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V. GEORGIEV
(Received May 29, 1985, Revised December 25, 1985)

1. Introduction

Let n\geq 3 and \Omega be an open domain in R^{n} with a bounded complement and
boundary \partial\Omega assumed real analytic and connected. Consider the mixed
problem

n

(1. 1) \{

( \partial_{t}-\sum_{j=1}A_{j}\partial_{x_{j}})u=0 on (0, \infty)\cross\Omega ,

\Lambda(x)u=0 on (0, \infty)\cross\partial\Omega ,

u(0, x)=f(x) .

where A_{j} , \Lambda(x) are (r\cross r) matrices, \Lambda(x) is real analytic and f(x)\in L^{2}

(\Omega ; C^{r}) . We shall assume the following conditions fulfilled

(H_{1}) A_{j} are constant Hermittian matrices,
n

(H_{2})\{
the eigenvalues of the matrix A( \xi)=\sum_{j=1}A_{j}\xi_{j}

have constant multiplicity for \xi\in R^{n}|_{1}^{j}0 }.

The above conditions show that the dimension q of the positive eigenspace of
the matrix A(\xi) is equal to the dimension of the negative eigenspace. The
boundary condition will be assumed maximal dissipative one, i . e .

(H3) \{

a) <A(\nu(x))u, u>\leq 0 for u\in Ker\Lambda(x) , x\in\partial\Omega ,

b) Ker\Lambda(x) is the maximal subspace in C^{r},

satisfying the condition a).

Here \nu(x) is the unit normal at x\in\partial\Omega pointed into K=R^{n}|\Omega , < > is the
inner product in C^{r}. Moreover, we shall assume the boundary condition
coercive (see [5]-[7] , [18] for the precise definition). It is well known
(see [12], [15], [18]) that the above conditions are valid for a wide class
important physical problems such as the Maxwell’s equations, accoustic
wave equation, Pauli, Dirac’s equations etc.

In this work we study the disappearing solutions (D. S.) to the problem
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(1. 1). A solution u(t, x) to (1. 1) is called disappearing if f\neq 0 and there
exists T_{0}>0 such that u(t, x)=0 for t\geq T_{0} .

There are at least three important reasons to study the disappearing
solutions for dissipative boundary value problems.

First, the disappearing solutions are closely connected with the outgoing
and incoming spaces D_{+}^{\rho} , D_{-}^{\rho} playing a central role in the abstract approach
to scattering theory developed by P. Lax and R. Phillips [14], [16]. More
precisely, the solution to the problem (1. 1) can be represented in the form
u(t, x)=V(t)f, where { V (t) ; t\geq 0^{\iota}, is a semigroup of contraction
operators acting in the Hilbert space\mathscr{H}=L^{2}(\Omega, C^{r}) . The inner product in \mathscr{H}

is defined by

(f, g)_{\mathscr{H}}= \int_{\Omega}<f(x)

, g(x)>dx.

To state our first result, we denote by \mathscr{H}_{6}^{\perp} the orthogonal complement of
the linear space \mathscr{H}_{6}- spaned by the eigenvectors of the generator G of V(t)
with eigenvalues on the imaginary axis.

THEOREM 1. Let f\in \mathscr{H}_{6}^{\perp}and n be odd. Then the following conditions
are equivalent :

a) there exists \rho>0 , such that V(t)f\perp(D_{+}^{\rho}+D_{-}^{\rho})fort\geq 0 ,

b) there exists \rho>0 , such that f\perp D^{\rho}- and \lim_{tarrow\infty}V(t)f=0 ,

c) V(t)f is a disappearing solution to (1. 1).
The above\cdot theorem enables one to prove the existence of solutions V(t)

f such that V(t)f\perp(D_{+}^{\rho}+D_{-}^{\rho}) for any t\geq 0 . The solutions satisfying the
condition a) allow one to introduce the notion of the controllability of the
scattering operator [17].

The second reason to deal with D. S. is connected with the images of the
wave operators W_{\pm} , defined as follows

W_{-}g= \lim_{tarrow\infty}V(t)J_{0}U_{0}(-t)g,

W_{+}g= \lim_{tarrow\infty}V^{*}(t)J_{0}U_{0}(t)g

for g\in \mathscr{H}_{ac}(G_{0}) . Here U_{0}(t) is the unperturbed group connected with the
Cauchy problem
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n

\{

( \partial_{t}-\sum_{j=1}A_{j}\partial_{x_{j}})u=0 in R^{n+1} ,

u(0, x)=g,

where g\in \mathscr{H}_{0}=L^{2}(R^{n} ; C^{r}) . The operator G_{0} is the generator of U_{0}(t) and J_{0}

is the orthogonal projection from \mathscr{H}_{0} onto \mathscr{H}\subset \mathscr{H}_{0} . The problem for descrip-
tion of the images of the wave operators for dissipative systems has been
suggested by B. Simon [24], who proved the inclusions Im W_{\pm}\subset \mathscr{H}_{6} The
complete characterization of the closures \overline{{\rm Im} W_{\pm}} was obtained in [5]-[7] .

(1.2) \overline{{\rm Im} W_{-}}=\mathscr{H}_{6}^{\perp} -\mathscr{H}_{\infty}^{-} , \overline{{\rm Im} W_{+}}=\mathscr{H}_{6}^{\perp} -\mathscr{H}_{\infty}^{+} ,

where

\mathscr{H}_{\infty}^{-}=\{f\in \mathscr{H}_{6}^{\perp};
\lim_{tarrow\infty}V(t)f=0_{J}^{\mathfrak{l}} ,

\mathscr{H}_{\infty\backslash }^{+/}=f\in \mathscr{H}_{6}^{\perp},\cdot\lim_{tarrow\infty}V^{*}(t)f=0
\{ .

The relations (1. 2) arise the question when the spaces \mathscr{H}_{\infty}^{\pm} are nontrivial
ones. The answer to this question is closely connected with the existence of
disappearing solutions in view of the following

THEOREM 2. Suppose that n is odd. Then the following conditions are
equivalent

i) f\perp ImW_{-} and f\in \mathscr{H}_{6}^{\perp}- D_{-}^{\rho} ,

ii) V(t)f is a disappearing solution to (1. 1).

This theorem shows that the appearence of D. S. could change the
images of the wave operators for dissipative hyperbolic systems.

The third reason to study the D. S. is connected with some inverse
scattering problems. More precisely, let us consider the problem to recover
the convex hull of the obstacle K=R^{n}|\Omega from the leading singularity of the
kernel of the scattering operator. Recall that the kernel of the scattering

operator is a matrix-valued distribution { S^{jk}(s, \theta, \omega))\backslash j

,
k=1q , where (5, \theta, \omega)

\in R\cross S^{n-1}\cross S^{n-1} . For back-scattering data, i . e . \theta=-\omega , the leading
singularity of the kernel of the scattering operator was investigated by
Petkov [22]. He proved that the convex hull of the obstacle can be
recovered from the leading singularity of the back-scattering kernel provided
the condition

(1.3) N(x)\not\subset Ker\Lambda(x) for any x\in\partial\Omega

holds. Here N(x) is the negative eigenspace of the matrix A(\nu(x)) for x\in

a \Omega . The crucual role of the condition (1. 3) is connected with the fact that
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the leading singularity of the back-scattering kernel is nonzero if and only if
(1. 3) holds (see [22]). On the other hand, the scattering operator is a
composition of the wave operators. Theorem 2 says that the existence of D.
S. can perturbe the image of the wave operators. Consequently, the
existence of D. S. changes the kernel of the scattering operator and may
influence the solvability of the inverse scattering problem. We shall discuss
more completely the relation between the existence of D. S. and the inverse
scattering problem in a forthcoming paper.

Those were the reasons that led us to study disappearing solutions for
dissipative hyperbolic systems.

The existence of D. S. depends essentially on that which of the following
three cases appears

(A) N(x)\cap Ker\Lambda(x)=\{0\} for any x\in\partial\Omega ,

(B) N(x)\cap Ker\Lambda(x)\neq_{1’}0\} for some x\in\partial\Omega and (1. 3) holds,
(C) N(x)\subset Ker\Lambda(x) for at least one x\in\partial\Omega .

In this work we shall treat only the cases (A) and (C), while the case (B)

will be analyzed in a forthcoming paper.
Our first goal is to study the existence of D. S. in the case (A).

THEOREM 3. Suppose the condition (A) holds. The\dot{n} there is no
disappearing solution to (1. 1).

Our second goal is to find sufficient condition for the existence of D. S. in
the case (C). We consider only Maxwell’s equations, which are an
important example of mathematical physics. More precisely, assuming the
obstacle K=R^{n}|\Omega to be a strictly convex neighbourhood of the origin 0,
introduce the condition

(1.4) N (-x/|x|)\subset Ker\Lambda(x) for any x\in\partial\Omega .

If the boundary \partial\Omega is a sphere then \nu(x)=-x/|x| and it is obvious that (1.

4) implies the case (C) is valid. For general strictly convex obstacles K
the property (1. 4) is also a stronger version of the condition (C) (see

lemma 4. 1 below). Then we have the following

THEOREM 4. Suppose the condition (1. 4) holds. Then there exists a D.
S. to the mixed problem (1. 1) associated with Maxwell’s equations.

The theorem shows that the boundary conditions, satisfying (1. 4),

form an important class of boundary conditions, which enable one to
construct D. S. A similar construction of D. S. can be used for other
physical problems such as the wave equation, Dirac’s and Pauli equations
etc., provided the same property (1. 4) fulfilled.
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Our third goal is to obtain some information about the first instant when
the D. S. becomes zero, i . e . we wish to estimate the quantity TCf) = \inf { t :
u(t, x)=0_{J}^{\mathfrak{l}} provided u(t, x)=V(t)f is a D. S. Denote by M(R) the
maximal length in \Omega between the points on the boundary \partial\Omega and the sphere
J_{\backslash }x;|x|=R_{J}^{1} , where R= \max { |x| ; x\in suppf^{1}, (see section 7 for the precise
definition of the maximal length in \Omega ). In the case when the obstacle K=R^{n}

|\Omega is a strictly convex neighbourhood of the origin 0 the maximal length in
\Omega between the points on \partial\Omega and the sphere \{ x:|x|=R\} is

M(R)= \max R-|x| , x\in\partial\Omega

Let c_{\min} be the infimum of the nonzero positive eigenvalues of the matrix A
(\xi) for \xi\in S^{n-1} .

