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Introduction

Let (M, g) be an n-dimensional Riemannian manifold which is
isometrically immersed into the n+k-dimensional Euclidean space R^{n+k} .
Then the curvature transformation R of (M, g) satisfies the condition
(*) rank R(X, Y)\leqq 2k

for any tangent vectors X, Y\in T_{x}M, where we consider R (X, Y) as a
linear endomorphism of T_{\chi}M . Using this condition, Agaoka and Kaneda
gave in [4] some estimates on the dimension of the Euclidean space into
which Riemannian symmetric spaces can be locally isometrically immersed.
For example they proved that the complex projective space P^{n}(C) cannot be
locally isometrically immersed in codimension n-1 . But if k\geqq(n-1)/2 ,

the condition (*) does not impose any restrictions on the curvature of
n-dimensional Riemannian submanifolds of R^{n+k} .

Our first purpose of this paper is, using the representation theory of GL

(n, R) , to determine the polynomial relations of the curvature tensor of M^{n}

\subset R^{n+k} , up to degree 3 explicitly (Theorem 1. 4) and to find a new condition
on the curvature tensor which serves as the obstruction in the cases M^{4}\subset R^{6}

and M^{5}\subset R^{7} . (See \S 1 and \S 2. Note that in these cases, the inequality (*)

reduces to a trivial condition.) Our second purpose is to express this new
relation appeared in degree 3 in a simple form which is easy to calculate
(Proposition 3. 3, Theorem 3. 4). As applications of this curvature relation,

we prove that Riemannian symmetric spaces P^{2}(C) , SU(3)/SO(3) and their
non-compact dual spaces cannot be isometrically immersed in codimension 2
even locally (Corollary 3. 5). As for P^{2}(C) and its dual space, this result
can be proved, using the theorems in \^Otsuki [18] and Weinstein [23] (see

Remark (1) after Corollary 3. 5). But, as for SU(3)/SO(3) and its dual
space, this is a new result, which cannot be obtained by a previously known
method.

Now we explain our method briefly. Let V be an n-dimensional real
vector space and let K be the space of curvature like tensors on V (see \S 1).
We define a quadratic map \gamma_{k} : S^{2}V^{*}\otimes R^{k}arrow K by
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\gamma_{k}(\alpha)(X, Y,Z, W)=\langle\alpha(X,Z), \alpha(Y, W)\rangle-\langle\alpha(X, W), \alpha(Y,Z)\rangle

for \alpha\in S^{2}V^{*}\otimes R^{k} and X, Y, Z, W\in V, where we consider \alpha\in S^{2}V^{*}\otimes R^{k} as
an R^{k}-valued symmetric bilinear map on V and \langle , \rangle is a positive definite
inner product of R^{k} . If an n-dimensional Riemannian manifold QM,g) is
isometrically immersed into R^{n+k} , then the Gauss equation of this immersion
at x\in M is expressed in the form \gamma_{k}(\alpha)=R where R and \alpha are the curvature
tensor and the second fundamental form at x, respectively, i . e. , the
curvature R must be contained in the image of \gamma_{k} . (We identify T_{x}M with V
and the normal space T_{X}^{\perp}M with R^{k}.) Therefore, we call that the Gauss
equation for R has a solution if and only if R\in{\rm Im}\gamma_{k} . Our main purpose is
to look for non-trivial homogeneous polynomials on K which vanish
identically on Im \gamma_{k} . If a polynomial \phi satisfies such a condition and if R\in
K satisfies \phi(R)\neq 0 , then it follows that R\not\in{\rm Im}\gamma_{k} and hence any
Riemannian manifolds CM,g ) whose curvature at one point of M is R
cannot be isometrically immersed into R^{n+k}. Thus the polynomials on K
which vanish on Im \gamma_{k} serve as the obstructions to the existence of local
isometric immersions of n-dimensional Riemannian manifolds into R^{n+k} .

In order to state our first result in detail we reformulate this problem in
the following form. Let

\gamma_{k}^{p*}: S^{p}K^{*}arrow S^{2p}(S^{2}V^{*}\otimes R^{k})^{*}

be the dual map of \gamma_{k} , i . e. , \gamma_{k}^{p*} is a linear map defined by \gamma_{k}^{p*}(\phi)(\alpha)=\phi(\gamma_{k}

(\alpha)) for \phi\in S^{p}K^{*} and \alpha\in S^{2}V^{*}\otimes R^{k}, where we regard S^{p}K^{*} as a space of
homogeneous polynomials on K with degree p. Then our problem is to
determine the kernel of \gamma_{k}^{p*} for each k and p. The group GL(V) acts on K
and S^{2}V^{*}\otimes R^{k} by ( g\cdot R)(X, Y, Z, W)=R(g^{-1}X, g^{-1}Y, g^{-1}Z, g^{-1}W) and
(g\cdot\alpha)(X, Y)=\alpha(g^{-1}X, g^{-1}Y) , respectively, for g\in GL( V) , R\in K and \alpha

\in S^{2}V^{*}\otimes R^{k} . Since \gamma_{k} is GL(V) -equivariant with respect to these actions,
the linear map \gamma_{k}^{p*} is also GL ( V) -equivariant. In particular Ker \gamma_{k}^{p*} is a GL
(V) -invariant subspace of S^{p}K^{*} . Our first purpose is to determine the
character and the generator of each GL(V) -irreducible component of S^{p}K^{*}

for p=1,2 , 3 completely and decide whether these generators belong to Ker
\gamma_{k}^{p*} or not (\S 1 and \S 2). The results may be stated as follows (Proposition
1. 2, Theorem 1. 4): The spaces K^{*} . S^{2}K^{*} and S^{3}K^{*} are sum of 1, 4 and 17
GL ( V) -irreducible components (for sufficiently large n), the subspaces Ker
\gamma_{1}^{2*} , Ker \gamma_{1}^{3*} and Ker \gamma_{2}^{3*} consist of 1, 10 and 2 irreducible components,
respectively, and other subspaces Ker \gamma_{k}^{p*} for p\leqq 3 are all trivial. The
polynomials belonging to Ker \gamma_{1}^{2*} and the one component of Ker \gamma_{2}^{3*}

correspond to the condition (*) stated before and another component of Ker
\gamma_{2}^{3*} is a new type of condition, which serves as the obstructions in the case
M^{n}\subset R^{n+2} for n\geqq 4 . The subspace Ker \gamma_{1}^{3*} is \acute{n}ot a new condition because it
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is contained in the ideal generated by Ker \gamma_{1}^{2*} . In summary the essential
polynomial relations of the curvature tensor up to degree 3 are exhausted by
Ker \gamma_{1}^{2*} and Ker \gamma_{2}^{3*} . To obtain these results, many computations will be
required and in some cases it is almost impossible to calculate by hand
because the generators of the irreducible components of S^{p}K^{*} are lengthy in
general. Hence we use the algebraic programming system REDUCE 2 at
Kyoto University in many places of this paper.

Next we state the second main result in detail. Using the fact that the
new relation contained in Ker \gamma_{2}^{3*} is an invariant of GL(V) in the case n=
4 , we prove that this obstruction is essentially equivalent to the equality Tr
(*\circ R)^{3}=0 , where we consider R as a symmetric endomorphism of \Lambda^{2}V

(V=R^{4}) and *:\Lambda^{2}V– \Lambda^{2}V is the star operator with respect to some
orientation of V(see \S 3) . Moreover we prove that the condition Tr (*\circ

R)^{5}=0 also holds if R is contained in the image of \gamma_{2} (Theorem 3. 4). In the
case n\geqq 5 , we restrict the curvature operator to a 4-dimensional subspace of
V. Then the
same conclusions hold if R\in{\rm Im}\gamma_{2} (see Remark (1) after Theorem 3. 4).

Theoretically our method is well applied to higher degree and
codimensional case. But in practice it is hard to carry out even if we use the
system REDUCE 2 because the number of irreducible components and the
length of the generators of S^{p}K^{*} increase rapidly as p becomes large.

\S 1. The Gauss equation and the representations of GL(n, R) .
In this section we fix our notations and state the first main results of this

paper (Theorem 1. 4). For this purpose we review some known results on
the character of GL(n, R) . For details, see [9] and [6].

Let V be an n-dimensional real vector space and K be the vector space
of curvature like tensors on V, i . e. ,

K=\{R\in\Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*}|_{X,YZ}^{\mathfrak{S}},R(X, Y,Z, W)=0, X, Y,Z, W\in V\} ,

where V^{*} is the dual space of V and X,Y,Z\mathfrak{S} implies the cyclic sum with respect
to X, Y and Z. Let R^{k} by the k-dimensional Euclidean vector space with
the inner product \langle , \rangle and we put E_{k}=S^{2}V^{*}\otimes R^{k} for each positive integer k.
Then the general linear group GL(V) acts on both spaces K and E_{k}

naturally. We first define a GL( V) -equivariant quadratic map \gamma_{k} : E_{k}arrow K

by
\gamma_{k}(\alpha)(X, Y, Z, W)=\langle\alpha(X, Z), \alpha ( Y, W)\rangle-\langle\alpha(X, W), \alpha ( Y, Z)\rangle

for \alpha\in E_{k} and X, Y, Z, W\in V. Then our problem is, as stated in IntrO-
duction, to determine the kernel of the dual linear map \gamma_{k}^{p*}: S^{p}K^{*}arrow S^{2p}E_{k}^{*}

(p=1,2, 3) defined by \gamma_{k}^{p*}(\phi)(\alpha)=\phi(\gamma_{k}(\alpha)) for \phi\in S^{p}K^{*} and \alpha\in E_{k} .
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Before stating the results, we review the general theory of the character
of an irreducible representation of GL(V) , according to Iwahori [9]. (In

[9] all theorems are stated over the field of complex numbers C , but the
same results hold if we use the field of real numbers instead of C. See the
exercise 9, p. 121 in [9].)

\epsilon_{n} ,
\epsilon_{1}^{-1}Le,t..t.=(t_{1},\cdots t_{n})\epsilon_{n}^{-1}]by\in Z^{n}

. We define a rational function \xi(t)\in Z[\epsilon_{1}, \cdots .

\xi(t)=|\begin{array}{llll}\epsilon_{1}^{l_{1}} \epsilon_{1}^{l_{2}} \cdots \epsilon_{1}^{ln}\epsilon_{2}^{l_{1}} \epsilon_{2}^{l_{2}} \cdots \epsilon_{2}^{ln}\epsilon_{n}^{l_{1}}\cdots \epsilon_{n}^{l_{2}}\cdots \cdots\cdots \epsilon_{n}^{ln}\cdots\end{array}|

For example if \delta= ( n-1, n-2, \cdots ^{2}, ^{1} ,^{0)} , then we have \xi(\delta)=\prod_{i<j}(\epsilon_{i}-\epsilon_{j})

(Vandermonde’s determinant). For an element \lambda=(\lambda_{1}, \cdots. \lambda_{n})\in Z^{n} we
define a rational function S_{\lambda}(\epsilon)=S_{\lambda_{1}} . ,

\lambda_{n}(\epsilon_{1}, \cdots \epsilon_{n})\in Z[\epsilon_{1}, \cdots
\epsilon_{n} , \epsilon_{1}^{-1} , \cdots-

\epsilon_{\overline{n}}^{1}] by
S_{\lambda}(\epsilon)=\xi(\lambda+\delta)/\xi(\delta) ,

where \lambda+\delta= (\lambda_{1}+n-1, \lambda_{2}+n-2, \cdots \lambda_{n-1}+1, \lambda_{n}) . S_{\lambda}(\epsilon) is called a
Schur function corresponding to \lambda= (\lambda_{1}, \cdots \lambda_{n}) . It is known that if \lambda\in Z^{n}

satisfies the condition \lambda_{1}\geqq\lambda_{2}\geqq\cdots\geqq\lambda_{n}\geqq 0 , S_{\lambda}(\epsilon) is a homogeneous
polynomial of \{\epsilon_{1}, \cdots \epsilon_{n}\} . There is a one-t0-0ne correspondence between
the set of real irreducible polynomial representations of GL(V) and the set
of Schur functions S_{\lambda}(\epsilon) satisfying \lambda_{1}\geqq\lambda_{2}\geqq\cdots\geqq\lambda_{n}\geqq 0 . The correspondence
is given as follows: Let \rho : GL(V)arrow GL(m, R) be an irreducible polyn0-
mial representation of GL(V) and let a_{1} , \cdots a_{n} be the eigenvalues of an
element g\in GL(V) . Then there exists uniquely a Schur function S_{\lambda}(\epsilon)

