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theorem for Hodge manifolds
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Introduction

The main purpose of the present paper is to give a purely analytical
proof of a famous theorem due to Kodaira [4] which states that every Hodge
manifold X can be holomorphically embedded in a complex projective space
PY(C).

Our proof of the theorem is based on Kohn’s harmonic theory on
compact strongly pseudo-convex manifolds ([2] and [3]), and has been inspired
by the proof due to Boutet de Monvel of the fact that every compact
strongly pseudo-convex manifold M can be holomorphically embedded in
a complex affine space CV, provided dim M >3. In this paper the differen-
tiability will always mean that of class C*. Given a vector bundle E over
a manifold M, I'(E) will denote the space of C* cross sections of E.

1. Let M be an (n—1)-dimensional (para-compact) complex manifold,
and F a holomorphic line bundle over M. Let M’ be the holomorphic C*-
bundle associated with F, and ' the projection M'— M.

There are an open covering {U,} of M and for each a a holomorphic
trivialization

b 77U U) 22— (7 (2), £.(2) €U, X C*.
We have
fo(za) =f.(2)a, ze’"Y(U,), acC*.

Let {g., be the system of holomorphic transition functions associated with
the trivializations ¢,. Then for any a and g with U,NU,#¢ we have

f(2) = 0.4(7 (2)) fil2), zEX~U.NT,).

Let us now consider a U(1l)-reduction M of the C*-bundle M. Let #
denote the projection M— M. Then there is a unique positive function a, on

U, such that

7 H(U,) = {zex (U] ful2)*a. (7 (2) =1} .
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Clearly we have a,|¢.;*=a, and hence
=+ —1/27+30 log a, =v—1 /2755 log a,/02;02;+dz; \Ndz,;
i
defines a glabal 2-form of type (1,1) on M, where {2, ---, z,_;} denotes any
complex coordinate system of M defined on an open set of U,. The form

7 is usually called the Chern form (cf. [5]).

2. M being a real hypersurface of M’, it is endowed with a pseudo-
complex structure in a natural manner (cf. [6]). Let T%”(M’) be the vector
bundle of tangent vectors of type (1, 0) to M’, and CT(M) the complexifica-
tion of the tangent bundle 7(M) of M. Then the pseudo-complex structure
means the subbundle .S of CT(M) defined by

S, = CT(M),N T (M),, z=M.

We have
1) dim S,=n—1,
2) SOASVZO,

3) [(S), I'(S)]cl(S). -~

We remark that the differential 7, of © maps S onto T%® (M), the
bundle of tangent vectors of type (1,0) to M. We also remark that .S is
invariant under the action of U(1) on M. More precisely, for each a=U(1)
let R, denote the right translation M= x—zxac M. Then we have (R,)S=S
or in other words, R, is an automorphism of the pseudo-complex manifold ]_\/[

For any integer £ we denote by #* the space of cross sections of 4*.S*,
and define an operator 9: ¢*—@*! by

(0) (XA -+ AXis) = D= DH RKip(A - A XA AKir)

(3

+Z(—1)i+j¢<[)?i, XIAXA .../\)é(i/\ '"/\)?j/\”'/\)zk+1> :

i<j
where p=%* and X,=I'(S). Then we have 9°=0, and hence the system
{%* 3} gives a complex (cf. [6]).
A function ¢ &=%" is said to be holomorphic if it satisfies the (tangential
Cauchy-Riemann) equation d¢p=0.
For any integer m we define a subspace %!, of #° by

@my={pE@"|RE o =a™p for all acU(1)}.

Let =%’ Then it is clear that ¢ is in #{, if and only if there is
a (unique) function @ on M with ¢=x*3. Since 7xS=T% (M), we see that
a function p =%Y;, is holomorphic if and only if @ is holomorphic. In general
consider the m-th power F™ of the line bundle F. Then it can be shown
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that there is a natural isomorphism of %7{,, onto I'(F™), say ¢—@, and that
¢ is holomorphic if and only if ¢ is holomorphic (cf. [6].

3. Assume that M is compact. As is well known, the line bundle F
is negative if and only if there is a U(l)-reduction M of M’ such that the
hermitian matrix (0%log a,/02;0%;) is positive definite at each point of M (cf.

