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Kernels associated with cylindrical measures
on locally convex spaces

By Yasuji TAKAHASH1
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\S 1. Introduction

The present paper contains some results concerning kernels of cylindrical
measures on locally convex spaces. The notion of kernel has been introduced
by C. Borell [3].

Let E be a locally convex space, E^{*} be its topological dual space, \mu be
a cylindrical measure on E and L:E^{*}arrow L^{0}(\Omega, \Sigma, P) be a random linear func-
tional associated with \mu . The inverse image of the topology of the con-
vergence in probability on L^{0}(\Omega, \Sigma, P) under L is called the topology associated
with \mu and denoted by \tau_{\mu} ; \tau_{\mu} is a linear topology on E^{*} . The topological
dual of (E^{*}, \tau_{\mu}) is called the kernel of \mu and denoted by K_{\mu} . Let \tau be a
linear topology on E^{*} . The cylindrical measure \mu is called of type 0 with
respect to \tau if the random linear functional L:(E^{*}, \tau)arrow L^{0}(\Omega, \Sigma, P) is con-
tinuous, and \mu is called of type p (for p>0) with respect to \tau if the image

of E^{*} under L is contained in L^{p}(\Omega, \Sigma, P) and L:(E^{*}, \tau)-L^{p}(\Omega, \Sigma, P) is
continuous. Then our main results are stated as follows.

Let E and F be locally convex spaces, T be a continuous linear mapping
of F into E, \tau be a linear topology on E^{*} and \tau_{k} be the Mackey topology
on F^{*} . Then it is shown that the adjoint mapping T^{*}: (E^{*}, \tau) - (F^{*}, \tau_{k}) can
be factored through a subspace of L^{0}(\Omega, \nu) for some probability space (\Omega, \nu)

if and only if there exists a cylindrical measure \mu on E of type 0 with respect

to \tau such that K_{\mu} contains T(F) . In this case, if F is quasi-complete or
barrelled, then \tau_{k} can be replaced by the strong topology b(F^{*}, F) . As a
special case, we can give a characterization of L^{0}-imbeddable spaces, which
is similar to the results of S. Chevet [4] and Y. Okazaki [8]. For p>0 , it
is also shown that if there exists a cylindrical measure \mu on E of type p

with respect to \tau such that K_{\mu} contains T(F) , then T^{*}: (E^{*}, \tau)-arrow(F^{*}, \tau_{k})

can be factored through a subspace of L^{p}(\Omega, \nu) for some probability space
(\Omega, \nu) . In this case, if p=2, then the converse is also true. Here we are

The research by this author was partially supported by Grant-in-Aid for Scientific
Research (No. 57540086), Ministry of Education.



134 Y. Takahashi

very interested in the case when K_{\mu} contains E.
Now suppose that the topology \tau is stronger than the weak*-topology

\sigma(E^{*}, E) and weaker than the Mackey topology \tau_{k}(E^{*}, E) . Then it is shown
that if there exists a cylindrical measure \mu on E of type p with respect to
\tau such that K_{\mu} contains E, then (E^{*}, \tau) is isomorphic to a subspace of L^{p}(\Omega, \nu)

for some probability space (\Omega, \nu) . In particular, taking p=2, we obtain that
(E^{*}, \tau) is isomorphic to a pre-Hilbert space if and only if there exists a
cylindrical measure \mu on E of type 2 with respect to \tau such that K_{\mu} contains
E. These results generalize the works of W. Linde [7] and the author [11].

Some results contained in this paper have been announced without the
proofs in our previous paper [12].

\S 2. Preliminaries

Let E be a locally convex space, E^{*} be its topological dual space, \mu be
a cylindrical measure on E and L:E^{*}arrow L^{0}(\Omega, \Sigma, P) be a random linear func-
tional associated with \mu . (For the details of random linear functional ; see
R. M. Dudley [6].) As in Section 1, denote by \tau_{\mu} the topology on E^{*} also
ciated with \mu and denote by K_{\mu} the kernel of \mu , respectively. It is clear that
\tau_{\mu} does not depend on the choice of L. If for each positive integer n , we
put