(\lambda_{1}\geqq\lambda_{2}\geqq\cdots\geqq\lambda_{n}\geqq 0) such that the character Tr \rho(g) is equal to S_{\lambda}(a_{1}, \cdots .

a_{n}) . In the following we identify S_{\lambda}(\epsilon) with the character of the irreducible
representation or the representation space itself. We often abbreviate S_{\lambda}(\epsilon)

as S_{\lambda} and omit zeroes appeared in \lambda= (\lambda_{1}, \cdots \lambda_{n}) . For example we write
S_{2,1.0} . ,0(\mbox{\boldmath $\epsilon$}) as S_{2.1} The polynomial S_{\lambda}+S_{\mu} implies a sum of irreducible
representations (or spaces) with characters S_{\lambda} and S_{\mu} . The degree of S_{\lambda} is
given by the dimension formula D (t_{1}, \cdots t_{n})/D(n-1, n-2, \cdots 2, 1, 0)

where t=\lambda+\delta and D ( \alpha_{1}\cdots\alpha_{n})=\prod_{i>j}(\alpha_{i}-\alpha_{j}) ([9, p. 115]). In particular
S_{\lambda} is an invariant of GL(V) (i. e. , 1-dimensional representation of GL(V) )

if and only if \lambda_{1}=\cdots=\lambda_{n} . We say that S_{\lambda}(\epsilon) is of depth i if \lambda=(\lambda_{1}, \cdots \lambda_{n})

satisfies \lambda_{i}\neq 0 and \lambda_{\iota+1}=0 . We consider S_{\lambda_{1}} . .\lambda_{n}
to be zero in the case m>n

and \lambda_{m}\neq 0 .
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Now we define subspaces K_{S}, K_{A}\subset\Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*} by
K_{S}=\{R\in\Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*}|R(X, Y, Z, W)=-R(Z, W, X, Y)\}

and K_{A}=\Lambda^{4}V^{*} .
Each of these spaces is GL(V) -invariant by the natural action.

LEMMA 1. 1 (cf. [7, p. 882]). GL( V) -irreducible decomposition of \Lambda^{2}

V^{*}\otimes\Lambda^{2}V^{*} is given by
\Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*}=K\oplus K_{S}\oplus K_{A} .

In particular K is a GL(V) -irreducible subspace of \Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*} .
PROOF. We consider the dual space \Lambda^{2}V\otimes\Lambda^{2}V. The character of \Lambda^{2}

V is given by S_{1,1} and using the Littlewood-Richardson rule (cf. [7, p. 879],
[11], [15] ) , we have S_{1,1}\cdot S_{1.1}=S_{2,2}+S_{2,1,1}+S_{1.1,1,1} Hence \Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*}

splits into 3 irreducible components. We can easily verify that \Lambda^{2}V^{*}\otimes\Lambda^{2}

V^{*} is a direct sum of 3 spaces K, K_{S} and K_{A} and each space is non-trivial.
Therefore this gives the irreducible decomposition of \Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*} . q . e . d .

REMARK. Using the dimension formula, we have dim S_{2,2}= \frac{1}{12}n^{2}(n^{2}-1) ,

dim S_{2,1,1}= \frac{1}{8}n(n-2)(n-1)(n+1) and dim S_{1.1,1,1}= \frac{1}{24}n(n-1)(n-2)(n-

3) . On the other hand it is already known that dim K= \frac{1}{12}n^{2}(n^{2}-1) (cf.

[13, p. 63] ) and hence the character of K^{*} is given by S_{2.2} .
Next we calculate the characters of S^{p}K^{*} for p=2 and 3. In general let

\chi ( g) be the character of an irreducible representation \rho of GL(V) and let
\chi_{s}(g) be the character of the symmetric s-product of \rho . Then \chi_{s}(g) is
given by the following (see [9, p. 121]) :

\chi_{s}(g)=\frac{1}{s!}|_{\chi(g^{s})\chi(g^{s-1})\chi(g^{s-2})\cdots\chi(g)}^{\chi(g)-10}\chi(g^{2}.)\ldots\chi..(..g..)\ldots..-2\chi(g^{3})\chi(g^{2})\chi(g)\cdots\cdots-\cdot.(.s-1)|

.
For example we have

(1. 1) \chi_{2}(g)=\frac{1}{2}\chi(g)^{2}+\frac{1}{2}\chi(g^{2})

and

(1. 2) \chi_{3}(g)=\frac{1}{6}\chi(g)^{3}+\frac{1}{2}\chi(g)\cdot\chi(g^{2})+\frac{1}{3}\chi(g^{3}) .

Next if we put p_{m}=S_{m} and \sigma_{m}=\epsilon_{1}^{m}+\cdots+\epsilon_{n}^{m}, we have the following formulas
([9, p. 137, p. 120]) :
(1. 3) S_{\lambda}=\det(p_{\lambda_{i+j-i}})_{1\leqq i,j\leqq n}
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and
(1. 4) \sigma_{m}+\sigma_{m-1}p_{1}+\cdots+\sigma_{1}p_{m-1}=mp_{m} .
In particular p_{m} (resp. \sigma_{m}) can be expressed as a polynomial of\{\sigma_{1}, \cdots-\sigma_{m}\}

(resp. { p_{1} , \cdots p_{m}\} ). Using these formulas, we determine the character of
S^{2}K^{*} in the following way. First, if we put \chi ( g)=S_{2}, , we have from (1. 3)

and (1. 4)
\chi(g)=p_{2}^{2}-bP_{1}

= \frac{1}{12}(\sigma_{1}^{4}+3\sigma_{2}^{2}-4\sigma_{1}\sigma_{3}) .

It is easy to see that \chi(g^{2}) is equal to
\frac{1}{12}(\sigma_{2}^{4}+3\sigma_{4}^{2}-4\sigma_{2}\sigma_{6})

and we substitute these equalities into (1. 1). Then \chi_{2} ( g) is expressed as a
polynomial of \{\sigma_{1}, \cdots \sigma_{6}\} . Next using the formula (1. 4) once again, we
rewrite \chi_{2}( g) as a polynomial of \{p_{1}, \cdots p_{6}\} and finally using (1. 3)

repeatedly, we express this polynomial as a sum of Schur functions. But in
practice this procedure requires many calculations and hence we use the
algebraic programming system REDUCE 2 to obtain the final expression.
For the character of S^{3}K^{*} , it can be calculated in the same way by using the
formula (1. 2) in this case. Thus we obtain the following proposition.

PROPOSITION 1. 2. The characters of S^{2}K^{*} and S^{3}K^{*} are given by the
following:

S^{2}K^{*}: S_{4,4}+S_{4.2.2}+S_{3,3.1,1}+S_{2.2,2.2} .
S^{3}K^{*}: S_{6,6}+S_{6,4,2}+S_{6,2.2.2}+S_{5.5.1,1}+S_{5,4,2.1}+S_{5,3,3,1}

+S_{5,3,2.1,1}+S_{4,4,4}+2S_{4.4,2,2}+S_{4,4,1,1,1.1}+S_{4,3,3,1,1}

+S_{4,3,2,2.1}+S_{4,2,2,2,2}+S_{3.3,3,3}+S_{3.3.2,2,1,1}+S_{2,2.2,2.2,2}

REMARK. In the case n=4, S^{3}K^{*} is a sum of 10 irreducible components
because S_{5,3.2,1,1} , S_{4,4,1.1.1,1} , etc., reduce to trivial spaces. The character
of S^{2}K^{*} is already determined in [21, p. 383] by a different method.

Next we calculate the characters of S^{2p}E_{k}^{*} for p\leqq 3 and k=1,2 . The
character and the generator of each irreducible component of S^{p}E_{1}^{*}(E_{1}=

S^{2}V^{*}) is already known and in the case n\geqq p, the number of irreducible
components of S^{p}E_{1}^{*} is equal to the partition number of p (cf. [1], [21, p.
378]. See also [3] and [8] ) . As a representation space E_{k}^{*} is isomorphic-k-to E_{1}^{*}\oplus\cdots\oplus E_{1}^{*} and hence we have

S^{p}E_{k}^{*} \cong\sum_{p_{1}+..+p_{h}=p}S^{p_{1}}E_{1}^{*}\otimes\cdots\otimes S^{p_{h}}E_{1}^{*}
.

Thus the character of S^{p}E_{k}^{*} can be calculated by using the Littlewood-
Richardson rule. As a result, we hav6 the following lemma.

LEMMA 1. 3. The characters of S^{2p}E_{k}^{*} (p=1,2 , 3 and k=1,2) arc given
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by the following :
S^{2}E_{1}^{*}: S_{4}+S_{2},\cdot

S^{4}E_{1}^{*}: S_{8}+S_{6.2}+S_{4.4}+S_{4,2.2}+S_{2,2.2,2} .
S^{6}E_{1}^{*}: S_{12}+S_{10.2}+S_{8,4}+S_{6,6}+S_{8,2.2}+S_{6,4,2}+S_{4,4,4}+S_{6,2,2,2}

+S_{4.4.2,2}+S_{4,2,2,2,2}+S_{2,2.2,2.2.2-}

S^{2}E_{2}^{*}: 3S_{4}+3S_{2,2}+S_{3,1} .
S^{4}E_{2}^{*-}. 5S_{8}+9S_{6,2}+6S_{4,4}+9S_{4,2.2}+5S_{2,2,2,2}+3S_{7,1}+3S_{5.3}

+4S_{5,2.1}+3S_{4,3,1}+3S_{3,2,2,1}+S_{3,3,1.1} .
S^{6}E_{2}^{*}: 7S_{12}+5S_{11,1}+15S_{10,2}+9S_{9,3}+8S_{9.2,1}+18S_{8,4}+9S_{8.3,1}

+19S_{8,2.2}+6S_{7,5}+12S_{7,4,1}+12S_{7,3,2}+3S_{7,3,1.1}+9S_{7,2,2.1}

+10S_{6.6}+8S_{6,5,1}+27S_{6.4.2}+S_{6,4,1,1}+S_{6,3.3}+12S_{6.3.2.1}

+19S_{6.2,2.2}+S_{5.5,2}+3S_{5,5,1.1}+8S_{5,4,3}+12S_{5,4,2.1}

+3S_{5.3,3.1}+9S_{5.3,2.2}+4S_{5,3,2.1.1}+8S_{5.2,2,2,1}+10S_{4,4,4}

+6S_{4,4.3.1}+18S_{4.4.2,2}+3S_{4,3,3.1,1}+9S_{4.3.2,2,1}+15S_{4,2.2.2,2}

+S_{3,3,3.1,1,1}+3S_{3.3,2,2.1,1}+5S_{3,2.2,2.2.1}+7S_{2.2,2,2.2,2}

Now we state the first main results of this paper. Its proof will be done
in \S 2.

THEOREM 1. 4. The characters of the invariant subspaces Ker \gamma_{k}^{p*}(p=1 ,

2, 3) are given by the following:
(1) The case of k=1 .

Ker \gamma_{1}^{1*}=\{0\} , Ker \gamma_{1}^{2*}=S_{3,3,1,1}

Ker \gamma_{1}^{3*}=S_{5,5,1,1}+S_{5,4,2,1}+S_{5.3,3.1}+S_{5,3,2.1,1}+S_{4,4,2,2}

+S_{4,4,1,1,1.1}+S_{4,3.3,1,1}+S_{4.3,2,2,1}+S_{3.3,3,3}+S_{3.3,2,2.1,1}

(2) The case of k=2.
Ker \gamma_{2}^{1*}=Ker\gamma_{2}^{2*}=\{0\} , Ker \gamma_{2}^{3*}=S_{4.4,1,1.1,1}+S_{3,3,3.3} .

(3) The case of k\geqq 3 .
Ker \gamma_{k}^{1*}=Ker\gamma_{k}^{2*}=Ker\gamma_{k}^{3*}=\{0\} .
REMARK. (1) As stated in Introduction, the spaces S_{3,3,1,1}\subset S^{2}K^{*} and

S_{4.4.1.1,1.1}\subset S^{3}K^{*} correspond to the condition rank R(X, Y)\leqq 2k for X, Y\in

T_{\chi}M (k=1,2 , respectively) and the space S_{3,3,3.3}\subset Ker \gamma_{2}^{3*} is a new
condition. For details, see \S 2 and \S 3. We remark that the inequality rank
R (X, Y)\leqq 4 is useful only in the range n\geqq 6 while the condition S_{3.3,3,3} serves
as the actual obstruction in the case M^{n}\subset R^{n+2} for n\geqq 4 .

