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Introduction

The main purpose of the present paper is to give a purely analytical
proof of a famous theorem due to Kodaira [4] which states that every Hodge
manifold X can be holomorphically embedded in a complex projective space
P^{N}(C) .

Our proof of the theorem is based on Kohn’s harmonic theory on
compact strongly pseud0-convex manifolds ([2] and [3]), and has been inspired
by the proof due to Boutet de Monvel [1] of the fact that every compact
strongly pseud0-convex manifold M can be holomorphically embedded in
a complex affine space C^{N}, provided dim M>3 . In this paper the differen-
tiability will always mean that of class C^{\infty} . Given a vector bundle E over
a manifold M, \Gamma(E) will denote the space of C^{\infty} cross sections of E.

1. Let \overline{M} be an (n –1) -dimensional (para-compact) complex manifold,
and F a holomorphic line bundle over \overline{M}. Let M’ be the holomorphic C^{*}-

bundle associated with F, and \pi’ the projection M’arrow\overline{M}.
There are an open covering \{U_{\alpha}\} of \overline{M} and for each \alpha a holomorphic

triviali zation

\phi_{\alpha} : \pi^{\prime-1}(U_{\alpha})\ni zarrow(\pi’(z), f_{\alpha}(z))\in U_{\alpha}\cross C^{*}

We have
f_{\alpha}(za)=f_{\alpha}(z)a, z\in\pi^{\prime-1}(U_{\alpha}) , a\in C^{*}

Let \{g_{\alpha\beta}\} be the system of holomorphic transition functions associated with
the trivializations \phi_{\alpha} . Then for any er and \beta with U_{\alpha}\cap U_{\beta}\neq\phi we have

f_{\alpha}(z)=g_{a\beta}(\pi’(z))f_{\beta}(z) , z\in\pi^{\prime-1}(U_{\alpha}\cap U_{\beta})

Let us now consider a U(1) -reduction M of the C^{*} bundle M’ . Let \pi

denote the projection Marrow\overline{M}. Then there is a unique positive function a_{\alpha} on
U_{\alpha} such that

\pi^{-1}(U_{\alpha})=\{z\in\pi^{\prime-1}(U_{\alpha})||f_{\alpha}(z)|^{2}a_{a}(\pi’(z))=1\}
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Clearly we have a_{\alpha}|g_{a\beta}|^{2}=a_{\beta} , and hence

\gamma--\sqrt-1/2\pi\cdot\partial\overline{\partial}\log a_{\alpha}=\sqrt-1/2\pi\cdot\sum_{i,j}\partial^{2} log a_{\alpha}/\partial z_{i}\partial\overline{z}_{j}\cdot dz_{i}\Lambda d\overline{z}_{j}

defines a glabal 2-form of type (1, 1) on \tilde{M}, where \{z_{1}, \cdots, z_{n-1}\} denotes any
complex coordinate system of \tilde{M} defined on an open set of U_{\alpha} . The form
\gamma is usually called the Chern form (cf. [5]).

2. M being a real hypersurface of M’ . it is endowed with a pseud0-
complex structure in a natural manner (cf. [6]). Let T^{(1,0)}(M’) be the vector
bundle of tangent vectors of type (1, 0) to M’ . and CT(M) the complexifica-
tion of the tangent bundle T(M) of M. Then the pseud0-complex structure
means the subbundle S of CT(M) defined by

S_{x}=CT(M)_{x}\cap T^{(1,0)}(M’)_{x} , x\in M\tau

We have
1) dim S_{x}=n-1 ,
2) S \bigcap_{k}\overline{S}=0 ,
3) [\Gamma(S), \Gamma(S)]\subset\Gamma(S) .
We remark that the differential \pi_{*} of \pi maps S onto T^{(1,0)}(A’\overline{W}) , the

bundle of tangent vectors of type (1,0) to \overline{M}. We also remark that S is
invariant under the action of U(1) on M. More precisely, for each a\in U(1)

let R_{a} denote the right translation M\ni x- xa\in M. Then we have (R_{a})_{*}S=S

or in other words, R_{a} is an automorphism of the pseud0-complex manifold M.
For any integer k we denote by \mathscr{C}^{k} the space of cross sections of \Lambda^{k}k\overline{\backslash ^{\tau}}* ,

and define an operator \overline{\partial} : \mathscr{C}^{k}arrow \mathscr{C}^{k\dagger 1} by