U_{n}(\mu)=\{x^{*}\in E^{*}; \mu\{x\in E;|\langle x^{*}, x\rangle|\geqq\frac{1}{n}\}\leqq\frac{1}{n}\} ,

then \{U_{n}(\mu)\} forms a fundamental system of neighborhoods of zero for the
topology \tau_{\mu} . \tau_{\mu} is also defined by the following translation-invariant semi-
metric d_{\mu} ;

d_{\mu}(x^{*}, y^{*})= \int_{E}\frac{|\langle x^{*}-y^{*},x\rangle|}{1+|\langle x^{*}-y^{*},x\rangle|}d\mu(x) for x^{*} , y^{*}\in E^{*}

Let \hat{\mu} denote the characteristic functional of \mu defined on E^{*} . Then the
following result is very useful in our ensuing discussions.

Lemma 2. 1. (cf. V. N. Sudakov and A. M. Versik [10]). Let \{x_{n}^{\star}\} be
a sequence in E^{*} . Then \{x_{n}^{*}\} converges to zero for the topology \tau_{\mu} if and
only if \hat{\mu}(x_{n}^{*}) converges to 1.

It is clear that K_{\mu} is contained in E if \tau_{\mu} is weaker than the Mackey
topology \tau_{k}(E^{*}, E) , K_{\mu} contains E if and only if \tau_{\mu} is stronger than the weak*-
topology \sigma(E^{*}, E) , and \tau_{\mu} is separated if the set K_{\mu}\cap E is dense in E. (For
the details of the topology \tau_{\mu} and the kernel see S. Chevet [4, 5] .)

Now let \tau be a linear topology on E^{*} . It is easy to see that the cylin-
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drical measure \mu is of type 0 with respct to \tau if and only if \hat{\mu} is \tau-continu-
ous. For p>0 , the cylindrical measure \mu is called of weak p-th order if
for each x^{*}\in E^{*} , the inequality

||x^{*}||_{p}=( \int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}}<\infty

holds. Then it is clear that the cylindrical measure \mu is of type p with
respect to \tau if and only if it is of weak p-th order and the quasi-seminorm
||\cdot||_{p} is \tau-continuous.

Finally we shall introduce a negative definite function, which is very
useful to characterize L^{0}-imbeddable spaces. (For the general definition of
a negative definite function and related results; see C. Berg and G. Forst
[1, Chapter II] .)

A function f from a linear space X into the non-negative reals is called
negative definite if f(0)=0, f(x)=f(-x) for every x\in X and

\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}f(x_{i}-x_{j})\leqq 0

for every n , every x_{1} , \cdots , x_{n}\in X and every real numbers \alpha_{1} , \cdots , \alpha_{n} such that
\sum\alpha_{i}=0 .

It is known that if f is negative definite, then f/(1+f) is also negative
definite (cf. [1, Exercise 7. 10]) and exp (-f) is positive definite (cf. [1, TheO-
rem 7. 8]). Let d_{\mu} be the semi-metric on E^{*} associated with the cylindrical
measure \mu defined as before. Then the function: x^{*}arrow d_{\mu}(x^{*}, 0) is clearly
negative definite. For p>0 , let ||\cdot||_{p} be the quasi-seminorm on E^{*} also
ciated with the cylindrical measure \mu of weak p-th order. If 0<q\leqq p\leqq 2 ,
then the function : x^{*}arrow||x^{*}||_{p}^{q} is also negative definite.

\S 3. L^{0}-imbeddable spaces

In this section we shall study kernels of cylindrical measures of type 0
and obtain a factorization theorem through a subspace of a L_{0}-space. As
a special case we shall give a characterization of L^{0}-imbeddable spaces.

First we shall prepare the following elementary lemma.
LEMMA 3. 1. Let E and F be locally convex spaces, T be a continuous

linear mapping of F into E and \tau be a semi-metrizable linear topology on
E^{*} . Then the following three statements are equivalent.

