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Douglas algebras on multiply connected domains
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In this paper we consider Douglas algebras related to the algebras H^{\infty} of
bounded analytic functions on multiply connected domains. Our main result
is: Every closed subalgebra \mathscr{B} of L^{\infty} containing H^{\infty} is generated by H^{\infty} and
the complex conjugates of single-valued interpolating Blaschke products
which are invertible in \mathscr{B} . The result is also true for the algebras H^{\infty} on
finite bordered Riemann surfaces.

1. Introduction. Let \Omega be a bounded connected open subset of the
plane whose boundary \Gamma consists of N+1 non-intersecting, analytic Jordan
curves. We denote by H^{\infty}=H^{\infty}(\Omega) the algebra of bounded analytic

functions on \Omega . Denote by L^{\infty}=L^{\infty}(\Gamma) the Banach algebra of essentially
bounded, measurable functions on \Gamma with respect to the measure defined by

arc length. By the correspondence between each function in H^{\infty} and its
nontangential boundary values, we also consider H^{\infty} as a closed subalgebra

of L^{\infty} ([5: Chap. 4, Theorem 4. 4]).
In what follows, we always denote by \mathscr{B} a closed subalgebra of L^{\infty} which

contains H^{\infty}- A function f \in H^{\infty} is called inner if |f|=1 a. e. on \Gamma We call
\mathscr{B} a Douglas algebra over H^{\infty} if \mathscr{B} is generated by H^{\infty} and the complex
conjugates of inner functions that are invertible in \mathscr{B}. In the case that \Omega is
the open unit disk, Chang and Marshall showed that every \mathscr{B} is a Douglas
algebra ([4], [8: Chap. IX] and [10]). Our purpose of this note is to
show the following result in the above situation.

MAIN THE0REM. Let \mathscr{B} be a closed subalgebra of L^{\infty} containing H^{\infty}

Then \mathscr{B} is a Douglas algebra. More precisely, \mathscr{B} is generated by H^{\infty} and the
complex conjugates of single-valued interpolating Blaschke products which are
invertible in \mathscr{B} .

The same result is also true for finite bordered Riemann surfaces. See
\S 5.

We would like to thank Dr. K. Izuchi with whom we had very usefull
discussions.

2. The algebra H^{\infty}+C . Let \Gamma_{0} , \ldots . \Gamma_{n} be the components of the
boundary of \Omega , where we let \Gamma_{0} be the boundary of the unbounded connected
component of C|\Omega . Let C=C(\Gamma) and C_{k}=C(\Gamma_{k}) , 0\leqq k\leqq N , denote the
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algebras of continuous functions on \Gamma and \Gamma_{k} , respectively. Define H^{\infty}+C

to be the set_{\iota}^{j}f+g:f\in H^{\infty}-g\in C }. Then H^{\infty}+C in a closed subalgebra of
L^{\infty} ([1] and [14]).

Let \mathscr{U}_{k} be the connected component of C\cup\{\infty\}|\Gamma_{k} containing \Omega for each
k . Denote the open unit disk by D . There is a one-t0-0ne conformal
mapping \Psi_{k} of \mathscr{U}_{k} onto D ; note that \Psi_{k} extends to be analytic and
conformal on a neighborhood of \mathscr{U}_{k}\cup\Gamma_{k} . Let M(H^{\infty}) and M(H^{\infty}|\mathscr{U}_{k}))

denote the maximal ideal spaces of H^{\infty} and H^{\infty}(|\mathscr{U}_{k}) , O\leqq k\leqq N , respec-
tively. Define the mappings

\hat{Z} : M(H^{\infty})arrow\overline{\Omega} by \hat{Z}(\varphi)=\varphi(z)

and
\hat{\Psi}_{k} : M(H^{\infty}(|\mathscr{U}_{k}))arrow\overline{D} by \hat{\Psi}_{k}(\varphi)=\varphi(\Psi_{k}) .