Then we have the following estimate

THEOREM 5. TC\Gamma) \leq M(R)/c_{min} .

REMARK. The example from [22] and our construction described in
section 4 show that Ty) =M(R)=M(R)/c_{\min} for wide class disappearing
solutions V(t)f.

Theorem 1 is an extention of the result obtained in [11], [17]. The
novelty in the proof of theorem 1, comp\dot{a}red with [11], [17] is connected
with the application of the wave operator

W=s- \lim_{tarrow\infty}U_{0}(-t)JV(t)

The existence of W is proved in [5]-[7] by the use of Enss method.
Moreover, constructing suitable approximation of any element f\in \mathscr{H}_{6}^{\perp} by

elements in \mathscr{H}_{6}^{\perp}\cap\bigcap_{N=1}\mathscr{D}\infty(G^{N}) we succeed to weaken the assumptions intr0-

duced in [11]. The result of theorem 2 is new even for the wave equation
and enables one to find sufficient conditions connected only with the initial
data f, which guarantee that V(t)f is a D. S.

The proof of theorem 3 follows the idea introduced in [17] and the
construction of Duff [2], [3]. This construction will be used in another
work, where disappearing solutions with jumps will be discussed. Follow-
ing the construction of Duff it is natural to expect that one can find a D. S.
in the case (C). Working on this problem we met some essential difficulties
which forced us to consider a stronger version of the condition (C) that is
sufficient condition for the existence of D. S. The condition (1. 4) is such a
sufficient condition.

Finally, theorem 5 to our knowledge is the first result concerning the first
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instant T(f) when D. S. V(t)f becomes zero. The main tool for the
proof of this theorem is the Holmgren’s uniqueness theorem in the form
obtained in [8]. The author is gratefull to the referee for his suggestion to
study the quantity T(f) and obtain some information about it.

We shall sketch the plan of the work. In section 2 we consider the link
among D. S., outgoing (incoming) spaces and the images of the wave
operators. Some preliminary lemmas are proved in section 3. The con-
struction of D. S. for the Maxwell’s equation is given in section 4. The
proof of theorem 3 is discussed in sections 5, 6. An important part in the
proof of this theorem is the establishment of the convergence of the con-
structed series. Section 6 is devoted to this problem. Finally, in section 7
we consider the first instant when the disappearing solution becomes zero and
obtain an estimate of this quantity.

Acknowledgements are due to Vesselin Petkov for his support and
advice during the preparation of this work. The author is gratefull also to
the referee for his critical notes stimulating the improvment of the work.

2. Link among disappearing solutions, outgoing (incoming) spaces
and the image of the wave operators

The solution to the mixed problem (1. 1) can be represented by a
semigroup \{ V(t), t\geq 0\} provided the assumptions (H_{1}) - (H_{3}) fulfilled (see
[15], [16] ) . The semigroup V(t) acts in the Hilbert space \mathscr{H}=L^{2}(\Omega ; C^{r})

and represents the solution to (1. 1) by the equality u(t, x)=V(t)f. In
order to simplify the proofs in this section we shall assume that

(H_{4})\{
the matrix A( \xi)=\sum A_{j}\xi_{j} is an invertible
one for \xi\in R^{n}|\{0^{1}, .

In order to introduce the wave and scattering operators one compares the
actions of the perturbed group V(t) and the unperturbed group U_{0}(t) . The
latter acts in the Hilbert space \mathscr{H}_{0}=L^{2}(R^{n} ; C^{r}) . An important role in the
scattering theory is played by the spaces D_{+} and D_{-} having the properties

(2. 1) \{

i) U_{0}(t)D_{+}\subset D_{+}\subset \mathscr{H}_{0} , U_{0}(-t)D_{-}\subset D_{-}\subset \mathscr{H}_{0} for t\geq 0 ,
ii) \bigcap_{t}U_{0}(t)D_{+}=\bigcap_{t}U_{0}(t)D_{-}=0 ,

iii) \lim_{tarrow+\infty}P_{+}U_{0}(t)f=0 for f\in \mathscr{H}_{0} .

The precise definition of the outgoing D_{+} and incoming D_{-} spaces is given in
[14], [16], [22]. P_{+} is the orthogonal projection on the orthogonal com-
plement of D_{+} . The outgoing and incoming spaces for the perturbed system
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can be defined by the equalities D_{+}^{\rho}=U_{0}(\rho)D_{+} , D_{-}^{\rho}=U_{0}(-\rho)D_{-} , where the
number \rho>0 is choosen so large that

K=R^{n}|\Omega\subset/\backslash x : |x|<\rho j( .

After this preparation work we can turn to the

Proof of theorem 1: a) \Rightarrow b) : According to the results in [5]-[7]
given any f\in \mathscr{H}_{6}^{\perp} , there exists g\in \mathscr{H}_{0} , so that

(2. 2) \lim_{tarrow\infty}||JV(t)f-U_{0}(t)g||_{\mathscr{H}_{0}}=0 .

Recall that J is the inclusion map J : \mathscr{H}arrow \mathscr{H}_{0} . It is easy to check the
property

(2.3) g\perp D_{+}^{\rho} .

Indeed, given any h\in D_{+}^{\rho} we have U_{0}(t)h\in D_{+}^{\rho} according to (2. 1). The
equalities

(g, h)_{\mathscr{H}_{0}}= \lim_{tarrow\infty}(U_{0}(-t)JV(t)f, h)_{\mathscr{H}_{0}}=\lim_{tarrow\infty}(JV(t)f, U_{0}(t)h)_{\mathscr{H}_{o}}

together with the condition a) yield the equality (g, h)_{\mathscr{H}_{0}}=0 and show that
(2. 3) is valid. In the same manner we get U_{0}(t)g\perp D_{+}^{\rho} for t\geq 0 . Then we

use the property (2. 1) iii) and obtain \lim_{tarrow\infty}U_{0}(t)g=0 . From this equality

and (2. 2) we find \lim_{tarrow\infty}V(t)f=0 . This proves b).

b)\Rightarrow c) : Let \epsilon>0 be fixed and the condition b) holds. We shall find an
element

\varphi_{\epsilon}\in \mathscr{H}_{6}^{\perp}\cap\bigcap_{N=1}\mathscr{D}(G^{N})\infty ,

such that ||\varphi_{\epsilon}-f||_{\mathscr{H}}\leq\epsilon , \varphi_{\epsilon}\perp D^{\rho}- and \lim_{tarrow\infty}V(t)\varphi_{\epsilon}=0 . For the purpose

define inductively a sequence f_{0} , f_{1} , f_{2} , ... . More precisely, set f_{0}=f.
Suppose that f_{0} , f_{1} , \ldots , f_{\nu}(\nu\geq 0) are defined so that f_{j}\in \mathscr{D}(G^{J}) for j=1 , \ldots .

\nu . Set f_{\nu+1}=(1/ \epsilon_{\nu+1})\int_{0}^{\mathcal{E}\nu+1}V(\tau)f_{\nu}d\tau . Then f_{\nu+1}\in \mathscr{H}(G^{\nu+1}) and

Gf_{\nu+1}=(1/\epsilon_{\nu+1})[V(\epsilon_{\nu+1})f_{\nu}-f_{\nu}]

Choosing \epsilon_{\nu+1}>0 sufficiently small we can arrange the properties
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\{

a) \epsilon_{\nu+1}<\epsilon/2 ,
b) ||G^{k}f_{\nu+1}-G^{k}f_{\nu}||_{\mathscr{H}}<\epsilon/2^{\nu+1} for k=0,1 , \ldots . \nu .

Utilyzing the above estimate we obtain the property

\{

given any integers N\geq 0 , \nu\geq N and \mu\geq 0 we have
||G^{N}f_{\nu+\mu}-G^{N}f_{\nu}||_{\mathscr{H}}\leq\epsilon/2^{\nu} .

Since G^{N} are closed operators, on can find an element

\varphi=\varphi_{\epsilon}\in\bigcap_{N=1}\mathscr{D}(G^{N})\infty ,

such that \lim_{\nuarrow\infty}G^{N}f_{\nu}=G^{N}\varphi for each N\geq 0 . Moreover our choice of the

sequence f_{0} , f_{1} , ... guarantees that \varphi\perp D^{\rho}- , \varphi\in \mathscr{H}_{6}^{\perp} .

On the other hand, it is easy to obtain the equality

(2.4) \lim_{tarrow\infty}V(t)\varphi=0 .

Indeed, given any number \delta>0 , there exists \nu=\nu(\delta) such that ||\varphi-f_{\nu}||_{\mathscr{H}}\leq

\delta/2 . Then we have the inequalities

(2.5) \{

||V(t)\varphi||_{\mathscr{H}}\leq||V(t)\varphi-V(t)f_{\nu}||_{\mathscr{H}}+||V(t)f_{\nu}||_{\mathscr{H}}

\leq\delta/2+||V(t)f_{\nu}||_{\mathscr{H}} .

To complete the proof of (2. 4) it is sufficient to check that (2. 6) \lim_{tarrow\infty}V(t)

f_{\nu}=0 for any integer \nu\geq 0 . This property follows from the condition b),

when \nu=0 . Moreover, we have

||V(t)f||_{\mathscr{H}} \leq\max_{t\leq\tau\leq t+\epsilon_{\nu}+1}||V(\tau)f||_{\mathscr{H}} .

Utilyzing this estimate we obtain inductively (2. 6). From (2. 5) and (2. 6)

we derive (2. 4).

The choice of the element \varphi_{\epsilon} enables us to apply theorem 1 from [11]
and conclude that V(t)\varphi_{\epsilon} is a D. S., that is V(t)\varphi_{\epsilon}=0 for t\geq T_{0} . Accord-
ing to remark 2 in [11] the number T_{0}>0 depends on \rho and the matrices A_{1} ,

... A_{n} , but T_{0} is independent of \varphi_{\epsilon} . Taking \epsilonarrow 0 , we finish the proof of
c) .

c)\Rightarrow a) : One can directly apply the result from [11]. This completes
the proof of theorem 1.
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Proof of theorem 2: Suppose that f\in \mathscr{H}O-({\rm Im} W_{-}+D_{-}^{\rho}) . Then the
equalities (1. 2) lead to the inclusion f\in \mathscr{H}_{\infty}^{-} . This inclusion and theorem 1
show that V(t)f is a D. S. to (1. 1).