(1) (E^{*}, \tau)^{*} contains T(F) .
(2) \tau is stronger than the weak*-topology \sigma(E^{*}, T(F)) .
(3) The adjoint mapping T^{*}: (E^{*}, \tau)arrow(F^{*}, \tau_{k}) is continuous, where \tau_{k}
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denotes the Mackey topology \tau_{k}(F^{*}, F) .
Furthermore, if we assume that F is quasi-complete or barrelled, then

the above three statements are equivalent to the following.
(4) The adjoint mapping T^{*}: (E^{*}, \tau)arrow(F^{*}, b) is continuous, where b

denotes the strong topology b(F^{*}, F) .
PROOF. The equivalence of (1) and (2) is clear. Hence in order to prove

the first assertion, it suffices to show that the implication (2)\Rightarrow(3) holds.
Suppose that the statement (3) does not hold. Then there exists a neigh-
borhood U of zero in (F^{*}, \tau_{k}) such that (T^{*})^{-1}(U) does not contain any
neighborhood of zero in (E^{*}, \tau) . Since the topology \tau is semi-metrizable,
there exists a sequence \{x_{n}^{*}\} in E^{*} such that the sequence \{nx_{n}^{* }.\} converges
to zero with respect to \tau and T^{*}(x_{n}^{*})\not\in U for every n . It follows from
Theorem 36. 2 of [14] that the statement (2) does not hold. This proves
the first assertion.

Next we shall prove the second assertion. Since the implication (4)\Rightarrow(1)

clearly holds, it suffices to show that the implication (1)\Rightarrow(4) holds. Suppose
that F is quasi-complete and the statement (1) holds. Let B be any bounded
subset of F, and let F_{B} be the linear subspace of F spanned by B. Since
F is quasi-complete, we may assume that B is bounded convex balanced
complete. Hence F_{B} forms a complete seminormed space with the closed
unit ball B and the natural injection of F_{B} into F is continuous. Let \{U_{n}\}

be a countable basis of neighborhoods of zero in \backslash \prime E^{*} , \tau), and for each n let
U_{n}^{0} denote the polar of U_{n} in E. Then by the assumption it holds T(F)\subset\cup

U_{n}^{0} , so that we have F_{B}\subset\cup T^{-1}(U_{n}^{0}) . Since F_{B} is of the second category,

it follows from the Baire category theorem that the statement (4) certainly
holds. On the other hand, suppose that F is barrelled. Then the assertion
follows from the Banach-Steinhaus theorem. This completes the proof.

Now we shall prove our main theorem of this section.

THEOREM 3. 2. Let E and F be locally convex spaces, T be a con-
tinuous linear mapping of F into E and \tau be a linear topology on E^{*} .
Then the following three statements are equivalent.

(1) There exists a probability space (\Omega, \nu) such that the adjoint map-
ping T^{*}: (E^{*}, \tau)arrow(F^{*}, \tau_{k}) can be factored through a subspace of L^{0}(\Omega, \nu) .

(2) There exists a cylindrical measure \mu on E of type 0 with respect to
\tau such that K_{\mu} contains T(F) .

(3) There exists a translation-invariant semi-metric d on E^{*} being
compatible with the linear structure such that the topology on E^{*} defifined by
the semi-metric d is stronger than \sigma(E^{*}, T(F)) and the function: x^{*}arrow d(x^{*}, 0)

is negative defifinite and \tau continuous.
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Furthermore, if we assume that F is quasi-complete or barrelled, then
in the statement (1), \tau_{k} can be replaced by the strong topology b(F^{*}, F) .

PROOF. First we shall prove (1)\Rightarrow(2) . Suppose (1) holds. Then the
adjoint mapping T^{*}: (E^{*}, \tau)-(F^{*}, \tau_{k}) can be factored as follows;

(E^{*}, \tau)G(F^{*}, \tau_{k})\overline{J}\overline{K}

where T^{*}=K\cdot J, G is a linear subspace of L^{0}(\Omega, \nu) , and J and K are con-
tinuous linear mappings, respectively. Since J:E^{*}arrow L^{0}(\Omega, \nu) is linear, there
corresponds a cylindrical measure \mu on E such that

\mu(Z)=\nu\{\omega\in\Omega;(J(x_{1}^{*})(\omega), \cdots , J(x_{n}^{*})(\omega))\in B\}

for every x_{1}^{*} , \cdots , x_{n}^{*}\in E^{*} , and for every cylindrical set Z=\{x\in E;(\langle x_{1}^{*}, x\rangle, \cdots ,
\langle x_{n}^{*}, x\rangle)\in B\} , where B is a Borel set of R^{n} . Then the continuity of J
implies that \mu is of type 0 with respect to \tau . Let \tau_{\mu} be the topology on
E^{*} associated with \mu . Since J:(E^{*}, \tau_{\mu})arrow G is continuous, T* : (E^{*}, \tau_{\mu}) -arrow

