On the number of irreducible characters in a finite group II

Dedicated to Professor Hirosi Nagao on his 60th birthday

By Tomoyuki Wada
(Received November 27, 1984)

§ 1 Introduction.

Let F be an algebraically closed field of characteristic p, and G be a finite group with a Sylow p-subgroup P. Let B be a block ideal of the group algebra $F G$ which can be regarded as an indecomposable direct summand of $F G$ as an $F(G \times G)$-module. We denote by $k(B)$ and $l(B)$ the number of irreducible ordinary and modular characters in B, respectively. In [8] the author introduced two invariants $m(B)$ and $n(B)$ associated with B that is the number of indecomposable direct summands of $B_{\Delta(P)}$ and $B_{P \times P}$, where Δ is the diagonal map from G to $G \times G$. We obtained some relations among four invariants $k(B), l(B), m(B)$ and $n(B)$, and it turned out that relation between $m(B)$ and $n(B)$ has a strong resemblance to that between $k(B)$ and $l(B)$. Furthermore, in [9] we proved that $l(B) \leqq n(B)$ and investigate the structure of B when equality holds. In this paper we will show that $|P: D| k(B) \leqq m(B)$ if a defect group D of B is contained in the center of P.

Let us set $|P|=p^{a},|D|=p^{d}$ and $\operatorname{dim}_{F} B=p^{2 a-d} v(B)$, where $v(B)=u$ $(B)^{2} w(B)$ is the p^{\prime}-number mentioned in [2] and [8]. Then our results can be written as the following diagram,

In the above diagram (*), we mean that the upper term is greater than or equal to the lower one, and (1.1) was proved in (5D) of [1] and Proposition 2 of [6], and we will mention it in (2.7). (1.2) was proved in Propositions (2C) - (2E) of [8], and (1.3) was proved in Theorem 2 of [9].

§ 2 Relation between $k(B)$ and $m(B)$.

Let $\operatorname{Irr}(B)$ and $\operatorname{IBr}(B)$ be the set of all irreducible ordinary and Brauer characters in B, respectively.
(2. 1) (Proposition(2B), [8]). $m(B)=\sum_{x \in \operatorname{Irr}(B)}\left(\boldsymbol{\chi}_{P}, \chi_{P}\right)$, $n(B)=\sum_{x \in \operatorname{Irr}(B)}\left(\chi_{P}, 1_{P}\right)^{2}$.
Let σ be a p-element of G. By $B(\sigma)$ we denote the direct sum of block ideals b of $C_{G}(\sigma)$ such that $b^{G}=B$. Let $\left\{d_{\chi}^{\sigma} \phi_{i}^{\sigma}\right\}$ be the generalized decomposition number with respect to σ. Then it is well-known that $\sum_{x \in \operatorname{lrr}(B)} d_{\phi_{i}^{\sigma}}^{\sigma} \overline{d_{\chi}^{\sigma} \phi_{j}^{\sigma}}=c_{i j}^{\sigma}$. Then the following holds.
(2. 2)

$$
\sum_{x \in \operatorname{Irr}(B)}|\boldsymbol{\chi}(\sigma)|^{2}=\operatorname{dim}_{F} B(\sigma)
$$

PROOF. Since $\boldsymbol{\chi}(\sigma)=\sum_{\phi \sigma \in B(\sigma)} d_{\chi}^{\sigma} \phi_{i}^{\sigma} \phi_{i}^{\sigma}(1)$ by Brauer's second main theorem, we have that

$$
\begin{aligned}
\sum_{x \in \operatorname{Irr}(B)}|\boldsymbol{\chi}(\sigma)|^{2} & =\sum_{x} \sum_{\phi_{i}^{i}, \phi_{j}^{\sigma}} d_{x \phi_{i}^{\sigma}}^{\sigma} \overline{d_{x \phi_{j}^{\sigma}}^{\sigma}} \phi_{i}^{\sigma}(1) \phi_{j}^{\sigma}(1) \\
& =\sum_{i, j} c_{i j}^{\sigma} \phi_{i}^{\sigma}(1) \phi_{j}^{\sigma}(1) \\
& =\sum_{\phi_{i}^{\sigma} \in B(\sigma)} \phi_{i}^{\sigma}(1) \Phi_{i}^{\sigma}(1) \\
& =\operatorname{dim}_{F} B(\sigma),
\end{aligned}
$$