Let h^{\infty}(\Omega) be the space of bounded harmonic functions on \Omega . Let
S(H^{\infty}) be the Shilov boundary of H^{\infty}\sim Then M(L^{\infty})=S(H^{\infty})([5 : Chap.
6, Theorem 5. 2] and [9] ) .

PROPOSITION 2. 1. (1) For \varphi\in M(H^{\infty}) with \hat{Z}(\varphi)\in\Gamma . There exists a

unique representing measure \mu_{\varphi} on S(H^{\infty}) . (2) Each function u\in h^{\infty}(\Omega)

has a unique continuous extension \^u to M(H^{\infty}) such that for \varphi\in M(H^{\infty})|\Omega ,

\hat{u}(\varphi)=\int_{S(H^{\infty})} ud\mu\varphi , u\in h^{\infty}(\Omega) .

(3) Denote the nontangential limit of u by u^{*}\in L^{\infty}(\Gamma) . The Gelfand
transform \hat{u}^{*} of \hat{u}^{*} coincides with \^u on S(H^{\infty}) and the values of \^u on
\hat{Z}^{-1}(\Gamma_{k}) depend only on u^{*}|_{\Gamma_{k}} .

PROOF. (1) For 2(\varphi)=\lambda\in\Gamma.\hat{Z}^{-1}(\lambda) is a peak set for H^{\infty}. So the
restriction of H^{\infty} to \hat{Z}^{-1}(\lambda) is isomorphic to a fiber algebra of H^{\infty}(D)([7]) .
Thus \varphi\in\hat{Z}^{-1}(\lambda) has a unique representing measure on S(H^{\infty}) .

(2) Let M_{rep} be the set of all representing measures for H^{\infty} on S(H^{\infty}) .

Then M_{rep} is weak-*compact in the space of all regular Borel measures on
S(H^{\infty}) . Moreover let M_{rep}^{*} be the set of all \mu\in M_{rep} such that

\int fd\mu=f(\int Zd\mu) for all f\in h(\overline{\Omega}) .

Here h(\overline{\Omega}) is the space of functions continuous on \overline{\Omega} and harmonic on \Omega .
Then M_{rep}^{*} also is weak-* compact. For z\in\Omega , let \omega_{z} be the harmonic
measure and \varphi_{z}\in M(H^{\infty}) be the point evaluation. Then, \omega_{z}\in M_{rep}^{*} and \omega_{z} is
a unique representing measure for \varphi_{z} contained in M_{rep}^{*} . Together with part
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(1), M_{rep}^{*} contains a unique representing measure \mu_{\varphi} for every \varphi\in M(H^{\infty}) .
Thus M_{rep}^{*} is homeomorphic to M(H^{\infty}) for the weak-*topology . Now if we
define for u\in h^{\infty}(\Omega)

\hat{u}(\varphi)=\int\hat{u}^{*}d\mu_{\varphi} , \mu_{\varphi}\in M_{rep}^{*} ,

then \^u is continuous on M(H^{\infty}) and the extension of u . Uniqueness of the
extension of u follows from the corona theorem ([5: Chap. 6, Theorem 6. 3]

and [11] ) .
(3) For \varphi\in S(H^{\infty}) , \mu_{\varphi} is the Dirac measure \delta_{\varphi} . So \hat{u}=\hat{u}^{*} on S(H^{\infty}) .

Since \hat{u}^{*} is identified with (u^{*}|\Gamma_{k}) on \hat{Z}^{-1}(\Gamma_{k}) , the values \hat{u}(\hat{Z}^{-1}(\Gamma_{k})) are
determined by u^{*}|\Gamma_{k} .

Note. There is another proof for (2). Namely, one may define the set
M_{rep}^{*} as the set of logmodular measures for H^{\infty} in the proof (cf. [6: Chap.
IV , Corollary 7. 6]).

PROPOSITION 2. 2. For a fifixed point z_{0}\in\Omega , Let\omega=\omega_{z_{0}} be the harmonic
measure on \Gamma Suppose that \mathscr{B} is a closed subalgebra of L^{\infty} such that \mathscr{B}\supset H^{\infty}

and \omega is multiplicative on \mathscr{B} . Then \mathscr{B}=H^{\infty}-

For the proof see [6: Chap. IV , Theorem 7. 7].

