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Wiener functionals and probability limit theorems,
Il : Term-wise multiplication and its applications

Gisiro MARUYAMA*
(Received December 5, 1985, Revised March 5, 1986)

§ 1. Unconditionally convergent multiplication

In the preceding paper [13], the author studied central limit theorems
for a class of Wiener functionals, that is, measurable functions of Gaussian
white noise. The present paper consists of the first part (§1-§2), an
English presentation of § 6-§ 7 of and the second part (§ 3-§ 4), central
limit theorems (CLT’s) as an application of the first part.
generalizes in [13]. In the first part we consider a multiplication
procedure in the classes, Nom, Nin(1<m<oo) of Wiener functionals.

We are concerned with L?(1<p <o), the space of real random variables
X, furnished with | X |,=(E | X [?)"*as norm, subordinate to a real Gaussian
stationary process

1.1 &=/ exp idtdp(L), —co<t<o,

with E&(¢)=0, complex spectral random measure dB, and spectral measure
do=E |dB(1)|?, which is absolutely continuous with respect to Lebesgue
measure, do(1)=f(1)dA. Define &, .(1<k<c0) to be the set of complex
symmetric Borel functions % on R* satisfying(i) A(A)=h(—2)(ii)hE
L*(d*s). An arbitrary X €L? is represented as

1.2 X=ot ZXe, Xu=I(e)=[a)d*s LERY,

where ¢, €7x.(c.f. [13]), X, is a k-fold multiple It6 integral (or homogene-
ous polynomial of degree k). Sometimes, the notation X =(c, ¢, +++) Or
X =(c., 0<k<co) is used to abreviate the expression (1.2). X*=(|c |,

|ci],-+-) is at the same time an element of L*. If the right-hand side of (1.2)
is a finite sum, X is said to be finite ; d =max(k: |c.|.#0) is the degree of

X, where |[c:li= f |cx(1) |27d*e. We succeed notational conventions of

[13]: X, denotes the partial sum of (1. 2) up to X, ; whole spaces, such as
(—00,00) in (1.1) or R*in (1.2) as integration domains are suppressed ; ¢,
¢, ¢, -+ will denote constants, of which the same symbol may stand for

* Deceased July5, 1986.
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different values.

Writing 1 or dim(1)=d (d>0) we mean that the relevant vectors are
d-dimensional. However, in many cases, dimensionalities are not explicit,
when there is no danger of confusion. If A™=(A,, -, 1), "= (1, -+, un)
are vectors, the notations cmin(A1, =", Am, 1, *** , ) and Cpin (1™, u”) are
synonymously used.

Suppose that we are given finite elements XY eL?(1<j<m), XYV=(c¥,
c?, ). Let

1.3 0 X9=3 ka(l)dk,B
j=1 £E=0

be the It6-Wiener expansion of X®--- X™_  (C,, the kernel of kth homo-
geneous polynomial, is obtained by the multiplication rule (p. 388, [12]).
To get an idea, consider the case m=4. Then

19 GW=F CAw
A’:(A’(M), Tt A(M)); u:<u1; T, u4>’ ﬁ:u1+"'+u4,

where

1.5 CP;Aw= T pl.jz(“lﬂh) p! <uz+pz)

1<i<j<4 D D2l P! Pua! 2
y P! (m+p3> sl <u4+p4> ba!
Dz ! Doz ! s ! bDs Dis ! Dos ! Das ! Ds Dra! Poa ! Pas!

X’[C%})<llz, A'13’ 114) A'(ul)>C§)f)<_A-12) 123) 124) /1(”’2))

Rh

XCS):;?(_A-K%) —l23) 134’ ACM))C%:D<_A'14J _124) _—134) A(M)>dko-)

where

4
dim(A:) =pi;, vi=wuitp:, pi= _leij, p:=0,
<

(P) pi=p0:(1<4, j<O), k=p/2, p=p+--+ b4,
R'={0}, d°0 =7, (unit mass at {0}),

the summation of (1.5) is taken over all matrices subject to the above
conditions. Those A,; for which d(4,;) =0 are absent in the right-hand side
of (1.5).

To have a systematic expression of a kernel function in (1. 3), introduce
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a measure dr on the space
E=U B, E={n)xR (n20), R=(0).

The o¢-algebra on E is composed of {n}XZ (R") on E,, where & (R") are
the Borel families on R”. Define 7 to be such a measure that

r(nixD=n! [ d'e(n=1), ACFRD, v(E)=1.
A

Let P=|p;;| be a symmetric m X m-matrix whose elements p;; are non-
negative integers, with p;;=0(1<i7, j<#®). Define an m X m-matrix E=
B (x) = ||x;;|| whose (7, j)-elements are from E, x;;= (p;;, A;;), dim(A;;) =pi;,
Aji=—2Ay, andx=(x;;, 1<i<j<m) is an m(m-1)/2-dimensional composite
variable; x;;(1<i<j<m) is a function of x;;. Let{e,=(1,0,:--,0), -, en=
(0,---,0,1)} be the standard basis of R”. For [€N,=(0,1,-:-), an ordered
partition = of [ is a map = : -4, -+, ln) ENT, with L +---+1,=1 The
corresponding partition of A =(A,, -+, 1,) ER'isthemap: A —->QA“) .-+, 1 %)
ER"X--XR'™ where A=y, ,4,), A=, 41, ,A,4,), etc.
Introduce functions C, and BY?(1<j<m) defined respectively on E”X R and
EsXR(s=m(m—1)/2) by

I+q 7! : .
CPy,, - ym,w:( q_q )(hy__‘{.q_'cgfgéal, e Am, ), 1<5<m,

1.6) =0, A €EE (1<k<m), uER,
BY(x, ) =CP(eEX),u), XxEE*°, u ER".

A; is absent in the right-hand expression of (1.6) if ¢;=0. C, of X ... X™
is then written as

a.n  CW=T[ BBPxAD I dr(x),

1<i<j<m

where 7z runs over the set of ordered partitions of [

DerINITION 1. Let X=(c, a1, ---) €L Define | Xllr, IXhn(m=1)
and associated subclasses of L?:

1.8 WXlkn= Z @m-D**klcale,

X W= C sUp  E (X8,
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(1.9 Npmw={XeL?: || X|ltn<oo},
Now={X€EL?: || X|hn<oo}.

X and X* belong to the same subclass with equal relevant norms.
Obviously N,C N;=L? the latter two with coincident norm.

An infinite series in a Banach space is said to be unconditionally conver-
gent when it converges to the same limit, regardless of the order of sum-
mation.

THEOREM 1. Given XYENj, with X9=(c{, c?, - )A<j<m),
multiply the It0-Wiener expansions of X term by term to get a formal series
of homogeneous polynomials. Then the sevies is unconditionally L*-comver-
gent to XV -+ X The sum of thus obtained homogeneous polynomials of
degree 1(0<1<o0) is equal to the | th homogeneous polynomial of X ---
X,

Denote by S(XV,..., XP), 1<p<m, the cumulant of X©,--, X i e.

S(X®, ..., X
=P —— ; My ... (»
=1 (aal--- aa,,> log E{exp i[a: X+ -+ a@pXP} | gz —aco-
Then we have
» »
(1.100 E(I XY= 2 E(IIf),
j=1 B, R(p)Z0 j=1
(1.1 S(X®, -, X?)= 2 SUSky, =, Iy, IP=1(cD),
kD, - k()20
2<p<m,

where the right-hand members are absolutely convergent.

For the present and later use we prepare propositions 1- I -VI.

1-T. Let (X, %, m) be the product measure space of the wmeasure
spaces (X, B:, m), 1<i<m, and f; (1<i<k) be B -measurable complex
-valued functions of x,, -+, x., where x; is the generic point of X;. Suppose
Jurther that each x; is involved in certain distinct two but no move factors of

the product f,-f..
Then

W12 [ fifidm | <ULl
1A= [ 141 1=i<k,

where the last expression is the integral with respect to the arguments involved
in f; and relevant product measure.

Proor. A repeated use of Schwarz’s inequality with respect to m;, -+,



Wiener functionals and probability limit theorems,
II : Term-wise multiplication and its applications 409

m, or mathematical induction on # connected with Schwarz’s inequality
suffices to derive the conclusion ([II].

1-11.  Let X9elL? (1<j<l) be finite. Then
{
(1.13)  |S(X®, -, XO) | <S(XOV*, oo, XOH<E(II X9,
j=1
! !
1.14 |E(_H1X<ﬂ) | SE(.HIX(J)*),
1= j=

ProoF. Write I for the kth homogeneous polynomial of X*“. (1.13),
(1.14) follow from the multi-linearity of cumulants, moments, and integral
representations of SUI%y, -+, I, EU%y, -, 1% (c.f. 2.1, (2.2),

).

1. (i) Each of |l lem, Ne lom 1<m<oo) is mnon-decreasing ;
each of Nom, Nom (1S m< ) is non-increasing ; if X, Y ENam, X *— Y *llsn
<X = Ylkn;

Proor. Except the last one, conclusions of (i) directly follow from
the relevant definitions. For the proof of the last conclusion it suffices to
notice that E((X*—Y*)u)"=EX ty— Y &)*"< E{X— Ym)*}*", of
which the last inequality follows by using | [¢P(A) |—[¢P@A) | | ]cW(A)—
@A) (0<Ek<mn) in (1.6)-(1.7), where X=(c¥, 0=<k<co0), Y=(®?,
0<k<o0).