Suppose that V(t)f is a D. S. Denote by \overline{\mathscr{H}_{6}} the closure of the linear
space \mathscr{H}_{6}- described in the introduction. First, we shall verify the property

(2.7) ||V(t)g||_{\mathscr{H}}=||g||_{\mathscr{H}} for any g\in\overline{\mathscr{H}_{6}}

The above equality is fulfilled when g is an eigenvector of the generator G

with eigenvalue on the imaginary axis. On the other hand, the linear space
Ker(G-\lambda) coincides with Ker(G^{*}-\overline{\lambda}) according to lemma 9.1 from [24].
This fact leads to the equality (\#, h)_{\mathscr{H}}=0 provided Gg=iXg, Gh=i\mu h, \lambda\neq\mu ,

\lambda , \mu\in R. Using this property, we can verify (2. 7) when g is represented

by the linear combination g= \sum_{k=1}^{\nu}a_{k}g_{k} , Gg_{k}=iXkgk , \lambda_{k}\in R and \lambda_{k}\neq\lambda_{s} for k\neq

s. Consequently, (2. 7) is valid for g\in \mathscr{H}_{6}^{\perp} Since the linear space \mathscr{H}_{6} is
dense in \overline{\mathscr{H}_{6}^{\perp}} and V(t) are contraction operators, we obtain (2. 7) for any
g\in\overline{\mathscr{H}_{6}^{\perp}} .

Let f=f_{1}+f_{2} , where f_{1}\perp \mathscr{H}_{6} and f_{2}\in\overline{\mathscr{H}_{6}} According to lemma 9. 1 from
[24] the linear space \mathscr{H}_{6}^{\perp} is invariant by V(t) . The same is valid for \overline{\mathscr{H}_{6}}

The fact that V(t)f is D. S. implies that ||.V(t)f||_{\mathscr{H}}^{2}=||v(t)f_{1}||\mathscr{H}2+

||V(t)f_{2}||\mathscr{H}2 vanishes when tarrow\infty . The property (2. 7) shows that f_{2}=0 and
f\in \mathscr{H}_{\infty}^{-} . Applying the equality (1. 2) again, we are going to the property
f\perp{\rm Im} W-. Finally, from the fact that V(t)f is a D. S. and theorem 1
we derive that f\perp D_{-}^{\rho} .

This proves the theorem.

3. Some preliminary lemmas.

Consider the equation

(3. 1) det [\tau I+A(\xi)]=0 ,

where A(\xi)=\Sigma A_{j}\xi_{j} . The assumption (H_{1}) implies that

(3.2) \det[\tau I+A(\xi)]=\tau^{\beta 0}\prod_{j=1}^{m}(\tau-\tau_{j}(\xi))^{qj} ,

where \tau_{j}(\xi)\neq 0 for \xi\in R^{n}\{\{0^{1}, . The matrix A(\xi) is a Hermittian one and
the nonzero rooths of (3. 1) can be ordered

(3.3) \tau_{1}(\xi)>\tau_{2}(\xi)>\ldots>\tau_{m}(\xi) .

Moreover, we have the properties (see [14])
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(3.4) \{

a) m is even,
b) \tau_{j}(\xi) are real analytic functions on R^{n}|\{0^{\mathfrak{l}}, and

they are homogeneous of degree 1 with respect to \xi ,
c) \tau_{j}(\xi)=\tau_{j’}(-\xi) , j’=m-j+1 ,

d) sgn ( \tau_{k}(\xi))=sgn(m/2+\frac{1}{2}-k) .

Here sgn(x) denotes the sign of the real number x. The properties (3. 2)

and (3. 3) enable one to define the projectors

(3.5) \pi_{j}(\xi)=(2\pi i)^{-1}\int_{|z-\tau_{j}(\xi)|=\epsilon}(zI+A(\xi))^{-1}dz,

where j=0,1 , \ldots m, \tau_{0}(\xi)=0 and the number \epsilon>0 is chosen so small that
the unique eigenvalue of A(-\xi) in the ball j\iota Z \in C;|z-\tau_{j}(\xi)|\leq\epsilon_{)}^{1} is \tau_{j}(\xi) .
We need the following properties of these projectors (see [ 13])

(3.6)

/i ) Im \pi_{j}(\xi)=Ker(\tau_{j}(\xi)I+A(\xi)) ,

ii) \sum_{j=0}^{m}\pi_{j}(\xi)=I,

iii) \pi_{j}^{*}(\xi)=\pi_{j}(\xi) ,
\backslash iv) \pi_{j}(\xi)\pi_{k}(\xi)=\delta_{jk}\pi_{j}(\xi) ,

where \delta_{jk} is 1 if j=k and 0 for j\neq k.
Next, we shall introduce the characteristic surfaces of the operator \partial_{t}-

G. These surfaces are determined by the equality t=\Psi_{k}(x) , where the
functions \Psi_{k}(x) are solutions to the Cauchy problem

(3. 7) \{

det (I+A(\nabla\Psi_{k}))=0 in U,
\nabla\Psi_{k}(x)=\nu(x)/\tau_{k}(\nu(x)) on \partial\Omega ,
\Psi_{k}(x)=0 on \partial\Omega .

The existence of the function \Psi_{k}(x) is guaranteed by

LEMMA 3. 1. Let 1\leq k\leq m be fixed. Then there exists a neighbourhood
U of the boundary \partial\Omega , such that the problem (3. 7) has a unique real
analytic solution \Psi_{k}(x) .

PROOF: We shall discuss only the case k>m/2 , since the case k\leq m/

2 can be considered in a similar way. The factorization (3. 2) shows that it
is sufficient to solve the problem

(3.8) \{

\tau_{m-k+1}(\nabla\Psi_{k})=1

\nabla\Psi_{k}=\nu/\tau_{k}(\nu)

\Psi_{k}(x)=0

in U,

on \partial\Omega ,

on \partial\Omega .
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Let x^{0}\in\partial\Omega be fixed. The boundary \partial\Omega is real analytic and we can change
the variables near x^{0} so that the boundary is determined by x_{n}=0 near x^{0} ,

while the domain \Omega is described by x_{n}>0 . Then the vector \nu(x) takes the
form (0, 0, \ldots 0, -1) in the new variables. Moreover, the first equation in
(3. 8) becomes \tilde{\tau}_{m-k+1}(x, \nabla\Psi_{k})=1 , where \tilde{\tau}_{m+1-k}(x, \xi) is a real analytic
function homogeneous of degree 1 with respect to \xi and \tilde{\tau}_{m-k+1}(x, 0 , \ldots . 0,
-1)=\tau_{m-k+1}(\nu(x)) for x\in\partial\Omega . Consider the equation

(3.9) \tilde{\tau}_{m-k+1}(x, \xi’. \xi_{n})=1 , \xi’=(\xi_{1}, \ldots \xi_{n-1}) .

The Euler’s equality implies that \partial_{\xi_{n}}\tilde{\tau}_{m-k+1} (x, 0, \ldots 0, -1)=-\tilde{\tau}_{m-k+1}(x, 0 , \ldots .
0, -1)=-\tau_{m-k\dagger 1}(\nu)\neq 0 for x\in\partial\Omega . Applying the implicit function theorem,

we find a real analytic function \xi_{n}(x, \xi’) defined in a small conical
neighbourhood of (x, \xi’)=(x^{0},0) which satisfies the equation (3. 9) and the
condition \xi_{n}(x, 0)=-1/\tau_{k}(\nu(x)) for x\in\partial\Omega . Consider the Cauchy problem

\{

\partial_{x_{n}}\Psi=\xi_{n}(x, \nabla_{x’}\Psi) , x’=(x_{1} , ... . x_{n-1}) ,

\Psi(x)=0 for x_{n}=0 .

The Cauchy-Kovalewska theorem ([20]) yields the existence and
uniqueness of the solution to this problem in a small neighbourhood of x^{0} .
Combining this fact with the choice of \xi_{n}(x, \xi’) , we obtain \partial_{x},\Psi(x)=0 , j=
1 , \ldots n-1 , \partial_{x_{n}}\Psi=\xi_{n}(x, 0)=-1/\tau_{k}(\nu) when x_{n}=0 . Consequently, the
problem (3. 8) has a solution in a small neighbourhood of the point x^{0}\in\partial\Omega .
Since the boundary \partial\Omega is a compact set, applying Holmgren’s uniqueness
theorem ([20]) we complete the proof of the lemma.

Let the nonzero eigenvalues of the matrix A(-\nabla\Psi_{k}) be ordered as
follows

(3. 10) \lambda_{1}^{k}(x)>\lambda_{2}^{k}(x)> , ..>\lambda_{m}^{k}(x)

and \lambda_{0}^{k}(x)=0 . The corresponding projectors can be determined similarly to
(3. 5)

(3. 11) \phi_{j}^{k}(x)=(2\pi i)^{-1}\int_{|z-\lambda_{j}^{k}(x)|=\epsilon}(zI+A(\nabla\Psi_{k})^{-1}dz,

where j=0,1 , \ldots-m and \epsilon>0 is a sufficiently small number. The functions
\lambda_{j}^{k}(x) and \phi_{j}^{k}(x) are real analytic in U. They have the properties similar
to (3. 4)
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(3. 12)

/i ) Im \phi_{j}^{k}(x)=Ker(\lambda_{j}^{k}(x)I+A(\nabla\Psi_{k}) ,

ii) \sum_{j=0}^{m}\phi_{j}^{k}(x)=I,

iii) \phi_{j}^{k}(x)^{*}=\phi_{j}^{k}(x) ,
\backslash iv) \phi_{s}^{k}(x)\phi_{j}^{k}(x)=\delta_{sj}\phi_{j}^{k}(x) .