Since (Z- z_{0})^{\wedge} does not vanish on M(H^{\infty})|\Omega , if \mathscr{B}\supsetneqq H^{\infty}, then Z- z_{0} is
invertible in \mathscr{B} . From Runge’s theorem, Propositions 2. 1 (1) and 2. 2, we
have the following.

COROLLAR\grave{Y}2.3 . Let \mathscr{B} be a closed subalgebra of L^{\infty} properly containing
H^{\infty}- Then \mathscr{B} contains H^{\infty}+C and M(\mathscr{B}) is identifified with a compact subset
of M(H^{\infty})|\Omega .

REMARK. Let F be the Ahlfors function for \Omega ([2] and [5: Chap. 5]).

Then F is an inner function on \Gamma and continuous on \overline{\Omega} . It follows from the
corollary that H^{\infty}+C is generated by H^{\infty} and \overline{F}. So H^{\infty}+C is a Douglas
algebra.

3. Lemmas. In this section we show several lemmas.

LEMMA 3. 1.
H^{\infty}+C= \bigoplus_{k=0}N(H^{\infty}(\mathscr{U}_{k})+C_{k})

Namely, for f\in H^{\infty}+C, we have f=\chi_{\Gamma_{0}}f_{0}+..1+\chi_{\Gamma}f_{N}, where \chi_{\Gamma_{k}} is the
characteristic function of \Gamma_{k} , f_{k}\in H^{\infty}(\mathscr{U}_{k})+C_{k} , O\leqq k\leqq N, and ||f||=

max (||f_{0}||, \ldots, ||f_{N}||) .
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PROOF. Since \chi_{\Gamma_{k}}\in H^{\infty}+C, it is sufficient to prove \chi_{\Gamma_{k}}(H^{\infty}+C)=H^{\infty}

(\mathscr{U}_{k})+C_{k} for each k. Let f=g+u, where f\in H^{\infty} and u\in C. Write

g(z)= \sum_{k=0}^{N}g_{k}(z) , where g_{k}(z)= \frac{1}{2\pi i}\int_{\Gamma_{k}}\frac{g(\zeta)}{\zeta-z}d\zeta.

Then g_{k}\in H^{\infty}(\mathscr{U}_{k}) and g_{k}\in C_{j}(j\neq k) . So \chi_{\Gamma}f\in H^{\infty}(\mathscr{U}_{k})+C_{k} . Conversely
it is clear that H^{\infty}(\mathscr{U}_{k})+C_{k}\subset\chi_{\Gamma_{k}}(H^{\infty}+C) .

Lemma 3. 2. If \mathscr{B} is a closed subalgebra of L^{\infty} properly containing H^{\infty}-

then

(1) \mathscr{B}_{k}=\chi_{\Gamma_{k}}\mathscr{B} is the closed subalgebra of L^{\infty}(\Gamma_{k}) containing H^{\infty}(\mathscr{U}_{k})+

C_{k} for each k.

(2) M( \mathscr{B})=\bigcup_{k=0}^{N}M(\mathscr{B}_{k}) , where M(\mathscr{B}_{j})\cap M(\mathscr{B}_{k})=\phi for j\neq k.
(3) \mathscr{B}_{=}\mathscr{B}_{0}\oplus\ldots\oplus \mathscr{B}_{N}, a direct sum.

By proposition 2. 1, the proof is immediate.

Let \{ a_{n}\} be the points in \Omega with no limit point in \Omega . Let G(z;a_{n}) be

the Green’s function for \Omega with pole at a_{n} . If \{ a_{n}\} satisfies that \sum_{n=1}^{\infty}G(z :
a_{n})<\infty for each z\in\Omega , we define

B(z)= \exp[-\sum_{n=1}^{\infty}G(z ^{;} a_{n})-i^{*}(\sum_{n=1}^{\infty}G(z _{;} a_{n}))]

where *u denotes a harmonic conjugate of a real harmonic function u. We
call B the Blaschke product on \Omega for J\backslash a_{n/}^{1} . Note that B may not be
single-valued ([5: Chap. 7]).