where Φ_{i}^{σ} is the principal indecomposable character associated with $\boldsymbol{\phi}_{i}^{\sigma}$.
Set $D^{G}=\left\{\sigma^{x} \mid \sigma \in D, x \in G\right\}$. As is well-known, when σ is a p-element and D is a defect group of B, then $\chi(\sigma)=0$ for all $\chi \in \operatorname{Irr}(B)$ if σ is not contained in D^{G} (see Green [2] and Feit[3], Lemma IV, 2.4). Then the following holds.
(2. 3) $\quad m(B)=1 /|P| \sum_{\sigma \in D^{c} \cap P} \operatorname{dim}_{F} B(\sigma)$,

$$
n(B)=1 /|P|^{2} \quad \sum_{\sigma \in D^{c} \cap P}\left|\sigma^{G} \cap P\right| \operatorname{dim}_{F} B(\sigma)
$$

Proof. From (2.1), (2.2) we have that

$$
m(B)=\sum_{x \in \operatorname{Irr}(B)}\left(\chi_{P}, \chi_{P}\right)
$$

$$
\begin{aligned}
& =\sum_{\chi} 1 /|P| \sum_{\sigma \in P}|\chi(\sigma)|^{2} \\
& =1 /|P| \sum_{\sigma \in D^{d} \cap P} \operatorname{dim}_{F} B(\sigma) .
\end{aligned}
$$

Furthermore, by the orthogonality relation of blocks (see Feit [3], Lemma IV, 6.3) we have that

$$
\begin{aligned}
n(B) & =\sum_{x \in \operatorname{Irr}(B)}\left(\chi_{P}, 1_{P}\right)^{2} \\
& =\sum_{\chi} 1 /|P|^{2} \sum_{\sigma, \tau \in P} \chi(\sigma) \overline{\chi(\tau)} \\
& =1 /|P|^{2} \sum_{\sigma, \tau \in P} \sum_{\chi} \chi(\sigma) \overline{\chi(\tau)} \\
& =1 /|P|^{2} \sum_{\sigma \in P} \sum_{\chi}\left|\sigma^{G} \cap P\right||\chi(\sigma)|^{2} \\
& =1 /|P|^{2} \sum_{\sigma \in D^{d} \cap P}\left|\sigma^{G} \cap P\right| \operatorname{dim}_{F} B(\sigma) .
\end{aligned}
$$

(2. 4) It holds that $m(B) \leqq p^{a} n(B)$ and equality holds if and only if $\sigma^{G} \cap P=\{\sigma\}$ for all $\sigma \in D$.

Proof. It is easy observation from (2.3). See also Proposition(2E) and Theorem (3B) of [8].

By (2.1) and the diagram (*) it generally holds that $k(B) \leqq m(B)$ and $p^{a-2 d} k(B) \leqq m(B)$. But our purpose here is to show the following more precise relation.
(2. 5) Theorem. Let B be a block of G with defect group D. Suppose $D \leqq Z(P)$, then $p^{a-d} k(B) \leqq m(B)$.

Proof. Let S be a complete set of representatives of the conjugate classes in G consisting of elements in D. Then Lemmas IV, 6.5, 6.6 in [3] imply that $k(B)=\sum_{\sigma \in S} l(B(\sigma))$, where $l(B(\sigma))=\sum_{b^{c}=B} l(b)$. By our assumption, D is abelian and $C_{G}(\sigma) \leqq P$ for all $\sigma \in D$, hence if b is a block of $C_{G}(\sigma)$ such that $b^{G}=B$, then D is a defect group of b (see Feit [3], Lemma V, 6.1), and hence

$$
\operatorname{dim}_{F} b=p^{2 a-d} v(b) \geqq p^{2 a-d} l(b) .
$$

Therefore, we have from (2.2) that

$$
\begin{aligned}
m(B) & =1 /|P| \sum_{\sigma \in D^{i} \cap P} \operatorname{dim}_{F} B(\sigma) \\
& =1 /|P| \sum_{\sigma} \sum_{b} p^{2 a-d} v(b) \\
& \geqq p^{a-d} \sum_{\sigma} \sum_{b} l(b) \\
& \geqq p^{a-d} \sum_{\sigma \in S} l(B(\sigma)) \\
& =p^{a-d} k(B) .
\end{aligned}
$$

(2. 6) Example. We shall give examples which show that our assumption $D \leqq Z(P)$ is necessary in (2.5).
(1) Non-solvable case.

Let $G=S_{5}$ and $p=2$. Let B be the block of G with 2-defect 1. Then Irr $(B)=\left\{\chi_{1}, \chi_{2}\right\}$ and $\chi_{i}(1)=4$ for $i=1,2$. A defect group D of B is of order 2 and it is not normal in any Sylow 2 -subgroup P of G. We have easily that $p^{a-d} k(B)=8$, and $m(B)=6$.
(2) Solvable case.