(2) The inclusions Ker \gamma_{1}^{2*}\supset S_{3.3,1.1} , Ker \gamma_{1}^{3*}\supset S_{5,5,1,1}+\cdots+S_{3,3.2,2,1.1} and
Ker \gamma_{2}^{3*}\supset S_{4,4,1,1,1,1}+S_{3,3,3,3} can be directly checked from Proposition 1. 2 and
Lemma 1. 3. In fact, since \gamma_{k}^{p*}: S^{p}K^{*}arrow S^{2p}E_{k}^{*} is a GL(V) -equivariant
map, the irreducible component of S^{p}K^{*} is mapped by \gamma_{k}^{p*} to {0} or the
non-trivial irreducible space with the same character. The space S^{2}K^{*}

contains the irreducible component S_{3,3,1,1} , but the space S^{4}E_{1}^{*} does not
contain S_{3,3.1,1} and hence we have \gamma_{1}^{2*}(S_{3,3,1.1})=\{0\} , i . e. , S_{3.3,1,1}\subset Ker\gamma_{1}^{2*}
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Other inclusions can be verified in the same way. To prove the “ equality ”

in this theorem, we have to look for a generator of each irreducible
component of S^{p}K^{*}(p=1,2,3) , to substitute \alpha\in E_{k} into these generators
and to decide whether they are zero or not as polynomials on E_{k} We
achieve this procedure in \S 2.

\S 2. Irreducible components of S^{p}K^{*}(p\leqq 3) .
In this section we give a method to obtain the generators of the

irreducible components of S^{p}K^{*} for p=1,2,3 and prove Theorem 1. 4. For
this purpose we first review some facts on the Young tableaux and the GL
(V) -irreducible subspaces of the tensor space V\otimes\cdots\otimes V (cf. [6], [9]).

By a Young diagram of signature \lambda= (\lambda_{1}, \lambda_{2}, \cdots \lambda_{s})(\lambda_{1}\geqq\lambda_{2}\geqq\cdots\geqq\lambda_{s}>

0) we mean an array of boxes such that the number of boxes in the i-th row
is \lambda_{i} (i=1, \cdots s) :

We call s the depth of this Young diagram. By a Young tableau we mean the
Young diagram whose boxes are filled with the integers 1, \cdots q, where q is
the number of boxes of this diagram ( i. e., q=\sum_{i=1}^{s}\lambda_{i}) . For example the
following is the Young tableau of signature (3, 3, 2, 1) :
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We denote the Young tableau by the letter B and the (/, j) -component of B
by B(i, j) .

Let \mathfrak{S}_{q} be the symmetric group of degree q and we put T_{q}=\overline{V\otimes}\cdots\overline{\otimes V}q

(V=R^{n}) . We define a group representation
\rho : \mathfrak{S}_{q}arrow GL(T_{q})

by \rho(\tau)(X_{1}\otimes\cdots\otimes X_{q})=X_{\tau^{-1}(1)}\otimes\cdots\otimes X\tau-1(q) . We denote by R[\mathfrak{S}_{q}] the

group algebra of \mathfrak{S}_{q}, i . e. , R[ \mathfrak{S}_{q}]=\{\sum_{i}a_{i}\tau_{i}|a_{i}\in R, \tau_{i}\in \mathfrak{S}_{q}\} equipped with

the natural sum and product. The group homomorphism \rho induces the ring
homomorphism from R [ \mathfrak{S}_{q}] to End ( T_{q}) , which we denote by the same letter
\rho .

Let B be a Young tableau of depth\leqq n such that the number of boxes is
equal to q. Then using this tableau, a GL(V) -invariant irreducible
subspace of T_{q} can be constructed in the following way. We define
subgroups \mathfrak{H}_{B} and \backslash \mathfrak{B}_{B}\subset \mathfrak{S}_{q} by \mathfrak{H}_{B}=\{\sigma\in \mathfrak{S}_{q}|\sigma interchanges the numbers of
each row} and \mathfrak{V}_{B}= { \sigma\in \mathfrak{S}_{q}|\sigma interchanges the numbers of each column}.
Note that if the signature of B is \lambda= (\lambda_{1}, \cdots \lambda_{s}) , then \mathfrak{H}_{B} is isomorphic to
\mathfrak{S}_{\lambda_{1}}\cross^{\Gamma}\cdots\cross \mathfrak{S}_{\lambda_{S}} . Now we define a Young symmetrizer \hat{c}_{B}\in R[\mathfrak{S}_{q}] by

\hat{c}_{B}= \sum \sum(-1)^{\sigma}\sigma\tau ,
\tau\in \mathfrak{H}B\sigma\in\backslash ’\backslash ^{1_{B}}

where ( -1 )^{\sigma} implies the signature of \sigma . Then the space \rho(\hat{c}_{B})T_{q} is a GL

(V) -invariant irreducible subspace of T_{q}, and in addition, the character of
\rho(\hat{c}_{B})T_{q} is given by S_{\lambda} , where \lambda is the signature of B. We remark that if the
depth of B exceeds the dimension of V, then \rho(\hat{c}_{B})T_{q} reduces automatically

to a trivial space.
Using this theory, we give a method to obtain irreducible subspaces of S^{p}

K^{*} . By definition K is a GL(V) -invariant subspace of \Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*} and
\Lambda^{2}V^{*}\otimes\Lambda^{2}V^{*} can be considered as a subspace of T_{4}^{*}=V^{*}\otimes V^{*}\otimes V^{*}\otimes V^{*}

in a natural way. Hence we have a surjective linear map T_{4}arrow K^{*} and this-p-induces a map T_{4\vec{p}}K^{*}\otimes\cdots\otimes K^{*} . Combining this map with the canonical
projection \overline{K^{*}\otimes}\cdots\overline{\otimes K}^{*}arrow S^{p}K^{*}p , we obtain \pi:T_{4\vec{p}}S^{p}K^{*} , which is a GL

(V) -equivariant surjective map. Explicitly \pi is given by
\pi(X_{1}\otimes\cdots\otimes X_{4p})(R)=R(X_{1}, \cdots X_{4})\cdots R(X_{4p-3}, \cdots X_{4p})

for X_{i}\in V and R\in K. Let B be a Young tableau of signature \lambda=(\lambda_{1}, \cdots .
\lambda_{s})(s\leqq n) such that \Sigma\lambda_{i}=4p. Then the space \pi(\rho(\hat{c}_{B})T_{4p}) is either an
irreducible subspace of S^{p}K^{*} with the character S_{\lambda} or a trivial space {0}
because \pi is GL( V) -equivariant.

PROPOSITION 2. 1. Let B be a Young tableau of sigmture (\lambda_{1}, \cdots \lambda_{s})

( s\leqq n and \sum\lambda_{i}=4p) and let \mu_{i} be the number of boxes appeared in the i-th
column of B. (Hence \mu_{1}=s.) For each element X_{1} , \cdots X_{s}\in V we define I_{B}
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(X_{1}, \cdots X_{s})\in S^{p}K^{*} by

I_{B}(X_{1} \cdots, X_{s})(R)=.,\sum_{\lambda_{1}k=1}\ldots,(-1)^{\sigma_{1}}\cdots(-1)^{\sigma_{\lambda}}1R(Y_{1}, \cdots, Y_{4})\cdots R(Y_{4p-3}\sigma_{h}\in^{\sim_{\mu_{h}}}" \cdots, Y_{4p})
,

... Y_{4p}),

where Y_{1} , \cdots Y_{4p}\in V are given by Y_{B(l,k)}=X_{\sigma_{h}(l)}(1\leqq t\leqq s, 1\leqq k\leqq\lambda_{1}) .
Then the subspace \pi(\rho(\hat{c}_{B})T_{4p}) is generated by the element I_{B}(X_{1}, \cdots X_{s}) , i.
e. , \pi(\rho(\hat{c}_{B})T_{4p})=\{\sum_{i}a_{i}I_{B}(X_{i_{1}}\cdots, X_{is})|a_{l}\in R, X_{ia}\in V\} .

EXAMPLE. Consider the following tableau B of signature (3, 3, 1, 1):

Then the space \pi(\rho(\hat{c}_{B})T_{8})\subset S^{2}K^{*} is generated by
I_{B}(X_{1}, \cdots, X_{4})(R)=\Sigma(-1)^{\sigma_{1}}(-1)^{\sigma_{2}}(-1)^{\sigma_{3}}R(X_{\sigma_{1}(1)}, X_{\sigma_{1}(2)}, X_{\sigma_{2}(1)}, X_{\sigma_{2}(2)})

\cross R(X_{\sigma_{1}(3)}, X_{\sigma_{1}(4)}, X_{\sigma_{3}(1)}, X_{\sigma_{3}(2)}) .
By direct calculations we have

(**) \frac{1}{32}I_{B}(X_{1} ... X_{4})(R)=R(X_{1}-X_{2} X_{1} X_{2})R(X_{1}. X_{2}. X_{3}-X_{4})-R

(X_{1}-X_{2} X_{1}, X_{3})R(X_{1} X_{2}. X_{2}. X_{4})+R(X_{1}-X_{2} X_{1} X_{4})R(X_{1} . X_{2}-

X_{2} X_{3}) .
In the case n\geqq 4 , this polynomial represents a non-trivial element of S^{2}K^{*}

and hence the invariant irreducible subspace S_{3,3,1,1} of S^{2}K^{*} (cf. Proposition
1. 2) is generated by the polynomial (**) . If we use the following tableau B :

then we have
I_{B}(X_{1}, \cdots, X_{4})(R)=\sum(-1)^{\sigma_{1}}(-1 )^{\sigma_{2}}(-1)^{\sigma_{3}}R(X_{\sigma_{2}(1)}, X_{\sigma_{1}(2)}, X_{\sigma_{1}(4)}, X_{\sigma_{3}(1)})

\cross R(X_{\sigma_{2}(2)}, X_{\sigma_{3}(2)}, X_{\sigma_{1}(1)}, X_{\sigma_{1}(3)})

=0,

and hence \pi(\rho(\hat{c}_{B})T_{8})=\{0\} in this case.
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PROOF of PROPOSITION 2. 1. For elements Z_{1} . \cdots Z_{4p}\in V we put A(Z_{1}

\ldots Z_{4p})=\Sigma \Sigma ( -1 )^{\sigma}\rho(\sigma\tau)(Z_{1}\otimes\cdots\otimes Z_{4p})\in T_{4p}. Then we have \rho(\hat{c}_{B})

T_{4p}=\{A(Z_{1}\tau\in \mathfrak{H}_{B}\ldots\sigma\in\downarrow\backslash _{B}\grave{Z}_{4p})|Z_{i}\in V\} and A(Z_{\tau(1)}, \cdots\wedge Z_{\tau(4p)})=A(Z_{1}. \cdots z_{4p}) for
each \tau\in \mathfrak{H}_{B} Therefore by putting Z_{B(1.1)}=\cdots=Z_{B(1,\lambda_{1})}=X_{1-}\cdots Z_{B(s,1)}=

\ldots=Z_{B(s,\lambda_{s})}=X_{s} . we know that the space \rho(\hat{c}_{B})T_{4p} is generated by the

element \sum_{\sigma\in\backslash \mathfrak{V}_{B}}

(-1)^{\sigma}\rho(\sigma)(Z_{1}\otimes\cdots\otimes Z_{4p}) . Next we consider the first altern-

ative sum
\sum_{\sigma_{1}\in \mathfrak{S}\mu_{1}}

(the first column of B). Since Z_{1}\otimes\cdots\otimes Z_{4p} is equal to

\ldots B(1, 1)\otimes X_{1}\otimes\cdots B(2, 1)\otimes X_{2}\otimes\cdots\otimes X_{\mu_{1}}^{1}\otimes B(\mu, 1)\ldots

we have

\Sigma(-1)^{\sigma_{1}}\rho(\sigma_{1})(Z_{1}\otimes\cdots\otimes Z_{4p})

\sigma_{1}\in \mathfrak{S}_{\mu 1}

= \Sigma(-1)^{\sigma_{1}}\{\cdots\otimes X\sigma_{1}^{-1}(1)B(1,1)\otimes\cdots\otimes_{X_{\sigma_{1}^{-1}(2)}\otimes\cdots\otimes X\sigma_{1}^{-1}(\mu_{1})}B(2,1)B(\mu_{1},1)\otimes\cdots\}

\sigma_{1}\in \mathfrak{S}\mu_{1}

=
\Sigma(-1)^{\sigma_{1}}\{\cdots\otimes X\sigma_{1}(1)B(1,1)\otimes\cdots\otimes X\sigma_{1}(2)B(2,1)\otimes\cdots\otimes_{X\sigma_{1}(\mu_{1})} B(\mu_{1},1)\otimes\cdots\} .