For a closed subalgebra \mathscr{B} , let \mathscr{B}^{-1} be the set of invertible elements of \mathscr{B}.

LEMMA 3. 3. Let\mathscr{B} be a closed subalgebra of L^{\infty} and \mathscr{B}\supsetneqq H^{\infty}- Suppose
that B is a single-valued Blaschke product on \Omega with its zeros \{ a_{n}\} accumulat-
ing only at points on \Gamma_{k} for some k, and that b is the Blaschke product on \mathscr{U}_{k}

with the same zeros { a_{n/}^{1} . Then B\in \mathscr{B}^{-1} if and only if b\in \mathscr{B}_{k}^{-1} .

PROOF. Firstly we note that b^{-1}B\in(H^{\infty})^{-1} . In fact, by the assum-
ption, b has the form

b= \prod_{n}w_{n}\circ\Psi_{k} , where w_{n}=- \frac{|a_{\acute{n}}|}{a_{n}},\frac{z-a_{\acute{n}}}{1-\overline{a}_{n}z}, , a_{\acute{n}}=\Psi_{k}(a_{n}) .

We obtain the following factorization of w_{n}\circ\Psi_{k} as a function in H^{\infty} :
w_{n}\circ\Psi_{k}=W_{n}\exp(v_{n}+i^{*}v_{n}) ,
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where W_{n} is a Blaschke product on \Omega and v_{n}=\log|w_{n}\circ\Psi_{k}/W_{n}| . Then B=

\prod_{n}W_{n} . Since v_{n} are negative harmonic functions on \Omega and \sum_{n}v_{n}(a_{1})=\log|(b/

B)(a_{1})|>-\infty , \sum v_{n} converges to a harmonic function v uniformly on every
compact subset of \Omega , by Harnack’s theorem. Also, note that v_{n} is contin-
uous on \overline{\Omega} and vanishes on \Gamma_{k} . By the reflection principle and the maximum
principle, we see that \sum v_{n} converges to v uniformly on a neighborhood of \Gamma_{k}

On the other hand, the same argument implies that \sum G(z ; a_{n}) is harmonic
ic on a neighborhood of \Gamma_{j}(j\neq k) . So v=\log|b|-\log|B| is harmonic on a
neighborhood of \overline{\Omega} . Consequently b=B\exp(v+i^{*}v) and b^{-1}B has no zeros
and is analytic on \Gamma Thus b^{-1}B\in(H^{\infty})^{-1} .

Suppose b\in\dot{\mathscr{B}}_{k}^{-1}’ . Since b is analytic on \Gamma_{j}(j\neq k) and has no zeros
there, b\in \mathscr{B}_{j}^{-1}(j\neq k) . So b\in \mathscr{B}^{-1} and B\in \mathscr{B}^{-1} . Conversely, b=bB^{-1} . B
\in \mathscr{B}^{-1} . Thus b\in \mathscr{B}_{k}^{-1} by Lemma 3. 2.

We recall the notion of interpolating Blaschke products. A sequence
{ a_{n)n=1}^{1\infty} in \Omega is called interpolating if for any { w_{n)}^{1}\in l^{\infty} . there is a function f
\in H^{\infty} with f(a_{n})=w_{n} . If { a_{n/}^{\iota}=a\cup\ldots\cup S_{N} where S_{j}\cap S_{k}=\phi for j\neq k and
all limit points of S_{k} lie on \Gamma_{k} , 0\leqq k\leqq N, then { a_{n/}^{1} is an interpolating
sequence if and only if S_{k} is an interpolating sequence for H^{\infty}(\mathscr{U}_{k},) , k=0 , \ldots ,

N([11]) . A Blaschke product is called an interpolating Blaschke product
if its zeros are all simple and form an interpolating sequemce.