To prove (ii), make use of Nelson’s inequality (p. 113, [9] to have

”Xk ||2m_<_<2m_‘1)k/2”Xk ”2, m=1, 2, ey
where X, is the kth homogeneous polynomial in the expansion of X. Then,

if X is finite

EszSE<X*>2m: 2 E(X Z(]) X:(zm)>

kD, -, k2m)

< 2 “XZ(I) ||2m ot "XZ(Zm) “Zm
k), kCm)

= (2 @m— DXl

In general, given X €L? put X =X, in the last inequalities, and let n—co
along a subsequence of 1,2, ---- Then one easily gets the conclusions of (ii).
1-IV. MNen(1<m<oo) is a Banach space.

Proor. Obviously || * [l is @ norm. Suppose X”={c{’, 0<k<oo} is
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a Cauchy sequence in N,,, and put a,=(2m—1)*2% Since | X"—X?|,<

Il X=X, {X™} being a Cauchy sequence in L?, we have lim X=X

n—0o0

in L? for some X =(c, ¢, ---) €L% || Xl being bounded for n—co,
Ba/Fledl<c,

with a constant ¢ >0 independent of #». On making n—oo,
Zae/kllal<c

i.e. X EN,y,. On the other hand, given & >0, one can find #,=#n,(e) such
that

(1.15) Zan/E.|/f|c(k"’—c(k”’|2d"0'Se, b, n=n,.
k=0

If we let p—oo, (1.15) leads to
X —X.n<e for n=>mn,,
which concludes the completeness of N,,.
1-V. (i) If XEL? p>q=1, then

(1.16) EX&H)"—EX G2 E{Xp— Xa)*}*™
(i) If XENm, then IXn=1X*2m, IX —Xmlln—0 as n—oo.
(i)  (N'am, I+ W) #s @ Banach space.

Proor. (i) The obvious equality X & =(Xp— Xo)*+ X & leads to
2m—1
(X&)m= ((Xip— X)) + kgl (2;@%) (Xip— X)) R X &))"
+ (X &)™

The second term of the last expression being non-negative, one obtains
(1.16).
(ii) Suppose X €N3;,, and apply (1.16) to have

(1.1 0= lim E((Xp— Xg)*)™

p>q, g0

< lim (EX&)"—E(XE)™ =0,

p>4q, g—o

whence by (1.14)
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lim E(Xp— Xig)?"=0.

p>4q,g—>®

On the other hand, since X»—X, a.e. as n—co along a subsequence of 1, 2,
.., one obtains

(1.18) lim E(Xpn—X)*"=0.

p—©
This implies also X &—X* in L?", as n—co. Substituting this into X =

(lim E(X &)™ we have

n—00

1.19 X len=1X*12m.
Given & >0, (1.17) implies that there exists go=go(e) such that
e X&—X&lem for n, ¢24o.
Since X —X* (g—oo) in L*™ the last relation leads to
e Xt —X*llon= [ (Xon—X)*|2m for n=qo.
Then using (1.19),

B X~ X lfzn=0.

Finally we will prove the completeness of N'zn.

Let {Y9=(c¥, ¢, ---), 1<j<oo}CL? be a sequence of finite elements
with bounded degrees, such that Y9—Y®=(cf, ¢f?, ---) (j—c0) in L%
Using (1.6), (1.7) | Y@ =Y pn= (Y- YN*|yn and J=E{Y"Y—
Y ©)*12mig 3 sum of bounded number of integrals by product measures dm=
d?c whose kernels are of the same character as those in Proposition 1-1.
As a simple application of (1.12) one concludes that / is bounded by a
polynomial in [c¢?—c$[. (k=1) with coefficients independent of j, so that

(1.20) Y9 SY®"in L?" as j—oo.

Let {X®, j>1} be a Cauchy sequence of N3», then by the first inequa-
lity of (ii), Proposition 1-III, there exists X eL*™ such that X¥— X in L*"
(j—o0) and moreover as a real Cauchy sequence [|X [z so that by (1.19)
I X 9" ||, being bounded,

(1.21) EX@)H)m<E(X9P)m<c,

with ¢>0, independent of n, j. Since X@— X in L?, as j—co, by (1.20),
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X@'—>X¢, in L*™, whence from (1.21)
E(XE)™<c for all n>1,

i.e. XEN,.
Given & >0, there exists & =/A,(¢) such that

1.22)  I(XB=XED* an<IXP—~X;n<e

for every »=1, whenever % j=k,. On the other hand, since X{4— X{—
Xom— X in L? (k—00), (XB—-XI)*—>(Xw—X)* in L? on making %
—o0 in (1.22),

sggll (Xm)—Xﬁi%)*Ilzmzsggll(X—X“’)(*n)IIste for 1=k,

or
IX — X9sn<e for j=k.
This means that N3, is complete.

L-IV.  Let fo:, 0<k<oo, be a sequence of functions satisfying
(i) fk,zE-?l,z(ISl<OO) (Zo.=R),

(i) gu)=Z D) | ELus,
2 k! lgifi<oo Ugol= o).

Then the double series

(1.23) i‘. ffk,z(/l)dkﬂ (/ﬁ),z(/l)doﬂ represent real numbers) is
k=0,1=1

unconditionally convergent to an X €L?, with
JE roass 0sk<eo)

as its kth homogeneous polynomial.

Proor. As a standard way of summation for (1.23) consider
120 (3 [fu@)dg
k=0 [=1

whose interior and exterior series are easily checked to be convergent in L2.
Then, through a comparison of an arbitrary summation of (1.23) with this,
it is easy to see that the former is L?-convergent to (1.24), with the designa-
ted expression as its kth homogeneous polynomial.
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Proor oF Tueorem 1. Having the second inclusion of (ii), 1-III, we
are sufficient to prove the theorem under the assumption that all X®
ENin.

Let .# denote the set of matrices P subject to the condition (P), set

NXP=X0... X" and write RAXY; P; 2, u) for C(P;A,w) of (1.95),
and moreover RMIXY; A,u), C.(IIXY; 1) respectively for C(1, w), C.(1)
in (1.3) when X9, 13 j <m, are ﬁmte. Then refering to (1.3)-(1.5) we
have

a2 0 xg=3 [Caxw; vd

(1.26) G@MXG;0=2 2 SRAXE;1,0).

Pes

Put

S, () ={RAXG; P; 1, wla=k PET},
S(H)={RUAXV; P;1,w)|i=k PET}.

S(k) is the set of kernels arising from multiplying term-wise the expansions
of X9 1<j<m. Obviously©,(k)1&(k), as n—co, and

IRAIXY; PiA,w) | <KRAXG; P;1,w,
[RAXY;P;A,w)|<KRTMXY"; P;A,w.

Let {f,:, 1<I<co} be a linearly ordered enumeration of ©(k). For
every n=1

a2 2 k'f{Z S RMXYY ;P u, 1)%d*o

re?

=3 k1 [1GAXE ;1) *d*

k=0

=E(X&) - XG = H Xl
Making #—oo in (1.27), we see that

D3 SAOXYT; Piu, 1)

i=k Pe7

is d*c-a. e. and &, ., convergent to an k(1) EZ, >, so does

DX |RAXY;Piu, )|

a=k Pc7

to a g.(1) €%,,., and
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kg5 <oo.
E=0

Therefore, appealing to 1-VI, we have the equality

<128) k§0f Ck(l)dkﬁ:k@O ﬁgk Péﬁ' fﬁ<HX(J) ’ P > U, l>dkﬁ’

where

(1.29) GC)H=2 2 fUXY;P;u, 1),

i=k P&

and the right-hand side of (1.28) is unconditionally convergent. On the
other hand, the right-hand members of (1.25) being, as #—oo, exhausting
the partial sums of the right-hand side of (1.28), after making #—co in
(1. 25), we conclude that (1.28) is equal to X®--- X™,

By the multi-linearity of moments and cumulants

P P
(1.300 E(IO Xg)=23 ECI IR
j=1 D(»n) j=1

(1.31) SX@, -, Xﬁ%)z%‘.l) SU%y, =, TR,
D(n)={kCD, -, k(P)) : 0=k, -, k(p)<n}.
On the other hand, using (1.13), (1.14), we have

S ECH 191, 2 1ST%, -+, %)

D(») j= D(n)
p ) * * * p
<3 E IG5 =EXE - XE)< 1 IXVlkn.
n 1= =

Making n—co we get the desired conclusion in the second half of [Theorem 1.

§ 2. Cumulant spectral densities

Let X={X (), —oo<t<oo} be areal stationary process subordinate to
(1.1) with EX(¢t)=0. Then it is represented in the form

21D X@BO=3 XD, Xk<t>=1<ck<->ek<-,t>>=fcku>ek<a,t>dkﬁ,

k=1

A=y, -+, A) ER*, ¢,(A, t)=exp z,ft’ A_le‘i‘“"}’lk.

As will be easily seen from the Fourier integral representations for the
summands in (2.1) it presents a natural way of obtaining concrete expres-
sions of moment and cumulant spectral densities.
Let ¥ ={c,, 1<i<n}, ¢, €%, , and [=1(c,). After (1.5) withu
==y, =0
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2.2.D S, -, In)ZFEg(Z.__,M yMHT;5),
where the summation is taken over % (py, ---, pn), the set of connected
graphs I' based onnf ) o ﬁ el
(2.2.2) Y<F>:{kglpm!}lsigj5npij!:k—;[l_piT’
1<i<j<n

KT;9)=[ 1 ¢,(hur, ~ , undd*s,
k=1
where

k=p/2, p=p+ -+ Dn, Pz':;ﬁ‘nl pii, D=0,
bii=bsi, Ap=—4y (I1Si<j<mn);

| pi;ll corresponds to T.
From now on a connected graph and the corresponding matrix will be
denoted by the same symbol.