(F^{*}, \tau_{k}) is also continuous, so that K_{\mu} contains T(F) . Thus (2) holds.
Next we shall prove (2)\Rightarrow(3) . Suppose (2) holds. As mentioned in

Section 2, if we denote by d_{\mu} the semi-metric on E^{*} associated with the
cylindrical measure \mu , then the semi-metric d_{\mu} is translation-invariant and
compatible with the linear structure of E^{*} . Since the topology on E^{*} defined
by d_{\mu} is identical with \tau_{\mu} , it is stronger than \sigma(E^{*}, T(F)) . Also since \mu is
of type 0 with respect to \tau , the function : x^{*}arrow d_{\mu}(x^{*}, 0) is negative definite
and \tau -continuous. Thus (3) holds.

Finally we shall prove (3)\Rightarrow(1) . Suppose (3) holds. Since the function:
x^{*}arrow d(x^{*}, 0) is negative definite and \tau-continuous, if we put

f(x^{*})=\exp(-d(x^{*}, 0)) for every x^{*}\in E^{*} .
then f is positive definite, \tau continuous and f(0)=1 (cf. [1, Theorem 7. 8]).
By the Bochner’s theorem (cf. [2]), there exists a probability measure \nu on
(\Omega, \Sigma) such that

f(x^{*})= \int_{\Omega}e^{i\langle x^{*},\omega\rangle}d\nu(\omega) for every x^{*}\in E^{*} ,

where \Omega denotes the algebraic dual space of E^{*} and \Sigma denotes the minimal
\sigma-albegra of f2 which makes every element of E^{*} measurable. Let \tau_{\nu} be the
topology on E^{*} associated with the measure \nu . Then by Lemma 2. 1, \tau_{\nu} is
identical with the topology on E^{*} defined by the semi-metric d, and hence
it is stronger than \sigma(E^{*}, T(F)) and weaker than \tau . Since \tau_{\nu} is semi-metri-
zable, it follows from Lemma 3. 1 that T^{*}: (E^{*}, \tau_{\nu})arrow(F^{*}, \tau_{k}) is continuous.
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Let G denote the associated Hausdorff space (E^{*}, \tau_{\nu})/\{\overline{0}\} equipped with the
quotient topology, where \{\overline{0}\} is the closure of {0} in /\backslash E^{*} , \tau_{\nu}). Then it is clear
that G is isomorphic to a subspace of L^{0}(\Omega, \nu) and T^{*}: (E^{*}, \tau)arrow(F^{*}, \tau_{k}) can
be factored through G since Ker T^{*}=\{x^{*}\in E^{*} ; T^{*}(x^{*})=0\} contains \{\overline{0}\} .
Thus (1) holds.

The remainder part of the assertion follows from Lemma 3. 1. This
completes the proof.

As a special case we have the following result, which gives a char-
acterization of L^{0}-imbeddable spaces.

THEOREM 3. 3. Let E be a locally convex space and \tau be a linear
topology on E^{*} which is stronger than the weak*-topology \sigma(E^{*}, E) and
weaker than the Mackey topology \tau_{k}(E^{*}, E) . Then the following three state-
ments are equivalent.

(1) There exists a probability space (\Omega, \nu) such that (E^{*}, \tau) is isomorphic
to a subspace of L^{0}(\Omega, \nu) , that is, it is L^{0} -imbeddable.

(2) There exists a cylindrical measure \mu on E of type 0 with respect
to \tau such that K_{\mu} contains E.

(3) There exists a translation-invariant metric d on E^{*} such that the
function: x^{*}arrow d(x^{*}, 0) is negative defifinite and the topology on E^{*} defifined by
the metric d is identical with \tau .