Now, we shall show the following key lemma which may have an
independent interest.

LEMMA 3. 4. If B is a Blaschke product on \Omega with simple zerons, then
there exists a single-vaued Blaschke product on \Omega with simple zeros such that
its zeros coincide with B’ s but a fifinite number.

If one admits that the single-valued Blaschke product may have multiple
zeros, the lemma follows from [12]. To prove the lemma in the present
form, we shall need te following version of Widom [13].

LEMMA 3. 5. There is a compact subset K of \Omega such that for any real
number c_{1} , \ldots c_{N} there are mutually distinct fifinite points a_{n} in K such that

(3. 1) \sum_{n}\int_{\Gamma_{k}}^{*}dG(\zeta;a_{n})\equiv c_{k} (mod 2\pi )

for k=1, , .. N.

PROOF OF LEMMA 3. 4. We may assume that B has no zeros in K. Then,
by Lemma 3. 5, there exists a finite Blaschke product B_{1} scuh that the zeros
of B_{1} are simple and lying in the set K and such that BB_{1} is single-valued on
\Omega . Clearly, BB_{1} has the desired property.
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PROOF of LEMMA 3. 5. Let u_{k} , k=1 , \ldots . N. be the harmonic function
on \Omega whose boundary values are 1 on \Gamma_{k} and 0 on \Gamma_{j} , j\neq k . By the Green’s
formula,

u_{k}(z)= \frac{1}{2\pi}\int_{\Gamma_{k}}.*dG(\zeta;z) , z\in\Omega .

Now we use the method used in [13; Lemma 6]. Namely, set (a_{1}, \ldots. a_{z})

\in\Omega^{N} Then

(3. 2) \frac{1}{2\pi}\int_{\Gamma_{k}}*d(\sum_{n=1}^{N}G(\zeta _{:} _{a_{n}}))=\sum_{n=1}^{N}u_{k}(a_{n})

which is the period of the function *
( \sum_{n}G(\zeta ; a_{n})) around \Gamma_{k} . Now, the

Jacobi matrix of the mapping

(_{X_{1}}, . .. - x_{N^{ }},, y_{N}) arrow(\sum_{n=1}^{N}u_{k}(a_{n}))_{k=1}
, , N’a_{n}=x_{n}+iy_{n}

is given by

(3. 3) ( \frac{\partial u_{k}}{\partial x_{n}}(a_{n}), \frac{\partial u_{k}}{\partial y_{n}}(a_{n}))_{k}

, n=1 , , N .

Since u_{k} are linearly independent, the rank of matrix is N for ( a_{1} , \ldots .
a_{N})\in\Omega^{N} except for nowhere dense closed subset of \Omega^{N} . Now let us take a
single-valued finite Blaschke product \varphi on \Omega . For example, one may consider
er the Ahlfors function for \Omega . Note that \varphi is a \nu -sheet mapping of \Omega ontoD
except for a finite number of branch points. Thus we can find suitable points
a_{1}^{1} , \ldots . a_{N}^{1} in \Omega so that w_{n}=\varphi=(a_{n}^{1}) are mutually distinct, \varphi^{-1}(w_{n})=\{a_{n}^{1},\ldots ,

a_{n/}^{\nu(} consists of \nu distinct points and the Jacobi matrix (3. 3) at ( a_{1}^{1} , \ldots .

a_{N}^{1}) has rank Nr Clearly, b^{0}(z)= \prod_{n=1}^{N}\{(\varphi(z)-w_{n})/(1-\overline{w}_{n}\varphi(z)),\cdot\} is a single-

valued Blaschke product with \nu times N distinct zeros. We consider the
periods of differentials

(3.4) \sum_{n=1}^{N}*dG(\zeta : a_{n})+\sum_{l=2}^{\nu}\sum_{n=1}^{N}*dG(\zeta,\cdot a_{n}^{t}) .