[5.

Hereafter we assume that M is compact and that F is negative with
respect to a U(l)-reduction M of M'. Since M is locally defined by the
equations | f,|?7'*a,=1 or equivalently

log f,+log f.+7'* (log a,) =0,

we see that M is a (compact) strongly pseudo-convex real hypersurface of

M’ (cf. [6]). N N

Let d(p,q)(p,q=M) be a distance function on M associated with a
Riemannian metric on M. Fix a point p, of M and define a function p on
M by

o~

o(p)=d(pnp)?, pPEM,

which can be confused with a function on M, i.e., the function 7*p. (Analo-
gous confusions will be made frequently.)

LEMMA 1. There are a function h on M and a neighborhood V of p,
having the following properties :

1) hisin &)y,

2) h is holomorphic on ==(V),

3) |h(x)| Se K@ xe M, where K, is a positive constant,

4) |h(x)|=zeErD xer(V), where K, is a positive constant.

Proor. Fix an a with p,eU,, and denote by u the restriction of f,
to z~Y(U,). Then « is holomorphic, and we have:

R*u=ua, acU(1),
lu|?2a,=1 on z7YU,).

Let {2, -+, 2,_1} be a complex coordinate system around p, with 2;(p,)=0.
Then the function b=log a, can be expanded as follows :

b =b(py)+2Re ; bi(po) 2:+Re @ZJ: bij(po) 2i2;
+§bii<1’o) 2,2;+O(|2[9),
where b;=0b/dz;, b;;=0%b/02,0z;, b;;=0°b/02;0%; and ’2|2:Z¢: |z;]%2. We
define a function ¢ on U, by
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= 1/20b(p)+ T bl 212 T bis( ) 222,
and a function A’ on z=7Y(U,) by
W=u-e.
Since | |*=|u|?-e®®, it follows that

log |#'|*=log |u|*+2Re ¢t
= — Zbu 20 22+ Ol

Since the hermitian matrix (b;;(py)) is positive definite, we can find a neigh-
borhood V'(CU,) of p, and positive constants K; and K, such that

—Kyo(x) Zlog |H (2)| = — K, p(x), zea (V).

o~

Now take a neighborhood V of p, with VC CV’ and a function y on M
having the following properties: 1) 0=<9=<1, 2) Supp »C V’, and 3) =1 on
V. And define a function ~ on M by h(x)=0 if x&z (V') and h(x)=
n(x) W (x) if xEx"(V’). Then it is easy to see that A and V, thus obtained,
have the desired properties.

4. Let g be a Riemannian metric on M such that ¢(X, Y)=0 for all
X, YeS; and xeM. Since S is U(l)-invariant, we may assume that ¢ is
U(1)-invariant, i.e., R¥g=¢, acU(l). Let v denote the volume element
associated with ¢, which is also U(1)-invariant.

For any ¢, ¢=%* we define a function {p,¢> on M in the following
manner : Let z&M and let {e, ---, e,_;} be any basis of .S, with g(e;, ;)=
0:5. Then

o, ¢ () =1/k !-i ,_Z,ikso(éil/\ e NE) D@ N - NE)

We now define an inner product ( , ) in €* by

09 =| oo

Let p=%* and acU(1). Since S is U(1)-invariant, R} ¢ can be naturally
defined to give an element of #¥*. In this way the group U(1l) acts on the
space ¥*, and we see that the inner product ( , ) is U(1)-invariant, i.e.,
(RZ @, RZp)=(0, ¢), acU(). _

We denote by 9 the formal adjoint operator of the operator d with
respect to the inner product ( , ). The operator []=93+39 is usually
called the Laplacian.
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Now it is known that, for every 1 <k<n—2, there are unique operators

H, G: ¢*—%"* such that
[[H=HG=0, and [JG+H=1.

(See [2], and [6]) The operator G is usually called the Green operator.
Here we notice that the operators 9, 9, [ ], H and G are all compatible
with the U(1)-action: For any a= U(l) and o= %* we have R (3p) =
3(R%¢), Ri(9¢)=9(R}¢), etc.
In the following we assume that n=3. Then we define an operator
H: ¢'—%° by
: H¢=¢—9G590, pEP.