Let G be the dihedral group of order 24 and $p=2$. Then G has the unique non-principal 2-block B of 2-defect 2. Hence $\operatorname{Irr}(B)=\left\{\chi_{i} \mid 1 \leqq i \leqq 4\right\}$ and $\chi_{i}(1)=2$ for $1 \leqq i \leqq 4$. Since D is a defect group of an element of order $3, D$ is cyclic group of order 4 and $D \triangleleft G$. But D is not contained in the center of any Sylow 2 -subgroup P. And, we have also that $p^{a-d} k(B)=8, m$ $(B)=6$. This example has been informed from Mr. Murai, and see section 3.

On the equality in Theorem (2.5) we have the following.
(2. 7). In the diagram (*), $k(B)=p^{d} l(B)$ if and only if $k(B)=p^{d}$ and $l(B)=1$.

Proof. Let $k_{i}(B)$ be the number of irreducible ordinary characters in B of height i. Then Olsson has proved that

$$
k_{0}(B)+\sum_{i>0} k_{i}(B) p^{i+1} \leqq p^{d} l(B)
$$

(see Proposition 2, [6]). Hence, if $k(B)=p^{d} l(B)$, then $k(B)=k_{0}(B)$. Furthermore, Olsson has shown that if $k(B)=k_{0}(B)$, then $k(B) \leqq p^{d} \downarrow l(B)$ (see Proposition 15, [6]). Therefore, we have that $l(B)=1$, and hence k $(B)=p^{d}$.
(2. 8) Remark. Note that Okuyama and Tsushima proved that k $(B)=p^{d} l(B)$ implies that D is abelian and the inertial index is 1 which is the converse of the well-known theorem of Brauer (Proposition 1 and Theorem 3, [5]). In the diagram (*), (2.7) implies that $k(B)=p^{d} l(B)$ if and only if $k(B)=p^{d} w(B)$.
(2.9) In the diagram (*), it generally holds that $k(B) \leqq p^{d} n(B)$. On the equality, the following are equivalent;
(1) $k(B)=p^{d} n(B)$,
(2) $k(B)=p^{d} v(B)$.

Proof. (2) $\rightarrow(1)$. Obvious. (1) $\rightarrow(2)$. If $k(B)=p^{d} n(B)$, then $k(B)=$ $p^{d} l(B)$. Therefore, by (2.7) $l(B)=1$ and $k(B)=p^{d}$. This implies that n $(B)=1$. Then $v(B)=1$ (see Proposition (2E), 2) in [8]).
(2.10) Theorem. Let B be a block of G with defect group D. Suppose $D \leqq Z(P)$, then the following are equivalent ;
(1) $p^{a-d} k(B)=m(B)$,
(2) $k(B)=p^{d} v(B)$.

Furthermore, in this case it holds that $[G, D] \leqq \operatorname{Ker} B$.
Proof. (2) $\rightarrow(1)$. Obvious. (1) $\rightarrow(2)$. It follows from the proof of Theorem (2.5) that if $p^{a-d} k(B)=m(B)$, then $\sigma^{G} \cap P=\{\sigma\}$ for all $\sigma \in D$. By (2.4) this implies that $m(B)=p^{a} n(B)$. Hence we have that $k(B)=p^{d}$ $n(B)$. Then (2.9) yields that $k(B)=p^{d} v(B)$, and since $m(B)=p^{a} v(B)$, it follows that $[G, D] \leqq \operatorname{Ker} B$ by Theorem (3B), 2) in [8].

§ 3 Correction.

Mr. Masafumi Murai has kindly pointed out that the argument on the Green correspondence in step 3 of the proof of Theorem (4B) in my paper [8] is incorrect, and informed me of the following counter example to Theorem (4B). The author thanks Mr. Murai for his valuable suggestion.

Example. Let G be a dihedral group of order $2^{n} r$, where $n \geqq 3$ and $r>$ 1 is odd. If $p=2$, then G has a non-princinal block B. Since $\chi(1)=2$ for all $\chi \in \operatorname{Irr}(B)$, we have that $k(B)=p^{d} v(B)$. On the other hand, as any non -identity element of odd order of G has a cyclic defect group D of order 2^{n-1}, D is a defect group of B and $D \triangleleft G$. But it does not hold that $[G, D] \leqq$ Ker B.

Now, we shall state here that, under some stronger condition, Theorem (4B) remains true.