DerFINITTION 2. Let X (#), —oo<t<oo, be a real strictly stationary
process such that EX (¢)=0, E | X (¢) |"<oo. If the function of (4, -+, tn-1),
S(X(t), -+, X(tn), X)) (m=2) admitts the Fourier integral
representation

(2.3 SX), -, X(tnr), X))
:./‘fm(x)exp(":gl1 texn) dx, =%, =, Xm-1),

with f,€L(R™"), f» is called the mth cumulant spectral density (CSD) of
X.

£, is the usual spectral density. Under the same assumption as above on
the moments, the mth moment spectral density (MSD) is defined as the L'
-kernel of the Fourier integral representation of E(X (#,) -+ X (t»-1) X (0)) if
it exists. By means of known algebraic relations between moments and
cumulants [7], MSD’s are represented in terms of CSD’s and vice versa.

From the symmetry of moments and cumulants follows that of MND’s and
CSD’S.

THEOREM 2.  Suppose X (0) ENsm for X (t) of (2.1). Then it posseses
the nth CSD’s f, 2<n<2m) of the form

(2.4) fn(x)zré}? yM LT, x), ‘é’=1< U

=p, ",Pn<

oc?(ﬁl, SR

wherve F (py, -, pn) and y(T) T =|ps;l) are defined in (2.2.1), (2.2.2),
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(@, x) €L (R, and it is explicitly written in terms of & and T'. The
series of (2.4) converges absolutely a. e. (velative to Lebesgue measure) and
also in L'(R™) to f,(x).

Proor. For notational simplification deal with the case wm=2.
Associated with X (¢), consider an auxiliary process

Y(L‘)Zkg.l I(lcelen(A, ).
By we have two absolutely convergent series

2.5.D S(X(W), X&), X&), X(0O)H= X S,

1<pn, =, <00

(2.5.2) S(Y(t», Y&, Y&, Y(O))lepl '2%005(/),

where S(#), S(f) are respectively cumulants of the set £ ={1,, --- , L},
F={h T T=10e, (Ve (o, 8D, J=1( ey )l gy, 1), 1<i <4,
with #4=0. The set of connected graphs  (p,, --- , p») based on %~ coin-
cides with that of those based on &7, where F'={c,(+)e,(-, t),
1<i<4}, @7={lc,(+)|e,(e, t), 1<i<4}, with ,=0. Then S(#), SC#)
are written in the forms

(2.6.1) S(H)= 2 yTHU T, t),
regd, ---, v

(2.6.2) S(H)= 2 y@OVE,n,
ree, -, )

where
2.7 U, H)=KT;5), VI,H=KT,;¥"),
4
y@)=Ip:!/ .H' P!, T'= ”pij“) t=C(t, b, &).
1 1<i<j<4

One knows that for every T'&%(p,, ---, p), UT, t), VT, t) are
represented as the Fourier transforms of some f (T, x), ¢g(T, x) €L'(R?®).

2.8 U®T,0=[expitrxfT, 0dx
V@, x) zfexp itex g, x)dx, x=(x1, %, X3).

For example, consider such a I" that p,;>0 for all 1<:<j<4, for which one
may write 1..=(a, @), 2i3=(d, b)), Liu=(c, ¢), As=(d, d), A2=C(e, &),
A= (f, D, with dim(e)=---=dim(f) =1, dim(a), --- , dim(f)=0. Then
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(2.9) U@, t):fcpl(a, bc,a,b,c) c,(—a d e —a,d,e)

Xcy(—=b, —d, f, =b,—=d, f) ¢,(—¢, —e, —f, —c', —e, —f)
xexp{ih(a+ L) tib(—a+d+bL)+itk(—d+f+4)} WdV,

where W is a non-negative function of q, --- , f', dV its reference Lebesgue
measure, /, L, & linear functions of the other vectors. There are several
different ways of writing the exponential factor. Make a linear transfor-
mation from a, d, f to xi, %, % :

(2.10 m=a+th, o=—atd+f+h, x=—d+f+k.

Its inverse enables one to express ¢, ¢y, ¢5, W in the ritht-hand member of
(2.9) as a function of x;, %, %5, b, ¢, ¢, a’, -+, f/, say W'(x, b, --- , f), x=
(%1, %, %), and then write U(T, ¢) as

2.11) U, t):fexp itex f(T, x)dx,

where 7 (T, x) is W' integrated out by the variables other than x. That f &
L'(R®) is implied by Fubini’s theorem used on the passage leading to (2. 11),
or by the estimate

4 4
Jir@, o1dxs [ 1 e, WaV < T e, -,

which is obtained as an easy consequence of 1-1. Since U, t), VT, t)
are constructed on the same graph, g(T', x) is obtained by writing |c¢,| in
place of ¢, contained in f(I", x). This implies

2.12)  [f@, 2| <9, x).
From (2.6.1), (2.6.2) we have

S(X(h), -, X(O)):Fé{ya‘)ff(f‘,x)exp itex dx,
SCY (8, -, Y(O)):Fé}gy(F)fg(F,x)exp itex dx,
¢ = .p’ 4 _E, , Da).

Then, since
FZ.?)/(F) g, x)dx=SCY (0), -, Y (0)) <oo,

by (2.12)
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fi(x) =F§?7(I‘>f(r‘, x)

is an L!-function, the right-hand side being convergent in the requested
manner to f;, the CSD of X.

§ 3. The local behaviors of the spectral density and related Abelian
and Tauberian theorems

Throughout this section X ={X (#), —co<t<oo} is a square integrable
real stationary process with zero mean. Let @ (1)/2 be the spectral density
of X. As we have seen in [13], the growth of

@D VD=V X®d=[ D e)d,

_sin7A /2
DT</1> - A’/z ]
as T—oo, is closely related with the local behavior of ¢ (1) at 0.
A positive Borel function f on (0, 2], 0<a<oco ([b, o0), 0=<bh<00), is

slowly varying (SV) at 0(co) if it is locally bounded and there exists

li_r’l;)l flex)/f(x)=1 (lim f(ex)/f(x)=1) for any ¢>0. Slowly varying

X—00

functions at oo correspond in 1-1 way to those at 0 through the map y=x"

from [0, o) onto (0, ].

As will be made clear in § 4, the slow variation of V(7T) at co is an
essential character for the functional central limit theorem (FCLT). That
SV property is, as propositions in this section will clarify, intimately
connected with allied properties of @ (1) at 0.

When « is a real constant, a positive function g on (0, a] ([, ©)) of
the form g(x) =x%f(x), f SV at 0(co), is said to be regularly varying (R V)
at 0(o0) with exponent @. The only case @ =1 arrising in the present paper,
by RV we mean exclusively this type of variation.

hy(x) is SV at 0 iff it is represented in the form (Feller m, Ibragi-
mov-Linnik [4])

3.2 ho(x)=c(x)s(x),

(3.3 So(x)zexp(fxa”;mdu), 0<x<a,

where ¢(x), n(x) are bounded having

3.4 lim ¢(x)>0, lim #(x)=0.

x—+0 x—+0

so(x) itself is SV at 0. s,(x) will be called canonically SV. If in the above
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the first condition is relaxed to lim ¢(x)>0, h(x) is said to be SV in the

x—+0
wide sense.

ho(x) is SV at oo iff ho(x)=h(1/x), with some h,, SV as 0, or
equivalently

(3.5) heo () = d (%) S0 ()
(3.6) Sw(x):exp(fbxe uwdu), b<x<oo,

where d, & are bounded having

limd (x) >0, lime (x)=0.

X—>00 X—00

From now on by %, s, 7, ¢, he, S, & d respectively we denote the func-
tions standing in (3.2)-(3.6) in reference to slow variation.

When evaluating expressions involving SV functions, frequent uses are
made of the fact that for an arbitrary ¢ >0

B.D  axr<m®<os

if x>0 is small enough.
We prepare several propositions for the use in § 4.

3-1. Let (1)/2 be the spectral density of X. If V(T) is RV at oo,
or

(3.8 V(T)~Th(T), T—oo,

(~means that the ratio of the both members tends to 1) then H (x)= /0- ;)(A)dl

is RV at 0, more precisely

(3.9 HO~—ah(0), h(x)=h(1/5), >+0.

Proor.
(3.10) fo V(T)e‘STa’T:f0 <p()l)dllf0mD%(l)e‘STdT
_ 1 ("2¢(1)
_?fo sz-l-/lzdl'

On the other hand, by L hospital’s rule

. 1 T



420 G. Maruyama

. Td(T)s.(T) 1

T 2T (T + T2, (TH)(—e(T)Y/(T) ~ 2 d(0).

This means that
[V du~tha(t) /2, 10,

whence by the Abelian theorem (Theorem 2, p. 421, Feller [2]),
[V(DeTaT~ho(s)/5* (s—+0).