It is easy to see that 'Hgo is holomorphic and that the operator H: ¢'—¢?°
is compatible with U(1)-action. In particular we have H%{m CElm).

5. Let py be any point of M. We take a function h on M and a
neighborhood V of p, having the properties in Lemma 1. Let ¢ be a function
on M that is holomorphic on a neighborhood O(C V) of p,. For any posi-
tive integer m let us consider the function A™¢p on M, which is clearly in
#%?-my. Accordingly the function

H(h™p) = hmp—9Ga(h™¢)

is holomorphic and is in €{_n).
We denote by || |l (resp. by | |5 a Sobolev norm (resp. a C*-norm)
in ¢* corresponding to any non-negative integer s (cf. [2]). Putting
a=Min p(p) (>0) and A=e%e
peM—0

we see that
[h(x)| L e K@ < A if xer (M- 0).

Lemma 2. For every non-negative integer s there is a positive constant
C, such that

13(hm @)l < Com*™* LA™,  m>0.
- Proor. Let {2, -, 2;} ({I=2n—1) be a coordinate system of M defined

on an open set W of M. Let X be a cross section of .S supported in W.
Then we have ‘

X(hm o) = mhm"l)zhfgo +h™ Xo.

Since: both & and ¢ are holomorphic on z~!(0), we have X(h™¢)=0 on
7710). Therefore it follows that
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,X(hm@[o < ComA™.
Applying the operator 9;,=9/dx; to the equality above for X(kmfp), we obtain
9 <X(k’”¢)) =m(m—1) k" 23, he Xh oo+ mh™10,(Xh-)
+mhm—la,-h-)"<<p+hm-ai()2¢) .

As above it follows that
[ai<X(hng)> o= Cim?*A™.

In general consider the operators D*=¢'"/gx5 -0zt where a=(ay, -+, a;) and
|la|=ay+---+a;<s. Then we have

|D“<X(hmgo)> lo < Comst Am
from which follows easily the lemma.

LeMMA 3. There is a positive constant C such that
| H(h™p) —h™ |, < Cmrt2 A™ m>0.
Proor. Using the Sobolev lemma, we obtain
[9G3(h¢)|1 < CIIGI (™ @)l | nsv < ClIGI(h™ )| casr -
By Folland-Kohn we know that

|G|t = Cil |9l |tmsn » Peg!.
Therefore it follows from that

,H(hm?’) —hm‘Ph = C4||5<hm§0)“(n+1) < Cmrt2A™ .

6. By using Lemmas 1 and 3 we shall show that the complex manifold
M can be holomorphically embedded in a complex projective space.

Let p,= M, and let @1, ***, on_y be functions on M having the following
properties :

1) Each function ¢; is holomorphic on a common neighborhood O(cC V)
of p,

2) A{pw -+, on_y} gives a coordinate system on O.

Putting ¢, =1, we define functions (™, ..., f{™ on M by

fim=Hhmep), 1Zj<n.

Then fj™ are holomorphic and are in ¢?_,,. Furthermore by Lemma 3 we
have |

(*) ™ —hmep,l, S Cm2A™,  m>0.
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Let us define functions ¢™, ---, ¢\™ on =7 (V) by
o =fimm, 1=j=n.

Let ¢ be a positive number with K;a— K;e>0, and let O’'(CO) be a neigh-
borhood of p, such that p(p)<e for all p(’. Putting B=e %59 we
see that if xex1{0'),

Alh(z)| 1 £ Aekr@ < pmKiatKe@ < B

For every cotangent vector & we denote by |a| the norm of a with respect
to a fixed Riemannian metric on M.

LEMMA 4. There is a positive constant C' such that

|95 (2) — p3(2)| + |doT —dpjel = C'm""*B™,
m>0, zex(0), 1<;j=n.

Proor. By (*) we have the inequalities :

| £ () — h(2)™p;(2)| + |df [ —d(h™ ;)| = Cm 2 A™,
m>0, zeM, 1=5<n.