\sigma_{1}\in\acute{e}\mu_{1}

Hence by putting Y_{B(l,1)}=X_{\sigma_{1}(l)} , we have

\Sigma(-1)^{\sigma_{1}}\rho(\sigma_{1})(Z_{1}\otimes\cdots\otimes Z_{4p})=
\Sigma(-1)^{\sigma_{1}}\{\cdots\otimes_{Y_{B(1,1)^{\otimes\cdots\otimes}}Y_{B(\mu_{1},1)}}B(1,1)B(\mu_{1},1)\otimes\cdots\} .

\sigma_{1}\in_{\mathfrak{S}\mu 1} \sigma_{1}\in\tilde{e}\mu_{1}

Repeating the same procedure to the other columns of B, we have
\sum(-1)^{\sigma}\rho(\sigma)(Z_{1}\otimes\cdots\otimes Z_{4p})= \sum ( -1 )^{\sigma_{1}}\cdots(-1)^{\sigma_{\lambda_{1}}}Y_{1}\otimes\cdots\otimes Y_{4p} ,

\sigma\in \mathfrak{V}_{B}

k=1\ldots.,\lambda_{1}\sigma_{h}\in\tilde{o}\mu h

where Y_{B(l,k)}=X_{\sigma_{h}(l)} . Then mapping this element by \pi ,

we obtain the desired result. q . e . d

Next using Proposition 2. 1, we obtain the generators of the irreducible
components of S^{p}K^{*} for p=1,2,3 . In the following we list up the
characters S_{\lambda} . the tableaux B and the generators I_{B}(X_{1}\wedge\cdots X_{s}) of the
spaces \pi(\rho(\hat{c}_{B})T_{4p})\subset S^{p}K^{*} . (We divide I_{B} by a non-zero constant such that
I_{B} is expressed in a simple form.) For the spaces S_{4.3.2,2,1} S_{4.2,2,2,2-}S_{3.3.2,2,1.1}

and S_{2,2,2.2,2,2}\subset S^{3}K_{J}^{*} the explicit expression of these generators are too long
to write down here and hence we omit them. Except the case 2S_{4.4.2,2}\subset S^{3}K^{*} ,

the generators may be obtained by using a different tableau B of the same
signature unless I_{B}=0 , but we list up here only one of them. In some cases,

in order to calculate the generators I_{B} . we use the algebraic programming
system REDUCE 2. For simplicity we write R (X_{i} X_{j;}X_{kf} X_{l}) as R_{ijhl} etc.

(1^{o}) The case p=1 .

S_{2,2} B_{2,2}=\overline{H12]43} I_{B_{2.2}}=R_{1212}
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(This implies that the space of curvature like tensors is generated by the
element R (X_{1}. X_{2}. X_{1}. X_{2}) , i . e. , the curvature is determined by its
sectional curvature.)

|

.

S_{2.2,2,2} ,

I_{B_{2.2,2,2}}

,
-2R_{1314}R_{2324}+2R_{1214}R_{2334}

-2R_{1213}R_{2434}-2R_{1224}R_{1334}+2R_{1223}R_{1434}-2R_{1323}R_{1424}+R_{1234}^{2}

+R_{1324}^{2}+R_{1423}^{2}

=R_{1212^{3}} .

S_{5,4,2,1-}B_{5.4.2,1}
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I_{B_{5,4,2,1}}=R_{1212}^{2}R_{1334}-R_{1212}R_{1213}R_{1324}+R_{1212}R_{1214}R_{1323}-R_{1212}R_{1313}R_{1224}

+R_{1212}R_{1314}R_{1223}-R_{1212}R_{1213}R_{1234}+2R_{1213}^{2}R_{1224}-2R_{1213}R_{1214}R_{1223}

S_{5,3.3,1}
\wedge

I_{B_{5.3,3.1}}

S_{5,3,2,1.1}

I_{B_{5.3.2,1,1}}=R_{1212}R_{1313}R_{1245}-R_{1214}R_{1225}R_{1313}+R_{1215}R_{1224}R_{1313}-R_{1213}^{2}R_{1245}

+R_{1213}R_{1214}R_{1235}-R_{1213}R_{1215}R_{1234}+R_{1212}R_{1315}R_{1234}-R_{1212}R_{1314}R_{1235}

+R_{1213}R_{1314}R_{1225}-R_{1213}R_{1315}R_{1224}+R_{1214}R_{1315}R_{1223}-R_{1215}R_{1314}R_{1223} .

-2R_{1212}R_{1224}R_{1334}-2R_{1213}R_{1214}R_{2324}-2R_{1213}R_{1223}R_{1424}

+2R_{1213}R_{1224}R_{1423}-2R_{1213}R_{1224}R_{1234}+2R_{1214}R_{1223}R_{1234}

+2R_{1214}R_{1223}R_{1324}-2R_{1214}R_{1224}R_{1323}-2R_{1223}R_{1224}R_{1314}

REMARK. If we use the tableau

then it can be directly I_{B_{4.4.2.2}^{(3)}} is expressed as a
linear combination of I_{B_{4.4.2,2}^{(1)}} and I_{B_{4,4,2,2}^{(2)}} , and by Proposition 2. 1 this element

also generates the irreducible subspace with the character S_{4,4,2,2} Note that
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ly

R_{1214}R_{1225}R_{1236}

R_{1215}R_{1226}R_{1234}

+2R_{1212}R_{1234}R_{1335}

-2R_{1212}R_{1235}R_{1334}+2R_{1214}R_{1223}R_{1335}-2R_{1214}R_{1235}R_{1323}-2R_{1215}R_{1223}R_{1334}

+2R_{1215}R_{1234}R_{1323}+2R_{1223}R_{1315}R_{1324}-2R_{1223}R_{1314}R_{1325}+2R_{1224}R_{1313}R_{1523}

-2R_{1224}R_{1315}R_{1323}-2R_{1225}R_{1313}R_{1324}+2R_{1225}R_{1314}R_{1323}+R_{1212}R_{1324}R_{1335}

-R_{1212}R_{1325}R_{1334}+R_{1212}R_{1313}R_{2345}-R_{1212}R_{1314}R_{2335}+R_{1212}R_{1315}R_{2334}

-R_{1212}R_{1323}R_{1345}-R_{121s^{2}}R_{2345}+R_{1213}R_{1214}R_{2335}-R_{1213}R_{1215}R_{2334}

+R_{1213}R_{1223}R_{1345}-R_{1213}R_{1234}R_{1523}+R_{1213}R_{1235}R_{1423}+R_{1213}R_{1245}R_{1323}

+R_{1213}R_{1314}R_{2325}-R_{1213}R_{1315}R_{2324}-R_{1214}R_{1313}R_{2325}+R_{1214}R_{1315}R_{2323}

+R_{1215}R_{1313}R_{2324}-R_{1215}R_{1314}R_{2323}-R_{1223}R_{1245}R_{1313}-R_{1225}R_{1234}R_{1313} .

expressed as a sum of 62 monomials.)

expressed as a sum of about 120 different

S_{3,3,3,3} B_{3,3.3,3}
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I_{B_{3.3.3,3}}=R_{1212}R_{3434}R_{1234}-R_{1313}R_{2424}R_{1324}+R_{1414}R_{2323}R_{1423}+R_{1212}R_{1434}R_{2334}

-R_{1212}R_{1334}R_{2434}+R_{1313}R_{1224}R_{2434}+R_{1313}R_{1424}R_{2324}+R_{2424}R_{1213}R_{1334}

+R_{2424}R_{1314}R_{1323}+R_{1414}R_{1223}R_{2334}-R_{1414}R_{1323}R_{2324}+R_{2323}R_{1214}R_{1434}

-R_{2323}R_{1314}R_{1424}+R_{3434}R_{1214}R_{1223}-R_{3434}R_{1213}R_{1224}+R_{1213}R_{1423}R_{2434}

-R_{1214}R_{1323}R_{2434}-R_{1314}R_{1223}R_{2434}-R_{1213}R_{1424}R_{2334}+R_{1214}R_{1324}R_{2334}

-R_{1224}R_{1314}R_{2334}-R_{1213}R_{1434}R_{2324}+R_{1234}R_{1314}R_{2324}-R_{1214}R_{1334}R_{2324}

+R_{1223}R_{1324}R_{1434}-R_{1224}R_{1323}R_{1434}+R_{1224}R_{1334}R_{1423}-R_{1223}R_{1334}R_{1424}

+R_{1234}R_{1323}R_{1424}-R_{1234}R_{1324}R_{1423}

S_{3,3,2.2,1.1} B_{3.3.2.2,1,1}

(The polynomial I_{B_{3.3,2.2,1,1}} can be expressed as a sum of about 220 different
monomials.)

S_{2,2,2,2.2,2} B_{2,2,2,2,2,2}=

(The polynomial I_{B_{2,a2.2.2,2}} can be expressed as a sum of about 700 different
monomials.)

Now using these generators, we give the proof of Theorem 1. 4. For
this purpose, we have only to substitute an element \alpha\in E_{k} into the generators
of the irreducible components of S^{p}K^{*} for k=1,2 , \cdots i . e. , we put R=\gamma_{k}

(\alpha) and determine whether they are trivial or not as polynomials on E_{k}

We first consider the case k=1 (codimension =1). In this case \alpha\in E_{1} is
a symmetric bilinear form on V. We substitute \alpha into the generators of S^{p}

K^{*} listed up above. Then it is directly verified that the polynomials I_{B_{3,3,1.1}}-

I_{B_{5,5,1,1}} . I_{B_{5,4,2,1}} . I_{B_{5,3,3.1}} . I_{B_{5.3,2.1,1}} . I_{B_{4.4,1,1.1,1}} I_{B_{4,3.3,1,1}} I_{B_{4,3,2,2.1}} I_{B_{3,3,3,3}} and I_{B_{3.3,2.2,1,1}} reduce
to zero and the rest of the generators are not trivial polynomials on E_{1} (In

some cases, we use the system REDUCE 2 for complicated calculations once
again.) The following is the list of non-trivial polynomials I_{B} after putting
R=\gamma_{1}(\alpha) . For simplicity we write the determinant of the symmetric matrix

[_{\alpha(X_{r}}^{\alpha(X_{1}}\alpha(X_{2}|X_{1})X_{1})X_{1})\alpha(X_{2}\ldots’\ldots X_{2})\cdots\alpha(X_{25}X_{r})\alpha(X_{r},X_{2})\cdots\alpha(X_{r},X_{r})a(X_{1}X_{2})\cdots\alpha(X_{1}\wedge X_{r})]

as \alpha_{12}\gamma,12r . For example, \alpha_{1,1}=\alpha (X_{1} X_{1}) .
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I_{B_{2.2}}=\alpha_{12,12}

I_{B_{4,4}}=\alpha_{12,12}^{2}

I_{B_{4.2.2}}=\alpha_{1,1}\cdot\alpha_{123,123}

I_{B_{2.a2,2}}=3\alpha_{1234.1234}

I_{B_{6.6}}=\alpha_{12,12}^{3}

I_{B_{6,4,2}}=\alpha_{1,1}\cdot\alpha_{12.12}\cdot\alpha_{123,123}

I_{B_{6,a2,2}}=\alpha_{1.1}^{2}\cdot\alpha_{1234.1234}

I_{B_{4,4.4}}=\alpha_{123,123}^{2}

I_{B_{4.4.2.2}^{(1)}}=3\alpha_{12.12}\cdot\alpha_{1234.1234}

I_{B_{4.4.a2}^{(2)}}=\alpha_{12,12}\cdot\alpha_{1234,1234}

I_{B_{4,\mathfrak{U}2,2,2}}=6\alpha_{1,1}\cdot\alpha_{12345.12345}

I_{B_{2.a2.2,2,2}}=15\alpha_{123456,123456}

(It is already known that the generators of the invariant irreducible
subspaces of S^{p}E_{1}^{*} are expressed as products of the determinant of the form
\alpha_{12}r, 12 r See [1].) The intersection of the subspace 2S_{4,4,2,2}\subset S^{3}K^{*} and
Ker \gamma_{1}^{3*} is a non-trivial irreducible subspace or 2S_{4,4,2.2} itself because one
component of 2S_{4.4.2,2} is contained in Ker \gamma_{1}^{3*} . (See Remark (2) after
Theorem 1. 4.) But, as we have already seen, I_{B_{4,4,2,2}^{(1\rangle}} is not an element of Ker
\gamma_{1}^{3*} and hence we have 2S_{4,4.2.2}\cap Ker\gamma_{1}^{3*}=S_{4,4,2,2}, , which is generated by the
element I_{B_{4.4,2,2}^{(1)}}-3I_{B_{4,4,2,2}^{(2)}} . Summarizing these results, we obtain (1) of
Theorem 1. 4.