Note that for a_{n}=a_{n}^{1} , (3.4) corresponds to the Blaschke product b^{0}(z) .
The N tuples of their periods are given by

( \sum_{n=1}^{N}u_{k}(a_{n})+\sum_{l=2}^{\nu}\sum_{n=1}^{N}u_{k}(a_{n}^{l}))_{k=1}
, , N.

This yields the same Jacobi matrix (3. 3) as a function of a_{1} , \ldots . a_{N} . Since
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it has rank N at (a_{1}^{1}, \ldots a_{N}^{1}) , the set of periods of b^{1} , the Blaschke product

with zeros { a_{1} , \ldots . a_{N} , a_{1}^{l} , \ldots , a_{N}^{l} : l=2 , \ldots

\nu_{/}^{\mathfrak{l}} , forms an open neighbor-

hood of the identity, when a_{1} , \ldots , a_{N} run through a small neighborhood U_{1} of

the set’ J_{1}a_{1}^{1} , ... . a_{NJ}^{l\backslash } . From the construction, b^{1} has different zeros. Set
K_{1}=\overline{U}_{1}\cup\{a_{n}^{t} ; 1\leqq n\leqq N, 2\leqq l\leqq\nu_{J}^{1} Let U_{2} be any relatively compact open

subset of \Omega with K_{1}\cap U_{2}=\phi . Then, the set K=K_{1}\cup\overline{U}_{2} has the required

property. In fact, as in the proof of [13: Lemma 6], there exist a finite

number of points \xi_{m} in U_{2} such that

\sum_{m}\int_{\Gamma_{k}}*dG(\zeta;\xi_{m})\equiv c_{k} (mod 2\pi )

for k=1 , \ldots . N , where \xi_{m} may not be distinct. Perturbing \xi_{m} slightly, we
have distinct \xi_{m}’ . Choosing a_{1} , . . . \wedge a_{N}\in U_{1} in an appropriate way and

adding (3. 4) to \sum_{m}^{*}dG(\xi_{\acute{m}}) , we obtain (3. 1) relabeling j|a_{1_{J}}. . a_{N} } \cup j\backslash a_{j}^{t}

’
. 2\leqq j\leqq N, 1\leqq l\leqq\nu^{(},\cup\{\xi_{\acute{n}}\} as j\backslash \backslash ^{a_{n)}}\cdot

4. Proof of the main theorem. We may assume that \mathscr{B}’\supsetneqq H^{\infty}+C . The

proof runs as follows. As defined in \S 2, let \Psi_{k} be the Riemann mapping of
\mathscr{U}_{k} onto D for each k. For a fumction f \in \mathscr{B}, f|\Gamma_{k}\in L^{\infty}(\Gamma_{k}) . By Chang

and Marshall’s theorem ([4] and [10], [8 : Chap. IX, Theorem 3. 1]),

there exist an interpolating Blaschke product b_{k} and g_{k}\in H^{\infty}(D) with \overline{d_{k}\circ\Psi_{k}}

\in a|\Gamma_{k} such that

(4. 1) ||f-\overline{b_{k}\circ\Psi_{k}}g_{k}\circ\Psi_{k}||_{\Gamma_{k}}<\epsilon

for any \epsilon>0 . To simplify the argument we consider the case k=0 . Let

{ a_{n}^{\mathfrak{l}}

( be the zeros of b_{0}\circ\Psi_{0} . Including to g_{0}\circ\Psi_{0} the finite Blaschke part of b_{0}

\circ\Psi_{0} whose zeros are not on \Omega , We may assume that j(|a_{n1} is an interpolating

sequence on \Omega and g_{0}\circ\Psi_{0}\in H^{\infty} . Now let B_{0} be the Blaschke product for |/a_{n} }

on \Omega . By Lemma 3. 4, we take a single-valued interpolating Blaschke
product \overline{B}_{0} which has the same zeros as B_{0} except a finite number of zeros.
By the same metod in the proof of Lemma 3. 3, we can write

b_{0}\circ\Psi_{0}/\overline{B}_{0}=\exp(u_{0}+i^{*}u_{0})B_{\acute{0}}/B_{\acute{0}} ,

where u_{0}=\log|b_{0}\circ\Psi_{0}/B_{0}| and B_{\acute{0}} , B_{\acute{\acute{0}}} are finite Blaschke products. The left

hand side is single-valued and the right does not vanish on \Gamma_{0} and is contin-
uous there. Therefore b_{0}\circ\Psi_{0}/\overline{B}_{0}\in C(\Gamma_{0}) , |b_{0}\circ\Psi_{0}/\overline{B}_{0}|=1 on \Gamma_{0} and (b_{0}\circ\Psi_{0}/