LEMMA 3. 2. \lambda_{k}^{k}(x)=1 for k\leq m/2 and \lambda_{m-k\dagger 1}^{k}(x)=1 for k>m/2 .

PROOF: We shall consider only the case k>m/2 . The first equation in
(3. 7) implies that the number 1 is an eigenvalue of A(-\nabla\Psi_{k}) . The
number \tau_{k}(\nu) is negative one and the property (3. 3) leads to the following
arrangement of the eigenvalues of the matrix A(-\nu/\tau_{k}(\nu))

\tau_{m}(\nu)/\tau_{k}(\nu)>\ldots>\tau_{k}(\nu)/\tau_{k}(\nu)>\ldots>\tau_{1}(\nu)/\tau_{k}(\nu) .

Utilyzing (3. 10) we get \lambda_{j}^{k}(x)=\tau_{m-j+1}(\nu)/\tau_{k}(\nu) for x\in\partial\Omega and \lambda_{m-k+1}^{k}(x)=

1 for x\in U. This proves the lemma.
Let N(x) be the negative eigenspace of the matrix A(\nu(\chi)) and P(x)

be the positive one.

LEMMA 3. 3. Suppose that N(x)\subset Ker\Lambda(x) for x\in\partial\Omega and \Lambda(x)

satisfies the assumption (H_{3}) . Then Ker\Lambda(x)=[P(x)]^{\perp} .

PROOF: Let x\in\partial\Omega be fixed. Since the boundary condition v\in Ker\Lambda

(x) is maximally dissipative one, we have Ker A(\nu(x))\subset Ker\Lambda(x) . This
inclusion and the assumptions of the lemma lead to the property Ker A(\nu

(x))+N(x)\subset Ker\Lambda(x) . On the other hand, any vector u is orthogonal to
the linear space Ker A(\nu(x))+N(x) if and only if u\in P(x) . Consequently,
[P(x)]^{\perp}=KerA(\nu(x))+N(x)\subset Ker\Lambda(x) . Since the boundary condition is
maximal dissipative one, we have the equality dim Ker\Lambda(x)=r-q=\dim P

(x) .
This proves the lemma.

LEMMA 3. 4. Suppose that N(x)\cap Ker\Lambda(x)=\{0_{l}^{(} for x\in\partial\Omega . Given
any real analytic vectorvalued function f(x) there exists a unique couple (f_{+}

(x) , f_{-}(x)) of real analytic vectorvalued functions, such that

i) f(x)=f_{+}(x)+f_{-}(x) ,

ii) f_{+}\in P(x) , f_{-}\perp A(\nu)Ker\Lambda(x) .

PROOF: Our assumptions imply that

(3. 13) N(x)+Ker\Lambda(x)=C^{r}.

It is easy to see that
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(3. 14) P(x)\cap[A(\nu)Ker\Lambda(x)]^{\perp}=\{0_{/}^{1} .

Indeed, any vector g\in P(x)\cap[A(\nu)Ker\Lambda(x)]^{\perp} can be represented in the
form g=g_{1}+g_{2} , g_{1}\in N(x) , g_{2}\in Ker\Lambda(x) according to (3. 13). From g\in P

(x) we get <A(\nu)g, g_{1}>=0 . Moreover the assumption g\perp A(\nu)Ker\Lambda(x)

gives<A(v)g, g_{2}>=0 . Hence, <A(v)g, g>=0 for g\in P(x) . This proves
the equality g=0 and the property (3. 14) is verified.

On the other hand, one can find a local basis in P(x) (respectively in [A
(\nu)Ker\Lambda(x)]^{\perp}) formed by real analytic vectorvalued functions e_{1}^{+}(x) , \ldots-

e_{q}^{+}(x) (respectively e_{1}^{-}(x) , e_{2}^{-}(x) , \ldots
-e_{r-q}^{-}(x) ). Taking advantage of (3.

14) we see that the vectors e_{1}^{+} , .. . e_{q}^{+} , e_{1}^{-} , ... . e_{\overline{r}-q} form a basis in C^{r}.
Thus any real analytic vector-valued function f(x) on \partial\Omega has the form

f(x)= \sum_{k=1}^{q}f_{+}^{k}(x)e_{k}^{+}(x)+\sum_{k=1}^{r-q}f_{1}^{k}(x)e_{k}^{-}(x) ,

there f_{+}^{k} , f_{-}^{k} are real analytic vectorvalued functions. Setting f_{+}= \sum_{k=1}^{q}f_{+}^{k}e_{k}^{+} ,

f_{-}= \sum_{k=1}^{r-q}f_{-}^{k}e_{k}^{-} , we complete the proof of the lemma.

Finally, we turn our attention to the linear spaces

\hat{N}(x)=\sum_{k=1}^{m/2} Im \Phi_{k}^{k}(x),\hat{R}ix)=\sum_{k=m/2+1}^{m} Im \Phi_{m-k+1}^{k}(x) .

LEMMA 3. 5. Suppose the condition N(x)\cap Ker\Lambda(x)=\{0 { holds and x^{0}

\in\partial\Omega be fixed. Then there exists a neighbourhood V of x^{0} and a basis e_{1}^{+}(x)

. ... . e_{q}^{+}(x) , e_{1}(x) , , .. e_{r-q}(x) in C^{r} formed by real analytic vectorvalued
functions in V, such that

i) given any integer j, j\leq q, there exists an integer k_{j}>m/2 , such that
A(\nabla\Psi_{k_{j}})e_{j}=-e_{j} in V,

ii) the vectors

e_{1}^{+}(x)+e_{1}(x) , \ldots . e_{q}^{+}(x)+e_{q}(x) , e_{q+1}(x) , \ldots
e_{r-q}(x)

form a basis in Ker\Lambda(x) for x\in V\cap\partial\Omega .

PROOF: Since Ker A(\nu)\subset Ker\Lambda(x) , we can choose a basis

(3. 15) e_{q+1}(x) , \ldots
e_{r-q}(x)

in Ker A(\nu) and complete the above basis with vectors

(3. 16) e_{1}^{+}(x)+e_{1}(x) , \ldots . e_{q}^{+}(x)+e_{q}(x) , e_{j}^{+}\in\hat{R}x) , e_{j}\in\hat{N}(x) ,

such that the vectors (3. 15) and (3. 16) form a basis in Ker\Lambda(x) . The
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assumption N(x)\cap Ker\Lambda(x)=/o_{J}^{\iota}| shows that e_{1r}+\ldots je_{q}+ are linear
independent vectors, while the assumption (H_{3}) implies the same for the
vectors e_{1} , . . . . e_{q} . Taking suitable linear combinations of the vectors
(3. 16) we see that e_{1}^{+} , .. . \backslash e_{q}^{+} can be chosen as eigenvectors of the projectors
\phi_{m-k\dagger 1}^{k} , i . e . the property i) is fulfilled. This proves the lemma.

4. Sufficient conditions for existence of disappearing solutions
to Maxwell’s equations.

Maxwell’s equations in an exterior domain \Omega\subset R^{3} have the form

(4. 1) \{

\partial_{t}E=rotH in \Omega ,
\partial {}_{t}H=- rot E in \Omega ,

where E= (E_{1}, B, E) and H=(H_{1}, H_{2}, H_{3}) are the vectors of the electric
and magnetic fields. The equations (4. 1) can be written down as follows \partial_{t}

u=Gu, where

(4.2) G=(\begin{array}{ll}0 rot-rot 0\end{array}) and u=(E, H) .

Our goal is to construct D. S. to the mixed problem

(4.3) \{

(\partial_{t}-G)u=0 in (0, \infty)\cross\Omega ,
\Lambda(x)u=0 on (0, \infty)\cross\partial\Omega ,
u(0, x)=f(x) .

Throughout this section we suppose the obstacle K=R^{3}|\Omega is strictly
convex. Without lose of generality we can assume the origin 0 of the
coordinate system lies in the interior of the obstacle K. The following
assumption concerning the boundary condition in (4. 3) will play a crucual
role in our considerations
(4.4) N(-x/|x|)\subset Ker\Lambda(x) for x\in\partial\Omega .

Here N(\xi) , \xi\in S^{2} , is the negative eigenspace of the principle symbol A(\xi)

of the operator i^{-1}G, which is the matrix

(4.5) A(\xi)=(\begin{array}{ll}0 D(\xi)-D(\xi) 0\end{array})

Here D(\xi) denotes a (3\cross 3) matrix acting on any vector v\in R^{3} according
to the equality

(4.6) D(\xi)v=\xi\cross v .

We mentioned in the introduction it is natural to expect that D. S. exist
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when

(4.7) N(x)\subset Ker\Lambda(x) for some x\in\partial\Omega .

The first step in this section is to prove that the condition (4. 4) does

lead to the condition (4. 7), which plays an important role in the
investigation of the inverse scattering problem (see [4], [22])

LEMMA 4. 1. Suppose that K=R^{3}|\Omega is strictly convex and (4. 4) holds.
Then the condition (4. 7) holds.

PROOF: Since K is strictly convex and the origin 0 lies in the interior
of K, the map x\in\partial\Omegaarrow x/|x|\in S^{2} is a diffeomorphism of \partial\Omega onto S^{2} . On
the other hand, the Euler’s characteristic \kappa(S^{2}) of the sphere S^{2} is equal to
2 (see&ll in [19]). Applying corollary 9. 7, &9 in [19], we conclude that

(4.8) \{
for any tangential vector field v(x) on \partial\Omega one
can find x^{0}\in\partial\Omega , such that v(x^{0})=0 .

We denote by \pi(x) the projection of x/|x| on the tangential plane at x\in\partial\Omega .
The property (4. 8) guarantees that there exists x^{0}\in\partial\Omega , such that \pi(x^{0})=

0 . But the equality \pi(x^{0})=0 implies that \nu(x^{0})=-x^{0}/|x^{0}| . Hence, we are
going to the property N (-x^{0}/|x^{0}|)=N(\nu(x^{0})) . Using (4. 4) we get
N(\nu(x^{0}))\subset Ker\Lambda(x^{0}) . This proves the lemma.