REMARK 3. 1. Theorem 3. 3 says that (E^{*}, \tau_{k}) is L^{0}-imbeddable if and
only if there exists a cylindrical measure \mu on E of type 0 with respect to
\tau_{k} such that K_{\mu} coincides with E. Furthermore, if we assume that E is
quasi-complete or barrelled, then it is shown that (E^{*}, b) is L^{0}-imbeddable if
and only if there exists a cylindrical measure \mu on E of type 0 with respect
to b such that K_{\mu} contains E, where b denotes the strong topology b(E^{*}, E) .
This generalizes a result of W. Linde [7].

Now we shall investigate more details.
PROPOSITION 3. 4. Let E be a locally convex Hausdorff space. Then

the following two statements are equivalent.
(1) E can be represented as a countable union of fifinite dimensional

spaces.
(2) There exists a cylindrical measure \mu on E of type 0 with respect

to \sigma(E^{*}, E) such that K_{\mu} contains E.
PROOF. Suppose (1) holds. Then (E^{*}, \sigma) is a nuclear metrizable space,

and hence it is L^{0}-imbeddable (cf. Y. Okazaki [8]). By Theorem 3. 3, it
holds (2). On the other hand, suppose (2) holds. Then it follows from
Theorem 3. 3 that (E^{*}, \sigma) is L^{0}-imbeddable and so it is metrizable. Let
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\{U_{n}\} be a basis of neighborhoods of zero in (E^{*}, \sigma) . For each n, U_{n}^{0} denotes
the polar of U_{n} in E. Then it holds E=\cup U_{n}^{0} . Since each U_{n}^{0} is contained
in the convex balanced hull of a finite set, it holds (1). This completes the
proof.

Let E be a Banach space with the norm ||\cdot|| . Then E is said to be of
cotype 2 if there exists a positive constant C such that for every finite set
\{X_{1}^{ },\cdots, X_{n}\} in E, the inequality

\sum_{i=1}^{n}||x_{i}||^{2}\leqq C(\int_{\rho}||\sum_{i=1}^{n}\epsilon_{i}(\omega)x_{i}||^{2}dP(\omega))

holds, where (\Omega, P) is a probability space with a symmetric Bernoulli sequence
\{\epsilon_{i}(\omega)\} .

PROPOSITION 3. 5. Let E be a locally convex Hausdorff space of the
second category. Suppose that there exists a cylindrical measure \mu on E
such that K_{\mu} contains E. Then the following three statements holds.

(1) If \mu is of type 0 with respect to the compact convergence topology
c(E^{*}, E) , then E is fifinite dimensional.

(2) If \mu is of type 0 with respect to \tau_{k}(E^{*}, E) , then E is isomorphic
to a reflexive Banach space, \tau_{k} is identical with b(E^{*}, E) and (E^{*}, b) is
isomorphic to a reflexive Banach space of cotype 2.

(3) If \mu is of type 0 with respect to b(E^{*}, E) , then E is normable and
(E^{*}, b) is isomorphic to a Banach space of cotype 2.

PROOF. Let \tau_{\mu} be the topology on E^{*} associated with the cylindrical
measure \mu , and let \{U_{n}\} be a basis of neighborhoods of zero in (E^{*}, \tau_{\mu}) .
For each n, if we denote by U_{n}^{0} the polar of U_{n} in E, then it is clear that
each U_{n}^{0} is bounded convex balanced closed and by the assumption, it holds
E=\cup U_{n}^{0} . Since E is of the second category, there exists a positive number
n such that U_{n}^{0} contains a neighborhood of zero in E. This means that E
is normable. Now we shall prove the three statements. For (1). Since \tau_{\mu}

is weaker than c(E^{*}, E) , the set U_{n}^{0} is pre-compact. This means E is locally
pre-compact, so that it must be finite dimensional. For (2). Since \tau_{\mu} is
weaker than \tau_{k}(E^{*}, E) , the set U_{n}^{0} is weakly compact. This means that E
is isomorphic to a reflexive Banach space and \tau_{k} is identical with b(E^{*}, E) .
It follows from Theorem 3. 3 that the Banach space (E^{*}, b) is L^{0}-imbeddable,
so that it must be of cotype 2 (cf. H. Shimomura [9, Theorem 4. 1]). For
(3). Since E is barrelled, it follows from Remark 3. 1 that the Banach space
(E^{*}, b) is L^{0}-imbeddable, so that it must be of cotype 2 (cf. H. Shimomura
[9, Theorem 4. 1] ) . This completes the proof.

