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On n-dimensional Lorentz manifolds admitting
an isometry group of dimension n(n-1)/2+1 for n\geqq 4
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1. Introduction.

A connected n-dimensional Riemannian manifold admitting a connected
closed isometry group of dimension n(n-1)/2+1(n\geqq 4) was completely
determined by Yano [8], Ishihara [1] and Obata [6] (cf. Kobayashi [2]).
The result of Obata (Theorem 10 in [6]) is as follows: Let G be a
connected Lie group of dimension r and H a compact subgroup of dimension
r-n. Assume that n(n-1)/2<r<n(n+1)/2 , n\geqq 3 , n\neq 4 and G is almost
effective on G/H as a transformation group. Then G is of dimension n(n-
1)/2+1 and G/H is one of the spaces C_{0}^{1}\cross C_{+}^{n-1} . C_{0}^{1}\cross C_{-}^{n-1} . C_{0}^{n} , C_{-}^{n} as a
Riemannian manifold. Here we denote by C_{+}^{m} , C_{-}^{m} and C_{0}^{m} an m-dimen-
sional Riemannian manifold of positive and negative constant curvature and
a locally flat Riemannian manifold respectively. We consider the classifica-
tion problem of Lorentz manifolds. Each of the following examples is a
connected n dimensional Lorentz manifold M admitting a connected
isometry group G of dimension n(n-1)/2+1.

E_{XAMPLE} .
(i) M=R\cross N with metric - dt^{2}+ds_{N}^{2} and G=R\cross I^{0}(N) .
(ii) M=S^{1}\cross N with metric - d\theta^{2}+ds_{N}^{2} and G=S^{1}\cross I^{0}(N) .
(iii) M=R\cross P^{n-1} with metric - dt^{2}+ds_{P}^{2} and G=R\cross I^{0}(P^{n-1}) .
(iv) M=S^{1}\cross P^{n-1} with metric - d\theta^{2}+ds_{P}^{2} and G=S^{1}\cross I^{0}(P^{n-1}) .
(v) M=U_{n}^{+}=\{(u_{1}, .. u_{n}) ; u_{n}>0\} with metric ds_{+}^{2}=(du_{1}^{2}+\ldots+

du_{n-1}^{2}-du_{n}^{2})/(cu_{n})^{2}(c\neq 0) and G=I^{0}(U_{n}^{+}) (see Nomizu [5]).
(vi) M=U_{\overline{n}}=\{(u_{1} , .. 1

u_{n})ju_{n}>0^{\mathfrak{l}}, with metric ds_{-}^{2}=(-du_{1}^{2}+du_{2}^{2}+\ldots

+du_{n}^{2})/(cu_{n})^{2}(c\neq 0) and G=I^{0}( U_{n}^{-}) (see Matsuda [3]).
Here N is a simply connected (n-1) -dimensional Riemannian manifold
with metric ds_{N}^{2} of constant curvature and P^{n-1} is an (n-1) -dimensional real
projective space with standard metric ds_{P}^{2} . A real line and a circle of certain
radius are denoted by R and S^{1} respectively. I^{0}(\circ ) denotes the identity
component of the full isometry group of ( \circ) .

The purpose of this note is to prove the following theorem.
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THEOREM. Let M be a connected n-dimensional Lorentz manifold
admitting a connected isometry group G of dimension n(n-1)/2+1(n\geqq 4)

whose isotropy subgroup is compact. Then M must be one of spaces (i)-(v) .

REMARK 1. This theorem was proved for the case n\geqq 5 (see Matsuda
[4] ) . But the method in this paper partly differs from [4].

REMARK 2. The isotropy subgroup of G in the above example is
compact except (vi).

REMARK 3. The spaces of (v) and (vi) are not geodesically complete.

2. Preliminaries.

Let (M, < >) be a connected n-dimensional Lorentz manifold with
signature (-, +, \ldots,+)(n\geqq 2) . Let G be a connected isometry group of
(M, <. >) and H the isotropy subgroup of G at a point 0\in M. Then the
linear isotropy group \tilde{H}=\{d\tau_{h} : h\in H\} acting on T_{o}M is a closed subgroup
of O(1, n-1)=\{A\in GL(n, R);{}^{t}ASA=S\} where S is the matrix

\{\begin{array}{lll}-1 1 1\end{array}\}

Throughout this note, we assume that H is compact.