Substitute this into (3.10) to have

[T22) a~ho(s)/s (540,

S
or
(3.1D) m“’éi’? %:fome‘”’u(t)dtwﬁw(l/o')/ﬁ, o—+0,

where we set

—_ * -—xt¢<\/7>
u(t)—/o e de,

he(1/0) = ho(6) = ho (/T ).
Apply [Theorem 4, p. 423, to obtain

s (Jx) AP
u(o_fo o i e (), 0,

Then by the Tauberian theorems (Theorem 2, Theorem 3, pp. 421-423, [2]),
this implies that

0 (J/7) JERUD 2
L At = E W), x40,

or

foxq:(/l)dlw%ho(x), x40,

The following propositions are motivated by asking question if the
converse to 3- ] is true. Although a satisfactory answer to this has not been
obtained, we have singled out local behaviors of ¢ (1) which are sufficient
for CLT and FCLT.
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3-1I. Let hy(x) be SV wmear zero, hy(x)=c(x)s(x), c=c(+0)>0,
then on a right-hand mneighborhood of zero, ome can find (x), (x) such
that

312 [ ndy=xe0s),

whevre

313 = [Tandy (+0=c

lim xZ(x)=0.
x—+0

Proor. The L’hospital rule gives

S may_ o)
(3.14) xl_l,rfom xl—lﬂgo cso(x) + cso(x) (=7 (x))
c(x)8(x)

=m A= @) -

So that there exists ¢(x) which satisfies (3.12) with ¢(4+0)=c¢. Differen-
tiation of (3.12) leads to

o (%) = (%) S0 (x) +x8' () $o(x) — () S ()77 (%)
Substituting this into (3. 14)

. ) +acx)—cxonx)
R G 1)

whence

lim x7(x)=0.
x—+0

On the other hand, using (3.12)

(f o) dy ) = EDND T AN _ 1y 4 () ).

NE)) So(x)
Therefore
fox%(y>dy=so(x>f0x5<y>dy,

W) =c)+n)cy).

¢, ¢ satisfy the requested conditions.
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3-IIl. Let ¢(A)EL[0,c0] and satisfy
log()|=a(d1)sQ)
on a right-hand neighborhood of zero, with a non-negative bounded a. Then

[le@ia S%(foxﬂl)d/l)s&x), 0<x<0o
d(l)zosup a(u)

=u<A

for some & >0.

Proor. By integration by parts

Llelars [ ansard=Aw+Bw,
A(x):foxd(l)dl-so(x),
Boo=["([ ‘awdosW T,

Take 6 >0 so small that m(é‘):osup l7(x)|<1/3. For 0<x<¢ we have
<x<d

A0 2 50 @) A—m(8)) = -2s()alx),
| B(x) | <Cx),

Cw=m® [ [ awdosrd,
and

C0=m)+ [[ad)dr 50 S5 a0 (D) g AW.
This implies

COO<TA®).
Then

[(lo@1dr <A +|B® <A+ A=A,

This completes the proof.
3-IV. Let p(A)EL[0,00), and on a right-hand neighborhood of zero
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H= [ o) |dh <xe@s o,

with a non-negative bounded Borel c(x), canonically SV sy(x)near zero.
Then

3.1  Tm | D3We@)dr|/Ts1/TI<9 Tim c(o.

T—co x—+0

Proor. Write
["Drvreydr=1+1,
L= [ D3WerdL, L= [ D3 Me)dL.
We have
310 L=T* [ lpld<m/T) T/ T,
m(x)= sup c(u).

Take a small ¢ >0. Then by integration by parts
H (x)

31D glhI< [ le)I/ataase
:2(£N+LT)H(x)/x3de 52 loll,+2 f/ H (x)/x%dx.

Extend s,(x), originally defined on a right-hand neighborhood of zero, to
(0, o) having

s&x)zexp(fj@du), 0<x<o0,
with a bounded 7 satisfying (+0)=0. Thus
8 8
318 [ H/cde=m(® [ s(o0/xdx
Integration by parts gives

S GO/ dx=ACT) = B(D,
A(T) =T/ T,
B(T)= [ 2P exp ([,

First, (3.7) implies that A—oco and
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o 1 oo o0 1
/1 —zexp(ﬁ ”<u>du)dx261j;Tde—>OO, as T—oo0.

IT x u /
Second, since 7(+0)=0, when T—
|B|<0o(C(T)),

(=]

c= [, Sexol [T ) as

Moreover by L ’hospital’s rule

. C_ . TUDYTH
I = A T+ 5 g (T~

1.

Therefore

319 Tm [ a0 e/ Ty <me

T—co

Putting (3.16)-(3.19) together we get (3.15).
3-V. Let p(X)/2 be the spectral density of X.

(i) Suppose that f xq)(l)a’l is RV mear zero,
0
(3.20) fxq)(l)dl:xho(x), Bo(x) = ¢ (2)56(x), c(+0)=¢>0, 0<x<0
0
for some 6>0, and moreover
(3.2D ') ELpel0,00), [ [3e’ () |dy=0(x), x—>-+0.

Then on (0,08] @ is decomposed into two (not always positive) parts
(3.22) ¢(l>:¢1<l>+¢2(l), @1, <P2€L[O» 6],
such that on [0, &]
fo @1 (L) [dA <xci(x)s(x),

where ¢ (x) 1s bounded, with ¢.(+0)=0, and
(3.23)  @(x)=c(xso(x))".
We have

(3.24) '/(;mD%‘<A,>¢<l>d/l’\’7[Tho(1/T), T—co.
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(i) If @) itself is SV mear zero, the assumptions in (i) are
satisfied. So that (3.24) is true.

Proor. (ii) is obvious from 3-1I. From (3.20)

(/] (x)= ¢1(x> +¢2<x>,
@:(x) = (c () — ) so(x) +x(c(x) — ) $0(X) +xc’(x) 50 (x),
@2 (x) =c(x8(x))".

Then

’(0105) * Sao(x)so(x),
w(x)=|c(x)—c|+|(c) =) |+ [x O,

and by (3.21)
[[aGdy=0@), x=>+0.
By integration by parts
(3.25) folcp1<1>|d/13]1+]2,
where
1 X
(3.26)  Ji=ra ), at="[ a)d—0, x>+0,
=[G [ aGodds@n ) dL,

whence by 3-11I

@an k=1 [ & [ aG)dosn@dr
S—:;—XCZZ (x) a3 (%) 5o(x),

where

@0 = sup L [fawde, o= sw InA1.

<A=<x

Finally from putting (3.25)-(3.27) together we have

[le:a)1dr <260 8:00),

with
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a@)=a(x)+ %a/z ) a;(x),

which clearly satisfies the required conditions.

To proceed to the proof of (3.24), extend @.(i=1,2) in such a way that
P1(A)=@ (1), p(1)=0o0n [&, ), and notice that >0 in the following can
be chosen arbitrarily small. Write

320 [ Died= [DiMeWd+ [Di)g)dr
and observe that 3-IV means
329 [ DI dL=o(Ts(1/T)).
On the other hand
(3.30) foob%mwzu)dx:lﬁlz,
h=c[ DiLsM)dL, L=—c[ DEM)s()n(1)dL

Since 7#(+0)=0, by 3-III, 3-IV
3.31) L=0o(Ts1/T)).
On the other hand

L pivsa=1[" D/ ma

=/ Dz(l)s"%}//;;d)l, D) =D, 1),
Write

8T So(A/T) 2rqSo(A/T)
@30 [ DAL A= (f +f )DL,
First, on 0<A <1, when T—oo

2010/ T) _ Ut du
3.3 DMWY rpssaexp(f 2 du><coexp<efm =

_ 1

—COAE,

with an arbitrarily small constant e >0. Second, on 1< < 67, >0 having
been sufficiently small,
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A' T AT AIT d
(3.30 DZ(A)S"((U/T)) T2 exp(— f n<u>du)<lzexp(ef =
4
:TZ—_e’

where & >0 can be made as small as we please with &. Obviously

A/ T)
so(1/T)

So that with the right-hand members on (3.33), (3.34) as majorants, the
Lebesgue convergence theorem applied to (3.32) concludes that

D*(1) —D?*(1), T—oo, for every A >0.

ari S0/ T) o [T _
}l_r};lof DA(0) OCI/T>dl—f0 D*(\)dl =,

whence
foaD%<A>so<A>dA~nTso<1/T>,

This together with (3.28)-(3.31) proves (3.24).
3-VI.  Let @(1)/2 be the spectral density of X. Suppose that H (x)
= fo x(p(l)dl is RV at zevo, specifically

(3.35) H@)=xh(x), h(x)=c(x)s%x) on (0,d),
for some 6>0, and
(3.36) c(x)—c(+0)=0x9, x—>+0,

where q is a positive constant.
Then

V(T)~zTh(1/T).
Proor. Rewrite the second equality in (3.35) into
ho(x) =k(1+y(x)) s (),
where
k=c(+0), y(x)=(c(x)—c(+0))/c(+0).
(3.36) is then equivalent to
y(x)=0""), —o<p<l,

but in proving the assertion, we may and will assume that 0<p<1.
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Extend s,(x) to (0,0) by
so(x):exp(f:n(u)/udu), 0<x< o0,

where 7 is bounded, identically zero near co. Define y on [d,c0) so that
H (x)=xk(1+y(x))s(x) throughout (0, c0). Then y is bounded on (0, co).
Decompose @ on (0, ¢) into three parts @, 1<7<3,

@1 () =kxy (2 5(x), @2(x) =y (x)s(x) + 2y (x)s5(x)
@s(x) =k (xs(x))’,

and then extend them in such a way that 1) =), @.(x)=¢;(x)=0 on
[d,00), so that @ (x) =@, (x) +@.(x) +@;(x) over (0, o).