The second step in this section is the following

Proof of theorem 4: Since the origin 0 lies in the interior of K and K

is strictly convex, we can introduce polar coordinates in \Omega : x=r\sin\theta\cos\varphi ,

y=r\sin\theta\sin\varphi , z=r\cos\theta , where \theta\in[0, \pi] , \varphi\in[0,2\pi) , r>0 .
The first equation in (4. 3) takes the form

(4. 9) \partial_{t}u-A(e)\partial_{r}u-r^{-1}(A(f)\partial_{\theta}u+A(g)\partial_{\varphi}u/\sin\theta)=0 ,

where

(4. 10) \{

e=(\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta) ,
f=\partial_{\theta}e,
g=\partial_{\varphi}e/\sin\theta ,

We shall look for a solution to (4. 3) of the following type

(4. 11) u=\Psi(t, r)Y(\theta, \varphi) ,

where \Psi(t, r) is a real valued function, while Y(\theta, \varphi) is a vectorvalued
function.

Our next goal is to determine the function Y(\theta, \varphi) by using the
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projectors of the matrix A(\xi) , \xi\in S^{2} . Taking into account the equalities
(4. 5), (4. 6), we find det (A(\xi)+\tau I)=\tau^{2}(\tau^{2}-|\xi|^{2})^{2} . Consequently, the
nonzero eigenvalues of the matrix A(-\xi) are 1=|\xi|>-1=-|\xi| for \xi\in

S^{2} . Then the projectors on the positive, negative and null eigenspaces of the
matrix A(\xi) can be determined as follows

(4. 12) \pi_{\pm}(\xi)=\frac{1}{2} \{\begin{array}{ll}\pi(\xi) \pm D(\xi)\mp D(\xi) \pi(\xi)\end{array}\} \pi_{0}(\xi)=\{\begin{array}{ll}I-\pi(\xi) 00 I-\pi(\xi)\end{array}\} .

Here D(\xi) is a (3\cross 3) matrix defined according to (4. 6) and \pi(\xi)=-D
(\xi)D(\xi) . The fact that \pi_{+}(\xi) , \pi_{-}(\xi) and \pi_{0}(\xi) are the projectors on the
eigenspaces of the matrix A(\xi) follows directly from the equalities

(4. 13) A(\xi)\pi_{\pm}(\xi)=\pm\pi_{\pm}(\xi) , A(\xi)\pi_{0}(\xi)=0 for \xi\in S^{2} .

Next we shall find a function Y(x/|x|) defined on S^{2} and satisfying the
properties

(4. 14) \{

a) Y(x/|x|)\in{\rm Im}\pi_{+}(x/|x|) ,
b) A(f)\partial_{\theta}Y+A(g)\partial_{\varphi}Y/\sin\theta=Y.

Since x/|x|=e, a direct calculation shows that the image of \pi_{+}(x/|x|)=

\pi_{+}(e) is spaned by the vectors (g, f) and (f, -g) , where e,.f, g are defined
in (4. 10). Set Y(x/|x|)=\mu(\theta, \varphi)(g, f) , where \mu(\theta, \varphi) is an unknown
function. Substituting the above representation of Y into (4. 14) b) and
using (4. 10) we are going to the following equation for \mu

(sdn\theta)\partial_{\theta}\mu+(\cos\theta)\mu=0 .

Choosing \mu=1/\sin\theta we obtain that the function
(4. 15) Y=(g/\sin\theta, f/\sin\theta)

is a solution to (4. 14). The function (4. 15) leads simply to the
construction of D. S. of the form (4. 11). Substituting the equality (4. 11)
into (4. 9) and exploiting (4. 14), we find

\partial_{t}\Psi-\partial_{r}\Psi-r^{-1}\Psi=0 .

This equation is satisfied if we choose \Psi=\phi(t+r)/r, where \phi(s) is an
arbitrary function on R. Especially, given any T>0 we introduce the
function \phi(s)=\phi_{T}(s)=s-T if s\leq T and \phi(s)=0 if s>T. The above
observation shows that u=\phi(t+r)(r\sin\theta)^{-1}(g, f) is a solution to the first
equation in (4. 3). On the boundary \partial\Omega the solution u(t, x) belongs to Im
\pi_{+}(x/|x|)\subset N (-x/|x|) . Applying the assumption (4. 4), we conclude that
u(t, x)\in Ker\Lambda(x) for x\in\partial\Omega and the boundary condition in (4. 3) is fulfilled.
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Moreover, the initial data u(0, x)=\Phi(r)(r \sin\theta)^{-1}(g,f) is nonzero
provided \phi_{T}(|x|)\neq 0 for some x\in\partial\Omega . The condition \phi_{T}(|x|)\not\equiv 0 is fulfilled
when the number T is chosen sufficiently large and x\in\partial\Omega .

Finally, our choice of the function \phi(s) guarantees that u(t, x)=0 for t

\geq T and it is clear that u(t, x) is a D. S. to (4. 3). This proves the
theorem.

5. Sufficient conditions for nonexistence of disappearing solutions.

In this section we turn again our attention to the general case of first
order dissipative hyperbolic systems of type (1. 1). Our goal is to prove
theorem 3, i . e . there is no D. S. to (1. 1) provided

(5. 1) Ker\Lambda(x)\cap N(x)=\{0_{J}^{\iota} for x\in\partial\Omega .

In order to do this consider the mixed problem

n

(5.2) \{

( \partial_{t}-\sum A_{j}\partial_{x_{j}})u=0 on (0, \epsilon)\cross\Omega ,

(u-h)\perp A(\nu)Ker\Lambda(x)j=1 on (o, _{\epsilon)\cross\partial\Omega}

,

u(0, x)=0,

where \epsilon>0 and h(t, x) is a real analytic vectorvalued function on \partial\Omega

satisfying the compatibility condition h(0, x)=0 .
First, we shall define more precisely the solutions to (5. 2) (see [12],

[15], [23] )

DEFINITION 5. 1. We shall say that the function v(t, x)\in C([0, \epsilon],\cdot \mathscr{H}^{1}

(\Omega ; C^{7}))\cap C^{1}((0, \epsilon);\mathscr{H}^{0}(\Omega,\cdot C^{r})) is a solution to (5. 2) if the boundary and
initial conditions in (5. 2) are fulfilled and the following equality

\int_{0}^{\epsilon}\int_{\Omega}<v(t, x) , ( \partial_{t}-\sum_{j=1}^{n}A_{j}\partial_{x_{j}})w(t, x)>dxdt

= \int_{\Omega}<v(\epsilon, x) , w( \epsilon, x)>dx-\int_{0}^{\epsilon}\int_{a\Omega}<A(\nu)v, w>dS_{x}dt

holds for any smooth function w(t, x)\in C_{0}^{\infty}(R^{n+1} ; C^{r}) .
Set
(5.3) D_{\epsilon}=C([0, \epsilon] ; \mathscr{H}^{1}(\Omega ; C^{r}))\cap C^{1}((0, \epsilon) ; \mathscr{H}^{0}(\Omega ; C^{r})) .

Let us suppose that the mixed problem (5. 2) has a solution for \epsilon>0

sufficiently small and any reall analytic vectorvalued function h(t, x)
satisfying the compatibility condition

(5.4) h(0, x)=0 for x\in\partial\Omega .
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After this preparation we can start the

Proof of theorem 3: Let u(t, x) be a D. S. to (1. 1) and T= \inf_{1}’t>0 :
u(t, x)=0\} . Given any real analytic vectorvalued function \varphi(t, x) on R\cross

\partial\Omega we set h(t, x)=t\varphi(t, x) . Then the function h(t, x) satisfies the
compatibility condition (5. 4). We suppose that (5. 2) has a solution
v(t, x)\in D_{\epsilon} , when \epsilon>0 is sufficiently small. It is easy to see that the
equality in definition 5. 1 is fulfilled when w(t, x)=u(t+T-\epsilon, x) . Indeed,
the solution u(t, x) can be approximated by functions u_{s}(t, x)\in C_{0}^{\infty}(R^{n+1} ; C^{r})

s=1,2 , \ldots such that

(5.5)

.
\max_{0\leq t\leq T}||u_{s}(t, x)-u(t, x)||_{L^{2}(\Omega)}arrow 0 ,

\max_{0\leq t\leq T}||\lrcorner A(\nu)(u_{s}(t, x)-u(t, x))||_{\mathscr{H}^{-1’ 2}(\partial\Omega)}arrow 0 ,

\backslash \max_{0\leq t\leq T}||(\partial_{t}-\sum_{j=1}^{n}A_{j}\partial_{x_{j}})u_{s}(t, x)||_{L^{2}(\Omega)}arrow 0

as s tends to +\infty (see&4 in [15], [21]). Setting w_{s}(t, x)=u_{s}(t+T-\epsilon, x) ,
\tilde{w}_{s}=(\partial_{t}-\sum A_{j}\partial_{x_{j}})w_{s} and utilyzing the equality in definition 5. 1 we obtain

\int_{0}^{\epsilon}\int_{\Omega}<v(t, x),\tilde{w}_{s}(t, x)>dxdt

= \int_{\overline{\Omega}}<v(\epsilon, x) , w_{s}( \epsilon, x)>dx-\int_{0}^{\epsilon}\int_{\partial\Omega}<A(\nu)v, w_{s}>dS_{x} dt.

Choosing sarrow+\infty , from (5. 5) we derive

<v(\epsilon, x) , u(T, x)>dx= \int_{0}^{\epsilon}\int_{\partial\Omega}<A(\nu)v, u(t+T-\epsilon, x)>dS_{x}dt.

Since u(t, x) is a D. S. and u(T, x)=0 we are going to

\int_{0}^{\epsilon}\int_{\partial\Omega}<A(\nu)v(t, x) , u(t+T-\epsilon, x)>dS_{x} dt .

The boundary conditions in (5. 2), (1. 1) lead to the equality

\int_{0}^{\epsilon}\int_{\partial\Omega}t<\varphi(t, x) , u(t+T-\epsilon, x)>dS_{x} dt .

On the other hand, \varphi(t, x) is an arbitrary real analytic function on R\cross\partial\Omega

and hence u(t+T-\epsilon, x)=0 for t\in(0, \epsilon) , x\in\partial\Omega . Using standart
integration by parts (see [14]) for the solution to (\partial_{t}-\Sigma A_{j}\partial_{x_{j}})u=0 in the
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domain (0, \epsilon)\cross\Omega we conclude that u(t, x)=0 for T-\epsilon<t<T, x\in\Omega . This
contradicts to our choice T= \inf_{1}^{\mathfrak{l}}t>0 ; u(t, x)=0^{\backslash }, . The contradiction
shows that there is no D. S.