( \overline{\partial}\varphi)(\overline{X}_{1}\Lambda\cdots\Lambda\overline{X}_{k+1})=\sum_{i}(-1)^{i+1}\overline{X}_{i}\varphi(\overline{X}_{1}\Lambda\cdots\Lambda i\Lambda\cdots\Lambda\overline{X}_{k+1}\hat{\frac{}{X}})

+ \sum_{i<j}(-1)^{i+j}\varphi([\overline{X}_{i},\overline{X}_{j}]\Lambda\overline{X}_{1}\Lambda\cdots\Lambda i\Lambda\cdots\Lambda j\Lambda\cdots\Lambda\overline{X}_{k+1}\hat{\frac{}{X}}\hat{\frac{}{X}}) .

where \varphi\in \mathscr{C}^{k} and X_{i}\in\Gamma(S) . Then we have \overline{\partial}^{2}=0 , and hence the system
\{\mathscr{C}^{k}, \overline{\partial}\} gives a complex (cf. [6]).

A function \varphi\in \mathscr{C}^{0} is said to be holomorphic if it satisfies the (tangential
Cauchy-Riemann) equation \overline{\partial}\varphi=0 .

For any integer m we define a subspace \mathscr{C}_{(m)}^{0} of \mathscr{C}^{0} by

\mathscr{C}_{(m)}^{0}.=\{\varphi\in \mathscr{C}^{0}|R_{a}^{*}\varphi=a^{-m}\varphi for all a\in U(1)\}

Let \varphi\in \mathscr{C}^{0} . Then it is clear that \varphi is in \mathscr{C}_{(0)}^{0} if and only if there is
a (unique) function \tilde{\varphi} on \overline{M} with \varphi=\pi^{*}\tilde{\varphi} . Since \pi_{*}S=T^{(1,0)}(\overline{M}) , we see that
a function \varphi\in \mathscr{C}_{(0)}^{0} is holomorphic if and only if \tilde{\varphi} is holomorphic. In general
consider the m-th power F^{m} of the line bundle F. Then it can be shown
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that there is a natural isomorphism of \wp_{(’ n)}^{0} onto \Gamma(F^{m}) , say \varphiarrow\tilde{\varphi} , and that
\varphi is holomorphic if and only if \tilde{\varphi} is holomorphic (cf. [6]).

3. Assume that \tilde{M} is compact. As is well known, the line bundle F
is negative if and only if there is a U(1) -reduction M of M’ such that the
hermitian matrix ( \partial^{2} log a_{\alpha}/\partial z_{i}\partial\overline{z}_{j}) is positive definite at each point of \tilde{hI} (cf.
[5] ) .

Hereafter we assume that \tilde{M} is compact and that F is negative with
respect to a U(1) -reduction M of M’ . Since M is locally defined by the
equations |f_{\alpha}|^{2}\pi’a_{a}*=1 or equivalently

log f_{\alpha}+\log f_{a}+\pi’(*\log a_{\alpha})=0 ,

we see that M is a (compact) strongly pseud0-convex real hypersurface of
M’ (cf. [6]).

Let d(p, q)(p, q\in\overline{M}) be a distance function on \tilde{M} associated with a
Riemannian metric on \tilde{M}. Fix a point p_{0} of \tilde{M} and define a function \rho on
\overline{M} by

\rho(p)=d(p_{0}, p)^{2} , p\in\tilde{M} ,

which can be confused with a function on M, i . e. , the function \pi^{*}\rho . (AnalO-
gous confusions will be made frequently.)