Next we consider the case k=2 (codimension =2). In this case, using
the system REDUCE 2, we substitute R=\gamma_{2}(\alpha)(\alpha\in E) into 11 polynomials
I_{B_{3.3.11}} \ldots I_{B_{3.3.2,2,1.1}} and I_{B_{4.4.2.2}^{(1)}}-3I_{B_{4,4,2.2}^{(2)}} , which are the generators of Ker \gamma_{1}^{p*} .

Then we know that the polynomials I_{B_{4,4,1,1,1,1}} and I_{B_{3,3.3,3}} reduce to zero and the
rest are non-trivial polynomials on E_{2} (We omit these explicit expressions
because they are lengthy.) Hence we have Ker \gamma_{2}^{1*}=Ker\gamma_{2}^{2*}=\{0\} and
Ker \gamma_{2}^{3*}=S_{4,4,1,1,1,1}+S_{3,3,3,3}

Finally we substitute R=\gamma_{3}(\alpha)(\alpha\in E) into the polynomials I_{B_{4,4,1,1,1,1}}

and I_{B_{33,3.3}} . Then in this case, these 2 polynomials are non-trivial on E_{3} and
therefore we have Ker \gamma_{k}^{p*}=\{0\} for k\geqq 3 and p\leqq 3 . Thus we complete the
proof of Theorem 1. 4.

REMARK. (1) Using the metric (, ) on V, we consider R(X, Y)(X,

Y\in V) as a skew symmetric linear endomorphism of V, i . e. , R(X, Y)Z
\in V is defined by (R(X, Y)Z, W)=-R(X, Y, Z, W) . Let { X_{1} . \cdots

X_{n}\} be an orthonormal base of V and we write R(X_{i} X_{j} X_{k} X_{l})=R_{ijkl}
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as before. Then the linear endomorphism R (X_{1} X_{2}) is expressed in a
matrix form:

(\begin{array}{lllll}0 R_{1212} R_{1213} \cdots R_{121n}-R_{1212} 0 R_{1223} \cdots R_{122n}-R_{121n} \cdots -\cdots R_{122n} \cdots -R_{123n} \cdots \cdots \cdots 0\end{array})

If rank R(X_{1}. X_{2})\leqq 2 , then the first (4, 4) principal minor of this matrix is
zero, which is equal to the square of the Pfaffian (R_{1212}R_{1234}-R_{1213}R_{1224}+

R_{1214}R_{1223})^{2} , and hence we have I_{B_{3,3.1,1}}(X_{1} X_{2} X_{3} X_{4})(R)=0 . (Note that
the rank of the skew symmetric matrix is always even.) Conversely if I_{B_{3.3,1,1}}

(X_{1} \ldots X_{4})(R)=0 for any X_{3}\wedge X_{4}\in V, then we have rank R(X_{1} X_{2})\leqq 2 .
Therefore the obstruction S_{3,3.1.1}\subset Ker\gamma_{1}^{2*} is essentially equivalent to the
condition rank R (X, Y)\leqq 2 stated in Introduction. In the same way, in the
case of codimension 2, we can check that the condition S_{4.4,1,1.1,1}\subset Ker\gamma_{2}^{3*} is
equivalent to rank R(X, Y)\leqq 4 for X, Y\in V.

(2) Considering the results in Vilms [22], it is probable that in the case
of codimension 1 the ideal \sum_{p} Ker \gamma_{1}^{p*} of the polynomial ring \sum_{p}S^{p}K^{*} is
generated by the elements of S_{3,3,1,1}\subset S^{2}K^{*} . By direct calculations, we can
prove that the subspace Ker \gamma_{1}^{3*} of S^{3}K^{*} is contained in the ideal generated
by S_{3,3,1,1} . but for the spaces Ker \gamma_{1}^{p*}(p\geqq 4) we do not know whether it is
true or not at present.

\S 3 The case of 4-dimensional Riemannian manifolds.

In this section we rewrite the remaining obstruction S_{3,3.3,3}\subset Ker\gamma_{2}^{3*} in a
simple form, which is easy to calculate for a given Riemannian manifold. In
the case n=4 the polynomial I_{B_{3.3,3,3}} is an invariant of K with respect to the
canonical action of GL(4, R) , i . e. , \rho(g)\cdot I_{B_{3,3,3,3}}=(\det g)^{3}\cdot I_{B_{3.3,3,3}} for any g\in

GL(4, R) and hence we first investigate the structure and the generators of
the ring of GL(4, R) -invariants of K for later use.

First, we prepare several lemmas. In the following we denote by F^{G}

the ring of G-invariants of F, where F is the representation space of the
group G.

LEMMA 3. 1. Let Sym(n, C ) be the complex vector space of symmetric
linear endomorphisms of C^{n}, i. e. , Sym (n, C)=\{A:C^{n}arrow C^{n}|{}^{t}A=A\} .
Then the ring of SO(n, -invariants of Sym(n, C) with respect to the
natural action is a polynomial ring generated by { Tr A, Tr A^{2} , \cdots Tr A^{n} }
(A\in Sym(n, C)) .

PROOF. Let W be a subspace of Sym(n, C) consisting of diagonal
matrices and we put
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H=\{g\in SO(n, C)|g(W)\subset W\} .
Then a generic element of Sym(n, C) is transformed into the element of W
by the action of SO (n, C) . (More precisely, if the eigenvalues of A\in Sym

(n, C) are all distinct, gAg^{-1} is a diagonal matrix for suitable g\in SO(n,
C).) Using this fact, it is easy to see that the natural map

j : Sym (n, C)^{SO(n,C)}arrow WH

is injective. We investigate the structure of H- invariants of W. We put \tilde{H}=

{ h\in H|h\cdot w=w for all w\in W }. Then the quotient group H/\tilde{H} acts on W
effectively and WH is isomorphic to WH/\overline{H} It is directly checked that the
orders of H and \tilde{H} are 2^{n-1}\cdot n! and 2^{n-1} , respectively, and H/\tilde{H} acts on W
as a permutation of the diagonal elements. Since H/\tilde{H} contains the
permutation of i-th and j-th diagonal components, any H/\tilde{H}-invariant of W

is a symmetric polynomial of n diagonal elements and hence WH/\tilde{H} is
isomorphic to a polynomial ring C [Tr B, Tr B^{2} , \cdots Tr B^{n}] (B\in W) .
Since Sym (n, C)^{SO(n,C)} contains elements of the form Tr A (A\in Sym(n,
C)) and j (Tr A l) =Tr B^{i}, it follows that j is surjective and hence Sym(n,
C)^{SO(n.C)} is a polynomial ring generated by { Tr A, \cdots Tr A^{n} }. q. e . d .

Next we consider the SO^{0}(p, q) -invariants of Sym(p+q, R) , where SO^{0}

(p, q) is \underline{theid}\underline{entit}\underline{yco}mpo_{q}nentp of the group \{g\in GL(p+q, R)|{}^{t}gJg=J\}

(J diag(l, 1,\cdots1,-1, -1,\cdots\overline{-1})) and Sym (p+q, R)=\{A:R^{\rho+q}arrow

R^{\rho+q}|{}^{t}AJ=JA\} .
LEMMA 3. 2. The ring of SO^{0}(p, q) -invariants of Sym(p+q, R) is

isomorphic to the polynomial ring generated by { Tr A, Tr A^{2} , \cdots Tr A^{p+q} }
(A\in Sym(p+q, R)) .

PROOF. We put Q=diag\overline{(1,}1,\overline{\cdots 1}p,\overline{\sqrt{-1},\sqrt\overline{-1,}}q\overline{\cdots\sqrt\overline{-1}}) and define a
real Lie group homomorphism h:SO^{0}(p, q)–SO(p+q, C) by h(g)=Qg
Q^{-1} and a real linear map c:Sym(p+q, R)– Sym(p+q, C) by c(A)=
QAQ^{-1} . We construct a real homogeneous linear map k :Sym(p+q, R)^{SO^{o}(p}’

q)arrow Sym(p+q, C)^{SO(p+q,C)} in the following way. First, since the map c
defined above is conjugate to a complexification of the real vector space Sym
(p+q, R) , c induces an injective real linear map \tilde{c} : {polynomial on Sym(p+
q, R)\}arrow { polynomial on Sym (p+q, C) } naturally. Next we consider the
following commutative diagram:

Sym(p+q, R) Sym(p+q, C)
g\downarrow \downarrow h(g) g\in SO^{0}(p, q)

Sym(p+q, R)-Sym(p+q, C) .
From this diagram it follows that the SO^{0}(’p, q) -invariants of Sym(p+q, R)
is mapped by \tilde{c} to the SO(p+q, q)-invariants of Sym(p+q, C) . In fact,
since SO (p+q, C) is connected, we have only to check the invariance by the
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action of the Lie algebra 0 (p+q, C) and this follows immediately from the
fact that the differential of the group homomorphism h:SO^{0}(p, q)arrow SO

(p+q, C) is conjugate to a complexification of the real Lie algebra o(p, q) .
Hence by restricting the map \tilde{c}, we obtain a real homogeneous linear map k
: Sym (P+q, R)^{SO^{0}(p,q)}arrow Sym(p+q, C)^{SO(p+q,C)} We have already known
the generators of Sym(P+q, C)^{SO(p+q,C)} (Lemma 3. 1) and it is easy to see
that Tr A^{i}\in Sym(p+q, R)^{SO^{0}(p,q)}(A\in Sym(p+q, R)) is mapped by k to
Tr c(A)^{i} . Now let \phi be an element of Sym (p+q, R)^{SO^{0}(p,q)} . Then k(\phi) is
expressed as a polynomial of { Tr B, \cdots Tr B^{\rho+q} } with the complex
coefficients. We write this polynomial in the following form:

k(\phi)(B)=\Sigma af_{i} (TrB, \cdots Tr B^{p+q}) +\sqrt{-1}\Sigma b_{i}g_{i} (TrB, \cdots Tr B^{\mu q}),
where B\in Sym(p+q, C) , a_{i} b_{i}\in R and f_{i} . g_{i} are real polynomials. If B=
c(A) , then k(\phi)(B) is real valued, and hence we have

k(\phi)(c(A))=\Sigma af_{i} (Tr c(A) , \cdots Tr c(A)^{F\vdash q}).
This implies that \phi is expressed as a real polynomial of { Tr A, \cdots Tr A^{\rho+q} }
because k is injective. Therefore Sym (p+q, R)^{SO^{0}(p}’ q) is generated by { Tr
A,\cdots , Tr A^{\rho+q} }. Since these elements are independent, Sym (p+q, R)^{SO^{0}(p,q)}

is a polynomial ring generated by { Tr A, \cdots Tr A^{p+q} }. q. e . d .
Now we prove the following proposition. In the rest of this section V

always means the real 4-dimensional vector space, unless otherwise stated.
PROPOSITION 3. 3. In the case n=4, the ring of invariants of K is

isomorphic to the polynomial ring R[x_{2} , x_{3} , x_{4} , x_{5r} n] (deg x_{i}=i). The
generator x_{i} (i=2, \cdots 6) corresponds to the trace of the i-th power of the (6,
6)-matrix:

\tilde{R}=\{ -R_{1213}-R_{1224}R_{1212}R_{1214}R_{1223}R_{1234}-R_{1313}-R_{1324}R_{1\hat{s}12}R_{1323}R_{1314}R_{1334}-R_{1413}-R_{1424}R_{1412}R_{1423}R_{1414}R_{1434}-R_{2313}-R_{2324}R_{2312}R_{2314}R_{2323}R_{2334}-R_{2413}-R_{2424}R_{2412}R_{2414}R_{2423}R_{2434}-R_{3413}-R_{3424}R_{3412}R_{3423}]R_{3434}R_{3414}

where R_{ijkl}=R(X_{i}, X_{j}. X_{k}. X_{l}) and \{ X_{1} X_{2} X_{3} X_{4}\} is a base of V.
PROOF. We have only to determine the structure of the ring of SL(V)

-invariants because the SL ( V) -invariants of the tensor space V\otimes\cdots\otimes V are
automatically GL(V) -invariants. We first construct a group homomor-
phism f:SL(4, R)arrow SO^{0}(3,3) in the following way. We fix a linear
isomorphism \psi : \Lambda^{2}Varrow R^{6} once for all and define a symmetric bilinear map
\ll, \gg on R^{6} by

\ll w_{1} , w_{2}\gg X_{1}\Lambda X_{2}\Lambda X_{3}\Lambda X_{4}=\psi^{-1}(w_{1})\Lambda\psi^{-1}(w_{2}) ,

for w_{1}-w_{2}\in R^{6} . Then\ll\gg is a non-degenerate inner product of type (3, 3) .
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In fact, by putting W_{1}=\psi(X_{1}\Lambda X_{2}) , W_{2}=\psi(X_{1}\Lambda X_{3}) , W_{3}=\psi(X_{1}\Lambda X_{4}) ,

W_{4}=\psi(X_{2}\Lambda X_{3}) , W_{5}=\psi(X_{2}\Lambda X_{4}) , W_{6}=\psi(X_{3}\Lambda X_{4}) , it is directly checked
that\ll W_{1}-W_{6}\gg=-\ll W_{2} W_{5}\gg=\ll W_{3-}W_{4}\gg=1 and other\ll W_{i-}W_{j}\gg=0 .