In order to complete the proof of theorem 3 we have to establish

PROPOSITION 5. 1. Suppose h(t, x) is a real analytic vectorvalued
function satisfying the compatibility condition ((5. 4). Then there exists \epsilon_{0}>

0 , such that the mixed problem (5. 2) has a solution v(t, x)\in D_{\epsilon} for 0<\epsilon\leq\epsilon_{0} .

Proof of proposition 5. 1. Given any integer k, 1+m/2\leq k\leq m,

consider the characteristic surface t=\Psi_{k}(x) , where the function \Psi_{k}(x) is
defined according to lemma 3. 1 in a small neighbourhood U of \partial\Omega .

Fi g.1

Following the approach of Duff [2], [3], we shall determine the solution to
the problem (5. 2) in the form

(5.6) v(t, x)= \sum_{k=1+m/2}^{m}v_{k}(t, x) .

The vectorvalued functions v_{k}(t, x) will be defined in the region t\geq\Psi_{k}(x) by
the series

(5.7) v_{k}(t, x)= \sum_{p=1}^{\infty}w_{p}^{k}(x)(t-\Psi_{k}(x))^{p},

where w_{p}^{k}(x) are suitably chosen vectorvalued functions. Extending the
functions v_{k}(t, x) as 0 for t<\Psi_{k}(x) we shall obtain the needed result (see

[1] ) .
We start with the construction of the series (5. 7) The proof of the

convergence of this series will be discussed in the next section. The
substitution of the series (5. 7) into the first equation in (5. 2) gives the
equalities

(5. 8) \{

(I+A(\nabla\Psi_{k}))w_{1}^{k}=0 ,
(p+1)(I+A(\nabla\Psi_{k}))w_{\rho+1}^{k}-G(w_{p}^{k})=0 ,
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where p=1,2 , \ldots . G= \sum_{j}A_{j}\partial_{x_{J}} . Let the nonzero eigenvalues of the matrix
A(-\nabla\Psi_{k}) be ordered as follows

(5.9) \lambda_{1}^{k}(x)>\lambda_{2}^{k}(x)> , ..>\lambda_{m}^{k}(x)

and \Phi_{1}^{k}(x) , \ldots
\Phi_{m}^{k}(x) be the corresponding orthogonal projectors, defined

in (3. 7). Lemma 3. 2 shows that \lambda_{m-k+1}^{k}(x)=1 and the linear space Ker
(I+A(\nabla\Psi_{k})) coincides with Im \Phi_{m-k+1}^{k}(x) . This fact leads to the
following representation of the solutions to (5. 8)

(5. 10) \{

w_{1}^{k}(x)=\phi_{m-k+1}^{k}(x)f_{k}^{1}(x)

w_{\mu_{1}}^{k}(x)=\phi_{m-k+1}^{k}(x)f_{k}^{\rho\vdash 1}(x)+(p+1)^{-1}H_{k}G(w_{p}^{k}) ,

where p=1,2 , \ldots-f_{k}p(x) are vectorvalued real analytic functions.
Moreover, H_{k}=H_{k}(x) is a linear operator in C^{r} defined by

(5. 11) H_{k}(v)=
j \neq m-k’+1\sum_{j=0}^{m}\Phi_{j}^{k}(x)v/(1-\lambda_{j}^{k}(x)) for v\in C^{r}.

Lemma 3. 2 and the inequalities (5. 9) guarantees that \lambda_{j}^{k}(x)\neq 1 for j\neq m-

k+1 , x\in U and the equality (5. 11) defines correctly the linear operator H_{k} .
From (5. 10) we obtain inductively

(5. 12) w_{p}^{k}(x)= \sum_{j=1}^{p}\frac{j!}{p!}(H_{k}G)^{\mu j}\phi_{m-k+1}^{k}(x)f_{k}^{j}(x)

for p=1,2 , \ldots Consider the following first order differential operator

(5. 13) Q_{k}=\phi_{m-k+1}^{k}G\phi_{m-k+1}^{k} .

Applying the operator \Phi_{m-k+1}^{k}(x) to the both sides of (5. 8) and using (5. 12)
we get

(5. 14) \{

Q_{k}(f_{k}^{1})=0 in U,

Q_{k}(f_{k}^{p})=- \sum_{j=1}^{p-1}\frac{j!}{p!}\phi_{m-k+1}^{k}G(H_{k}G)^{\mu j}\phi_{m-k+1}^{k}f_{k}^{j} in U,

for p=2,3 , \ldots Our next goal is to choose the boundary values of f_{k}^{p}(x) on \partial\Omega

for p=1,2 , \ldots Having in view the form of v_{k}(t, x) , it is natural to exploit the
series expansion h(t, x)= \sum_{p=0}^{\infty} t^{p}h_{p}(x) for x\in\partial\Omega . Notice that the
assumption (5. 4) implies that h_{0}(x)=0 and

(5. 15) h(t, x)= \sum_{p=1}^{\infty}t^{p}h_{p}(x) .
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Then the boundary condition in (5. 2) will be fulfilled if

(5. 16) [ \sum_{k=1+m/2}^{m}w_{p}^{k}(x)-h_{p}(x)]\perp A(\nu)(x)) Ker \Lambda(x) .

This condition for p=1 is equivalent to the property

[ \sum_{k=1+m/2}^{m}\phi_{m-k+1}^{k}(x)f_{k}^{1}(x)-h_{1}(x)]\perp A(\nu(x)) Ker \Lambda(x)

for x\in\partial\Omega . Applying lemma 3. 4 we conclude that the unknown functions
f_{k}^{1}(x)|_{ao} , k=1+m/2 , \ldots . m, can be determined from this requirement. Set
\varphi_{k}^{1}(x)=f_{k}^{1}(x)|_{\partial\Omega} . In a similar manner combining (5. 12), (5. 16) and
lemma 3. 4 we obtain that the functions \varphi_{k}^{p}(x)=f_{k}^{p}(x)|\partial\Omega can be determined
inductively from (5. 16). Thus we are going to the following Cauchy
problemr for the functions f_{k}^{1}(x) , f_{k}^{2}(x) , ..

(5. 17) \{

Q_{k}U_{k}^{1}(x))=0 in U,
f_{k}^{1}(x)=\varphi_{k}^{1}(x) on \partial\Omega ,

(5. 17)_{p} \{

Q_{k}(f_{k}^{p})=- \sum_{j=1}^{p-1}\frac{j!}{p!}\phi_{m-k+1}^{k}G(H_{k}G)^{p-j}\phi_{m-k+1}^{k}f_{k}^{j} in U,

f_{k}^{p}(x)=\varphi_{k}^{p}(x) on \partial\Omega ,

where p=1,2 , \ldots In order to apply the Cauchy-Kowalevska theorem we must
verify the condition

(5.18) det Q_{k}(\Psi(x))\neq 0 for \Psi(x)=0 ,

where \Psi(x)=0 represents the boundary \partial\Omega in a small neighbourhood of a
fixed point x^{0}\in\partial\Omega . In order to check the property (5. 18) we choose a basis
e_{1}(x) , \ldots

e_{q_{k}}(x) of the linear space Im \Phi_{m-k+1}^{k}(x) formed by real analytic
vectorvalued functions. Given any point x\in\partial\Omega near x^{0} we have \nabla\Psi=

c\nu(x) , where c\neq 0 . Using this fact and the representation formula (5. 13)
of the differential operator Q_{k} , we obtain that the matrix Q_{k}(\Psi(x)) in the
basis e_{1} , \ldots-e_{q_{k}} has the form

{ c<A(\nu)e_{i} , e_{j/i^{k}j=1}>\downarrow q,=-c\tau_{k}(\nu)\{<e_{i}, e_{j}>\}_{i^{k}j=1}^{q},\cdot

This matrix is invertible, since e_{1} , .. e_{q_{k}} are linear independent vectors.
Consequently, the boundary \partial\Omega is noncharacteristic with respect to the
operator Q_{k} for x\in\partial\Omega near x^{0} . Applying the local Cauchy-Kowalevska
theorem [20] we can solve the equations (5. 17) in a small neighbourhood
of x^{0} . Since the boundary \partial\Omega is a compact set, we can choose a finite
number of open sets, covering the boundary, in which the equations (5. 17)
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can be solved. Holmgren’s uniqueness theorem [20] implies that the
solutions to these problems can be determined in a small neighbourhood U of
the boundary \partial\Omega . Thus we can find the functions f_{k}^{1} , f_{k}^{2} , \ldots Utilyzing (5.12)

we determine the vectorvalued functions w_{p}^{k}(x) and the series (5. 7).

In the following section we shall discuss the convergence of the series (5.7)

and complete the proof of proposition 5. 1.

6. Convergence of the series (5. 7)

Let (y^{0}, t^{0})\in\partial\Omega\cross R be fixed point and \partial\Omega be given near y^{0} by the
equation x_{n}=g(x’) , x’=(x_{1} , ... -

x_{n-1}) , Then we make the change of the
variables y’=x’-y_{n}=x_{n}-g(x’) . In the new variables the problem (5. 2)

takes the form

n-1

(6. 1) \{

( \partial_{t}-A_{n}(y)\partial_{y_{n}}-\sum_{j=1}A_{j}\partial_{yj})v=0 ,

(v-h)\perp A(\nu)Ker\Lambda(y) for y_{n}=0 ,

v(0, y)=0 ,

where A_{n}(y)=A_{n}- \sum_{j=1}^{n-1}A_{j}\partial_{yj}g(y9 . Lemma 3. 5 guarantees that there exists

an orthogonal basis e_{1}^{+}(y) , \ldots
e_{q}^{+}(y) , e_{1}(y) , \ldots-e_{r-q}(y) in C^{r} formed by

real analytic vectorvalued functions, such that

(6.2)

/

i ) given any integer i\leq q there exists an integer
k_{i}>m/2 , such that A(\nabla\Psi_{h})e_{i}^{+}=-e_{i}^{+} ,

ii) the vectors e_{q+1}(y) , , .. e_{r-q}(y) , e_{1}^{+}(y)+e_{1}(y) , \ldots\wedge

\backslash

e_{q}^{+}(y)+e_{q}(y) form a basis in [A(\nu)Ker\Lambda(y)]^{\perp} for y_{n}=0 .