REMARK 3. 2. In general, if E is not of the second category, then the
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statements (1), (2) and (3) of Proposition 3. 5 do not hold even in the case
of complete barrelled spaces. For example, it is the case when E is a
topological inductive limit of a properly increasing sequence of finite dimen-
sional spaces. However, if E is barrelled and there exists a cylindrical
measure \mu on E of weak p-th order (for p>0) such that K_{\mu} contains E, then
E is normable (cf. [13]). In this case, if we assume furthermore that \mu is of
type 0 with respect to b(E^{*}, E) , then the Banach space (E^{*}, b) is of cotype 2.

\S 4. L^{p}-imbeddable spaces (for p>0)

In this section we shall study kernels of cylindrical measures of type p.
Throughout this section, let p be a positive number.

THEOREM 4. 1. Let E and F be locally convex spaces, T be a continuous
linear mapping of F into E and \tau be a linear topology on E^{*} . Suppose
that there exists a cylindrical measure \mu on E of type p with respect to \tau

such that K_{\mu} contains T(F) . Then there exists a probability space (\Omega, \nu) such
that the adjoint mapping T^{*}: (E^{*}, \tau) - (F^{*}, \tau_{k}) can be factored through a

subspace of L^{p}(\Omega, \nu) , where \tau_{k} denotes the Mackey topology \tau_{k}(F^{*}, F) .
Furthermore, if we assume that F is quasi-complete or barrelled, then

\tau_{k} can be replaced by the strong topology b(F^{*}, F) .

PROOF. Let L:E^{*}arrow L^{0}(\Omega, \nu) be a random linear functional associated
with \mu . Since \mu is of type p with respect to \tau , L:(E^{*}, \tau) -arrow L^{p}(\Omega, \nu) is
continuous. If we put

||x^{*}||_{p}=( \int_{E}|\langle x^{*}, x\rangle|^{p}d\mu(x))^{\frac{1}{p}} for every x^{*}\in E^{*} ,

then ||\cdot||_{p} is a continuous quasi-seminorm on (E^{*}, \tau) and it clearly holds
||x^{*}||_{p}=||L(x^{*})||_{(L}p_{)} for every x^{*}\in E^{*} . Let G denotes the associated Haus-
dorff space (E^{*}, ||\cdot||_{p})/Ker||\cdot||_{p} equipped with the quotient topology, where
Ker ||\cdot||_{p}=\{x^{*}\in E^{*} ; ||x^{*}||_{p}=0\} . Then it is easy to see that G is linearly
isometric to a subspace of L^{p}(\Omega, \nu) . Now we shall show that T^{*}: (E^{*}, \tau)arrow

(F^{*}, \tau_{k}) can be factored through G. Since (E^{*}, ||\cdot||_{p})^{*} contains K_{\mu} , it also
contains T(F) . Hence it follows from Lemma 3. 1 that T^{*}: (E^{*}, ||\cdot||_{p})-

(F^{*}, \tau_{k}) is continuous, so that it can be factored through G since Ker ||\cdot||_{p} is
contained in Ker T^{*}=\{x^{*}\in E^{*} ; T^{*}(x^{*})=0\} . Thus the first assertion holds.

The remainder part of the assertion follows from Lemma 3. 1. This
completes the proof.

In particular, taking p=2, we have the following.

THEOREM 4. 2. Let E and F be locally convex spaces, T be a continu-



Ke7^{\sim}nels associated with cylindrical measures on locally convex spaces 141

ous linear mapping of F into E and \tau be a linear topology on E^{*} . Then
the following two statements are equivalent.

(1) The adjoint mapping T^{*}: (E^{*}, \tau)arrow(F^{*}, \tau_{k}) can be factored through
a pre-Hilbert space.

(2) There exists a cylindrical measure \mu on E of type 2 with respect
to \tau such that K_{\mu} contains T(F) .

Furthermore, if we assume that F is quasi-complete or barrelled, then
in the statement (1), \tau_{k} can be replaced by the strong topology b(F^{*}, F) .