LEMMA 1. Every compact subgroup of O(1, n-1) is conjugate to a
subgroup of O(1)\cross O(n-1) (cf. Wolf [7]). Especially if K is a compact
subgroup of O(1, n-1) whose dimension is (n-1)(n-2)/2, then K leaves
invariant one and only one 1-dimensional subspace in an n-dimensional
vector space (cf. Obata [6]).

From Lemma 1, we can see that for n(n+1)/2\geqq r>n(n-1)/2+1 the
full isometry group of M contains no subgroup of dimension r whose
isotropy subgroup is compact. Furthermore, we can also have the following
proposition from Lemma 1.

PROPOSITION. If M admits a connected isometry group G of dimemion
n(n-1)/2+1, then G is tramitive on M.

Hereafter, let G be a connected isometry group of dimension n(n-1)/
2+1 . From Proposition, dim H=(n-1)(n-2)/2. Therefore, the linear
isotropy group \tilde{H} leaves one and only one 1-dimensional subspace T of T_{o}M

which is timelike. Let e_{0} be a unit timelike vector belonging to T.
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LEMMA 2. If M is time orientable, then the vector fifietd \xi defifined by
\xi(p):=d\tau_{g}(e_{0})(\tau_{g}0=p, g\in G) is wett-defifined on M and G-invariant timelike
vector fifietd.

PROOF. We will show that for each p\in M, \xi(p)=d\tau_{g}(e_{0}) is indepen-
dent of the choice of g\in G such that \tau_{g}0=p.

Let \tau_{g_{1}}0=\tau_{g_{2}}0=p(g_{1}, g_{2}\in G) . G being connected, there exist curves \tilde{g}_{i} :
[0, 1]arrow G such that \tilde{g}_{i}(0)=identity and \tilde{g}_{i}(1)=g_{i}(i=1,2) . Set c_{i}(t)=\tau_{\tilde{g},(t)}0

(i=1,2) . M being time orientable, there exists a unit timelike vector field
X on M. Then we can see that

<X(c_{i}(t)) , d\tau_{\tilde{g}_{\iota}(t)}\xi(0)>\neq 0

for any t\in[0,1] . The map: tarrow<X (c_{i} (t)) , d\tau_{\tilde{g},(t)}\xi(0)> being
continuous, if <X(0) , \xi(0)><0 (resp. >0), then <X(p) , d\tau_{g_{1}}\xi(0)><0

(resp.>0). Thus d\tau_{g_{1}}\xi(0) and d\tau_{g_{2}}\xi(0) belong to the same connected
component of the time cone in T_{p}M. On the other hand, let H_{p} be the
isotropy subgroup of G at p\in M. Then H_{p}=g{}_{i}Hg_{i}^{-1} so that d\tau_{g},\xi(0) ’s belong
to the one and only one 1-dimensional subspace of T_{p}M which is invariant by
the linear isotropy group H_{p} . Therefore d\tau_{g_{1}}\xi(0)=d\tau_{g_{2}}\xi(0) .

If M is time orientable, the 1-form \omega can be defined by \omega(X)=<X, \xi> .
Hereafter, we assume that n\geqq 4 . Then the existence of linear maps A and
B in the proof of the following Lemma 3 is guaranteed.

LEMMA 3. \omega is G-invariant closed form.
PROOF. It is clear that \omega is G-invariant. Let \{\xi(0)=e_{0}, e_{1} , ... e_{n-1}\}

be a Lorentz basis of T_{o}M, i . e. ,

<e_{0} , e_{0}>=-1, <e_{0} , e_{j}>=0, <e_{j} , e_{j}>=1 ,
<e_{i} , e_{j}>=0 , (1 \leqq i\neq j\leqq n-1) .