Lemma 1. There are a function h on M and a neighborhood V of p_{0}

having the following properties:
1) h is in \mathscr{C}_{(-1)}^{0} ,
2) h is holomorphic on \pi^{-1}( V) ,
3) |h(x)|\leqq e^{-K_{1}\rho(x)} , x\in M, where K_{1} is a positive constant,
4) |h(x)|\geqq e^{-K_{2}\rho(x)} , x\in\pi^{-1}(V) , where K_{2} is a positive constant.

PROOF. Fix an \alpha with p_{0}\in U_{a} , and denote by u the restriction of f_{\alpha}

to \pi^{-1}(U_{\alpha}) . Then u is holomorphic, and we have:
R_{a}^{*}u=ua , a\in U(1) .
|u|^{2}a_{\alpha}=1 on \pi^{-1}(U_{a})(

Let \{z_{1^{ }},\cdots, z_{n-1}\} be a complex coordinate system around p_{0} with z_{i}(p_{0})=0 .
Then the function b=\log a_{a} can be expanded as follows:

b=b(p_{0})+2{\rm Re} \sum_{i}b_{i}(p_{0})z_{i}+{\rm Re}\sum_{i,j}b_{ij}(p_{0})z_{i}z_{j}

+ \sum_{i,j}b_{i\overline{j}}(p_{0})z_{i}\overline{z}_{j}+O(|z|^{3}) ,

where b_{i}=\partial b/\partial z_{i} , b_{ij}=\partial^{2}b/\partial z_{i}\partial z_{j}, b_{i}=J\partial^{2}b/\partial z_{i}\partial\overline{z}_{j}, and |z|^{2}= \sum_{i}|z_{i}|^{2} . We
define a function t on U_{a} by
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t=1/2 \cdot b(p_{0})+\sum_{i}b_{i}(p_{0})z_{i}+1/2\cdot\sum_{i,j}b_{ij}(p_{0})z_{i}z_{j}

and a function h’ on \pi^{-1}(U_{\alpha}) by

h’=u\cdot e^{t}

Since |h’|^{2}=|u|^{2}\cdot e^{2{\rm Re} t} , it follows that

log |h’|^{2}=\log|u|^{2}+2{\rm Re} t

=-b+2{\rm Re} t

=- \sum_{i,j}b_{i\overline{j}}(p_{0})z_{i}\overline{z}_{j}+O(|z|^{3}) .

Since the hermitian matrix (b_{i\overline{j}}(p_{0})) is positive definite, we can find a neigh-
borhood V’(\subset U_{\alpha}) of p_{0} and positive constants K_{1} and K_{2} such that

-K_{2}\rho(x)\leqq\log|h’(x)|\leqq-K_{1}\rho(x) , x\in\pi^{-1}(V’) .

Now take a neighborhood V of p_{0} with V\subset\subset V’ and a function \eta on \overline{M}

having the following properties: 1) 0\leqq\eta\leqq 1,2) Supp \eta\subset V’ , and 3) \eta=1 on
V. And define a function h on M by h(x)=0 if x\not\in\pi^{-1}(V’) and h(x)=
\eta(x)h’(x) if x\in\pi^{-1}(V) . Then it is easy to see that h and V, thus obtained,
have the desired properties.

4. Let g be a Riemannian metric on M such that g(X, Y)=0 for all
X, Y\in S_{x} and x\in M. Since S is U(1) -invariant, we may assume that g is
U(1) -invariant, i.e. , R_{a}^{*}g=g, a\in U(1) . Let \omega denote the volume element
associated with g, which is also U(1) -invariant.

For any \varphi , \psi\in \mathscr{C}^{k} we define a function \langle\varphi, \psi\rangle on M in the following
manner: Let x\in M and let \{e_{1}, \cdots, e_{n-1}\} be any basis of S_{x} with g(e_{i},\overline{e}_{j})=

\delta_{ij} . Then
\langle\varphi, \psi\rangle(x)=1/k ! \cdot i_{1},,i_{k}\sum\varphi(\overline{e}_{i_{1}}\Lambda\cdots\Lambda\overline{e}_{i_{k}})\overline{\psi(\overline{e}_{i_{1}}\Lambda}\overline{\cdots\Lambda\overline{e}_{i_{k}})}