Next we define a group homomorphism f : SL(4, R)arrow GL(6, R) by
f(g)\cdot w=\psi(g\cdot\psi^{-1}(w)) ,

for \#eSL(4, R) and w\in R^{6} , where g\cdot\psi^{-1}(w) implies the canonical action
of \#eSL(4, R) on \psi^{-1}(w)\in\Lambda^{2}V. Then it is easy to see that the equality

\langle U(g)\cdot w_{1} , f(g)\cdot w_{2}\gg=\ll w_{1} , w_{2}\gg

holds for \#eSL(4, R) and w_{1} , w_{2}\in R^{6} , i . e. , f(g) is an element of O(3,3) .

Since SL(4, R) is connected, we obtain a group homomorphism f : SL(4, R)
arrow SO^{0}(3,3) . (Actually, f is a double covering map onto SO^{0}(3,3). )

From the decomposition in Lemma 1. 1, there is a surjective linear map S^{2}

(\Lambda^{2}V^{*})arrow K, which induces an SL(V) -equivariant inclusion i:K^{*}arrow S^{2}

(\Lambda^{2}V) . Composing this inclusion with \psi , we obtain the following commut-
ative diagram:

g| \underline{i}|\downarrow f(g)K^{*}S^{2}(\Lambda^{2}V)\frac{\psi}{\cong}S^{2}R^{6}K^{*}S^{2}(\Lambda^{2}V)\frac{\psi}{\cong}S^{2}R^{6}\underline{i} g\in SL(4, R) .

Therefore the invariants of K is contained in the ring of SO^{0}(3,3) -invariants
of S^{2}R^{6} , via the map \psi\circ i. (We identify S^{2}R^{6} and its dual space by the
metric induced from\ll . \gg .) Next using the metric\ll, \gg on R^{6} , we consider
an element A\in S^{2}R^{6} as a linear endomorphism of R^{6} , which is symmetric with
respect to\ll, \gg . Then, by putting p=q=3 in Lemma 3. 2, the SO^{0}(3,3)

-invariants of S^{2}R^{6} is a polynomial ring generated by the elements { Tr A, Tr
A^{2} , \cdots Tr A^{6} }. (Remark that Tr A is unchanged by the action A\mapsto

PAP^{-1}.) Now we express these invariants in terms of the components of the
curvature tensor. First, we express A\in S^{2}R^{6} in a matrix form, using the
base \{ W_{1}-\cdots W_{6}\} of R^{6} defined above, If we put A_{ij}=A(W_{i}. W_{j}) , then
A:R^{6}arrow R^{6} is expressed in the form:

(-A_{15}A_{13}-A_{12}A_{16}A_{14}A_{11}-A_{25}-A_{22}A_{26}A_{24}A_{23}A_{21}-A_{35}-A_{32}A_{36}A_{34}A_{33}A_{31}-A_{45}-A_{42}A_{46}A_{44}A_{43}A_{41}-A_{55}-A_{52}A_{56}A_{54}A_{53}A_{51}-A_{65}-A_{62}A_{66}A_{64}A_{63}A_{61})

Since A_{16} A_{154} etc., correspond to R_{1234} R_{1224} etc., the matrix form of
the element of K^{*} is the (6, 6) matrix \tilde{R} stated in this proposition. Hence
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the ring of invariants of K is generated by the elements { Tr \tilde{R}, Tr \tilde{R}^{2} , \cdots

Tr \tilde{R}^{6} }. But we have Tr \tilde{R}=0 because Tr \tilde{R}=2(R_{1234}-R_{1324}+R_{1423})=0 by
Bianchi’s identity. Thus to complete the proof of Proposition 3. 3, we have
only to show that {Tr \tilde{R}^{2}, \cdots Tr \tilde{R}^{6} } are independent as polynomials on K.
For this purpose we consider the case where \{ R_{ijkl}\} is expressed as a
polynomial of \{ a_{1}. \cdots a_{5}\} in the following way: R_{1234}=(a_{1}+a_{2})/2 , R_{1423}=

(a_{3}+a_{4})/2 , R_{1324}=(a_{1}+a_{2}+a_{3}+a_{4})/2 , R_{1212}=(a_{1}-a_{2})^{2}/4 , R_{1313}=\{(a_{1}+a_{2}+

a_{3}+a_{4})/2+a_{5}\}^{2} , R_{1414}=(a_{3}-a_{4})^{2}/4 , R_{2323}=R_{2424}=R_{3434}=1 and other R_{ijkl} are
all zero. Then the eigenvalues of the matrix \tilde{R} is given by \{ a_{1}-a_{2} a_{3} a_{4}

a_{5} -(a_{1}+a_{2}+a_{3}+a_{4}+a_{5})\} and it can be easily proved that the 5
polynomials \sum_{i=1}^{5}a_{i}^{k}+\{-(a_{1}+\cdots+a_{5})\}^{k}(k=2, \cdots 6) are independent as
polynomials of \{ a_{1} \ldots a_{5}\} . Hence { Tr \tilde{R}^{2} , \cdots Tr \tilde{R}^{6} } are independent
as polynomials on K and we complete the proof of Proposition 3. 3. q . e . d .

REMARK. (1) We complexify both the vector space K and the group
SL( V) . Then the structure of the ring of invariants of K^{c} is already known.
In fact the Lie algebra c_{\urcorner}^{\mathfrak{D}}\mathfrak{l}\backslash (4, C) is isomorphic to D_{3}=\mathfrak{o}(6, C) and it is known
that the ring of invariants of the complex irreducible representation of D_{n}

(n\geqq 3) with highest weight 2\Lambda_{1} (with respect to the natural numbering) is
isomorphic to the polynomial ring C[y_{2}y_{3} , y_{4}. \cdots y_{2n}] . (See the table
3a in Schwarz [19, p. 181].)

(2) In the case n=2, K is a 1-dimensional vector space and the ring of
invariants of K is isomorphic to the polynomial ring R[x_{1}] . In the case n=
3 , K^{*} is equal to S^{2}(\Lambda^{2}V) and since dim \Lambda^{2}V=\dim V=3 , the ring of
invariants of K is isomorphic to the ring of invariants of the space S^{2}V,
which is isomorphic to R[x_{3}] . But, for n\geqq 5 , we do not know the structure
of the ring of GL(V) invariants of K.

By Proposition 3. 3, the generator of the space S_{3,3,3,3}\subset Ker\gamma_{2}^{3*} is
expressed in a simple form Tr \tilde{R}^{3} , but we can express this obstruction in a
more geometrical form. First, using the metric on V, we consider R\in K as
a symmetric linear endomorphism of \Lambda^{2}V and let *:\Lambda^{2}V- \Lambda^{2}V be the
star operator defined by the metric and a fixed orientation of V. If { X_{1} \ldots

X_{4}\} is an oriented base of V, the matrix form of the endomorphism *\circ R :
\Lambda^{2}V– \Lambda^{2}V with respect to the base \{ X_{1}\Lambda X_{2} . X_{1}\Lambda X_{3} . X_{1}\Lambda X_{4} X_{2}\Lambda X_{3}

X_{2}\Lambda X_{4} . X_{3}\Lambda X_{4} } is just equal to \tilde{R}. Hence if R\in{\rm Im}\gamma_{2} , we have Tr (*\circ

R)^{3}=0 . We extend this result in the following form.
THEOREM 3. 4. The notations being as above, Tr (*\circ R)^{3}=Tr(*\circ R)^{5}=0

if R\in{\rm Im}\gamma_{2} .
PROOF. Assume R\in{\rm Im}\gamma_{2} . Then we have R=L\Lambda L+M\Lambda M for some

symmetric endomorphisms L, M of V (cf. [10, p. 102]). We have only to
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prove the theorem in the case R\in{\rm Im}\gamma_{2} is generic. Hence we may assume
that L and M are non-singular endomorphisms. We denote by (, ) the
metric on \Lambda^{2}V induced from the metric on V. Then we have

((R\circ*)(X\Lambda Y), Z\Lambda W)=(*(X\Lambda Y), R(Z\Lambda W))

=(*(X\Lambda Y), L(Z)\Lambda L(W))+(*(X\Lambda Y), M(Z)\Lambda M(W)) .
Since (*(X\Lambda Y), Z\Lambda W)=\det(X, Y, Z, W) for X, Y, Z, W\in V, we
have

(*(X\Lambda Y), L(Z)\Lambda L( W))=\det(X, Y, L(Z), L( W))

=\det L\cdot\det(L^{-1}(X), L^{-1}( Y), Z W)
=\det L . (* (L^{-1}(X)\Lambda L^{-1}( Y)), Z\Lambda W) .

Therefore we have
R\circ*=*\circ(\det L\cdot L^{-1}\Lambda L^{-1}+\det M\cdot M^{-1}\Lambda M^{-1}) .

Using this formula, the following two equalities are directly proved.
(R\circ*)^{3}=(\det L+\det M)\cdot(R\circ*)+(\det L\cdot M\Lambda M+\det M\cdot L\Lambda L

+\det L\cdot ML^{-1}M\Lambda ML^{-1}M+\det M\cdot LM^{-1}L\Lambda LM^{-1}L)\circ* ,

(R\circ*)^{5}=(\det L+\det M)^{2}\cdot(R\circ*)+2 (det L+\det M). (det L\cdot M\Lambda M+\det

M\cdot L\Lambda L+\det L\cdot ML^{-1}M\Lambda ML^{-1}M+\det M\cdot LM^{-1}L\Lambda LM^{-1}L)\circ*+(2\det

LM\cdot R+(\det L)^{2}\cdot ML^{-1}M\Lambda ML^{-1}M+(\det M)^{2}\cdot LM^{-1}L\Lambda LM^{-1}L+(\det

L)^{2}\circ ML^{-1}ML^{-1}M\Lambda ML^{-1}ML^{-1}M+(\det M)^{2}\circ LM^{-1}LM^{-1}L\Lambda LM^{-1}LM^{-1}

L)\circ* .
From Bianchi’s identity we have Tr (R\circ*)=Tr(*\circ R)=Tr\tilde{R}=0 (see the
proof of Proposition 3. 3). Since LA L, M\Lambda M, ML^{-1}M\Lambda ML^{-1}M, etc., are
all curvature type operators, we have Tr (L\Lambda L)\circ*=Tr(M\Lambda M)\circ*=Tr

(ML^{-1}M\Lambda ML^{-1}M)\circ*=0 , etc., from the same reason. (Remark that ML^{-1}

M, ML^{-1}ML^{-1}M, etc., are symmetric endomorphisms of F.) Therefore we
have Tr (*\circ R)^{i}=Tr(R\circ*)^{i}=0 for i=3,5 . q. e . d .

REMARK. (1) In the case n\geqq 5 , we consider a 4-dimensional subspace
V_{4} of V and fix an orientation of V_{4} Using the metric on V, we regard R

as a symmetric linear endomorphism of \Lambda^{2}V_{4} Then the same conclusions
as in Theorem 3. 4 hold if R\in{\rm Im}\gamma_{2} . Hence the obstructions Tr (*\circ R)^{3} , Tr
(*\circ R)^{5} are useful in the case n\geqq 4 .