Theorem. Let B be a block with defect group D and defect d. We assume that $D \triangleleft P$ for a Sylow p-subgroup P of G. If $k(B)=p^{d} v(B)$ (i. e. $\chi(l)=|P: D|$ for all $\chi \in \operatorname{Irr}(B))$, then the following holds.

1) D is abelian,
2) $G=P C_{G}(D)$ Ker B, in particular $[G, D \cap Z(P)] \leqq$ Ker B, and hence if $D \leqq Z(P)$, then $[G, D] \leqq$ Ker B.
Proof. We may assume that Ker $B=1$ by induction on $|G|$. Our assumption $k(B)=p^{d} v(B)$ implies that $l(B)=v(B)=1$, and hence by Theorem (4A) in [8] we have that $D \triangleleft G$.
3) Since every $\chi \in \operatorname{Irr}(B)$ is of height 0 , it follows from the theorem of Reynolds ([7]) that D is abelian.
4) It suffices to show that $\left|G: C_{G}(D)\right|$ is a power of p. Let $C=G_{G}(D)$ and b be a block of C covered by B. Let $T(b)$ be the inertial group of b and \tilde{B} be a block of $T(b)$ covering b. Then we have that $b^{T(b)}=\tilde{B}, \tilde{B}^{G}=$
B and hence b, \tilde{B} have a defect group D. It is well known that there is a $1-1$ correspondence between $\operatorname{Irr}(\tilde{B})$ and $\operatorname{Irr}(B)$ by the map sending ζ to ζ^{G} (Theorem V. 2.5, [3]). Let $\xi \in \operatorname{Irr}(\tilde{B})$ and then $\xi^{G}=\chi \in \operatorname{Irr}(B)$. Since C $\triangleleft G$, it follows from the theorem of Clifford that $\xi_{C}=e \sum_{i=1}^{t} \sigma_{i}$ for some integer e, where $t=\left|T(b): I_{G}\left(\sigma_{1}\right)\right|$ and $\sigma_{i} \in \operatorname{Irr}(b)$.
Hence (*) $|P: D|=\chi(1)$

$$
\begin{aligned}
& =|G: T(b)| \xi(1) \\
& =|G: T(b)|\left|T(b): I_{G}\left(\sigma_{1}\right)\right| e \sigma_{1}(1)
\end{aligned}
$$

As the inertial index $e(B)=|T(b): C|$ is prime to p (Lemma V. 5.2, [3]) and e divides $e(B)$, we have that

$$
\left|T(b): I_{G}\left(\sigma_{1}\right)\right| e=1 .
$$

(In fact, $e(B)=1$, also 1) directly follows from [5] in our case.) Therefore ξ_{C} is irreducible for all $\xi \in \operatorname{Irr}(\tilde{B})$. Since $D \leqq Z(C),[T(b), D] \leqq \operatorname{Ker} \tilde{B}$. This implies that $T(b)=C_{T(b)}(D)$ Ker \tilde{B}. But, as Ker $\tilde{B} \triangleleft T(b)$ and it is a p^{\prime}-group, and $D \triangleleft G$, we have that $\operatorname{Ker} \tilde{B} \leqq C_{T(b)}(D)$. Hence $T(b)=C$, and then $|G: C|$ is a power of p by (*). This completes the proof of Theorem.

Corollary (4C), 2) is still true, but Corollary (4D), 1) is not true under the condition $D \triangleleft P$. However, for instance, if $D \leqq Z(P)$, then the assertion holds.

References

[1] R. BRAUER: On blocks and sections in finite groups II. Amer. J. Math., 90 (1968), 895-925.
[2] R. BRauER: Notes on representations of finite groups I. J. London Math. Soc., (2), 13 (1976), 162-166.
[3] W. Feit : The Representation Theory of Finite Groups. North-Holland, New York, 1982.
[4] J. A. GreEn: Blocks of modular representations. Math. Zeit., 79 (1962), 100-115.
[5] T. OKuYama and Y. Tsushima: Local properties of p-block algebras of finite groups. Osaka J. Math., 20 (1983), 33-41.
[6] J. B. OlSSON: Inequalities for block theoretic invariants. Springer Lect. Notes in Math., 903 (1981), 270-284.
[7] W. F. Reynolds: Blocks and normal subgroups. Nagoya Math. Jour., 22 (1963), 15-32.
[8] T. WADA: Blocks with a normal defect group. Hokkaido Math. Jour., 10 (1981), 319-332.
[9] T. WADA: On the number of irreducible characters in a finite group. Hokkaido Math. Jour., 12 (1983), 74-82.