We will prove that

(1) d\omega(e_{0}, e_{j})=0(1\leqq j\leqq n-1)

and

(2) d\omega(e_{i}, e_{j})=0(1\leqq i<j\leqq n-1) .

For a fixed j, let A:T_{o}Marrow T_{o}M be the 1inear_{\nwarrow}map defined by

A(e_{0})=e_{0} , A(e_{j})=-e_{j} , A(e_{k})=-e_{k} (for some k\neq 0 , j)
A(e_{s})=e_{s} (for any s\neq 0 , j, k).
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Then A\in SO(1)\cross SO(n-1) so that there exists h\in H such that d\tau_{h}=A on
T_{o}M. Therefore, d\omega(e_{0}, e_{j})=d(\tau_{h}^{*}\omega)(e_{0}, e_{j})=d\omega(A(e_{0}), A(e_{j}))=

-d\omega(e_{0}, e_{j}) . Thus d\omega(e_{0}, e_{j})=0 . For fixed i and j, we define the linear
map B : T_{o}Marrow T_{o}M by

B(e_{0})=e_{0} , B(e_{i})=e_{j} , B(e_{j})=e_{i} ,
B(e_{k})=-e_{k} (for some k\neq 0 , i, j),
B(e_{s})=e_{s} (for any s\neq 0 , j, k).

Then B\in SO(1)\cross SO(n-1) so that there exists h\in H such that d\tau_{h}=B on
T_{o}M. Therefore d\omega(e_{i}, e_{j})=d(\tau_{h}^{*}\omega)(e_{i}, e_{j})=d\omega(B(e_{i}), B(e_{j}))=

-d\omega(e_{i}, e_{j}) so that d\omega(e_{i}, e_{j})=0 .

3. Proof of theorem.

In the first, we assume that M is simply connected (therefore M is time
orientable). Since \omega is closed by Lemma 3, there exists a differentiate
function f : Marrow R such that df=\omega . Let c_{p}(t) be an integral curve of \xi

such that c_{p}(0)=p. Then we have easily that f(c_{p}(t))=-t+f(p) .

Lemma 4. Each integral curve of \xi is a complete geodesic.

PROOF. Let A be the linear map as in the proof of Lemma 3. Then
there exists h\in H such that d\tau_{h}=A on T_{o}M. We have

<\nabla_{\xi}\xi , e_{j}>=<d\tau_{h}(\nabla_{\xi}\xi) , d\tau_{h}(e_{j})>=<\nabla_{\xi}\xi, - e_{j}>

so that we have <\nabla_{\xi}\xi , e_{j}>=0 . It is evident that <\nabla_{\text{\’{e}}}\xi , \xi>=0 . there
fore we have \nabla_{\xi}\xi=0 at 0\in M. Since \xi is G-invariant, \nabla_{\xi}\xi vanishes on M
so that each integral curve of \xi is geodesic. Furthermore, this geodesic is
complete, because \xi is G-invariant,

From Lemma 4, we have f(M)=R. Let N:=f^{-1}(0)(O\in R) . Then N
is a closed spacelike hypersurface of M. Let N_{0} be a connected component
of N.

LEMMA 5([4]). F : R\cross N_{0}arrow M defifined by F(t, x) :=c_{\chi}(t)=

Exp (t\xi(x)) for (t, x)\in R\cross N_{0} is onto dijfeomorphism ; furthermore, N=N_{0} .

PROOF. Assume that F(t, x)=F(t’. x’) . We have t=-f(c_{X}(t))=
-f(F(t, x))=-f(F(t’x9)=t’ Since c_{\chi}(t)=c_{x’}(t’) and t=t’- we have
x=x’. Thus F is one to one. It is evident that F is differentiate. Set M_{0} :
=F(R\cross N_{0}) . Then M_{0} is open in M. It remains to be shown that M is
closed in M. Suppose that F(t_{k}, x_{k})=p_{k} is a sequence approaching some
point q in M. Let \tilde{f}:Rarrow R be the function defined by \tilde{f}(t):=f(F(t, x)) for
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some x\in N_{0} . Then \tilde{f} is independent of the choice x\in N_{0} , for \tilde{f}(t)=-t.
Since \tilde{f}^{-1}(f(p_{k}))=t_{k} , and \tilde{f}^{-1}(t^{}(p_{k})) approaches \tilde{f}^{-1}y(q)) , we have t_{k}arrow t_{0} :
=\tilde{f}^{-1}(f(q)) as karrow\infty . Letting x_{0} :=c_{q}(-t_{0})=Exp(-t_{0}\xi(q)) , we have x_{k}

