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\S 1 Introduction.

Let F be an algebraically closed field of characteristic p , and G be a
finite group with a Sylow p-subgroup P. Let B be a block ideal of the group
algebra FG which can be regarded as an indecomposable direct summand of
FG as an F(G\cross G) -module. We denote by k(B) and l(B) the number of
irreducible ordinary and modular characters in B , respectively. In [8] the
author introduced two invariants m(B) and n(B) associated with B that is
the number of indecomposable direct summands of B_{\Delta(P)} and B_{P\cross P} , where \Delta

is the diagonal map from G to G\cross G . We obtained some relations among
four invariants k(B) , l(B) , m(B) and n(B) , and it turned out that
relation between m(B) and n(B) has a strong resemblance to that between
k(B) and l(B) . Furthermore, in [9] we proved that l(B)\leqq n(B) and
investigate the structure of B when equality holds. In this paper we will
show that |P:D|k(B)\leqq m(B) if a defect group D of B is contained in the
center of P .

Let us set |P|=p^{a} , |D|=p^{d} and \dim_{F}B=p^{2a-d}v(B) , where v(B)=u
(B)^{2}w(B) is the p’-number mentioned in [2] and [8]. Then our results
can be written as the following diagram,

dn(B)
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In the above diagram (*) , we mean that the upper term is greater than or
equal to the lower one, and (1. 1) was proved in (5D) of [1] and Proposi-
tion 2 [6], and we will mention it in (2. 7). (1. 2) was proved in Proposi-
tions (2C)-(2E) of [8], and (1. 3) was proved in Theorem 2 of [9].

\S 2 Relation between k(B) and m(B) .
Let Irr (B) and IBr (B) be the set of all irreducible ordinary and Brauer

characters in B , respectively.

(2. 1) Proposition (2B) , [8] ) . m(B)= \sum_{x\in Irr(B)}(\chi_{P} \chi_{P}) ,

n(B)= \sum_{x\in Irr(B)}(x_{P} ^{1_{P}})^{2} .
Let \sigma be a p-element of G . By B(\sigma) we denote the direct sum of block

ideals b of C_{G}(\sigma) such that b^{G}=B . Let \{ d_{\chi\Phi_{i}^{\sigma}}^{\sigma} \} be the generalized de-

composition number with respect to \sigma . Then it is well-known that
\sum_{x\in Irr(B)}d_{\chi\phi_{i}^{\sigma}}^{\sigma}|\overline{d_{\chi\phi_{j}^{\sigma}}^{\sigma}}=c_{ij}^{\sigma} . Then the following holds.

(2. 2) \sum_{x\in Irr(B)}|\chi(\sigma)|^{2}=\dim_{F}B(\sigma) .

PROOF. Since \chi(\sigma)=\sum_{\emptyset_{i}^{\sigma}\in B(\sigma)}d_{\chi\phi_{i}^{\sigma}}^{\sigma}\phi_{i}^{\sigma}(1)
by Brauer’s second main theorem,

we have that

\sum_{x\in Irr(B)}|\chi(\sigma)|2=\sum_{X}\sum_{\phi_{i}^{\sigma},\phi_{j}^{\sigma}}d_{\chi\phi_{i}^{\sigma}}^{\sigma}\overline{d_{\chi\phi_{J}^{\sigma}}^{\sigma}}\phi_{i}^{\sigma}(1)\phi_{j}^{\sigma}(1)

=_{i,j^{C_{ij}^{\sigma}\phi_{i}^{\sigma}(1)\phi_{j}^{\sigma}(1)}} \sum

= \sum\phi_{i}^{\sigma}(1)\Phi_{i}^{\sigma}(1)

\phi_{i}^{\sigma}\in B(\sigma)

=\dim_{F}B(\sigma) ,

where \Phi_{i}^{\sigma} is the principal indecomposable character associated with \phi_{i}^{\sigma} .

Set D^{G}=\{\sigma^{x}|\sigma\in D, x\in G\} . As is well-known, when \sigma is a p-element
and D is a defect group of B , then \chi(\sigma)=0 for all \chi\in Irr(B) if \sigma is not
contained in D^{G} (see Green [2] and Feit[3], Lemma IV , 2. 4). Then the
following holds.

(2. 3) m(B)=1/|P| \sum_{\sigma\in D^{G}\cap P}\dim_{F}B(\sigma) ,

n(B)=1/|P|^{2} \Sigma |\sigma^{G}\cap P|\dim_{F}B(\sigma) .
\sigma\in D^{G}\cap P

PROOF. From (2. 1), (2. 2) we have that

m(B)= \sum_{x\in Irr(B)}(\chi_{P}, \chi_{P})
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= \sum_{\chi}1/|P|\sum_{\sigma\in P}|\chi(\sigma)|^{2}

=1/|P| \Sigma \dim_{F}B(\sigma) .
\sigma\in D^{G}\cap P

Furthermore, by the orthogonality relation of blocks (see Feit [3], Lemma
IV, 6. 3) we have that

n(B)= \sum_{x\in Irr(B)}(\chi_{PJ}1_{P})^{2}

= \sum_{\chi}1/|P|^{2}\sum_{\sigma,\tau\in P}\chi(\sigma)\overline{\chi(\tau)}

=1/|P|^{2} \sum_{\sigma,\tau\in P}\sum_{\chi}\chi(\sigma)\overline{\chi(\tau)}

=1/|P|^{2} \sum_{\sigma\in P}\sum_{\chi}|\sigma^{G}\cap P||\chi(\sigma)|^{2}

=1/|P|^{2} \sum_{\sigma\in D^{G}\cap P}|\sigma^{G}\cap P|\dim_{F}B(\sigma) .