Since @, satisfies the condition a(+0)=0 in 3-IlI in adddition to the
conditions imposed on ¢ there, by IV we conclude that

/:D%(l)qoz(l)dll =0(Ts(1/T)), T—oo.
By the final step in the proof of V
fowl)%(/l)qag(/l)dxlmknTso(l/T), T—oo0.
So that for the proof of the present propositon we are sufficed to show
3.30 ViD= [ DEWei(Mdh =o( T/ T)).

Write
V(T =h+L,
h= [ Di@ ), b= [ Di)gi1)dr.

To evaluate I, take a= T V?*= where ¢, (0<e0<1/2) will be specified
later. Then
® 2 4 1—¢
3.3 D=[DVp M dh < Slgl,= 0T
=0(T5(1/T)), T—oo.
Turning to I, if we set d(1)=21y"(1)

L1 e
339 1r =1 [ DEAIM)IsA)dr
=1 Te /D [ Draas T 2D
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(/AT
o) A

First, to evaluate the last expression observe that

= Ts,(1/T) ij sin?(1/20)d (/A THR/A L)

(3.40) fd(l//lT)dA— f d(l//l)d/l—T dmaa
1 o~ y')
-T 1/xT /‘. dll

:-{xTy<1/xT>+ T y(A)/A%d0Y,

1/xT

where on passing to the last expression we have used integration by parts and
the boundedness of y.

Second, if xT >1, |xTy(1/xT) | <cxT (1/xT)' =, (xT)?,

1 AP
Joor T

<y o+ (xT)”<(HyH +a/p) (xT)HP.

1/xT

[ 7<”du_|f 20

Substitute this into (3.40) to have
34D [ dQ/ATIAA < o T)? if T >1.
0 T

Third, by integration by parts

Gap [ sin120d02 L0
— qin2 1/ T) o
=S /20 | D]
® A
t2 7 sin(1/2) 15"((11/};;(11/0 d1/uT) dy
” s 2 So(l/lT) , A
= Jijar S <1/2’1><m> d/l’/o- d(1/pT)du.

Since by (3.41) ~/O‘Ad<1/,uT>d/,lSC2</1T>p/7: and by (3.7) s&(1/AT)<
cA, as A—co, the first term of (3.42) is equal to

1/aT

(3.43) —sin®(aT/2)—% d(1/uT)du.

o1/ T) Jo

By (3.7) and (3.41), one can find &,;, 0<e&;<1/2 such that the expression in
(3.43) is in absolute value less than ¢, 7 ~'1*#/2*= as T—oo, whence
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(3.44) the first term in (3.42)—0, T—oo.
The second term of (3.42) is by (3.41) less than

1 (/AT 1
( f,aT HOm STy TATY A= Ui R,

~ 1 s/AT)
== T”’ S 7 (/1) &

1 1 s(/AT)
=5 ), 77 o A

To evaluate these make use of

S(U/AT) _ 1

(345) (1/T) —CG & fOI'ET</1<1,

< GA® for A >1,

with €;>0, which can be chosen arbitrarily small, as T—co.
First, remembering a7 = TY?**, by (3.45)

1 1 1
ﬁ:O(TE) -/l-/aT Wdl:O(Tg%
where E=—((1—p)/2+e3/24+&,(1+p)+eoes. Take &, €3>0 so small that

£<0, then J,—0, as T—co.
Second, take &3>0 so small that 2—p—e&;>1, then by (3. 45)

=0 [ 12_1,)_63611 —0 /T =0(1), T—oo.

Thus
(3.46) the second term of (3.42)—0, as T—co.
The third term of (3.42) is in absolute value less than

$(1/AT)

fuaT sinz(l/Zl)——so(l/T>

$C7(K1+K2>,
o, S(1/AT) 1
Ki= [ sinQ/205 00 e

S;O((ll//lj?)) (A ;> —|n(1/AT)|dA,

ATlncmT)|AzdeA/O‘d<1/uT>du

|7 (1/AT) |dA,

K,= fl " ein?(1/20)

where we have made use of (3.41).
First, since A T—oo for 1/aT <A <co, by (3.45)
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1 ! 1
Kxﬁﬁ flm W"?(l/lT)ldl
T dr

1/a F

1 ! dA
= 0(1=5) »/l;aT WSO(DT—H“ =0(1), T—oo,

Second, since sin?(1/21)<1/412, by (3.45),
K=o/ T | =0/ T 0 =01,

Thus,
(3.47)  the third term of (3.42)—0, as T—co,

Collecting (3.44), (3.46), (3. 47), we know that the left-hand side of (3.42)
tends to 0, as T—co. Substituting this into (3.39) I =o (Ts,(1/T)),
T —oo, which together with (3. 38) proves (3. 37). This completes the proof
of VI.

3-VI. Let ¢ (A)/2 be the spectral density of X. Let H(x) zfoxcp (A)dr
be RV at zevo in the wide sense, H (x)=2xhy(x), ho(x)=c(x)s(x).

Then
(3.48)  (IRATISV(TISGRAT), T—os,
wheve Ro(T)=Thy(1/T) is RV in the wide sense at oo, and c, is a positive
constant depending on h.

Proor. Extend # involved in (3.3) to (0,) by setting (1)=0
(a<A<oc0) and, then s(x) to (0, ) by

so(x) =exp( f “n(u)/u du).

Finally define ¢(x) to satisfy
H (gc) =xc(x)S(x).

Of course, the above ¢(x) is an extension of the original one defined near

zero and is bounded on (0, c0).
Write V(T)=1L+1,

L= [ D}Weidr, L= [7 Diear.

Then first,
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3.4 LT[ @)dd=Ru(T),
G50 V(DzrzED [T ema=CrRaD.

Second, by integration by parts

3.50 Ls4 [ ¢<“an <8A(T),

where

_HX, [~ hx)
A(T) = fm = dx—fw P
c(x) being bounded, integration by parts gives

ACT)=B(T)+C(D),
_ =)
B(T)= [~ “3dys(1/T),

C(T)=Co+ C(T), cozf:<fx°°cgi’>dy>so<x>’7;”dx, 60,

o= [ L a@

By (3.7), B(T)—co, T—oo. On the other hand

(G| < sup 70| G(T,
- [’ =c(¥) 5 \So(x)
G(D= [ G [ Sordn®

and if ¢ >0 is sufficiently small

Cz(T)_2 lim c¢(x) ’ Soix)dxeoo as T—oo0.

x—+0 T

So that L’ hospital’s rule gives rise to

c(n) (D)
Jim Bry= S, @ Him Bory

T fw c()y2dy
= sup |z (x)|lim = ‘
0<x=s = c(/TH+ T fw c)ydyn(1/T)
= sup [7(x)].

0<x<éd
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The last expression being arbitrarily small with 4,

. C(T)_
(3.52) }l_{folo BT

Rewrite B(T),

0.

B(T)= T(%foTca/u)du)soa/T).

Then by (3.51), (3.52)

(3.53)  lim L/8Ro(T)=< lim A(T)/Re(T)= lim B(T)/R.(T)

T—c0 T-—o00 T 0

=Tim (T cQ/wdw/c(T)<Tim )/ lim ().

T—co x——+0 x—+0
(3.49), (3.50), (3.53) prove (3.48).
§4. Central limit theorems

We are going to show how the FCLT is naturally formulated for X of
(1.2). On a preliminary step, as a by-product, we attain a refinement of

the CLT in [13].
Let 721, 6,(A)=c.(A)/|cx(1)] or =0 according as ¢.(1)+0 or=0,
and define

(x A Q) = e[ A7) 6D (7>0),

4.1 cs=cNT e, Acs,=cr— 5,
S[lcel? a?JA)=|c(A) 2= | ce(A) [ Na? (a>0),
(4.2) AX;(H=X,(t)—X5(t),

X5(O= [ e, Hd*, 0<e<co, 1<k<oo,
where ¢c5(1)=c¢.(1), X%(t)=X,(t). Furthermore, write
4.3 VD=V XW®d), D=V ([ X(bab,
V()= V([Si(DaD), Si(D=3 Xu(b),
Sih= 3 Xi(b),
4. AVAD =V [R(DAD, R(D=XH=S,(D), 1=k n<co,

where V denotes variance. If we denote by ¢,.(1)/2 the spectral density of
X.(t), then
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e(V)/2=9(lal?; V=k! [ laQ-T, 4, -, L) ?
Xf(l _I,)f<ll>"'f(/‘-k—1>d/11 o dAr,
A= (A,l, ey A.k_1>, X,:ll‘}‘"‘ +lk-1 (C. f. Section I, )

THEOREM 3.  Suppose that the process X in (1.2) satisfies the conditions -
(i) f(A) is bounded,

(i) Hx) :/Ox¢(/1)d/1 1s RV in the wide sense at 0, H (x) =xhy(x),
ho(x)=c(x)s(x), where o (1)/2 is the spectral density of X,
(iii) lim lim V(T)'AV,.(T)=0,

n—00 T —oo

(iv) there exists an &, 0<e&,<1/2, such that
D(S[lcel?, T?*]; v=0(H X)), x=1/T, as T—oo,
1<k<oco, where ®(|c.|?; x) s the functional of |c.|* defined by

o(lal?; D= @(lal®; Ddr.

Then
(4.5) dist X(T)—>N(0,1) (weakhy), as T—o,

where

_ 1 T
xxT>=:7§?7jﬁfX<nda

dist denotes probability distribution, and N (0,1) the normal law with zero
mean, variance 1.

For the proof, along a similar line to Section II, [13], we prepare
several propositions.