We now define an inner product ( -, ) in \mathscr{C}^{k} by

( \varphi, \psi)=\int_{M}\langle\varphi, \psi\rangle\omega\tau

Let \varphi\in \mathscr{C}^{k} and a\in U(1) . Since S is U(1) -invariant, R_{a}^{*}\varphi can be naturally
defined to give an element of \mathscr{C}^{k} . In this way the group U(1) acts on the
space \mathscr{C}^{k} , and we see that the inner product ( -, ) is U(1) -invariant, i . e. ,
(R_{a}^{*}\varphi, R_{a}^{*}\psi)=(\varphi, \psi) , a\in U(1) .

We denote by \theta the formal adjoint operator of the operator \overline{\partial} with
respect to the inner product ( , ) . The operator \coprod=\theta\overline{\partial}+\overline{\partial}\theta is usually
called the Laplacian.
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Now it is known that, for every 1\leqq k\leqq n-2 , there are unique operators

H, G:\mathscr{C}^{k}arrow \mathscr{C}^{k} such that

\coprod H=HG=0 , and \coprod G+H=1

(See [2], [3] and [6].) The operator G is usually called the Green operator.

Here we notice that the operators \overline{\partial} , \theta , \square , H and G are all compatible
with the U(1) -action: For any a\in U(1) and \varphi\in \mathscr{C}^{k} we have R_{a}^{*}(\overline{\partial}\varphi)=

\overline{\partial}(R_{a}^{*}\varphi) , R_{a}^{*}(\theta\varphi)=\theta(R_{a}^{*}\varphi) , etc.
In the following we assume that n\geqq 3 . Then we define an operator

H:\mathscr{C}^{0}arrow \mathscr{C}^{0} by
H\varphi=\varphi-\theta G\overline{\partial}\varphi . \varphi\in \mathscr{C}^{0} .

It is easy to see that H\varphi is holomorphic and that the operator H:\mathscr{C}^{0}arrow \mathscr{C}^{0}

\dot{1}S compatible with U(1) -action. In particular we have H\mathscr{C}_{(m)}^{0}\subset \mathscr{C}_{(m)}^{0} .

5. Let p_{0} be any point of \overline{M}. We take a function h on M and a
neighborhood V of p_{0} having the properties in Lemma 1. Let \varphi be a function
on \tilde{M} that is holomorphic on a neighborhood O(\subset V) of p_{0} . For any posi-
tive integer m let us consider the function h^{m}\varphi on M, which is clearly in
\mathscr{C}_{(-m)}^{0} . Accordingly the function

H(h^{m}\varphi)=h^{m}\varphi-\theta G\overline{\partial}(h^{m}\varphi)

is holomorphic and is in \mathscr{C}_{(-m)}^{0} .
We denote by || ||_{(S)} (resp. by | |_{s}) a Sobolev norm (resp. a C^{s} norm

in \mathscr{C}^{k} corresponding to any non-negative integer s (cf. [2]). Putting

a={\rm Min}\rho(p)p\in\tilde{M}-O(>0) and A=e^{-K_{1}a}

we see that
|h(x)|\leqq e^{-K_{1}\rho(x)}\leqq A if x\in\pi^{-1}(\overline{M}-O)

[

Lemma 2. For every non-negative integer s there is a positive constant
C_{s} such that

||\overline{\partial}(h^{m}\varphi)||_{(s)}\leqq C_{s}m^{s+1}A^{m} . m>0 .