=c_{p_{k}}(-t_{k})=Exp(-t_{k}\xi(p_{k}))-c_{q}(-t_{0}) . Since N_{0} is closed, x_{0} belongs to N_{0}

so that q=F(t_{0}, x_{)}) belongs to M_{0} . Thus M=M_{0},\cdot furthermore, N=N_{0} .

REMARK 4. For each a\in R, f^{-1}(a) is a connected closed spacelike
hypersurface of M.

Lemma 6. For each a\in R, N and f^{-1}(a) are rigid in M.

PROOF. Since G acts transitively on M, for some point p of f^{-1}(a)

there exists g\in G such that \tau_{g}0=p(0\in N) . Then \tau_{g}N\subset f^{-1}(a) . Because,

for any q\in\tau_{g}N, there exists C^{\infty} curve \tilde{c}:[0, 1]arrow\tau_{g}N such that \tilde{c}(0)=p and
\tilde{c}(1)=q . Put c:=\tau{}_{g-1}\tilde{C}. Then c is C^{\infty} curve on N so that f(c(s))=0 for
any s\in[0,1] . We have

(df/ds)(\tilde{c}(s))=<\nabla f,\tilde{c}

.
(s)>=<\xi(\tilde{c}(s)),\tilde{c}

.
(s)>=

<d\tau_{g}\xi(c(s)) , d\tau_{g}\dot{c}(s)>=<\xi(c(s)),\dot{c}(s)>=(df/ds)(c(s))=0 .

Therefore f(\tau_{g}N)=f(p)=a, that is, \tau_{g}N\subset f^{-1}(a) .
Since f^{-1}(a) is connected and \tau_{g}N is open and closed in f^{-1}(a) , we have

\tau_{g}N=f^{-1}(a) .

LEMMA 7. N is homogeneous Riemannian manifold.
PROOF. For any p, q\in N, there exists g\in G such that \tau_{g}p=q . By the

same discussion as in the proof of Lemma 6, we can see that \tau_{g}|_{N} is an
isometric transformation of N.

Let G’:=\{g\in G;\tau_{g}N=N\} . Then G’ is the Lie subgroup of G. We can
verify that H is included in G’ by the same discussion as in the proof of
Lemma 6. G’ acts effectively on N. In fact, if g\in G’ acts trivially on N,

then d\tau_{g}\xi(x)=\xi(x)(x\in N) so that d\tau_{g}=id . on T_{X}M=R\{\xi(x)\}+T_{x}N.
Thus we have g=id. . Furthermore we have dim G’=\dim N+\dim H=

n(n-1)/2 . Therefore the simply connected (n-1) -dimensional homoge-
neous Riemannian manifold N admitting an isometry group G’ of
maximal dimension n(n-1)/2 is isometric to S^{n-1} , H^{n-1} or E^{n-1} .

Lemma 8. \nabla_{X}\xi=-cX for any X such that <X, \xi>=0 where c is a

constant.

PROOF. For X\in T_{o}M such that <X, \xi(0)>=0 , \nabla_{X}\xi(0) is expressed
by
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\nabla_{X}\xi(0)=c(X)X+b(X)X^{\perp}

for some X^{\perp} such that <X^{\perp} , \xi(0)>=0=<X, X^{\perp}>and for scalars c(X) ,
b(X) depending on X. Because <\nabla_{X}\xi, \xi>=0 . Therefore <\nabla_{X}\xi, X>
=c(X)<X, X> . Since the linear isometry group \tilde{H} acts transitively on U:
=\{Z\in T_{o}M ; <\xi(0), Z>=0, <Z, Z>=1\} , c is constant on U.
Furthermore we have c(\alpha X)=c(X) for any non-zero \alpha\in R . Thus we
have< \nabla_{X}\xi, X>=-c<X, X> for any X orthogonal to \xi(0) . Since M
is homogeneous, we can see that <\nabla_{X}\xi, X>=-c<X, X> for any X
orthogonal to \xi . Therefore, after polarization, we have <\nabla_{X}\xi, Y>=-
c<X, Y> for any Y orthogonal to \xi . Thus we have \nabla_{X}\xi=-cX.