4-1.  Under the assumption (ii) of Theorem 3, for x=1/T, T—co,
4.6)  @(a—anT*; x=0(H ()
if and only if
4.7 @@[lal? T*]; x)=0(H ),
where € is arbitrary positive contant.
Proor. Suppose that (4.6) is true, and notice that

§[|Ck|2, Tze]:ﬂckl‘*"Ckl/\Te)(ICk'_lckl/\Te)
<2lcallco—ca AT
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Then repeated use of Schwarz’s inequality yields

(4.8) @ (O[lcel? T*]; A)=2¢"*(|cl?; Ve 2(|cr—ca AT %5 1),
O(S[|cel? T*]; ) <29 *(|ckl?; 22| cp—c NTE|%; x).

On the other hand the assumption (ii) implies

o(lcel?; AMD)<@p(A)/2,
O(|ce|?; x)<H).

Substituting the last inequality and (4.6) into the right-hand member of (4.
8) we obtain (4.7).
Conversely assume (4.7). Then, since

lca— e AT 2=l el = lce | AT #)?
<(cel =l AT ecxl+ el NT*)
:()\[icklZ’ TZe]’

we have

O([ci—caNTE1%; x)<®(S[ |crl? T*]; 2
=o0(H(x)), as T—0,

i.e. (4.6).
In addition to random variables in (4.1)-(4.4), define

AS, () =5.(1) = S5,(8)
4.9 KD = [(Xu(Ddt, BT = [ XDl
. k —\/V—<7—r> o k > k _\/7(7_‘) i k »
AX(T)=X(T)—X3(T),
SUTY= B Z(D), Si= DX,

(4.10) AS(T)=S.(T)-S(D),
1<k n<oo, 0<e <00,

where
Se(T)=85,(T), S=(t)=S,(t), 1<n< o,

4-11.  Assume that (i), (iv), are satisfied. Then for
every n=1

(4.1D }im V(ASe(T))=0.

Proor. By virtue of (4.10), it is enough to show that
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(4.12) }im V(AXe(T))=0 for every £>1.
From (4.1), (4.2)

SVQAXE(T) = [ DEM@([Ac 175 A)dA =L+,

V(T)Y
L=—t  (TD2e(|Ack|?: DA
I_W.[o T P Cr i, ,

— 1 e 2 & |2 . _
b=37s fﬂDTu)qa(lAckl A)dd, r>1, 7=1/T

Since T*=T)H>, T'=T/» by (ii), | and 4- 1

rT

olacy i vd < [ gUa—aA(TH*?; 1dr
—0(H(1/TY)=0(H(r/T)), T—c.

Therefore

413 [ DiWeIag]®; L)dA=o(T*H(r/T))=0(Thy(r/T)
=0(V(T)), T,

where we have used (3. 48).
Turn to L.

Ro(T) —— Ro(T)
(4.1 Tm L<Tm i M RCTY

X lim mT—,) _/1‘/ T</1>¢(|Ck’2 A)dA.

T'—co
By 3'VH,
— R.(T) _n*
(4.15) }l_r)IOlO -V_(—TB—ST’

and by the wide-sense SV property of %,

—— R.(T) _ : ,
(4.16) ;1%0 BT == xHIPO C<x>/xll—rfo c(x).

Since @ (¢ |?; 1) <@ (1)/2, the last factor on the right-hand member of
(4.14) is less than

(4.1 2 lim ! ") dA <4 1lim c®)/lim ¢(x),

T—co °°<T) ur 12 x—+0 £—>+0
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where we have used (3.51) and (3.53). Combination of (4.14)-(4.17) leads
to

- 2 . -
(4.1  Tim & < Z(Tim c()/lim c(x))>.
T—co Y x40 *—+0
r being arbitrary, (4.13), (4.18) together prove (4.12), which completes
the proof of 4-1I.
Let us write Syu)...me (&1, -+, &) for the cumulant of %2 real random

variables &,---,&. of respective orders m(1), -, m(k); c. f. Section 2,
[13], for these notations.

4-M. Let X=(&, -+, &) be an R*-valued random variable which has
Soityoommy (&1, oo+, En) for every m(1), -, m(k)=1. If there is an integer ko
>0, such that Spay--me (&1, -, ED) =0 for m(D)+---+m(k)=k+1, then X
is Gaussian.

In some sense or other this seems known.

Proor. If 4, -+, t, are real parameters, the nth cumulant of & S,(&),
E=H& + -+ t&x, isasum of Syuy..mn (&1, ", &) multiplied by homogene-
ous polynomials of ¢, -+, #. So that S,(&)=0for n=k+1. This means
that no loss of generality we are sufficed to deal with the special case k=1.
Let X be a real random variable which has the nth moment u (%) for all »
>1, and assume that there exists an integer k=0 such that S,(X)=0 for all
n=ky+1. We will show that X is Gaussian.

Let I={ieN:S;(X)+0}, take n, pEN, and define

Ap)={J=(a, - , ap) : ;&I (1<j<p) are distinct},
B(H)={x=0, -, %) axi+ +axp=n, N (1<7<p)},
J=(a, -, ap) EA(P),

Sx)={S, (XD} {S, (XD} xE€BU), JEAD)).

«(n) is a sum of constant multiples of S(x),

d=5 T 9 e® n!SX)

p=1 JEAp) xEBU) (ay D% Cap D%y o7
lex) =1,

where || is the cardinality of I. From the equality ax,+ -+ +apxp,=n, we
have

p(m)= min max (x, -+, x)Xn, or pu=<p(n) <p,n,
1<p=<|I| }(gﬁg’g
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max |IB() | <can™

JEAWD, 1=sp=|I|

and

max < ot — ’
cendy g (SIS o=max 1SCOI,

where p1, p., >0, m EN are independent of n. If ¢ is the characteristic
function of X, using the Taylor expansion of exp it X

PO MGSNEIHESSD

sl[llt]”lgzsul( AP | jmax |B(J)|e" p( 31

eﬁ (n) Cs
— ™0, n—oo,

N O R

that is, ¢ is entire. Through the definition of S,(X), we see that the
derivatives at =0 of the analytic function

<cl|t|"c"n™

k(i)™
H(t=log p(H)—P(t), P(0=3 15, 00),
vanish, hance H(¢)=0, or @(¢)=exp P(t). Then as a corollary of
Marcinkiewicz’s theorem (p. 65, [8]), X must be Gaussian.

Proor oF THEOREM 3. Let m(1),---, m(k) be natural numbers, and
S (X, (T), -, X5, (T)) be the cumulant of joint variables in the bracket

(0<e=<co). Itvanishes if m(1)+---+m (k) is odd, while in the notations in
Section 3,

(4.19 SX,0,(T), -, Xy (T))
1
:§<_~I—/—(—T_>>ka{cem(l)(xl> e oy (M) D (%) - 9,(%) }dPo,
LER™ (1<j<k), 2p=m(D+--+m(k),

if m()+---+m(k) is even; Q{ - } denotes the connected kernel corres-
ponding to a connected graph @ based on {c%, ()2 (%), 1<j<k},

and @ runs over all connected graphs. By 1-1 in Section 1 and the fact

S0 (D=V (D

1
)" f Q{5 (50 -+ €y () T (B -+ D1 (%) }dPo |
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k
SI;I V(T)flcm(])<xJ>DT(xJ>ldm(j)o-}l/z
— u vm(J)(T> 12
B I:I{ V(T) p2<1
whence
1<T<oo

The multilinearity of the cumulant and functional relations between
cumulants and moments tells us

(4.20) OgugwIE{(§T(T>”“-~(SZCT))”"}KOO

1<T<oo

for an arbitrary multi-index (1, ---, p.) of integer entries, and arbitrary .
(4.20) implies that {(S5(T))?, 0<e<oo, 1I<T<oo} is uniformly inte-
grable for any p>0, 1<k<co. Take natural numbers m((1),:--, m(p+1),
»=0, such that 2r=m (1) +--+m(p+1) and write after (4.19)

S(Xf)ia)(T), Tty Xfr‘;(p—kl)(T)):% ](Q>,

where

J(@=( /_V_(T_W [ QCezianr () ctepin Cors)

XD (%) D (Fpr1))do,
L ER™ (1<7<p+1),

Q changes over the set of connected graphs. Evaluate J(Q) by the same
device as in the proof of [Theorem 1, [13]. The coupling diagram of @ and
the fact that ¢ ;)| < T *provides that

—1_ 1T (+De
2D QIS (g™ T [1Dr(0...Dr (o) |
X g1 () +++ Gpri(Uper) Athy -+ Aty

where u,, --- , u,,, correspond to the p+/ edges (@ consists of p+1 vertices
and p+/ edges), g;=f % (d;-fold convolution of ), and d; the multiplicity
of the edge corresponding to u; (c.f. Section 2, for these termino-
logies). 4, -+, [, are linearly dependent forms of #,, --- , #s.,, indeed
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p+1
2 ZJ:O
i=1

However, as a consequence of the connectedness of @, any p members of /,
.+, lp., are linearly independent. Choose [ linear forms I, -, I, of w,
.-+, #p, in such a way that the p+/ functions 4, --- , I, [,, ..., [,are linear-
ly independent. Make a linear transformation from #,, -, #, to x=(x,
o, Xpro)

xw=10 A<i<p), x;=10,_, (p+1<j<p+1).

