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A remark on socles and normal subgroups
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1. Introduction

In modular representation theory of finite groups, it is often usefull to
study socles of indecomposable modules. For example, the famous Brauer’s
result on socles and heads of projective indecomposable modules, or Green’s
recent result [5] on socles and heads of indecomposable direct summands of
some permutation modules. In this paper, we are concerned with socles of
direct summand of modules indeuced from normal subgroups.

Let G be a finite group, p a rational prime, and k a field of characteristic
p. Let K be a normal subgroup of G and W an indecomposable kK-module.
A number of authoers, including A. H. Clifford, have investigated the induced
module W^{G} and the endomorphism ring RndkG(WG). In his paper [1], S. B.
Conlon proved End_{kG}(W^{G}) is almost isomorphic to a twisted group algebra
over G/K. After, P. A. Tucker [7], [8] and H. N. Ward [9] studied the
relationship between submodules of W^{G} and left ideals of EndkG(WG) in case
W is a simple kK-module. Their results are found in the book [2]. As
corollary of them, we see easily, if W is a simple kK-module and the innertia
group T_{G}(W) equals G, then any indecomposable direct summand of W^{G}

has a simple socle and a simple head. We shall extend it and prove the
following Theorem:

THEOREM 3. 2 Let k be an algebraically closed fifield. Suppose K is
a normal subgroup of G and W is an indecomposable kK-module satisfying
T_{G}(W)=G . If the socle soc (W) is a simple kK-module, then for an inde-
composable direct summand V of W^{G} the socle soc (V) is a simple kG-
module.

Notation. Maps are usually on the left with the corresponding conver-
sion for writing compositions. Let A and B sets and f a map of A to B.
For a subset C of A we denote by f|_{C} the restriction of f to C. For a
subgroup H of G we denote by (G/H) a set of representatives of the left
coset qH in G, containing the identity element. All kG-modules are finite
generated left kG-modules. For a ring A we denote by J(A) the Jacobson
radical of A. Let M and M’ be kG-modules. The socle of M is the maxmal
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semi-simple submodule of M, denoted by soc (M) and the head of M is
M/J(kG)M, denoted by hd(M) . The notation M|M’ means that M is
isomorphic to a direct summand of M . If K is a normal subgroup of G
and W is a kK-module, then the innertia group T_{G}(W) is the subgroup
consist of the element x satisfying W and W^{x} are isomorphic as kK-modules.
For other definitions we refer to the books [2] and [3].

2. Preliminary

Throughout this paper, K is a normal subgroup of G, Y is a quotiant
group G/K, W is an indecomposable kK-module and E is the endomorphism
ring EndkG(WG). The kG-module W^{G}

equa1s\bigoplus_{y\epsilon(G/K)}?/\otimes W, where the symbol
\otimes will be \otimes_{kK}. We denote by E_{y} the k-subspace \{\psi\in E|\psi(1\otimes W)\subset y\otimes W\}

in E. It is easy to see E_{1} is isomorphic to End_{kK}(W) as k-algebra. In this
sence, we shall identify End_{kK}(W) with E_{1} . The following Theorem is the
well-known Clifford-Conlon’s Theorem :

THEOREM 2. 1 Let k be an algebraicaly closed fifield. Then the k-
algebra E/J(EiJ E is isomorphic to a twisted group algebra over Y. In
particular, if W is a simple kK-module, then E is isomorphic to a twisted
group algebra over Y.

In case W is a simple kK-module, H. Ward prove the following TheO-
rem. See [9].

THEOREM 2. 2 (H. Ward) Let W be a simple kK-module satisfying
T_{G}(W)=G . Then there is a lattice isomorphism between the set of left
ideals of E and kG submodule of W^{G}, given by;

I |-\{\psi_{(}’w) |\psi\in I, w\in W^{G}\}

and

\{\psi\in E|\psi(W^{G})\subset M\}-\mathfrak{l}M

where I is a left ideal of E and M is a kG submodule of W^{G} .
As a corollary of Theorem 2. 2, we can prove Theorem 3. 5 in case W

is a simple kK-module.