PROOF. Let \{x_{1^{ }},\cdots, x_{l}\}(l=2n-1) be a coordinate system of M defined
on an open set W of M. Let X be a cross section of S supported in W.
Then we have

\overline{X}(h^{m}\varphi)=mh^{m-1}\overline{X}h\cdot\varphi+h^{m}\cdot\overline{X}\varphi .
Since both h and \varphi are holomorphic on \pi^{-1}(O) , we have \overline{X}(h^{m}\varphi)=0 on
\pi^{-1}(O) . Therefore it follows that
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|\overline{X}(h^{m}\varphi)|_{0}\leqq C_{0}mA^{m}

Applying the operator \partial_{i}=\partial/\partial x_{i} to the equality above for \overline{X}(h^{m}\varphi) , we obtain

\partial_{i}(\overline{X}(h^{m}\varphi))=m(m-1)h^{m-2}\partial_{i}h\cdot\overline{X}h\cdot\varphi+mh^{m-1}\partial_{i}(\overline{X}h\cdot\varphi)

+mh^{m-1}\partial_{i}h\cdot\overline{X}\varphi+h^{m}\cdot\partial_{i}(\overline{X}\varphi)\tau

As above it follows that

|\partial_{i}(\overline{X}(h^{m}\varphi))|_{0}\leqq C_{1}m^{2}A^{m}

In general consider the operators D^{\alpha}=\partial^{|\alpha|}/\partial x_{1}^{\alpha_{1}}\cdots\partial x_{l}^{\alpha}\iota where \alpha=(\alpha_{1^{ }},\cdots, \alpha_{l}) and
|\alpha|=\alpha_{1}+\cdots+\alpha_{l}\leqq s . Then we have

|D^{\alpha}(\overline{X}(h^{m}\varphi))|_{0}\leqq C_{s}m^{s+1}A^{m} ,

from which follows easily the lemma.

Lemma 3. There is a positive constant C such that
|H(h^{m}\varphi)-h^{m}\varphi|_{1}\leqq Cm^{n+2}A^{m} , m>0 .

PROOF. Using the Sobolev lemma, we obtain
|\theta G\overline{\partial}(h^{m}\varphi)|_{1}\leqq C_{1}||\theta G\overline{\partial}(h^{m}\varphi)||_{(n+1)}\leqq C_{2}||G\overline{\partial}(h^{m}\varphi)||_{(n+2)}

By Folland-Kohn [2] we know that
||G\psi||_{(n+2)}\leqq C_{3}||\psi||_{(n+1)} , \psi\in \mathscr{C}^{1}

Therefore it follows from Lemma 2 that
|H(h^{m}\varphi)-h^{m}\varphi|_{1}\leqq C_{4}||\overline{\partial}(h^{m}\varphi)||_{(n+1)}\leqq Cm^{n+2}A^{m}

6. By using Lemmas 1 and 3 we shall show that the complex manifold
\overline{M} can be holomorphically embedded in a complex projective space.

Let p_{0}\in\overline{M}, and let \varphi_{1} , \cdots , \varphi_{n-1} be functions on \overline{M} having the following
properties :

1) Each function \varphi_{i} is holomorphic on a common neighborhood O(\subset V)

of p_{0} ,
2) \{\varphi_{1^{ }},\cdots, \varphi_{n-1}\} gives a coordinate system on O.
Putting \varphi_{n}=1 , we define functions f_{1}^{(m)} , \cdots , f_{n}^{(m)} on M by

f_{j}^{(m)}=H(h^{m}\varphi_{j})’. 1\leqq j\leqq n .
Then f_{j}^{(m)} are holomorphic and are in \mathscr{C}_{(-m)}^{0} . Furthermore by Lemma 3 we
have

(*) |f_{j}^{(m)}-h^{m}\varphi_{j}|_{1}\leqq Cm^{n+2}A^{m} , m>0 .
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Let us define functions \psi_{1}^{(m)} , \cdots , \psi_{n}^{(m)} on \pi^{-1}( V) by

\psi_{j}^{(m)}=f_{j}^{(m)}/h^{m} , 1\leqq j\leqq n

Let \epsilon be a positive number with K_{1}a-K_{2}\epsilon>0 , and let O’(\subset O) be a neigh-
borhood of p_{0} such that \rho(p)\leqq\epsilon for all p\in O’ . Putting B=e^{-(K_{1}a-K_{2}\cdot)} , we
see that if x\in\pi^{-1}(O’) ,

A|h(x)|^{-1}\leqq Ae^{K_{2}\rho(x)}\leqq e^{-K_{1}a+K_{2}\rho(x)}\leqq B .