\overline{B}_{0})^{-1}=\overline{(b_{0}\circ\Psi_{0}/Bo)}\in C(\Gamma_{0}) . On the other hand, we have \overline{R}\in \mathscr{B}^{-1} by the fact
(b_{0}\circ\Psi_{0})^{-1}\in \mathscr{B}|\Gamma_{0} and Lemma 3. 3. Consequently, it follows from (4. 1)

that
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||f-B_{0}^{\approx}\tilde{y}_{0}||_{\Gamma_{0}}=||f-\overline{h\circ\Psi_{0}}g_{0}\circ\Psi_{0}||_{\Gamma_{0}}<\epsilon

for any \epsilon>0 , where \tilde{g}_{0}=\overline{(b_{0}\circ\Psi_{0}/\tilde{B_{0}\prime})}g\circ\Psi_{0}\in H^{\infty}(\mathscr{U}_{0})+C(\Gamma_{0}) .
We have the same work for any k, 1\leqq k\leqq N. That is, for any function

f\in \mathscr{B},

||f- (X_{\Gamma_{6}}B_{\mathfrak{o}}^{\approx}\tilde{g}_{0}+, .. +X_{\Gamma_{N}}B_{N}^{\approx}\tilde{g}_{N})||<\epsilon ,

XFkgk\in H^{\infty}+C and \tilde{B_{k})} is an interpolating Blaschke product on \Omega with B_{k}\in

\mathscr{B}-1 for each k . Here by the remark in \S 2, we finish the proof.
It is routine to see the next two results from the main theorem and

Proposition 2. 1 (2) (cf. [8: Chap. IX] ).

COROLLARY 4. 1. Let \mathscr{B} be a closed subalgebra of L^{\infty} containing H^{\infty}-

Then

M(\mathscr{B})=_{1}^{j}\varphi\in M(H^{\infty}):|\hat{q}(\varphi)|=1 for q\in H^{\infty}, inner, q\in \mathscr{B}^{-1\mathfrak{l}}, .

COROLLARY 4. 2 Let \mathscr{B}_{1} and \mathscr{B}_{2} be closed subalgebras of L^{\infty} containing
H^{\infty} . Then \mathscr{B}_{1}=\mathscr{B}_{2} if and only if M(\mathscr{B}_{1})=M(\mathscr{B}_{2}) . That is, every closed
algebra between H^{\infty} and L^{\infty} is unipuely determined by its nmimal ideal space.

5. The case of finite bordered Riemann surfaces. We can extend
the above results to the case that \Omega is a finite bordered Riemann surface
whose boundary \Gamma consists of disjoint analytic simple closed curves \Gamma_{0} , \ldots .
\Gamma_{N} . In this section we shall briefly sketch the proof.

There exists a Cauchy differential (elementary differential) \omega(p. q)=

f(z, q)dz in z+z(p) , on a neighborhood \overline{\Omega} ( [3 : Chap. VI , \S 6, Satz 44]).
The function f(z, q) of q and the differential f(z, q)dz of z are analytic on

\overline{\Omega} except for p=q and it has the form

f(z, q)= \frac{1}{z-\xi}+R(z, \xi) , z=z(p) , \xi=\xi(q)

in a neighborhood of p=q, where R(z, \xi) is analytic in both z and \xi .
Now, Proposition 2. 1 (1) can be shown in the same manner; to see part

(2), we only have to consider analytic functions Z_{1} , ... . Z_{\nu} on \overline{\Omega} , instead of
a single Z, such that Z_{1} , , .. . Z_{\nu} separate the points of \Omega ; part (3) is routine.