COROLLARY 2. 3 Let k be an algebraicaly closed fifield. If W is a
simple kK-module satisfying T_{G}(W)=G, then for an indecomposable direct
summand V of W^{G} the socle soc (V) and the head hd(V) are both simple
kG-modules.
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PROOF. By Theorem 2. 1, the endomorphism ring E is isomorphic to

a twisted group algebra. In particular E is a quassi-Frobenius algebra.
Therefore a projective indecomposable E-module has a simple socle and a
simple head. Now the lattice isomorphism in Theorem 2. 2 induces the
bijective correspondence between indecomposable direct summands of W^{G} and
projective indecomposable E-modules. Thus Theorem 2. 2 implies Corollary.

We shall extend the above fact and prove Theorem 3. 2 in the following
section.

3. Simplicity

Now we assume that the indecomposable kK-module W has a simple
socle L. Then L^{G} is naturally embedded in W^{G} . Let \psi be an element of
E. Clealy \psi is the element of EndkK(WGK). Then the normality of K and
Mackey decomposition implies soc (W_{K}^{G})=L_{K}^{G} . Therefore \psi(L_{K}^{G}) is included
in L_{K}^{G}. Hence the following maps are well-defined:

\alpha:E_{1}-End_{kK}(L)

\phi|-\phi|_{L}

and
\beta : E-End_{kG}(L^{G})

\psi^{1-}\psi|_{L^{q}}

LEMMA 3. 1 Let k be an algebraically closed fifield. If T_{G}(W)=G,

then ker (\beta)=J(E_{1})E.

PROOF. Since T_{G}(W)=G for each element y of (G/K) there exists an
element \psi_{y} which is a unit of E satisfying E_{y}=E_{1}\cdot\psi_{y}=\psi_{y}\cdot E_{1} . Therefore we
have E= \bigoplus_{y\in(G/K)}E_{1}\cdot\psi_{y} . On the othere hand, let E’ be the endomorphism ring

End_{kG}(L^{G}) and E_{y}’ the k-subspace \{\phi\in E’|\phi(1\otimes L)\subset y\otimes L\} in E’ . Then
E’= \bigoplus_{y\in(G/K)}E’,, and the element \psi_{y}|_{\overline{L}}G of E_{y}’ is a unit of E’ satisfying E_{y}’=E_{1}’ .
(\psi_{y}|_{L^{Q}})=(\psi_{y}|_{L^{Cf}})E_{1}’ for y\in(G/K) .

Suppose that \psi=\sum_{y\in(G/K)}\phi_{y}\psi_{y} is a element of ker \beta , where \phi_{y}\in E_{1} .
By definition, we have

\beta(\psi)=\psi|_{L^{d}}’

= \sum_{y\in(G/K)}(\phi_{y}\psi_{y})|_{L^{G}}

= \sum_{y\in(G/K)}(\phi_{y}|_{L^{G}})(\psi_{y}|_{L^{G}})

=0

Since (\phi_{y}|_{L^{\acute{\dot{\sigma}}}})(\psi_{y}|_{L’};) is in E_{y}’ this implies (\phi_{y}|_{L^{\theta}})(\psi_{y}|_{L^{G}}) is 0 for all y\in(G/K) .
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Therefore \alpha(\phi_{y})=\phi_{y}|_{L^{\eta}}=0 for all y\in(G/K) , and so \phi_{y} is a element of ker \alpha

for all y\in_{\backslash }^{(}G/K). i

By the way, ker \alpha equals J(E_{1}) because E_{1}/J(E_{1}) is isomorphic to k and
the image of er is isomorphic to k. Thus \phi_{y} is in J(E_{1}) for all y\in(G/K) .
So \psi is contained in J(E_{1})E. Hence ker \beta\subset J(E_{1})E.

Conversely, ker \beta\supset J(E_{1})E is easily checked by reversing the above pr0-
cess.