An important role in our proof of the convergence will play the following
characteristic functions

(6.3) \sigma_{i}=t-\Psi_{k}(y) ,

where the map iarrow k_{i} is defined according to (6. 2)i) and \Psi_{k} is the
characteristic function determined according to lemma 3. 1. Having in view
our construction of solution to (5. 2) we shall look for the solution to (6. 1)

in the form

(6.4) v= \sum_{j=1}^{q}v_{j}(\sigma_{j}, y)e_{j}^{+}(y)+\sum_{j=1}^{r-q}\sum_{s=1}^{q}v_{jS}(\sigma_{s}, y)e_{j}(y) .

Substituting (6. 4) into the first equation of (6. 1) and using (6. 2) we are
going to the following equations
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(6.5)

\partial_{y_{n}}v_{i}=b_{i}(\sigma_{i}, y, \partial_{y’})v_{i}+\sum_{j=1}^{r-q}b_{ji}(\sigma_{i}, y, \partial_{y’})v_{ji} ,

\partial_{\sigma|}v_{ki}=b_{ki}(\sigma_{i}, y, \partial_{y})v_{i}+\sum_{j=1}^{r-q}b_{ji}^{k}(\sigma_{i}, y, \partial_{y})v_{ji} ,

v_{i}(\sigma_{i}, y)=h_{i}(t, y \gamma+\sum_{s=1}^{q}v_{iS}(\sigma_{s}, y) for y_{n}=0 ,

v_{i}(\sigma_{i}, y)=v_{ki}(\sigma_{i}, y)=0 for \sigma_{i}\leq 0 .

Here i=1 , \ldots . q, k=1 , \ldots r r-q, b_{i}(\sigma_{i}, y, \partial_{y’}) , b_{ji}(\sigma_{i}, y, \partial_{y’}) , b_{ji}^{k}(\sigma_{i}, y, \partial_{y})

are differential operators of first order whose coefficients are real analytic for
|y-y^{0}|+|\sigma_{i}|\leq R . Now we can use the main idea of the proof of
Cauchy-Kovalewska theorem (see theorem 4. 1 in [20]).

Let \sum_{a}c_{a}(y(y-y^{0})^{a} and \sum_{a}C_{a}(y-y^{0})^{a} be the series expansions of the

real analytic functions f(y) and F(y) near y^{0} . We shall say that f(y) is
majorated by F(y) if |c_{a}|\leq C_{a} for any \alpha\in Z_{+}^{n} .

The construction of the previous section shows that the series (5. 6) can
be represented in the form (6. 4) with respect to the basis e_{1}^{+}(y) , \ldots-e_{q}^{+}(y) ,
e_{1}(y) , \ldots

e_{\Gamma-q}(y) so that

(6.6) v_{i}( \sigma_{i}, y)=\sum_{p=1}^{\infty}w_{i}^{p}(y)\sigma_{iy}^{p}v_{ki}(\sigma_{i}, y)=\sum_{p=1}^{\infty}w_{ki}^{p}\sigma_{i}^{p} .

The construction of section 5 guarantees that the above series expansions
satisfy formally (6. 5). More precisely, if we substitute the series (6. 6)
into (6. 5) we obtain that the coefficients in front of \sigma_{i}^{p} in the both sides of the
equations in (6. 5) are equal to each other for any p\geq 1 .

In order to prove the convergence of the series (6. 6) we consider the
following problem, which “ majorates ” (6. 5)

(6. 7) \{

\partial_{y_{n}}V_{i}=B_{i}(\sigma_{i}, y, \partial_{y’})V_{i}+\sum_{j=1}^{\gamma-q}B_{ji}(\sigma_{i}, y, \partial_{y’})V_{ji} ,

\partial_{\sigma_{l}}V_{ki}=B_{ki}(\sigma_{i}, y, \partial_{y})V_{i}+\sum_{j=1}^{r-q}B_{ji}^{k}(\sigma_{i}, y, \partial_{y})V_{ji} ,

V_{i}(\sigma_{i}, y)>H_{i}(t, y \gamma+\sum_{s=1}^{q}V_{is}(\sigma_{s}, y) for y_{n}=0 ,

V_{i}(\sigma_{i}, y)>0 , V_{ki}(\sigma_{i}, y)>0 .

Here i=1 , \ldots q, k=1 , \ldots . r-q, H_{i}(t, y’) majorates h_{i}(t, y’) , the coeffients
of the operators B_{i} , B_{ji} , B_{ji}^{k} majorate the corresponding coefficients of b_{i} ,
b_{ji} , b_{ji}^{k} . Moreover F>f means that the series expansion of F majorates the
series expansion of f. The crucual role in our considerations is played by the
following
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LEMMA 6. 1. Suppose V_{i}(\sigma_{i}, y) , V_{ki}(\sigma_{i}, y) , i=1 , \ldots.q, k=1 , \ldots r-q,

are real analytic functions satisfying (6. 7) and (6. 8) V_{i}( \sigma_{i}, y)=\sum_{p=0}^{\infty}W_{i}^{p}\sigma_{i}^{p} ,

V_{ki}( \sigma_{i}, y)=\sum_{p=0}^{\infty}W_{ki}^{p}\sigma_{i}^{p} . Then W_{i}^{p}(y) majorates w_{i}^{p}(y) and W_{ki}^{p} majorates

w_{ki}^{p} for any p\geq 1 .

PROOF: Substitution of the series (6. 8) into (6. 5) leads to the
equations

(6.9) \{

a) \partial_{y_{n}}w_{i}^{p}=\sum_{s=1}^{p}d_{iS}^{p}(y, \partial_{y’})w_{i}^{s}+\sum_{s=1}^{p}\sum_{j=1}^{r-q}d_{ij}^{ps}(y, \partial_{y’})w_{ji}^{s} ,

b) w_{ki}^{1}=0 ,

c) (1+p)w_{ki}^{p+1}= \sum_{s=1}^{p}d_{ki}^{ps}(y, \partial_{y})w_{i}^{s}+\sum_{s=1}^{p}\sum_{j=1}^{r-q}d_{ij}^{Skp}(y, \partial_{y})w_{ji}^{s} ,

d) w_{i}^{p}(y)=h_{i}^{p}(y \gamma+\sum_{j=1}^{q}w_{ij}^{p} for y_{n}=0 .

Here i=1 , ... , q, k=1 , ... r-q, and p\geq 1 . In a similar manner the
substitution of (6. 8) into (6. 7) leads to the equations

(6. 10) \{

a) \partial_{y_{n}}W_{i}^{p}=\sum_{s=0}^{p}D_{is}^{p}(y, \partial_{y’})W_{i}^{s}+\sum_{s=0}^{p}\sum_{j=0}^{r-q}D_{ij}^{ps}(y,’\partial_{y’})W_{ji}^{s} ,

b) W_{ki}^{1}>0 ,

c) (p+1)W_{ki}^{\rho+1}= \sum_{s=0}^{p}D_{ki}^{ps}(y, \partial_{y})W_{i}^{s}+\sum_{s=0}^{p}\sum_{j=1}^{r-q}D_{ij}^{Skp}(y, \partial_{y})W_{ji}^{s} ,

d) W_{i}^{p}(y)>H_{i}^{p}(y \gamma+\sum_{j=1}^{q}W_{ij}^{p} for y_{n}=0 .

The equalities (6. 9)b) and (6. 10)b) show that W_{ki}^{1}>w_{ki}^{1}=0 for k=1 , \ldots

r-q, i=1 , \ldots q. Since w_{i}^{1} and W_{i}^{1} for i\leq q can be compared from (6. 9)

a)d) and (6. 10)a)d) by using the Cauchy-Kovalewska calculation, we
obtain that w_{i}^{1} is majorated by W_{i}^{1} . Then from (6. 9)c) and (6. 10)c) we
conclude that W_{ki}^{2} majorates w_{ki}^{2} . Again utilyzing (6. 9) a)d) and (6. 10)a)

d) and the Cauchy-Kovalewska calculation we derive that W_{i}^{2} majorates w_{i}^{2}

etc. Repeating the above procedure many times, we obtain that w_{ki}^{p} is
majorated by W_{ki}^{p} , while w_{i}^{p} is majorated by W_{i}^{p} . This proves the lemma.

In order to complete the proof of the convergence of the series expansion
(5. 7) it is sufficient to construct a real analytic solution to (6. 7) and then
apply lemma 6. 1. Choosing M>0 sufficiently large and R>0 sufficiently

small, we can assume that H_{i}(t, y) and the coefficients of the operators B_{i} ,

B_{ji} , B_{ji}^{k} have the form M/(1-z_{i}) , where z_{i}=(y_{1}+\ldots+y_{n-1}+\rho y_{n}+\rho^{2}\sigma_{i})/R .

Here \rho>0 will be chosen later. We snail look for the solution to (6. 7) in
the following form
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V_{ki}=V(z_{i}) for k\leq r-q, i\leq q,

V_{i}^{-\frac{1}{2}}=\rho qV(z_{i})+M/(1-z_{i})+\tilde{V}(z_{i})

Then the problem (6. 7) can be reduced to the following system of ordinary
differential equations with respect to U=(V,\tilde{V})

(6. 11) (I-z_{i}I- \Gamma_{1}(\rho))\frac{dU}{dZ_{i}}=\Gamma_{2}(\rho)U(z_{i})+g_{3}(\rho) ,

where \Gamma_{1}(\rho) , \Gamma_{2}(\rho) are (2\cross 2) matrices and lim \Gamma_{1}(\rho)=0 . Choosing \rho>0
\rhoarrow\infty

sufficiently large, we conclude that there exists a real analytic solution to (6.
11) satisfying the initial condition V(0)\geq 0,\tilde{V}(0)\geq 0 . Applying lemma 6. 1
we complete the proof of the convergence of the series (5. 7).