The inverse transformation is
pt1 )
U;,= u,(x) = 2 a;;X; (13 [/ Sp+ l) .
j=1

The last ! column vectors in A= |a;;|| being linearly independent, from (p+
D) x [-matrix |la;l, 1<i<p+1I, p+1<j<p+1 one can pick a non-singular
square submatrix of order /. With no loss of generality, we may and we will
assume that A'=|aip;ll, 1<, <[ is non-singular. Let us write u,=v;+ w;
(1<i<p+1), wherev;,, w; (1<i<p+1[) arerespectively linear functions of
(x1, =+, %) and (Xpi1, -+, Xpyo) ; Write 0,(x), w;(x) for v;,, w;, (1<1<p+
[) if necessary. Then

f IDT<11) DT<IP+1> | g1 Cot) = Gpr i Cttpr ) Aty ++ Aty

= Idet Alf IDT<X1> "'DT<xp>DT<x1+ +xp> '
X gy (2 (%)) -+ Gprt Cthpr s (X)) oty -+ Atpi
I+p
= (det A| T g, [ID(5) - Dy Dy (it 45 |
j=i+1

del dxp g1<vl<x>+wl) "’gl(vl(x)+wl>
X |det A’| tdw, --- dw,

I+p [
= [det Al|det A7 T lgla T lgul, 1, T,

~1
j=l+
where

YO(x, o, ) =Dx) - Dxp) D+ +xp),

D=2

Therefore
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1
(4.22) |/ (& | SCg(/—I—/Z—?))p’LIT@H)“' T.

By the slow variation of %, one can find a ¢ such that 0<§<1—2¢,, and
T °<h(1/)T)<cT(T=1).
Then

J@l=<a( T(—l)/—>"+T

whence
(4.23)  lim J(@=0 for p=h+1, ke=[2/(1—8—2¢&0)].

Define 9, to be the set of sequences on [1,c0) tending to co. Since
V(X(T))=1,{dist X(T), T=>1} is relatively compact. Let ¢ be a limit
point of dist X(T), as T—oo, and D,EZ, be such that dist X(T)—u
(weakly), as T—oo on D;. On the other hand as was noticed before =
(Se(T))?, 0<e<oo, 1<T<oo} is uniformly integrable for any »n, p=1.
Then {dist {S¢(T), -, S(T)}, T =1} being relatively compact for
every #, by a diagonal procedure, one can find D,€9,, D,C D, such that
for every n {Se(T), -, Se(T), X(T)} goes to a limit in distribution, as
T—oo on D,, so does {S,(T), -, S, (T), X(T)} to the same limit by
4-1I. According to 4-Il, and (4.23), as T—oo on D, F=lim dist (SI(D),
oo, S,(T)} must be Gaussian. In addition, the above-mentioned uniform
integrability of # gives rise to the moment convergence

(4.24) E{(S—l(T))"’“’---(Sn(T))’"‘”’}—’fx{”‘”--- x™"dF  T—co on D,
x=0a, =, X,

for all m(1),---, m(n)=0, n=1. In particular F has zero mean.

Consider the discrete-time processes {S,(T),1<[<co} indexed by T = 1,
with S.(T)=X(T). From the preceding results, all of its finite-dimen-
sional marginal distributions are convergent, when T—oco on D,
and moreover the marginal limit distributions of (S(T), 1<I<oo} are
Gaussian with zero mean. So that by Kolmogorov’s theorem, there exists a
stochastic process {U,, 1 <[ <co}, whose finite-dimensional marginal
distributions are the limits of the corresponding ones of (ST, 1<I<00},
as T—oo on I,. The finite-time section {U,, 1</<oo} is Gaussian and the
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probability law of U, is u.
To determine g introduce

g(x)=x*/(1+x*)(—oco<x<00),

and observe that

(4.25) lim Eg(lUl—Um.l):}im lim Eg(|S(T)—S.(T)

TeDb,

<lim lim E(

1 T 1 T ,
oo T \/—T/TT) '/0‘ Si(x) ds——\/ﬁ/(; X(s)ds)

>0 T oo
concluding that U, converges in probability to U., as [—oco. Then since the
set of Gaussian distributions is closed under weak convergence, (U,, -, U,,
U.) (1=<[<o0) as the limit in probability of (U, -+, U,, U,), as l'—co, is
Gaussian with zero mean. The relation U,— U.,—0 in probability leads to
E (U—-U.)*-0, as [-—>o.

If we define

1A, THIP=ES(T)—S.(T))?,

K= lim lacs, TOI?,

T

then by (iii)

lim K(/)=0.

l—»oo

On the other hand, |S.(T)|=|X(T)|=1,

I1Se(I= 1A DI<ISCDI<IS(DI+1AL T,
and by (4.24)

ISCTYI-IU.l, as T—oo on D,.
Therefore

I-K(O=<|UI<1+ K (D),

whence on making [—oo,

lim| U] =1.
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So that
|| U°° || = 1’

namely g =N (0,1). This means that the set of the limit points of X(T"), as
T—oo, consists of a single element N (0,1), or X(T) converges in distri-
bution to N(0,1), as T—oo. This completes the proof of the theorem.

Before passing to the main theorem, we will make a few remarks on the
standard normalization in the FCLT. Let {X(t), —co<t<co} be a
stationary process and B(T), 1< T <oo, be a normalizing function for our
FCLT. This means that if we put

Tt
(4.2 KT O=grps ), X©ds

X(TH={X(T, t), 0<t<1} converges in distribution, T—oo, on the space
C[0,1] of continuous functions, to the standard Brownian motion
W={w(t), 0<t<1}. If in addition we assume that for every"
H(X(T, t))?, 1< T <oco} is uniformly integrable, then as T—o0

4.27)  EX(T, D) —>EW@L)*=1,
(4.28) V(X(T, t)—X(T, s))->E(W(@#)—W(s))=t—s 0<s<t=<l

(4.27) suggests us to take B(T)=,/ V(T) in (4.26). Then under this
normalization combined with the stationarity, (4.28) implies that as 7—co0

L
4€P)

or V(T) i1s RV at oo.

THEOREM 4.  Suppose that X of (2.1) satisfies the conditions (A), (B),
(C). (A) the condition (i), (iil), (iv) of Theorem 3. (B) one of the
conditions (B,)-(By) :

(B) V(T)= V(]O-TX(s)ds) is RV at oo, with V(T)=Th.(T),
ho (TY)=c(1/T)s(1/T);
(B,) if we write (1)/2 for the spectral density of X,
then H(o= [ @)dd is RV at 0, H(O)=vh(x), l(x)=c(0s(0) on
some interval (0,8) (6>0), and c(x) fulfils

V(T (t—s))—t—s,

(B-D) 3’ ELW,®, [ I3 dy=0(x), x=+0,
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or
(B:-2) ¢(x)—c(+0)=0(x), x—>+0

for some comstant q¢>0;
(B) @) is RV at 0.

(CYX(0) EN; and there exists an a, 0<a<]1, such that

2 3¥26.(a) <oo,

k=1

where
¢i(@)= sup x” f "0 /(M) dA (E(a)>0).

Then
X(DH={X(T, b, tel},

X(T, t):/%n’/o‘nX(s)ds, 1=[0,1]
converges in distribution on C(I), the space of continuous functions on I to
standard Brownian motion W = (W (¢), 0<t<1).

Since (B.) or (B;) implies (B,) we are sufficed to prove the theorem
under (A), (B), and (C). Using the notations in the preceding para-
graphs, define further processes, depending on time ¢ <1, indexed by 7> 1.
Let

(4.29) S(T)={S(T, ), tel}, (1<I<o0),
ST, H=X(T, t), S.(T)=X(D),

5(T, t>:/%nfo”sz<s>ds (1<i<oo),

and
(4.30)  Si(TH={S:«(T, b, tel},
~ 1 Tt
S5(T, t)=—ﬁfo S5(s)ds (1<I<oo0, 0<e <00,
S3()=S,(t), S()=S,(#) (1<I<c0).
Take an increasing sequence t, --- , ¢, on I and set

marg X(T)=(X(T, ), -, X(T, tn)),
(4.31) margW=(W(), -, W(twn),
marg S, (T)=(S5(T, t), -, S(T, tw),
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similarly for S¢(T).

Since the assumptions of are stronger than those of
3, we can mkae use of the arguments and conclusions in the proof of the
latter. As usual, the proof consists of two parts, i. e. the first part for
marginal convergence and the second for compactness.

ProoF oF THEOREM 4. Step 1 (marginal convergence). By the

continuity of T—>V (X (T, t)) (t>0 fixed) and RV property of V(T)
supV (Tt)/V(T)<co for every t=0. Then M= {dist marg X(T),T>1} is

T>1
relatively compact. Let x4 be a limit point of It as T—oo, and D, €92, be

such that marg X(7T) converges weakly to x4 as T—oo on D,.
Let

_ 1 Tt
k(Tt>:T<ﬂfo Xi(s)ds, 0<e<co, T>1, 1<k<co,

and m(1), -, m(k) be as in (4.19). Then, as before, S(X%,, (T, £), -,
X (T, £)) is a sum of terms like

1
<7_V—ET)) ka{ Conc> () Coney(X) Dy (B1) -+ Dy (X)) Hd o,

of which the absolute value is, by 1-1 and RV property of V, not greater
than p*? where p= sup V(Tt)/V(T)<oo for every t=0. This implies

<T<oo

that

sup |E{S(T, )17, ASy(T, )} <oo

0<e<co
1< T <co

for every >0, n>1, and multi-index (1, ---, p»). So that {|marg S5(7)|?,
0<e<oo, 1< T <oo} isuniformly integrable, for any p, 1<k<oo, p>0,
and ¥ ={dist (marg S¢(T), .-, marg S<(T)), T>1, 0<e <oo} is
relatively compact. Since by 4-1I and regular variation of V(T),V (ST, ¢)
ST, )=(V(TH)/ V(T VASy(Tt))—0, as T—oo, t>0, through
a diagonal procedure, one can find a D, 9,, D,C D, such that for every =
both {marg S=(7T), -+ , marg S=(T), marg X(T)} and {marg S. (D,
.-, marg S.(T, marg X(7T)} converge in distribution to a same limit.
To show that x =dist marg W, take m(1),---, m(p+1) (»p=0), and
proceed as in the paragraphs after (4.20) to have
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S(Xff;(l)(T, s(1)), - ) Xfrf(p+1)(7: s(p'f'l)):% ]<Q>,

1
]<Q>:(_\/7(:@)”1/@(6;2(1)(%)'”ny}’(p“)(xpﬂ)
X Drey(E) s Dyypiny(Bpe))d o,

where s(1) etc. are taken from (4, --- , t,). Then as in the passages
(4.21)-(4.23),

1
/(&) | Sc(—/W—T.))mTcpH)eo
Xfl .@Tsa)(ﬁh)... .@Ts(p)(xp) -@Ts(p+1>(x1+--- +x,) | doey - dx,.