THEOREM 3. 2 Let k be an algebraically closed fifield. Suppose that W
is an indecomposable kK-module satisfying T_{G}(W)=G . If soc (W) is a
simple kK-module, then for an indecomposable direct summand V of W^{G},
soc (V) is a simple kG-module.

PROOF. Suppose that soc (W)=L is a simple kK-moduk. By Lemma
3. 1, \beta induces the following inclusion :

\overline{\beta}:E/ker\beta=E/J(E_{1})Ec-E’

By Theorem 2. 1 E/J(E_{1})E and E’ are both twisted group algebras over Y.
In particular, the dimension of E/J(E_{1})E over k equals that of E’ Therefore
the above inclusion is an isomorphism of E/J(E_{1})E onto E’ .

Let V be an indecomposable direct summand of W^{G} and f a primitive
idempotent of E satisfying V=fW^{G} . Since \overline{\beta} is an isomorphism \beta(f)=f|_{L^{9}}

is a primitive idempotent of E’ . Thus fL^{G} is an indecomposable direct
summand of L^{G} , and so V\cap L^{G} is that of L^{G} because fL^{G}=fW^{G}\cap L^{G}=

V\cap L^{G} . On the other hand the normality of K implies soc (W_{K}^{G})=L_{K}^{G}.
Therefore soc (V) is contained in L^{G} . Thus we obtain soc ( V)=soc ( V\cap L^{G}) .
Hence we can reduce this Theorem in case W is simple. By Corollary 2. 3
we have completed the proof.

COROLLARY 3. 3 Let k, K, W are defifined in Theorem 3. 2. If soc (W)
is a simple kK-modules, then the number of indecomposable direct summand
of W^{G} is equal to that of soc (W)^{G} .

PROOF. The statement of Corollary is immediately from the proof of
Theorem 2. 5.

COROLLARY 3. 4 Let k be an algebraically closed fifield of characteristic
p and W an indecomposable kK-module satisfying T_{G}(W)=G . Suppose
that soc (W)=L is a simple kK-module and p\parallel|G:K| . Then W is extedible
to G if and only if L is extendible to G.

PROOF. Suppose that W is extendible to G. Then there exists an
indecomposable kG-module V such that V_{K}--W. Since K is a normal
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subgroup of G we have soc ( V)_{K}\subset soc(V_{K})\sim- soc (W)=L. Therefore soc (V)

is a simple kG-module and soc ( V)_{K-}\sim L . Hence L is extendible.
Conversely, suppose that L is extendible to G. There exists a simple

kG-module M such that M_{K}\sim-L . Since soc (W)=L, Frobenius reciprocity

imph.es

k\sim-Hom_{kK}(L, W)

\sim-Hom_{kK}(M_{K}, W)

-\sim Hom_{kG}(M, W^{G})

\sim-Hom_{kG}(M, soc (W^{G}))

Therefore soc (W^{G})-\sim M+ (other simple kG-modules). By Theorem 3. 2, there
exists an indecomposable direct summand V of W^{G} such that soc (V)-\sim M.
Since T_{G}(W)=G Mackey decomposition Theorem implies V_{K}\sim-mW, where
m is a positive integer. So Frobenius reciprocity implies

mk–Hom_{kK}(L, mW)

-\sim Hom_{kK}(L, V_{K})

\sim-Hom_{kG}(L^{G}, V) .

On the other hand, End_{kG}(L^{G}) is a semi-simple algebra because p\parallel|G:K|

and Theorem 2. 1. Therefore by Theorem 3. 2, L^{G} is a semi-simple kG-
module. Furthermore L^{G} has M as a direct summand with multiplicity one.
So Hom_{kG}(L^{G}, M)_{-}^{\sim}k . Hence we obtain m=1 , and V_{K}-\sim W. Thus W is
extendible.

The results of Theorem 3. 2 and two corollaries are concerned with
socles, but by using of contragradient modules, we can prove similar facts
of them in case of heads.
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