PROOF. First we shall prove (1)\Rightarrow(2) . Suppose (1) holds. Then there
exists a continuous Hilbertian seminorm ||\cdot|| on (E^{*}, \tau) such that T^{*}: (E^{*} ,
||\cdot||)arrow(F^{*}, \tau_{k}) is continuous. If we put f(x^{*})=\exp (-||x^{*}||^{2}/2) for every
x^{*}\in E^{*} , then there corresponds a Gaussian cylindrical measure \gamma on E such
that f(x^{*})=\hat{\gamma}(x^{*}) for every x^{*}\in E^{*} . Let \tau_{\gamma} be the topology on E^{*} associated
with \gamma . Since the topology on E^{*} defined by the Hilbertian seminorm ||\cdot||

is identical with \tau_{\gamma} (cf. Lemma 2. 1), T^{*}: (E^{*}, \tau_{\gamma})arrow(F^{*}, \tau_{k}) is continuous.
Hence K_{\gamma} contains T(F) . Since \gamma is of type 2 with respect to ||\cdot|| (cf. W.
Linde [7]) , it is also of type 2 with respect to \tau . Thus it holds (2). On
the other hand, the remainder part of the assertion follows from Theorem
4. 1. This completes the proof.

As corollaries to these theorems, we have the following results.
COROLLARY 4. 3. Let E be a locally convex space and \tau be a linear

topology on E^{*} which is stronger than \sigma(E^{*}, E) and weaker than \tau_{k}(E^{*}, E) .
Suppose that there exists a cylindrical measure \mu on E of type p with
respect to \tau such that K_{\mu} contains E. Then there exists a probability space
(\Omega, \nu) such that (E^{*}, \tau) is isomorphic to a subspace of L^{p}(\Omega, \nu) , that is, it is
L^{p} -imbeddable.

Furthermore, if we assume that E is quasi-complete or barrelled, then
\tau_{k} can be replaced by b(E^{*}, E) .

COROLLARY 4. 4. Let E be a locally convex space and \tau be a linear
topology on E^{*} which is stronger than \sigma(E^{*}, E) and weaker than \tau_{k}(E^{*}, E) .
Then (E^{*}, \tau) is isomorphic to a pre-Hilbert space if and only if there exists
a cylindrical measure \mu on E of type 2 with respect to \tau such that K_{\mu}

contains E.
Furthermore, if we assume that E is quasi-complete or barrelled, then

\tau_{k} can be replaced by b(E^{*}, E) .
REMARK 4. 1. These corollaries generalize the results of W. Linde [7]

and the author [11]. On the other hand, H. Shimomura’s result [9, Theorem
4. 6] says that (E^{*}, \tau) is isomorphic to a pre-Hilbert space if and only if there
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exists a quasi-invariant cylindrical measure \mu on E of type 0 with respect to
\tau . Corollary 4. 4 is closely related to his result. However, in our case, we
can not replace by the assumption of type 0 instead of type 2.

As a similar result to Corollary 4. 4, we shall give a characterization of
countably pre-Hilbert spaces. Before stating the result, we shall introduce
partially admissible shifts of cylindrical measures. (For the details of partially
admissible shifts ; see [11].)

For a cylindrical measure \mu on a locally convex space E, an element x
of E is called a partially admissible shift of \mu if there exist an \epsilon>0 and a
\delta>0 such that the inequality \mu(Z)<\delta implies \mu(Z-x)<1-\epsilon for every cylin-
drical set Z of E. The set of all partially admissible shifts of \mu will be
denoted by \overline{M}_{\mu} .

It is known that K_{\mu} contains \overline{M}_{\mu} , but in general, K_{\mu} does not coincide
with \overline{M}_{\mu} (cf. [11, Proposition 3. 1]).

THEOREM 4. 5. Let E be a locally convex space and \tau be a linear
topology on E^{*} which is stronger than \sigma(E^{*}, E) and weaker than \tau_{k}(E^{*}, E) .
Then the following three statements are equivalent.