For k=0, \ldots . N, choose an annulus A_{k} in \Omega with \partial A_{k}\supset\Gamma_{k} and let \Psi_{k} be
a one-t0-0ne analytic map of A_{k} onto { z : r_{k}<|z|<1_{/}^{1} such that \Psi_{k}(\Gamma_{k})=

T=j\backslash |z|=1^{1}, .
Let A(\overline{\Omega}) be the Banach algebra of functions continuous on \overline{\Omega} and

analytic on \Omega . If \mu is a measure on \Gamma orthogonal to A(\overline{\Omega}) , \mu is absolutely
continuous with respect to the harmonic measure \omega_{z} for a point z\in\Omega . For
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A(\overline{\Omega})|_{\Gamma} is a hyp0-Dirichlet algebra on \Gamma and \Omega is connected. Now we can
show in the same way as [14] that H^{\infty}(\Omega)+C(\Gamma) is a closed subalgebra of
L^{\infty}(\Gamma) . Moreover, it follows that \chi_{\Gamma_{k}}(H^{\infty}+C)\cong H^{\infty}(D)+C ( T) via \psi_{k} .

In fact, as we have seen, \chi_{\Gamma_{k}}(H^{\infty}(A_{k})+C(\Gamma_{k}))\cong H^{\infty}(D)+C(T) via \psi_{k} .

Since H^{\infty}|\subset H^{\infty}(A_{k}A_{k}), \chi_{\Gamma_{h}}(H^{\infty}+C)\subset\chi_{\Gamma_{k}}(H^{\infty}(A_{k})+C(\Gamma_{k})) . For f\in

H^{\infty}(A_{k}) , define

f_{1}(z)= \frac{1}{2^{\mathfrak{l}}\pi i}\int_{\Gamma_{k}}f(\xi)\omega(\xi, z)

and

f_{2}(z)= \frac{1}{2\pi i}\int_{\{|\phi_{k}|=r_{k}\}}f(\xi)\omega(\xi, z) .

Then f_{1}\in H^{\infty}(\Omega) and f_{2}\in C(\Gamma_{k}) . So f\in\chi_{\Gamma_{k}}(H^{\infty}+C) . Consequently,

\chi r_{k}(H^{\infty}+C)\cong\chi_{\Gamma_{k}}(H^{\infty}(A_{k})+C(\Gamma_{k})) .
So we can show the same results as in \S \S 2 and 3 but Lemma 3. 5, which

can be stated in the following form.

LEMMA 5. 1. Let C_{1} , .. . C_{2g+N} be a homological base of \Omega , where g is
the genus of \Omega and C_{1} , .. , C_{2g} are nondividing cycles. Then there is a

compact subset K of \Omega such that for any real number c_{1} , . . . - c_{2g+N} there are
mutually distinct finite points a_{n} in K such that

\sum_{n}\int_{C_{k}}*dG(\zeta,\cdot a_{n})\equiv c_{k} (mod 2\pi )

for k=1, \ldots.2g+N .
In the proof, we only have to use the reproducing kernel \varphi

(C_{k}) in the
space of square integrable differentials on \Omega in addition to the harmonic
measure du_{k} . Then (3. 2) takes the following form

\frac{1}{2\pi}\int_{C_{k}}*d(\sum_{n=1}^{N}G=\zeta;a_{n}))=\sum_{n=1}^{N}\int_{a_{0}}^{a_{n}}\varphi(C_{k})

where a_{0}\in\Gamma_{0} and a_{n} lie in \tilde{\Omega}=\Omega|(\bigcup_{k=1}^{2g}C_{k}) .

The remaining part of the proof can be shown in a similar manner as
before, where one may use H^{\infty}(A_{k}) as intermediate algebras between H^{\infty}

fnd H^{\infty}(D) if need be. The detail will be omitted.
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