1 "
— (= NPT (+De
) T T IR,

where ¥ (x)=Dsw (%) ** Dot (%) Dypryy (- +2), 2=, =+, %), ¢ is a
constant depending on £ Define

Jo(x)=(og 2(1+xH))"/(1+ x>V (—c0<x<0), n=0,1,---.

Then after elementary calculus, this leads to f,(x)*f,(x)=<f. (x) on (—oo,
o) for 0<n<oco. The obvious relation |Dyy(x)|<c(s(E)f(x) (1<k<
p+1) gives

¥l eCsD), -, s+D) [ 3 (0 f(dr<oo,

where c(a), c(a, b, ---) denote constants respectively depending on ¢, (a, b,
-++). Arguing as in the proof of [Theorem 3, by slow variation of %,, one
obtains

IJ(Q)|<c(1/TA972=e)PIT 1< 8<1—2¢,,

whence
}im J(@=0 for p=[2/(1—6—2&0)].

By Proposition 4-1II, the concluding remark of the last paragraph, and that
made directly after (4.24), dist {marg S,(T), ---, marg S,(T)}
converges weakly, as T—co on I}, to a Gaussian distribution with zero
mean.

Arguing as in the proof of [Theorem 3, there is an R™valued process {U,,
1< <co}, U=U(t), -+, U(tn)), whose finite-dimensional marginal
distributions are the limits of the corresponding ones of {marg S,(7T), 1</
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<oo}, as T—oo on D,. Especially, {U,, 1</<co} is Gaussian with mean
zero, and dist U,=x. Asin (4.25)

lim Eg(| UL—UOOD:}im lim ¢(|marg S,(T)-marg S.(T)|)

l—o0 —o0 T—oo

<lim Tm 3 E(V(T)- 1’2f0thSl(s)ds— v [T X sds)

>0 Toeo j=1
<3 lim Tim (V(TH)/ V(IO VC [ R()dS) V(T

j=1 > Tooo

m

=2 4 lim lim. V(T)V<f Ri(s)ds)=0,

therefore E |U,—U.|*-0, |U,(t)— U,(8) |*=||Un(t) — Uo(s) > (I—>0), for
s, te(t, ..., tw). Similarly, from

lim Tim 18,1~ 8.(T) 1< 3 lim Tim VDV [ Ri()ds)=0,

[—00 T oo 7 =0 T oo

follows lim K (I)=0, where

[—o0

K(DO=Tm IAl2, A=(S(T, H=S(T, D)= (ST, ) —S(T, 5)).

T—oo

TeDb,

(B) implies that for s<t¢
(4.32) hm 1S.(T, ) — S (T, 9)|I>°= 11m V(T({t—s)/V((T)=t-—s.
The triangular inequality gives

(4.33) }ijrgoligw(f )= S(T, HI—K D

<1lim |S(T, 5= ST, 9I= Jim |.(T, = 8&(T 1+ KD,

TeD

On the other hand the uniform integrability of {|marg S,(T)|?, T >1} for
arbitrary [, p=1 implies that for any /, p=>1

(4.30) ES(T, )=S(T, s))*—E (U()—U(s)?, (T—oo, TED).
Putting (4. 32)-(4. 34) together
JIi—s— KO </JEWUWM-UG)N*</t—s+K),
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whence on making /—oo
(4.35) E(U.(t)—U.(s))*=t—

Take s, t,ucs(t, -, tn), s<t<wu, and put A, =U.(t)—U.(s), A,=
U.(u)—U.(t). Then

Uu—s=E(Us(u) —Us(s))’=FEA2+ EAZ+2E (A LA,)
=(u—t)+(t—s)+2E(AA,),

whence E (A A;)=0, i. e. increment independence for the sequence U.(#),
, Us(tn). In other words

u =dist marg W,

which completes the proof of Step 1.
Step 2 (compactness). Fix a small ¢, 0<a<1, to divide X into two
parts, X ()=XP(t)+ X®(¢), such that

x0=3 [ x°Waal, D', (=12,

where x ", x? are respectively the indicators of (A €R*: |1|>a), (A ER*:
|A|>a). Then

XOT, D=V (D) [ X0(s)ds= p} | e, 1yaxs,

WD) =x" D) D, (D) / v V(T :

Fix an ¢, 0<e <1/2, and let p=p(T) be defined to satisfy 7°=V (T).
As will be easily seen p(T)—1, as T—oo. Notice that if we write H (x) =

[quzu)dl:xho(}o, ho()=c(x)s(x), then (c.f. 3-V, VD), V(T)~=T
c(1/T)s(1/T), T—oo. If we denote by @.(1)/2 the spectral density of
X, (1), then @,(1)/2=¢ (|c:|*; 1) and

e2Ct, D I8= [160C4 1) Pdo =V (T [ 9] cu(1) |2D% (1) d*.
Especially, there is a 7y,>1/a such that

le@C 3=V T) (kD™ / @:(A) D%, (A)dA

= V(T kD™ [ Dp) 17| Dy 1" *@u (1) d
L (T

2—p
0o (kD S e d e L [ o
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<alclia ",
therefore
4.3 (2 3VEIeEE Ol <ca 070 (3 VR Tlal,
for T=7,. On the other hand
et ) 13= V(T . D™ [“9u(1) D (M)
= Th(1/ TV (D) (h+E),
where
L= [ DI04/ T /hoC1/ T} iR/ T)d,

Iz:fl”D%uxho<A/T>/ho<1/T>}W/T)da,
I =@u(A) /(R 1RV, T=Th.

First, T, being so large that by the integral representation of s,
1 1T
L<at [ A= hA/T)d=af T [ 1~h(1)dA.
0 0
But, since by integration by parts

1/T X
[T A yan <27 sup xf (L) dA,

0<x<1/T

we have
(4.3  L<2at2(EDE(a).

Here notice that ¢%2(a) is finite. Indeed, ¢(x) in (B) satisfies that for an
arbitrary ¢, >0, there is @>0 such that ¢(x)=1/a on (0,c). So that,
having ¢.(1) <@ (1), for x (0, ¢,) by integration by parts and the integral
representation of s,

[Foe0/mddr<a [To /s dn
:a{sy(x)fo"cp(wda-fo‘% ' VA [ @ Cwdu)
Sar(xc(x)%—/o‘xlﬂ(l) lc(1)dA) <const x.

Second, again by the integral representation of s,
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L<o f DAL T dA
aTt
<ot f ED) (A /THAA,
where E(1)=21°/(14+1%). By integration by parts
aTt aTt
439 [ EORA/as [T EQORA/THM
._E faTt faTt E’ d Ah
=E@T) [ h(u/Tdu— | ) Afo () TH du.,

The first term is less than

1+e a
(4.39) %a‘lf hk(u)du

<Csup ~ a0 [“nDan.

0<x<oo 1+ 2

To evaluate the second term of (4. 38), observe that since A/ Tt<a

/hk(u/Tt)du</l sup x~ thk(u)du.

0<x<a

Then the second term is less than

2+¢ x
(4.40) (2] (1':_112)20’/1) sup x~ f h. () du.

0<x<a

Collecting (4.39), (4.40)
(4.41)  L<ct™ (kD€ (a).
Putting (4.37), (4.41) together

(4.4 (Z 3R )l Sc( T 3%6(0) 2070,

Due to 1-1I and the condition (C) of [Theorem 4, (4.36), (4.42) finally give

E(X(TH <2 EXY(T, t)*+EX®(T, t)*)
<t 0<t<1,

s = 8{ c%d"“(g1 32 klllcel)*+ (2 3¥2&,(a)) } < oo,

Since 2(1—¢)>1, this completes the proof of Step 2.

ACKNOWLEDGEMENT.  Under the same framework as the present paper
Giraitis-Surgailis recently obtained a CLT for finite X. In some
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respects, these authors’ truncation conditions are weaker than (iv) of
Theorem 3.

During the preparation of the present paper the author received the
manuscript of a paper by Chambers and Slud [I]. The introduction of N;n
was motivated by the compactness conditions by these authors. In [11],
[12]. in order to formulate compactness conditions for a periodogram limit
theorem, the author made use of subclasses (M;n, M:n) of N3n which are
different from Ni,. had been originally formulated under
compactness conditions based on these subclasses and afterwards has been
changed to use those based on N,,, which are simpler than the original ones.
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