(2. 4) It holds that m(B)\leqq p^{a}n(B) and equality holds if and only

if \sigma^{G}\cap P--\{\sigma\} for all \sigma\in D.
PROOF. It is easy observation from (2. 3). See also Proposition (2E)

and Theorem(3B) of [8].
By (2. 1) and the diagram (*) it generally holds that k(B)\leqq m(B) and

p^{a-2d}k(B)\leqq m(B) . But our purpose here is to show the following more
precise relation.

(2. 5) THEOREM. Let B be a block of G with defect group D.
Suppose D\leqq Z(P) , then p^{a-d}k(B)\leqq m(B) .

PROOF. Let S be a complete set of representatives of the conjugate
classes in G consisting of elements in D . Then Lemmas IV , 6. 5, 6. 6 in [3]

imply that k(B)= \sum_{\sigma\in S}l(B(\sigma)) , where l(B(\sigma))= \sum_{b^{G}=B}l (b) . By our
assumption, D is abelian and C_{G}(\sigma)\leqq P for all \sigma\in D , hence if b is a block
of C_{G}(\sigma) such that b^{G}=B , then D is a defect group of b (see Feit [3],

Lemma V, 6. 1), and hence
\dim_{F}b=p^{2a-d}v(b)\geqq p^{2a-d}l(b) .

Therefore, we have from (2. 2) that

m(B)=1/|P| \sum \dim_{F}B(\sigma)
\sigma\in D^{G}\cap P

=1/|P| \sum_{\sigma}\sum_{b}p^{2a-d}v(b)

\geqq p^{a-d}\sum_{\sigma}\sum_{b}l(b)

\geqq p^{a-d}\sum_{\sigma\in S}l(B(\sigma))

=p^{a-d}k(B) .
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(2. 6) EXAMPLE. We shall give examples which show that our
assumption D\leqq Z(P) is necessary in (2. 5).

(1) Non-solvable case.
Let G=S_{5} and p=2 . Let B be the block of G with 2-defect 1. Then Irr

(B)= j|\chi_{1} , \chi_{2(}^{(} and \chi_{i}(1)=4 for i=1,2 . A defect group D of B is of order
2 and it is not normal in any Sylow 2-subgroup P of G . We have easily that
p^{a-d}k(B)=8 , and m(B)=6.

(2) Solvable case.
Let G be the dihedral group of order 24 and p=2. Then G has the

unique non-principal 2-block B of 2-defect 2. Hence Irr(B) =\{\chi_{i}|1\leqq i\leqq 4\}

and \chi_{i}(1)=2 for 1\leqq i\leqq 4 . Since D is a defect group of an element of order
3, D is cyclic group of order 4 and D\triangleleft G . But D is not contained in the
center of any Sylow 2-subgroup P. And, we have also that p^{a-d}k(B)=8 , m

(B)=6. This example has been informed from Mr. Murai, and see section
3.

On the equality in Theorem (2. 5) we have the following.

(2. 7). In the diagram (*) , k(B)=p^{d}l(B) if and only if k(B)=p^{d}

and l(B)=1 .
PROOF. Let k_{i}(B) be the number of irreducible ordinary characters in B

of height i . Then Olsson has proved that

k_{0}(B)+ \sum_{i>0}k_{i}(B)p^{i+1}\leqq p^{d}l(B)

(see Proposition 2, [6]). Hence, if k(B)=p^{d}l(B) , then k(B)=k_{)}(B) .
Furthermore, Olsson has shown that if k(B)=h(B) , then k(B)\leqq p^{d}\sqrt l(B)

(see Proposition 15, [6]). Therefore, we have that l(B)=1, and hence k

(B)=p^{d}.

(2. 8) REMARK. Note that Okuyama and Tsushima proved that k

(B)=p^{d}l(B) implies that D is abelian and the inertial index is 1 which is the
converse of the well-known theorem of Brauer (Proposition 1 and Theorem
3, [5] ) . In the diagram (*) , (2. 7) implies that k(B)=p^{d}l(B) if and only
if k(B)=p^{d}w(B) .