For every cotangent vector \alpha we denote by |\alpha| the norm of \alpha with respect
to a fixed Riemannian metric on M.

LEMMA 4. There is a positive constant C’ such that

|\psi_{j}^{(m)}(x)-\varphi j(x)|+|d\psi_{jx}^{(m)}-d\varphi_{fx}|\leqq C’m^{n+\S}B^{m} :

m>0 , x\in\pi^{-1}(O) , 1\leqq j\leqq n .
PROOF. By (^{*}) we have the inequalities:

|f_{j}^{(m)}(x)-h(x)^{m}\varphi_{j}(x)|+|df_{jx}^{(m)}-d(h^{m}\varphi_{j})_{x}|\leqq Cm^{n\dagger 2}A^{m} ,

m>0 . x\in M , 1\leqq j<n

For every x\in\pi^{-1}(O’) we have

\psi_{j}^{(m)}(x)-\varphi_{j}(x)=h(x)^{-m}(f_{j}^{(m)}(x)-h(x)^{m}\varphi_{J}(x)),\cdot

d\psi_{jx}^{(m)}-d\varphi_{jx}=h(x)^{-m}(df_{jx}^{(m)}-d(h^{m}\varphi_{j})_{x})

-m(\psi_{j}^{(m)}(x)-\varphi j(x))h(x)^{-1}dh_{x} .

From these facts follows easily the lemma.

Lemma 5. There are neighborhoods O_{1} and O_{2} with O_{2}\subset O_{1}\subset O, and
a positive integer \mu such that for all m\geqq\mu the following hold:

1) f_{n}^{(m)}(x)\neq 0 for all x\in\pi^{-1}(Oj ,
2) The functions f_{i}^{(m)}/f_{n}^{(m)}(1\leqq i\leqq n-1) on \pi^{-1}(O_{1}) are holomorphtc,

and are reduced to holomorphic functions on O_{1} ,
3) The functions f_{i}^{(m)}/f_{n}^{(m)} , regarded as holomorphic functions on O_{1} ,

give a coordinate system on O_{1} ,
4) |f_{n}^{(m)}(y)|/|f_{n}^{(m)}(x)|<1/2 , x\in\pi^{-1}(O_{2}) , y\in\pi^{-1}(\overline{M}-O_{1})

PROOF. By Lemma 4 we see that lim |\psi_{n}^{(m)}(x)-1|=0 uniformly for
marrow\infty

x\in\pi^{-1}(U) . Hence there is a positive integer \mu such that \psi_{n}^{(m)}(x)\neq 0 and
Hence f_{n}^{(m)}(x)\neq 0 for all m\geqq\mu and x\in\pi^{-1}(O’) . For any 1\leqq i\leqq n-1 and
m\geqq\mu , the function \varphi_{i}^{(m)}=f_{i}^{(m)}/f_{n}^{(m)} on \pi^{-1}(O’) is holomorphic, and is reduced
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to a holomorphic function on O’ , because \varphi_{i}^{(m)}(xa)=\varphi_{i}^{(m)}(x) , x\in\pi^{-1}(O’) and
a\in U(1) . Clearly we have \varphi_{i}^{(m)}=\psi_{i}^{(m)}/\psi_{n}^{(m)} . Therefore we see from Lemma 4
that

\lim_{marrow\infty}(|\varphi_{i}^{(m)}((x)-\varphi_{i}(x))|+|d\varphi_{ix}-(m)d\varphi_{ix}|)=0

uniformly for x\in\pi^{-1}(O’) . Let O_{1} be a neighborhood of p_{0} with O_{1}\subset\subset O’ .
Since \{\varphi_{1^{ }},\cdots, \varphi_{n-1}\} gives a coordinate system on O, it follows that if we
choose a sufficiently large \mu , \{\varphi_{1}^{(m)}, \cdots, \varphi_{n-1}^{(m)}\} gives a coordinate system on O_{1}

for every m\geqq\mu .
Now from (^{*}) we obtain

|f_{n}^{(m)}(z)-h(z)^{m}|\leqq Cm^{n+2}A^{m} , z\in M, m>0

Therefore if x\in\pi^{-1}(O_{1}) , we have
|f_{n}^{(m)}(x)|\geqq|h(x)|^{m}-Cm^{n+2}A^{m}\geqq e^{-mK_{2}\rho(x)}-Cm^{n+2}A^{m} ,

and if y\in\pi^{-1}(\overline{M}-Oi) , we have
|f_{n}^{(m)}(y)|\leqq|h(y)|^{m}+Cm^{n+2}A^{m}\leqq e^{-mK_{1}\rho(y)}+Cm^{n+2}A^{m} .