Finally, we shall verify that v(t, x) is a solution to the problem (5. 2)

(see definition 1 in section 5). Since the set K(t)= \overline{\Omega}\cap\bigcap_{k=1+m/2}^{m}\backslash /\Psi_{k}(x)\leq t^{1}, is

a compact set we conclude that v(t, x)\in D_{\epsilon} (see the equality (5. 3) for the
definition of the space D_{\epsilon} ). Let w(t, x) be a smooth function with a
compact support in R^{n+1} . Then the Green’s equality leads to the relation

\int_{0}^{\epsilon}\int_{\Omega}<v, ( \partial_{t}-\sum_{j=1}^{n}A_{j}\partial_{x_{j}})w>dxdi

=- \sum_{j=1+m/2}^{m}[\int_{0}^{\epsilon}\int_{K_{j}(t)}<(\partial_{t}-\sum_{1}^{n}A_{k}\partial_{x_{k}})v_{j}, w>dxdt

+ \int_{\Omega}<v_{j}(\epsilon, x) , w( \epsilon, x)>dx-\int_{\Omega}<v_{j}(0, x) , w(0, x)>dx

- \int_{0}^{\epsilon}\int_{\partial\Omega}<A(\nu)v_{j} , w>dS_{x}dt

+ \int_{0}^{\epsilon}\int_{t=\Psi_{j}(x)}<(I+A(\nabla\Psi_{j}))v_{j} , w>dS_{x}dt] ,

where K_{j}(t)=\{x;\Psi_{j}(x)\leq t^{1}, . Our construction of the solution v(t, x) in the

region K_{j}(t) implies that ( \partial_{t}-\sum_{k}A_{k}\partial_{x_{k}})v_{j}=0 in K_{j}(t) , v_{j}(t, x)=0 for t=\Psi_{j}

(x) and v(0, x)=0 . Having in view these properties, we are going to the
equality

\int_{0}^{\epsilon}\int_{\Omega}<v, ( \partial_{t}-\sum_{k=1}^{n}A_{k}\partial_{x_{k}})w>dxdt
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= \int_{\Omega}<v(\epsilon, x) , w( \epsilon, x)>dx-\int_{0}^{\epsilon}\int_{\partial\Omega}<A(\nu)v, w>dS_{x} dt.

This completes the proof of the proposition 5. 1.

7. The first moment when disappearing solution vanishes

Given any D. S. u_{\backslash ^{b}}^{(\neq}, x) =V(t)f it is important to obtain some
information about the first moment T(f)= \inf { t;V(t)f=0_{J}^{\mathfrak{l}} when D. S.
vanishes. Our goal is to estimate T(f) provided the obstacle K=R^{n}|\Omega and
the support of the initial data supp f contain in the ball B_{R}=\{x:|x|<R_{J}^{1} .
Set \Omega_{R}=\Omega\cap B_{R} , S_{R}=\{x;|x|=R_{I}^{1} . First step in this section is to define the
maximal distance in \Omega_{R} between the points x\in\partial\Omega and the sphere S_{R} . Any
two points x\in\partial\Omega , y\in S_{R} can be connected by a broken path P(x, y) in \Omega_{R}

determined by the points x_{1}=x, x_{1}\in\Omega_{R} , xi \in\Omega_{R} , \ldots x_{N-1}\in\Omega_{R} , x_{N}=y, such
that the open segments (x_{i}, x_{i+1}) lie in \Omega_{R} for i=0,1 , \ldots . N-1 . Such a
path exists, since the boundary \partial\Omega and the domain \Omega_{R} are connected. Any
broken path P(x, y) determined as above has a length |P(x, y)|=

\sum_{i=0}^{N-1}|x_{i+1}-x_{i}| . The distance in \Omega_{R} between x\in\partial\Omega , y\in S_{R} is d(x, y)=

\min_{P}|P(x, y)| , where the minimum is taken over all paths in \Omega_{R} connecting

x and y. Now we can define the distance in \Omega_{R} between any point x\in\partial\Omega and
S_{R} by the equality

d(x, S_{R})= \min_{y\in S_{R}}d(x, y) . Finally, the maximal distance

in \Omega_{R} between the points x\in\partial\Omega and the sphere S_{R} is

(7. 1) M(R)= \max_{x\in\partial\Omega}d(x, S_{R}) .

To simplify our considerations we shall assume that

(H_{4})\{
the matrix A( \xi)=\sum_{j}A_{j}\xi_{j} is an invertible one
for \xi\in R^{n}|\{0_{/}^{1} .

After this preparation work we can turn to the

Proof of theorem 5: The first tool in the proof is the finite propagation
speed arguments for hyperbolic problem

(7.1) ( \partial_{t}-\sum_{j=1}^{n}A_{j}\partial_{x_{j}})u=0 in { (x, t) ; |t-h|< \frac{\epsilon}{c_{\max}} , |x-x^{0}|<\epsilon/( ,

where \epsilon>0 , (x^{0}, k)\in R^{n}\cross R and
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c_{\max}= \max\{|\tau_{j}(\xi)| : 1\leq j\leq m, \xi\in S^{n-1}\} .

More precisely, we need the following

LEMMA 7. 1. (see [14], chapter VI ) Suppose that u(t, x) is a solution
to (7. 2) and u(t_{0}, x)=0 for |x-x^{0}|<\epsilon . Then u(t, x)=0 for |x-x^{0}|<\epsilon-

c_{\max}|t-k| .

The above lemma shows that there exists a compact set Q\subset R^{n}, such
that

(7.3) supp_{x}u(t, x)\subset Q for t\geq 0 .

The second lemma we use is the following form of the Holmgren’s
uniqueness theorem, obtained in [8]

LEMMA 7. 2. (see theorem 1. 1 in [8]) Suppose that \epsilon>0 , \epsilon_{1}>0 , u(t, x)

is a solution to the problem

( \partial_{t}-\sum_{j}A_{j}\partial_{x_{j}})u=0 for |x-x^{0}|<\epsilon+\epsilon_{1} , t\geq t_{0}

and u(t, x)=0 for |x-x^{0}|<\epsilon , t\geq t_{0} . Then u(t, x)=0 for |x-x^{0}|<\epsilon+\epsilon_{1} ,

t\geq t_{0}+\epsilon_{1}|c_{m\ln} .

Combining lemma 7. 1 and 7. 2 one can check the property

(7.4) u(t, x)=0 for |x|\geq R .

Indeed, setting

(7.5) R_{1}= \max\backslash /|x| ; x\in supp_{x}u(t, x) , t\geq 0\}

and assuming R_{1}>R, one can choose \epsilon , 0<\epsilon<R_{1}-R, and x^{0}\in\{x ; |x|=
R_{1}+\epsilon){. Our choice of R_{1} and x^{0} leads to the property u(t, x)=0 for |x-x^{0}|

\leq\epsilon , t\geq 0 . Applying lemma 7. 2 we get

(7.6) u(t, x)=0 for |x-x^{0}|\leq 2\epsilon , t>\epsilon|c_{m\ln} .

Since x^{0} is an arbitrary point on the sphere { x;|x|=R_{1}+\epsilon)| the property (7.

6) implies that

(7.7) u(t, x)=0 for |x|>R_{1}-\epsilon , t>\epsilon|c_{m\ln} .

On the other hand, lemma 7. 1 and the inclusion supp f\subset B_{R} guarantee that

(7.8) \{

given any t>0 , x\in supp_{x}u(t, x) with |x|>R, we have
u(t, x)=0 for |x|>R+tc_{\max} .
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Any point (x, t)\in\{(x, t),\cdot R_{1}-\epsilon<|x|<R+tc_{\max}^{\backslash }, lies in J1(x, t) : |x|>R_{1}-

\epsilon , t>\epsilon|c_{m\ln} provided R_{1}>R and \epsilon>0 is a sufficiently small number. This
fact together with the properties (7. 7), (7. 8) yield u(t, x)=0 for |x|>R_{1}-

\epsilon , t\geq 0 . But this condition contradicts to (7. 5) The contradiction shows
that R_{1}=R and the property (7. 4) is verified.

The proof of the theorem will be complete if we verify the property

(7.9) u(t, x)=0 for x\in\Omega_{R} , t\geq M(R)|c_{mi\Pi} .

Let \epsilon>0 and x^{\Lambda}\in\Omega_{R} be fixed. The equality (7. 1) enables us to find y^{\Lambda}\in

S_{R} and a broken path P(x_{2}^{\Lambda}y^{\Lambda}) in \Omega_{R} such that

(7. 10) |P(x^{\Lambda}. y^{\Lambda})|>M(R)-\epsilon .

Let the segments (x_{i}, x_{i+1})\subset\Omega_{R} , i=0,1 , \ldots , N, form the path P(x\Lambda y)\Lambda

and x)
=y^{\Lambda} x_{N+1}=x^{\Lambda} Without lose of generality we can assume that

/\backslash |x-x_{i}|<r_{i}+r_{i+1)}\downarrow\subset\Omega and r_{i}<\epsilon , where i=0 , \ldots , N and r_{i}=|x_{i}-x_{i+1}| .
The property (7. 4) and the inequality r_{0}<\epsilon guarantee that u(t, x)=0 for
|x-x)|<r_{0} , t>0 . Applying lemma 7. 2 we get u(t, x)=0 for |x-x) |<r_{0}+r_{1} ,
t>r_{1}|c_{m\ln} . Hence, we have the property u(t, x)=0 for |x-x_{1}|<r_{1} ,
t>r_{1}|c_{m\ln} . Then applying lemma 7. 2 we obtain inductively u(t, x)=0 for
|x-x_{i}|<r_{i}+r_{i+1} , t>(r_{1}+\ldots+r_{i+1})|c_{min} . for i=1 , \ldots N. Choosing i=N
and using the inclusion

|/x;|x-x_{N}|<r_{N}+r_{N+1}\}\subset_{1}/x;|x-x^{\Lambda}|<r_{N+1}\}\subset\Omega ,

we are going to the property

u(t, x)=0 for |x-x^{\Lambda}|<r_{N+1} , t>(r_{1}+\ldots+r_{N})|c_{min} .

Combining the above property and (7. 10) we obtain the property (7. 9).

This completes the proof of the theorem.
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