REMARK 5. Taking -\xi instead of \xi (if necessary), we may assume
that c>0 .

Lemma 9([4]). F : (R\cross N, - dt^{2}+\exp(-2ct)ds_{N}^{2})arrow(M, <->) is
isometry, where ds_{N}^{2} is the metric of N.

PROOF. Let ( V, \phi= (t_{1}, \ldots. t_{n-1})) be a local coordinate around a
point p in N. Then (R\cross V, id\cross\phi= (t, t_{1}, ... t_{n-1})) is a local coordinate
around (a, p) in R\cross N. Let \tilde{V}:=F(R\cross V) and define \tilde{\phi}:\tilde{V}arrow R^{n} by
(id\cross\phi)\circ F^{-1} . Then ( \tilde{V},\tilde{\phi}=(x) , x_{1} , ... x_{n-1} )) is a local coordinate around
ff=F(a, p) in M. We can see that dF(\partial/\partial t)=\xi=\partial/\partial x_{1} and dF(\partial/\partial t_{i})=

\partial/\partial x_{i} (i=1, \ldots, n-1) . We can also verify that <\partial/\partial x
), \partial/\partial x_{i}>=0(i=

1 , \ldots . n-1). Because
<\partial/\partial x_{1} , \partial/\partial x_{i}>=<\xi, \partial/\partial x_{i}>=<\nabla f, \partial/\partial x_{i}>

=dF(\partial/\partial t_{i})(f)=(\partial f/\partial t_{i})(F(t, x))

=(\partial/\partial t_{i})(-t)=0 .

Since \partial/\partial x_{)}<\partial/\partial x_{j} , \partial/\partial x_{i}>=-2c<\partial/\partial x_{j} , \partial/\partial x_{i}> by Lemma 8, we
have <\partial/\partial x_{j} , \partial/\partial x_{i}>=\exp(-2c\chi_{)})g_{ji}(x_{1}, \ldots.x_{n-1}) for i, j=1 , \ldots , n-1 .

Thus we have F^{*}< . >=-dt^{2}+\exp(-2ct)ds_{N}^{2} .

Lemma 10. If N=S^{n-1} or H^{n-1} , then c=0, i. e. , the metric of R\cross N is
product metric.

PROOF. Since f^{-1}(a)(a\in R) is isometric to N by Lemma 6, the scalar
curvature S_{a} of f^{-1}(a) coincides with the scalar curvature a of N. The
facts that S_{a}=\mathbb{S} is nonzero and S_{a}=\exp(-2ca)S) by Lemma 9 imply c=0.

In the case N=E^{n-1} and c=0, (M, < >) is isometric to (R\cross E^{n-1} .
-dt^{2}+ds_{E}^{2}) which is the Lorentz-Minkowski space. In the case N=E^{n-1}
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and c\neq 0 , (M, < >) is isometric to (R\cross E^{n-1}. - dt^{2}+\exp(-2ct)\Sigma_{j=1}^{n-1}dt_{j}^{2})

which is isometric to ( U_{n}^{+}, ds_{+}^{2}) by the transformation

R\cross E^{n-1}\ni(t, t_{1}, ... t_{n-1})

arrow(u_{1} , .. , u_{n-1} , u_{n})=(t_{1} , ... . t_{n-1} , e^{ct}/c)\in U_{n}^{+} .

Thus if M is simply connected, then M is isometric to the space (i) or
(v) in the Example.

To find non-simply connected M, we use the same procedure as in
Kobayashi [2], p. 52. Thus we complete the proof of the theorem.
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