(2) We consider the differential of the complexified quadratic map \gamma_{2}^{c} :
E_{2}^{c}arrow K^{c} in the case n=4. Then the rank of \gamma_{2*}^{c} at a generic point of E_{2}^{c} is
18. (See [5], or [7, p. 891].) Since dim K^{c}=20 and the polynomials Tr
(*\circ R)^{3} , Tr (*\circ R)^{5} are independent as functions on K^{c}, the image Im \gamma_{2}^{c}(\subset

K^{c}) is almost equal to the variety \{ R\in K^{c}|Tr(*\circ R)^{3}=Tr(*\circ R)^{5}=0\} .
But we do not know whether this variety is just equal to the closure \overline{{\rm Im}\gamma_{2}^{c}} or
not.

COROLLARY 3. 5. The Riemannian symmetric spaces P^{2}(C) , SU(3)/SO
(3) and their non-compact dmt spaces cannot be isometrically immersed into
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the Euclidean spaces in codimension 2 even locally.
RROOF. Let R be the curvature of P^{2}(C) or the curvature of SU(3)/SO

(3) restricted to some 4-dimensional subspace. Then the curvature of their
non-compact dual spaces are given by - R. In particular Tr (-*\circ R)^{3}=-

Tr (*\circ R)^{3} . Hence we have only to prove Tr (*\circ R)^{3}\neq 0 for the spaces P^{2}

(C) and SU(3)/SO(3) .
(i) The case of P^{2}(C) . The curvature R:\Lambda^{2}Varrow\Lambda^{2}V ( V is the

tangent space of P^{2}(C) at the origin) is given by
R(X_{1}\Lambda Y_{1})=4X_{1}\Lambda Y_{1}+2X_{2}\Lambda Y_{2}

R(X_{1}\Lambda X_{2})=X_{1}\Lambda X_{2}+Y_{1}\Lambda Y_{2}

R(X_{1}\Lambda Y_{2})=X_{1}\Lambda Y_{2}-Y_{1}\Lambda X_{2}

R( Y_{1}\Lambda X_{2})=Y_{1}\Lambda X_{2}-X_{1}\Lambda Y_{2}

R( Y_{1}\Lambda Y_{2})=X_{1}\Lambda X_{2}+Y_{1}\Lambda Y_{2}

R(X_{2}\Lambda Y_{2})=2X_{1}\Lambda Y_{1}+4X_{2}\Lambda Y_{2} .
where \{ X_{1}. Y_{1}. X_{2}. Y_{2}\} is a suitable oriented orthonormal base of V (see

\S 4). Then by direct calculations the eigenvalues of*\circ R are given by {6, -

2, -2, -2, 0, 0} and hence we have Tr (*\circ R)^{3}=192\neq 0 .
(ii) The case of SU(3)/SO(3) . Let i^{\supset}\backslash \backslash n(3)=0(3)+|\mathfrak{j}\mathfrak{j} be the canonical

decomposition of the symmetric pair (_{\backslash }^{e_{\}}n(3), \mathfrak{o} (3)) . Then ttt =\{X\in[mathring]_{t_{\backslash }\backslash \backslash }n(3)|

{}^{t}X=X\} . We use the following orthonormal base of |t\iota :

X_{1}=\sqrt{-1}(\begin{array}{lll}1 0 -1\end{array}) , X_{2}= \frac{\sqrt\overline{-1}}{\sqrt\overline{3}}(\begin{array}{lll}1 -2 1\end{array}) , X_{3}=\sqrt{-1}(\begin{array}{lll} l 1 0\end{array}) ,

X_{4}=\sqrt{-1}(\begin{array}{lll} 11 0 \end{array}) , X_{5}=\sqrt{-1}(\begin{array}{lll}0 1 1\end{array}) .

Then the curvature R : \Lambda^{2}tttarrow\Lambda^{2}tt\iota is given by (up to a positive constant)
R(X_{1}\Lambda X_{2})=0

R(X_{1}\Lambda X_{3})=X_{1}\Lambda X_{3}+\sqrt B^{-}X_{2}\Lambda X_{3}+X_{4}\Lambda X_{5}

R(X_{1}\Lambda X_{4})=4X_{1}\Lambda X_{4}+2X_{3}\Lambda X_{5}

R(X_{1}\Lambda X_{5})=X_{1}\Lambda X_{5}-\sqrt{3}X_{2}\Lambda X_{5}+X_{3}\Lambda X_{4}

R(X_{2}\Lambda X_{3})=\sqrt\overline{3}X_{1}\Lambda X_{3}+3X_{2}\Lambda X_{3}+\sqrt{3}X_{4}\Lambda X_{5}

R(X_{2}\Lambda X_{4})=0

R(X_{2}\Lambda X_{5})=-\sqrt{3}
.

X_{1}\Lambda X_{5}+3X_{2}\Lambda X_{5}-\sqrt{3}X_{3}\Lambda X_{4}

R(X_{3}\Lambda X_{4})=X_{1}\Lambda X_{5}-\sqrt{3}X_{2}\Lambda X_{5}+X_{3}\Lambda X_{4}

R(X_{3}\Lambda X_{5})=2X_{1}\Lambda X_{4}+X_{3}\Lambda X_{5}

R(X_{4}\Lambda X_{5})=X_{1}\Lambda X_{3}+\sqrt{3}X_{2}\Lambda X_{3}+X_{4}\Lambda X_{5} .
We restrict R to the 4-dimensional subspace V spanned by the oriented base
\{X_{1} X_{3J}X_{4}X_{5}\} . Then the restricted curvature R : \Lambda^{2}Varrow\Lambda^{2}V is given
by

R(X_{1}\Lambda X_{3})=X_{1}\Lambda X_{3}+X_{4}\Lambda X_{5}
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R(X_{1}\Lambda X_{4})=4X_{1}\Lambda X_{4}+2X_{3}\Lambda X_{5}

R(X_{1}\Lambda X_{5})=X_{1}\Lambda X_{5}+X_{3}\Lambda X_{4}

R(X_{3}\Lambda X_{4})=X_{1}\Lambda X_{5}+X_{3}\Lambda X_{4}

R(X_{3}\Lambda X_{5})=2X_{1}\Lambda X_{4}+X_{3}\Lambda X_{5}

R(X_{4}\Lambda X_{5})=X_{1}\Lambda X_{3}+X_{4}\Lambda X_{5} .
It is easy to see that the eigenvalues of *\circ R are given by {2, 2, 0, 0, 0, -4}
and hence we have Tr (*\circ R)^{3}=-48\neq 0 .

Thus by Theorem 3. 4 P^{2}(C) , SU(3)/SO(3) and its non-compact dual
spaces do not admit a solution of the Gauss equation in codimension 2.

q . e . d .
REMARK. (1) In the case of P^{2}(C) and its dual space, these results can

be proved by another method. First, since the dual space of P^{2}(C) is a
space of negative curvature, the corollary is obtained from the result in
\^Otsuki [18, p. 233]. As for the space P^{2}(C) , Weinstein proved in [23] the
following: Let M be an n-dimensional Riemannian manifold which is
isometrically immersed into R^{n+2} . Then M has positive sectional curvature
if and only if the eigenvalues of R:\Lambda^{2}Varrow\Lambda^{2}V are all positive. In our
case, the space P^{2}(C) has positive sectional curvature, but R:\Lambda^{2}Varrow\Lambda^{2}

V is not positive definite and hence it follows that P^{2}(C) cannot be locally
isometrically immersed into R^{6} .

(2) It is known that P^{n}(C) and SU(n)/SO(n) can be globally
isometrically imbedded into the Euclidean space of codimension n^{2} and (n^{2}+

n+2)/2 , respectively (Kobayashi [14]) and it can be proved that P^{n}(C)

admits a solution of the Gauss equation in codimension n^{2}-1 (see \S 4 (4)).
But we do not know the least dimensional Euclidean space into which P^{n}(C)

(n\geqq 2) or SU(n)/SO(n)(n\geqq 3) can be (locally or globally) isometrically
immersed.

\S 4. Final remarks.

In this section we state some results and remarks on local isometric
immersions of Riemannian manifolds.

(1) The character of S^{4}K^{*} .

By the same method as in \S 1, we can determine the character of S^{4}K^{*} .
using the system REDUCE 2. The result is as follows:

S_{8,8}+S_{8,6,2}+S_{8,4,4}+S_{8,4,2,2}+S_{8,2.2.2,2}+S_{7,7,1.1}+S_{7,6.2,1}+2S_{7,5,3.1}+S_{7,5,2,1,1}

+S_{7,4,3,2}+S_{7,4,3,1,1}+S_{7.4.2,2,1}+S_{7,3,3,2,1}+S_{7,3,2.2,1.1}+S_{6,6.4}+3S_{6,6,2,2}+S_{6.6,1.1,1,1}

+S_{6.5,4,1}+S_{6,5,3.2}+2S_{6,5.3,1,1}+2S_{6,5,2,2.1}+S_{6,5,2,1,1,1}+3S_{6,4,4,2}+3S_{6.4.3,2,1}+

2S_{6,4,3.1.1,1}+3S_{6,4,2,2,2}

+S_{6.4,2.1,1,1.1}+S_{6,3,3.3.1}+2S_{6,3,3,2.1,1}+S_{6.3,2,2,2,1}+S_{6.2.2.2,2.2}+2S_{5,5,4.1,1}+3S_{5,5,3.3}

+2S_{5.5,3,2,1}+3S_{5,5,2,2.1,1}+S_{5,5,1,1.1,1.1,1}+2S_{5,4,4,2,1}+S_{5,4.4,1,1,1}+2S_{5,4.3,3,1}+2S_{5,4,3.2,2}
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+3S_{5.4.3.2,1,1}+S_{5,4,3.1,1,1,1}+2S_{5,4,2,2,2,1}+S_{5.4,2,2,1,1,1}+2S_{5,3,3,3,2}+2S_{5,3,3,2,2,1}

+S_{5,3,3.2,1,1.1}+S_{5.3,2,2,2,1,1}+2S_{4.4.4,4}+3S_{4,4,4,2,2}+3S_{4,4,3,3,1,1}+S_{4,4,3,2,2,1}

+S_{4,4,3,2,1.1,1}+3S_{4.4.2.2,2,2}

+S_{4,4,2,2,1,1,1,1}+S_{4,3,3,3.2,1}+2S_{4,3,3,2,2,1,1}+S_{4,3,2,2,2,2,1}

+S_{4,2,2,2,2,2,2}+S_{3.3,3,3,2,2}+S_{3,3,3.3.1,1,1.1}+S_{3,3,2.2.2,2.1,1}+S_{2,2.2,2.2,2.2.2} .
By comparing with the character of S^{8}E_{3}^{*} , we know that S_{5,5,1,1,1,1,1,1} is
contained in Ker \gamma_{3}^{4*} (see Remark (2) at the end of \S 1). But this relation
is equivalent to the condition (*) stated in Introduction (in the case k=3).

(2) The expressions of the generators of S^{p}K^{*} for n\leqq 4 .
The generators of the invariant irreducible subspaces of K^{*} , S^{2}K^{*} and

S^{3}K^{*} can be expressed in a simple form if the depth of the corresponding
Young diagram is at most 4. In fact, let \tilde{R} be the (6, 6) -matrix stated in
Proposition 3. 3 and let (\tilde{R}^{k})_{ij} be the (i, j) -component of \tilde{R}^{k} . Then the
generators of S^{p}K^{*} are expressed in the following form:

p=1 I_{B_{2.2}}=\tilde{R}_{61}

p=2 I_{B_{4,4}}=(\tilde{R}_{61})^{2} ,

I_{B_{4,2,2}}=|\begin{array}{ll}\tilde{R}_{51} \tilde{R}_{52}\tilde{R}_{61} \tilde{R}_{62}\end{array}|

\wedge

I_{B_{3,3.1,1}}= \frac{1}{2}(\tilde{R}^{2})_{61} .

I_{B_{2.2.2.2}}= \frac{1}{2}Tr(\tilde{R}^{2}) .

p=3 I_{B_{6.6}}=(\tilde{R}_{61})^{3} ,

I_{B_{6.4.2}}=\tilde{R}_{61}
|\begin{array}{ll}\tilde{R}_{51} \tilde{R}_{52}\tilde{R}_{61} \tilde{R}_{62}\end{array}|

,

I_{B_{6,2.2.2}}=|_{\tilde{R}_{61}\tilde{R}_{62}\tilde{R}_{63}}^{\tilde{R}_{41}\tilde{R}_{42}\tilde{R}_{43}}\tilde{R}_{51}\tilde{R}_{52}\tilde{R}_{53}|-

I_{B_{5.5.1,1}}= \frac{1}{2}\tilde{R}_{61}\cdot(\tilde{R}^{2})_{61} .