For every z€x(0') we have
() —py(2) = ()™ (fi™(2) — h(2)m (),
gy —dpe = h(z) ™ (df P —d(h0,))
—m(g (2) —¢y(a)) h(z) " dhs .
From these facts follows easily the lemma.

LeEMMA 5. There are neighborhoods O, and O, with O,C O,CO, and
a positive integer p such that for all m=p the following hold :

1) fm™(x)#£0 for all xex Y0,

2) The functions f™[fi™ (1=i=n—1) on =« YO, are holomorphic,
and are reduced to holomorphic functions on O,

3) The functions f™[f\™, regarded as holomorphic functions on O,
give a coordinate system on O,

4) | fm@)l) ()] <12, zex(0y), yer(M-0,).

ProorF. By Lemma 4 we see that lim [¢/™(x)—1|=0 uniformly for

m-—co

zEx (). Hence there is a positive integer p such that ¢{™(x)#0 and
hence f{™(x)#0 for all m=p and z=zY(0). For any 1<i=n—1 and
m=p, the function ¢{™ =f™/f™ on z7(0') is holomorphic, and is reduced
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to a holomorphic function on (, because ¢{™(za)=¢{™(z), x&x"(0') and
acU(1). Clearly we have ¢{™=¢{™/¢m. Therefore we see from Lemma 4
that

lim (i ((2) —gi(2))] + |dpiz —dpil ) =0

m—»oo

uniformly for z&z7(0'). Let O, be a neighborhood of p, with O,Cc CO'.
Since {¢, '+, on_1} gives a coordinate system on O, it follows that if we
choose a sufficiently large g, {p{™, ---, o™} gives a coordinate system on O,
for every m=p.

Now from (*) we obtain

| fim)(2) —h(2)"| = Cm"*2A™, z2EM, m>0.
Therefore if xex"1(0,), we have
|£(2)] = [h(a)| — Crrtt Am 2 enkord — Cn#2 Am,
and if yer(M—0,), we have
AP @) < |h@)|m+Cmt2 Am < e mEe® 4+ Cm™*2 A™
Put 5= Min p(p) (>0), and let 6 be a positive number such that K;b— K,d

peMd -0,

>0 and hence K;a—K,6>0. Let O, (CO,) be a neighborhood of p, such
that p(p)<é for all p=O, Then it follows that if z=x (O, and y&r™
(M—0,), then

’f(m)( )l/lf(m)( )l é( —mK,p(y) +Cmn+2Am)/( —m Ko (L) _Cmn+2Am)
< (e K04 Cm 2 A™)/(e ¥ — Cm™+2 A™)
= (Br+Cm~*2BM)/(1 —Cm™*tBm) ,

(provided C m™2:Br<1), where B, = AeX? =¢ Kw~Kd gnd B, =¢ K0k,
Therefore if we again choose a sufficiently large g, we know that | f£{™(y)|/
|f,§””(x)|<1/2 for all zex1(0,), yer(M—0, and m=p. We have thus
proved Lemma 5

7. The functions f{™, the neighborhoods O,, O,, and the integer g in
are all dependent on the arbitrarily given point p=p,. Thus we
write these things respectively as follows : £{™, O,(p), O.(p), and p(p). Since
M is compact, we can find a finite number of points p, -+, pr of M such
that MZLiJOz(pl). Let yOZM?x ¢(p). Then for every m=y, we define

a map f: M—C"™ by

F=(fm, e, fim) oo, fm) e fim) )
1,0, sJ n,D, 1, D sJS Pyl *

We have R}f=a"f, acU(l), and by we have f(x)#0 for all
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x&M. Hence we see that f induces a map f of M into the (nk—1)-dimen-
sional complex projective space P"*71(C). By virtue of we can
easily show that £ is a holomorphic embedding. )

As is well known, a compact complex manifold is a Hodge manifold if
and only if it admits a negative line bundle (cf. [5]). Therefore we have
shown that every Hodge manifold M of dimension =2 can be holomorphically
embedded in a complex projective space. Finally we note that a compact
Riemann surface R, being a Hodge manifold, can be holomorphically embed-
ded in a complex projective space, because the product RXR is a 2-dimen-
sional Hodge manifold.
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