(1) (E^{*}, \tau) is isomorphic to a countably pre-Hilbert space.
(2) There exists a sequence \{\mu_{n}\} consisting of cylindrical measures on

E of type 2 with respect to \tau such that \cup\overline{M}_{\mu_{n}} coincides with E.
(3) There exists a sequence \{\mu_{n}\} consisting of cylindrical measures on

E of type 2 with respect to \tau such that \cup K_{\mu_{n}} contains E.
PROOF. We shall prove (1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(1) . Suppose (1) holds. Then the

topology \tau is defined by a family of Hilbertian seminorms ||\cdot||_{n}(n=1,2, \cdots) .
For each n , we denote by H_{n} the topological dual space of (E^{*}, ||\cdot||_{n}) . Note
that each H_{n} is a Hilbert subspace of E and E=\cup H_{n} . Let \gamma_{n} be the
canonical Gaussian cylindrical measure on H_{n} , and let \mu_{n} be the image of \gamma_{n}

under the inclusion mapping of H_{n} into E. Then it is easy to see that for
each n, \mu_{n} is a cylindrical measure on E of type 2 with respect to \tau and
\overline{M}_{\mu_{n}}=H_{n} . Thus it holds (2). The implication (2)\Rightarrow(3) is clear (cf. [11, PrO-
position 3. 1]). Suppose (3) holds. For each n, if we put

||x^{*}||_{n}=( \int_{E}|\langle x^{*}, x\rangle|^{2}d\mu(x))^{\frac{1}{2}} for every x^{*}\in E^{*} ,

then ||\cdot||_{n} is a continuous Hilbertian seminorm on (E^{*}, \tau) since \mu_{n} is of type
2 with respect to \tau . Let \tau_{2} denote the topology on E^{*} defined by the family
of Hilbertian seminorms ||\cdot||_{n}(n=1,2, \cdots) . Since \tau_{2} is weaker than \tau , to
prove (1), it is enough to show that \tau_{2} is stronger than \tau . Note that the
topological dual of (E^{*}, ||\cdot||_{n}) contains K_{\mu_{n}} . Since \cup K_{\mu_{n}} contains E, \tau_{2} is
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stronger than \sigma(E^{*}, E) . Hence it follows from Lemma 3. 1 that \tau_{2} is stronger
than \tau_{k}(E^{*}, E) , so that it is stronger than \tau . Thus it holds (1). This com-
pletes the proof.

The following example shows that H. Shimomura’s result [9, Theorem
4. 6] can not be extended to partially admissible shifts of cylindrical measures.

EXAMPLE 4. 1. Let E be a locally convex space and \tau be a linear
topology on E^{*} which is stronger than \sigma(E^{*}, E) and weaker than \tau_{k}(E^{*}, E) .
Suppose that (E^{*}, \tau) is a countably pre-Hilbert space. Then there exists
a cylindrical measure \mu on E of type 0 with respect to \tau such that \overline{M}_{\mu} coin-
cides with E.

PROOF. It follows from Theorem 4. 5 that there exists a sequence \{\mu_{n}\}

consisting of cylindrical measures on E of type 2 with respect to \tau such that
\cup\overline{M}_{\mu_{n}} coincides with E. If we put \mu=\sum 2^{-n}\mu_{n} , then it is clear that \mu is
a cylindrical measure on E of type 0 with respect to \tau . Now we shall prove
that \overline{M}_{\mu} coincides with E. Let x\in E be given. Then there exists a positive
integer n such that x\in\overline{M}_{\mu_{n}} . Hence there exist an \epsilon_{n}>0 and a \delta_{n}>0 such
that the inequality \mu_{n}(Z)<\delta_{n} implies \mu_{n}(Z-x)<1-\epsilon_{n} for every cylindrical
set Z of E. Here we take positive numbers \epsilon and \delta as \epsilon<2^{-n}\epsilon_{n} and \delta<

2^{-n}\delta_{n} , respectively. Then for every cylindrical set Z, the inequality \mu(Z)<\delta

implies \mu(Z-x)<1-\epsilon . Thus it holds x\in\overline{M}_{\mu} . This completes the proof.

REMARK 4. 2. In Example 4. 1, if (E^{*}, \tau) is nuclear, then by Minlos’
theorem \mu is a Borel probability measure on E. Here we are very interested
in the converse. It is shown that (E^{*}, \tau) is a nuclear countably pre-Hilbert
space if and only if there exists a Borel probability measure \mu on E of type
0 with respect to \tau such that \tilde{M}_{\mu} coincides with E. The author will discuss
the measure case in another paper.
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