I_{B_{5.4.2,1}}=|_{\tilde{R}_{62}}^{\tilde{R}_{61}}(\tilde{R}^{2})_{62}(\tilde{R}^{2})_{611}

,

I_{B_{5,3,3,1}}=|\begin{array}{lll}\tilde{R}_{41} \tilde{R}_{42} \tilde{R}_{44}\tilde{R}_{51} \tilde{R}_{52} \tilde{R}_{54}\tilde{R}_{61} \tilde{R}_{62} \tilde{R}_{64}\end{array}|

I_{B_{4.4,4}}=|\begin{array}{lll}\tilde{R}_{31} \tilde{R}_{32} \tilde{R}_{34}\tilde{R}_{51} \tilde{R}_{52} \tilde{R}_{54}\tilde{R}_{61} \tilde{R}_{62} \tilde{R}_{64}\end{array}|
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I_{B_{4.4,2.2}^{(1)}}= \frac{1}{2}\tilde{R}_{61}\cdot Tr(\tilde{R}^{2}) ,

I_{B_{4.4.2.2}^{(2\rangle}}=(\tilde{R}^{3})_{61} .

I_{B_{3.3.3.3}}= \frac{1}{6}Tr(\tilde{R}^{3}) .

At present we can not express the remaining generators of S^{3}K^{*} in a simple
form. (Compare with the results in [1], [3], [8].)

(3) Inverse formula of the Gauss equation. (The case of codimension
1.)

In [20, p. 199] Thomas obtained the inverse formula of the Gauss
equation in the case of codimension 1. (See also Kawaguchi [12, p. 43].)
Namely in the case n\geqq 3 , if R\in K is a generic element of Im \gamma_{1} , then the
second fundamental form \alpha=\gamma_{1}^{-1}(R) is uniquely determined from R (up to
a sign). This formula has the following representation theoretic meaning.
In \S 2 we have already proved that if R is contained in the image of \gamma_{1} then

I_{B_{4.2,2}}=|_{R_{1213}}^{R_{1212}}R_{1313}R_{12131}=\alpha_{11}|_{\alpha_{13}}^{\alpha_{11}}\alpha_{12}\alpha_{23}\alpha_{22}\alpha_{12}\alpha_{33}\alpha_{23}|\alpha_{13}

and

I_{B_{4.4,4}}=|_{R_{1223}}^{R_{1212}}R_{1213}R_{1323}R_{1313}R_{1213}R_{2323}R_{1323}|R_{1223}=|\begin{array}{lll}\alpha_{11} \alpha_{12} \alpha_{13}\alpha_{12} \alpha_{22} \alpha_{23}\alpha_{13} \alpha_{23} \alpha_{33}\end{array}|

Hence if I_{B_{4.4,4}}\neq 0 , we have

|_{R_{1213}}^{R_{1212}}R_{1313}R_{12131}2

\alpha_{11}^{2}=

|\begin{array}{lll}R_{1212} R_{1213} R_{1223}R_{1213} R_{1313} R_{1323}R_{1223} R_{1323} R_{2323}\end{array}|

,

which is just equal to Thomas’ inverse formula.
(4) Solutions of the Gauss equation of P^{n}(C)(n\geqq 2) and its dual space

in codimension n^{2}-1 .
Let t_{\urcorner\iota\iota(n+1)}^{J}\backslash =t_{\backslash }\backslash (o\iota\iota(n)+\iota\downarrow(1))+\mathfrak{l}1t be the canonical decomposition of the

symmetric pair (t_{\backslash }^{\partial}\backslash tt(n+1), _{\backslash }c_{\backslash (\iota\iota(n)}^{0}+n(1)))(n\geqq 2) . The space

\iota\iota\iota=\{ (\begin{array}{ll}0 r\backslash v-{}^{t}\overline{v} 0\end{array})\prime n1 |v\in C^{n}\}

is identified with the tangent space of P^{n},(C) at the origin. We fix an
orthonormal base \{ X_{1}. \cdots X_{n}. Y_{1-}\cdots Y_{n}\} of ttt by
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X_{i}=(\begin{array}{ll}0 1-1 0i \end{array}) and Y_{i}=\sqrt{-1}
(\begin{array}{ll}0 11 0i \end{array})

i0 1
-1 0

0 1
1 0

for i=1 , \cdots . n. Then the curvature R:\Lambda^{2}\iota \mathfrak{n}arrow\Lambda^{2}m of P^{n}(C) is given by
R(X_{i}\Lambda X_{j})=X_{i}\Lambda X_{j}+Y_{i}\Lambda Y_{j}

R(X_{i} \Lambda Y_{i})=2X_{i}\Lambda Y_{i}+2\sum_{k=1}^{n}X_{k}\Lambda Y_{k} .

R(X(AY_{j})=X_{i}\Lambda Y_{j}+X_{j}\Lambda Y_{i} .
R( Y_{i}\Lambda Y_{j})=X_{i}\Lambda X_{j}+Y_{i}\Lambda Y_{j} ,

for 1\leqq i, j\leqq n(i\neq j) . Using the metric, we consider R as an element of K
as usual. First we define \alpha\in S^{2}\iota\iota\tau^{*}\otimes R^{n^{2}-1} as follows: Let \{ e_{ij}.\tilde{e}_{ij}\}_{1\leqq i<j\leqq n}

be an orthonormal base of R^{n^{2}-n} and let \{ v_{i}\}_{2\leqq i\leqq n} be a base of R^{n-1} such that
||v_{i}||=(v_{ir}v_{j})=2 for i, j=2, \cdots , n, i\neq j. Then \{ e_{ij}(i<j),\tilde{e}_{ij}(i<j) , v_{i}

(2\leqq i\leqq n)\} is a base of R^{n^{2}-1}=R^{n^{2}-n}\oplus R^{n-1} . We set e_{ij}=-e_{ji} and \tilde{e}_{ij}=\tilde{e}_{ji}

for i\neq j. We define \alpha : \iota\iota 1\cross|ttarrow R^{n^{z_{-1}}} by
\alpha(X_{1}. X_{1})=ka(v_{2}+\cdots+v_{n}) ,
\alpha( Y_{1} Y_{1})=kb(v_{2}+\cdots+v_{n}) ,
\alpha (X_{i} X_{i})=\alpha ( Y_{i-}Y_{i})=v_{i} . \alpha(X_{1}. Y_{1})=\alpha(X_{i}, Y_{i})=0 ,
\alpha(X_{1}. X_{i})=a\tilde{e}_{1i} , \alpha(Y_{1} Y_{i})=b\tilde{e}_{1i},\ulcorner\alpha(X_{1} Y_{i})=ae_{1i}

\alpha ( Y_{1} X_{i})=-be_{1i\tau}\alpha(X_{i}. Y_{j})=e_{ij-}

and \alpha(X_{i}, X_{j})=\alpha ( Y_{i}. Y_{j})=\tilde{e}_{ij}

for 2\leqq i, j\leqq n, i\neq j, where k=\sqrt{2}/n(n-1) and a, b are the two real
solut\overline{l}ons of the quadratic equation x^{2}-2km+1=0 . Then by direct calcula-
tions \alpha satisfies the Gauss equation \gamma_{n^{2}-1}(\alpha)=R .

Next we construct a solution of the Gauss equation of the dual space of
P^{n}(C) . Note that the curvature of the dual space is given by - R. Let \{ e_{ij}

(1\leqq i<j\leqq n),\tilde{e}_{ij}(1\leqq i<j\leqq n) , e_{i}(2\leqq i\leqq n)\} be an orthonormal base ofR^{n^{2}-1}

and we set e_{ij}=e_{ji-}\tilde{e}_{ij}=\tilde{e}_{ji} for i\neq j. We define a symmetric bilinear map \alpha^{*}

: \iota\iota\iota\cross\iota\iota\iotaarrow R^{n^{2}-1} by
\alpha^{*}(X_{iy}X_{i})=k\delta_{1i}(\tilde{e}_{12}+\cdots+\tilde{e}_{1n})+(1-\delta_{1i})a_{i}e_{i} .
\alpha^{*}(Y_{i}, Y_{i})=-k\delta_{1i}(\tilde{e}_{12}+\cdots+\tilde{e}_{1n})+(1-\delta_{1i})b_{i}e_{i}

\alpha^{*}(X_{ij}Y_{i})=-k\delta_{1i}(e_{12}+\cdots+e_{1n}) ,
\alpha^{*}(X_{i}. X_{j})=-\alpha^{*}(Y_{i}, Y_{j})=\tilde{e}_{ij} and \alpha^{*}(X_{i},\eta Y_{j})=e_{ij;}

for 1\leqq i, j\leqq n, i\neq j, where k=\sqrt{2}/(n-1) and a_{i} . b_{i}(2\leqq i\leqq n) are real
numbers such that a_{i}b_{i}=-4 . Then by direct calculations it is easy to see
that \alpha^{*} satisfies the Gauss equation \gamma_{n^{2}-1}(\alpha^{*})=-R.

In the case n=2 (dim P^{2}(C)=4), it is directly verified that the
differential of the map \gamma_{3} : S^{2}\iota t\iota^{*}\otimes R^{3}arrow K is of maximal rank at \alpha

constructed above. Since dim S^{2}\iota^{*}\otimes R^{3}=30 and dim K=20, the image of \gamma_{3}

contains an open subset of K. In particular we have Ker \gamma_{3}^{p*}=\{0\} for all p
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if n –4 , i . e. , there exists no polynomial relations of the curvature tensor in
the case M^{4}\subset R^{7} .

(5) A remark on Im \gamma_{1}

We prove that the image of the map \gamma_{1} : S^{2}V^{*}arrow K is not closed in a
usual topology if n\geqq 3 . Let \{ X_{1} \ldots X_{n}\} be an orthonormal base of the
n-dimensional Euclidean vector space V and we define a symmetric linear
map R : \Lambda^{2}Varrow\Lambda^{2}V by

R(X_{1}\Lambda X_{2})=X_{1}\Lambda X_{2}

R(X_{1}\Lambda X_{3})=X_{1}\Lambda X_{3}

and R(X_{i}\Lambda X_{j})=0

for other X_{i}\Lambda X_{j} It is clear that R satisfies Bianchi’s identity and hence R
\in K. We prove that R\not\in{\rm Im}\gamma_{1} In fact if R is contained in Im \gamma_{1} then
there exists a symmetric linear map L:Varrow V such that R=L\Lambda L . Then
we have R(X_{1}\Lambda X_{2})=X_{1}\Lambda X_{2}=L(X_{1})\Lambda L(X_{2}) , which implies that \{ X_{1}. X_{2}\}

and \{ L(X_{1}), L(X_{2})\} coincide. In the same way, using R(X_{1}\Lambda X_{3}) , it
follows that \{ X_{1-}X_{3}\}=\{L(X_{1}), L(X_{3})\} . Hence we have

L(X_{1})=aX_{1} .

L(X_{2})= \frac{1}{a}X_{2}

L(X_{3})= \frac{1}{a}X_{3}

for some a\in R\backslash \{0\} . But R(X_{2} \Lambda X_{3})=L(X_{2})\Lambda L(X_{3})=\frac{1}{a^{2}}X_{2}\Lambda X_{3}\neq 0 , which

is a contradiction. Therefore R is not contained in Im \gamma_{1} We remark that
R satisfies the condition rank R (X, Y)\leqq 2 for any X, Y\in V. Next for a
non-zero real number t we define a symmetric linear map L_{t} : Varrow V by

L_{t}(X_{1})=tX_{1}

L_{t}(X_{2})= \frac{1}{t}X_{2-}

L_{t}(X_{3})= \frac{1}{t}X_{3}

and L_{t}(X_{i})=0

for 4\leqq i\leqq n . Then it is easy to see that lim L_{t}\Lambda L_{t}=R. Clearly L_{t}\Lambda L_{t} is an
element of Im \gamma_{1} and therefore Im \gamma_{1} is no^{t}\vec{t}a\infty closed set. Note that in the case
n=2 , Im \gamma_{1} is closed because \gamma_{1} is a surjective map.
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