Put b= Min \rho(p)(>0) , and let \delta be a positive number such that K_{1}b-K_{2}\delta

>0andhencep\epsilon ff-o_{1}K_{1}a-K_{2}\delta>0 . Let o_{2}(\subset O_{1}) be a neighborhood of p_{0} such
that \rho(p)\leqq\delta for all p\in O_{2} . Then it follows that if x\in\pi^{-1}(O_{2}) and y\in\pi^{-1}

(M–OJ , then
|f_{n}^{(m)}(y)|/|f_{n}^{(m)}(x)|\leqq(e^{-?nK_{1}\rho(y)}+Cm^{n\dagger 2}A^{m})/(e^{-mK_{2}\rho(x)}-Cm^{n+2}A^{m})

\leqq(e^{-mK_{1}b}+Cm^{n+2}A^{m})/(e^{-mK_{2}\delta}-Cm^{n+2}A^{m})

=(B_{2}^{m}+Cm^{n+2}B_{1}^{m})/(1-Cm^{n+2}B_{1}^{m}) ,

(provided Cm^{n+2}B_{1}^{m}<1), where B_{1}=Ae^{K_{2}\delta}=e^{-(K_{1}a-K_{2}\delta)} and B_{2}=e^{-(K_{1}b-K_{2}\delta)} .
Therefore if we again choose a sufficiently large \mu , we know that |f_{n}^{(m)}(y)|/

|f_{n}^{(m)}(x)|<1/2 for all x\in\pi^{-1}(O_{2}) , y\in\pi^{-1}(\overline{M}-O_{1}) and m\geqq\mu . We have thus
proved Lemma 5.

7. The functions f_{j}^{(m)} , the neighborhoods O_{1} , O_{2}, and the integer \mu in
Lemma 5 are all dependent on the arbitrarily given point p=p_{0} . Thus we
write these things respectively as follows: f_{j,p}^{(m)} , O_{1}(p) , O_{2}(p) , and \mu(p) . Since
\overline{M} is compact, we can find a finite number of points p_{1} , \cdots , p_{k} of \overline{M} such
that \overline{M}=\bigcup_{\lambda}O_{2}(p_{\lambda}) . Let \mu_{0_{\lambda}^{={\rm Max}}}\mu(p_{\lambda}) . Then for every m\geqq\mu_{0} we define

a map f:Marrow C^{nk} by

f=(f_{1,p_{1}}^{(m)_{ }},\cdots,f_{n,p_{1}}^{(m)_{ }},\cdots,f_{1,p_{k}}^{(m)}, \cdots,f_{n,p_{k}}^{(m)}) .
We have R_{a}^{*}f=a^{m}f, a\in U(1) , and by Lemma 5 we have f(x)\neq 0 for all
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x\in M. Hence we see that f induces a map f of \overline{M} into the (nk-1) -dimen-
sional complex projective space P^{nk-1}(C) . By virtue of Lemma 5 we can
easily sh^{-}ow that \tilde{f} is a holomorphic embedding.

As is well known, a compact complex manifold is a Hodge manifold if
and only if it admits a negative line bundle (cf. [5]). Therefore we have
shown that every Hodge manifold \overline{M} of dimension \geqq 2 can be holomorphically
embedded in a complex projective space. Finally we note that a compact
Riemann surface R, being a Hodge manifold, can be holomorphically embed-
ded in a complex projective space, because the product R\cross R is a 2-dimen-
sional Hodge manifold.
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