(5.33) [Theorem|, p. 44). Let B8: G'—G'/G'N H be the natural homomor-
phism, and put 7/ =B(J¢|). Then, by the theory of disintegration (cf. [1],
Théoréme 1, p. 58), there exists a family {,},cq¢/¢'nn Of measures in M(G')
with the following properties :

(1) y—>4;(f) is a Borel measurable function for each bounded
Borel function f on G';

(2) 1451 <1
(3) supp (4) C7'(¥) ;
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(4) u(f) :S 2;(f)dy () for each bounded Borel £.
¢16'NH

We define measures p, € M(G) (y=G/H) as follows :
(5) #i:JZ,(i) for ze(G'+H)/H
lo  for 7¢(G+H)/H.
We define a measure € M*((G'+ H)/H) by z(y)=%, and we regard 7 as

a measure in M (G/H). Let a: G—>G/H be the natural homomorphism.
Then by (1)-(4) the following are satisfied :

(6) Z+>p:(f) is a Borel measurable function for each bounded
Borel function f on G;

(1) el <1
(8) supp (1) Ca ()N G5
(9) ulf) = SG/HW( £)dn(#) for each bounded Borel function £ on G.

Since G’ is ¢-compact metrizable, there exists a countable dense set &/ =
{fm} in Cy(G"). Then by (6) and Lusin’s theorem, for each natural number
n, there exists a compact set K,Csupp (y) with the following properties :

1
(10) 7(Kn) <3
(11) > (fm) is continuous on K, for all f,e.o ;
(12) (VN K,)>0 for each =K, and each neighborhood V of 7.

Since Cy(G)|¢ =Cy(G’) and & is dense in Cy(G'), it follows from (8) and
(11) that

(13) Z>u.(f) is continuous on K, for all feC4(G).
Claim B. p:EMg(G) for all 2€K, (n=1,2,3, ).
In fact, let £ be a function in LY(G) with supp (f)CE*. Then

0=, 407G dr
(1) ={ f@)dua

= wlf)dnta). (by (9)
For y,eH', we define fT*ELl(G) by f,.) =f(r—rs). Then since H-+
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ErC Er, we have supp (f,)CE°. Hence yields
0=(  uif)da
={_|.(—5 1 A0 dula) dnle)
={ (—a70 f1a) du(2) dyta) (by (8)

- SG/H(_:E’ 14) () dp() .

Since 7y is an arbitrary element in HL, we have

G/H

(15) o:f p@) m(f)dy(@)  for all petrig(G/H).

Since Trig (G/H) is dense in L!(y) and z~>p,(f) is a bounded Bore function,
we have

Py

t(f)=0 p—a.a.2€G/H,
which, together with (13), yields

| a0 dr=p(fy=0  forall zeK,

Since f is any function in LYG) with supp (f)CEr, we have fi,=0 on E
for all 2K, and the claim follows.
By and Claim B we have

(16) 1€ Mz(G) na.a. 2€G/H.

On the other hand, by (8), there exist &, M(H) and =G with a(x)=+
such that p,=&d,. Then yields

§:€Mgz(H) p-a.a. t€G/H,
hence it follows from ([8], Lemma 1) that

a7 §e %46, € L'(H) (pX -+ Xm)-a. a. (x, -, x2,) E(G/H)?.
We note the following (cf. [8], Claims 2 and 3 in Theorem 1):
a8 )= [ s, () dyt) - dn(ay)

for feC(G). Let {t,} be a sequence in H which converges to 0. Then
yields }EE!I*aﬁ*'"*F‘zp“#il*"'*ﬂrp*atnlf:0 (pX - Xy)a.a. (By -, TpE
(G/H)». Hence, by and Lebesgue’s convergence theorem, we have -
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lim || — puP*d,, ||

n—roo

tim [ [ s, = e 0| i )-dy ()

n-—oco

=0.

Since H is metrizable, this shows that p? translates H-continuously and the
proof is complete.

Now we prove II. Suppose p? does not translate H-continu-
ously. Then by I we have p?e& M,;(G). Hence there exist §&
M,#(G) and a nonzero measure && M,u(G)t such that pP=¢+&,. Let o
be a positive measure in L!(H) such that o(V)>0 for all neighborhoods
Vof 0in H Then |&| | w*|&|. Hence by there exists a o-
compact open subgroup I of G such that

(1) (&) #0 and  7(|&]) L (@)xmr(|&]),

where 7;.: G—~G/I't is the natural homomorphism. Put H=n;(H) and
G=r..(G). Then, since I' is compact, H is a closed subgroup of G.

Claim 1. 7r(Man(G)) € Mog(G) .
In fact, the claim follows from the fact that =..(L'(H))c L'(H).
Claim 2. mr () & Moz(G) ..

By Claim 1, it is sufficient to prove that mq.(&)& M,s(G). Suppose mr.(£)
&M,5(G). Then, by I, |zr.(&)| translates H-continuously. On
the other hand, by the choice of w, we note that z.(w)(V)>0 for any
neighborhood V of 0 in H. Hence we have

|Tfrl(52)| <<7frl(w)*|7frl(52)| )

which contradicts (1). Thus the claim follows.

Put E,=ENTI. Let a: '+ H*—('+ HY/H* and g: '->I'/I'N H* be
the natural homomorphisms, and let 7 : (I'+ HY)/H-—I'/I" N H* be a topologi-
cal isomorphism given by z(y+HY=y+I'NH* for yerI' (cf. [5], (5.33)
Theorem|, p. 44). We note roa|,=8.

Claim 3. B(E,) is a small p set in I'/I"N H*.

In fact, since S~ B(Ey))=E,+I'N H=E,, B(E,) is a closed set, hence a(Ey)=
t1(B(Ey)) is also closed. Thus, since a(E)Cx(E)=E, a(E,) is a small p set
in (I'+ HY)/H'. Hence B(E)=r(a(Ey)) is a small p set in I'/[’N H*, and

the claim follows.
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We note that G is metrizable and the annihilator of ' H* in G coin-
cides with H. Thus, since ﬂpl(ﬂ)EMEo(G) and E,= p7(B(Ey)), it follows
from Claim 3 and Lemma 4. 2 that 7. (¢?) =, (g)? translates H-continuously.
This contradicts Claim 2 and I, and the proof is complete.
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