(2. 9) In the diagram (*) , it generally holds that k(B)\leqq p^{d}n(B) .
On the equality, the following are cquivalent:

(1) k(B)=p^{d}n(B) ,

(2) k(B)=p^{d}v(B) .
PROOF. (2)arrow(1) . Obvious. (1)arrow(2) . If k(B)=p^{d}n(B) , then k(B)=

p^{d}l(B) . Therefore, by (2. 7) l(B)–1 and k(B)=p^{d} . This implies that n

(B)=1 . Then v(B)=1 (see Proposition (2E) , 2) in [8] ) .
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(2.10) THEOREM. Let B be a block of G with defect group D.
Suppose D\leqq Z(P) , then the following are equivalent;

(1) p^{a-d}k(B)=m(B) ,

(2) k(B)=p^{d}v(B) .
Furthermore, in this case it holds that [ G, D]\leqq KerB.

PROOF. (2)arrow(1) . Obvious. (1)arrow(2) . It follows from the proof of
Theorem (2. 5) that if p^{a-d}k(B)=m(B) , then \sigma^{G}\cap P=\{\sigma\} for all \sigma\in D .
By (2. 4) this implies that m(B)=p^{a}n(B) . Hence we have that k(B)=p^{d}

n(B) . Then (2. 9) yields that k(B)=p^{d}v(B) , and since m(B)=p^{a}v(B) ,

it follows that [ G, D]\leqq Ker B by Theorem (3B) , 2) in [8].

\S 3 Correction.

Mr. Masafumi Murai has kindly pointed out that the argument on the
Green correspondence in step 3 of the proof of Theorem (4B) in my paper
[8] is incorrect, and informed me of the following counter example to
Theorem (4B) . The author thanks Mr. Murai for his valuable suggestion.

EXAMPLE. Let G be a dihedral group of order 2^{n}r , where n\geqq 3 and r>
1 is odd. If p=2, then G has a non-princinal block B . Since \chi(1)=2 for all
\chi\in Irr(B) , we have that k(B)=p^{d}v(B) . On the other hand, as any non
-identity element of odd order of G has a cyclic defect group D of order 2^{n-1} ,

D is a defect group of B and D\triangleleft G . But it does not hold that [ G, D]\leqq

Ker B .
Now, we shall state here that, under some stronger condition, Theorem

(4B) remains true.

THEOREM. Let B be a block with defect group D and defect d. We
assume that D\triangleleft P for a Sylow p-subgroup P of G. If k(B)=p^{d}v(B)(i. e.
\chi(l)=|P:D| for all \chi\in Irr(B)) , then the following holds.

1) D is abelian,
2) G=PC_{G}(D)Ker B, in particular [ G, D\cap Z(P)]\leqq KerB, and hence

if D\leqq Z(P) , then [ G, D]\leqq KerB.
PROOF. We may assume that Ker B=1 by induction on |G| . Our

assumption k(B)=p^{d}v(B) implies that l(B)=v(B)=1 , and hence by
Theorem (4A) in [8] we have that D\triangleleft G .

1) Since every \chi\in Irr(B) is of height 0, it follows from the theorem of
Reynolds ([7]) that D is abelian.

2) It suffices to show that |G:C_{G}(D)| is a power of p . Let C=G_{G}(D)

and b be a block of C covered by B . Let T(b) be the inertial group of b

and \tilde{B} be a block of T(b) covering b . Then we have that b^{T(b)}=\tilde{B},\tilde{B}^{G}=
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B and hence b,\tilde{B} have a defect group D . It is well known that there is a 1-1
correspondence between Irr(\tilde{B}) and Irr(5) by the map sending \zeta to \zeta^{G}

(Theorem V. 2. 5, [3]). Let \zeta\in Irr(\tilde{B}) and then \zeta^{G}=\chi\in Irr(B) . Since C

\triangleleft G , it follows from the theorem of Clifford that \zeta_{C}=e\sum_{i=1}^{t}\sigma_{i} for some integer

e , where t=|T(b) : I_{G}(\sigma_{1})| and \sigma_{i}\in Irr(b) .
Hence (*) |P : D|=\chi(1)

=|G:T(b)|\zeta(1)

=|G:T(b)| |T(b) : I_{G}(\sigma_{1})|e\sigma_{1}(1) .
As the inertial index e(B)=|T(b):C| is prime to p (Lemma V. 5. 2, [3])
and e divides e(B) , we have that

|T(b) : I_{G}(\sigma_{1})|e=1 .
(In fact, e(B)=1 , also 1) directly follows from [5] in our case.) Therefore
\zeta_{C} is irreducible for all \zeta\in Irr(\tilde{B}) . Since D\leqq Z(C) , [ T(b), D]\leqq Ker\tilde{B}.
This implies that T(b)=C_{T(b)}(D) Ker \tilde{B}. But, as Ker \tilde{B}\triangleleft T(b) and it is
a p^{r} group and D\triangleleft G , we have that Ker \tilde{B}\leqq C_{T(b)}(D) . Hence T(b)=C ,

and then |G : C| is a power of p by (*) . This completes the proof of
Theorem.

Corollary (4C) , 2) is still true, but Corollary (4D) , 1) is not true
under the condition D\triangleleft P . However, for instance, if D\leqq Z(P) , then the
assertion holds.
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