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\S 1. Introduction

The notions of the Lusin affine kernel and the Lusin kernel were first
introduced by Hoffmann-J \phi rgensen[6] for the product measure \mu=\prod\mu_{n} on
R^{\infty} . The Lusin affine kernel A_{L}(\mu) is defined by A_{L}(\mu)=\cap\{A ; A is an
affine subspace with \sup{ \mu(K);K\subset A, K is compact convex] =1 }. The Lusin
kernel K_{L}(\mu) is defined by K_{L}(\mu)=\cap\{S ; S is a linear subspace with \sup

{ \mu(K) : K\subset S, K is compact convex) =1 }. Hoffffmann-J\emptyset rgensen [6]
determined explicitly the Lusin affine kernel A_{L}(\mu) and the Lusin kernel
K_{L}(\mu) for the product measure \mu=\prod\mu_{n} on R^{\infty}-

Borell [3] considered the Lusin affine kernel A_{L}(\mu) and the Lusin kernel
K_{L}(\mu) on the dual locally convex Hausdorff space E’ instead of R^{\infty} . Let \mu

be a Radon probability measure on E’ where we put the weak* topology on
E’ The definitions of A_{L}(\mu) and K_{L}(\mu) are the same as those of Hoffmnn
-J\phi rgensen . Borell [3] proved a 0-1 law for A_{L}(\mu) in the case where \mu is
an s-convex measure with s>-1 . If \mu is an s-convex measure with s>-1 ,

then \mu(A_{L}(\mu))=0 or 1 according as dim K_{L}(\mu)=\infty or <\infty , see Borell [3],
Theorem 2.4(c).

Similar 0-1 law was obtained by Zinn [12] for a p-stable measure on a
separable Banach space E. Let \mu be a probability measure on E and set A_{\mu}

=\{x ; \tau_{x}(\mu)\sim\mu(equivatent)\} , where \tau_{x}(\mu)(C)=\mu(C-x) . Then for a P -sta-
ble measure \mu on E, it holds that \mu(A_{\mu}-A_{\mu})=0 or the linear span of A_{\mu} is
finite dimensional, see Zinn [12], Proposition 3 and Corollary 5.3.

In this paper, we introduce several notions of kernels of a probability
measure on a locally convex Hausdorff space and investigate the 0-llaws of
kernels for a uniform probability measure. The uniformness of a measure
on a linear space was first introduced by Dudley [5] and studied in Takaha-
shi and Okazaki [11]. The p-stable measures and the convex measures are
uniform.

We introduce the following kernels K(\mu) (the kernel), A(\mu) (the affine
kernel), SK(\mu) (the strict kernel), SA(ju) (the strict affine kernel), C(\mu) (the

centered kernel) and SC(\mu) (the strict centered kernel). Also we consider
A_{\mu} (the admissible translates) and A_{\mu}^{\sim} (the partially admissible translates).



224 Y. Okazaki and Y. Takahashi

Our definitions of K(\mu) and A(\mu) are equal to those of K_{L}(\mu) and A_{L}(\mu) ,
respectively, in the case of Hoffmann-J \phi rgensen [6] or of Borell [3].

The kernel K(\mu) naturally arises if we consider the translation subordi-
nation of \mu . For example, it holds that K(\mu)=\{x\in E:\tau_{x}(\mu)s\mu\} , see section
2 for the definition of the subordination \tau_{x}(\mu)s\mu . A(\mu) is closely related to
the centeredness of \mu as we describe below.

\mu is called scalarly centered at 0 (resp. strictly scalarly centered at 0) if
for every measurable linear subspace S of the form S=\{x\in E;x_{\acute{n}}(x)-arrow 0\} , x_{\acute{n}}

\in E’ . \tau_{x}(\mu)(S)=1 implies x\in S (resp. \tau_{x}(\mu)(S)>0 implies x\in S ). The
centeredness was introduced by Hoffmann-J \phi rgensen [6] , see also Chevet
[4]. We have the following characterization, \mu is scalarly centered at 0
(resp. strictly scalarly centered at 0) iff O\in A(\mu) (resp. O\in SA(\mu) ) and iff
C(\mu)=K(\mu) (resp. SC(\mu)=SK(\mu) ). If we consider the translation heredit
of the centeredness, the kernels K(\mu) and SK(\mu) arise as follows. If \mu is
scalarly centered at 0, then \tau_{x}(\mu) is scalarly centered at 0 iff x\in K(\mu) (the
strict case is SK(\mu) instead of K(\mu)) . In general, \tau_{x}(\mu) is scalarly centered
at 0 iff C(\mu)=x+K(\tau_{x}(\mu)) (the strict case is SC(\mu)=x+SK(\tau_{x}(\mu)) .

For stable or convex measure \mu , the following 0-1 law is known. For
every measurable linear subspace S , \mu(S)=0 or 1. The uniform measure
satisfies the 0-1 law only for closed subspaces, see Proposition 2. In the 0-1
law for the kernel K(\mu) of a convex measure due to Borell [3], the most
interesting point is “

\mu(K(\mu))>0 implies that \dim K(\mu)<+\infty ” To prove
this 0-1 law, Borell [3] used particular properties of s-convex measures
(s>-1) such as the 0-llaw, integrability of measurable seminorm, K(\mu) is
a dual Banach space and so on, which are not valid for uniform measures.
The 0-llaw of Zinn [12] is concerned with A_{\mu} which says that if \mu(A_{\mu}-A_{\mu})

>0 then \dim(spanA_{\mu})<+\infty , where \mu is a stable measure. This result
depends on the Sudakov-Feldman’s theorem of the non-existence of an
E-quasi-invariant measure on E with dim E=\infty . In this paper, we shall
prove that if \mu is uniform, then \mu^{*}(K(\mu))>0 imply that dim K(\mu)<+\infty

and \mu^{*}(K(\mu))=1 (since we consider the cylindrical \sigma-algebra, the measur-
ability of K(\mu) is, not assured, so we take the outer measure \mu^{*}). We also
prove the similar 0-1 laws for the kernels A(\mu) , SK(\mu) , C(\mu) and SC(\mu) .
For L=A_{\mu}-A_{\mu} or A_{\mu}^{\sim}-A_{\mu}^{\sim} , we prove that \mu^{*}(L)>0 implies that
\dim(spanL)<+\infty . Our proof is completely different from that of Borell [3]
and Zinn [12]. We use the fact that every nuclear Banach space is finite
-dimensional. We start with the following lemma: for a measure \mu (not
necessarily uniform), if \mu^{*}(K(\mu))=1 , then (E’\tau_{\mu}) is nuclear and locally
convex, see Lemma 1.

The main results are as follows.
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(1) It holds that A(\mu)=x+K(\tau_{-x}(\mu)) for every x\in A(\mu) and SA(pt)
=x+SK(\tau_{-x}(\mu)) for every x\in SA(\mu) .

(2) Suppose that \mu is uniform and let L be each one of K(\mu) , A(\mu) ,
SK(\mu) , C(\mu) or SC(\mu) . Then it holds that \mu^{*}(L)=0 or 1. If \mu^{*}(L)=1 ,
then \dim(spanL)<\infty , where \mu^{*} is the outer measure and span L is the
linear span of L.

(3) Suppose that \mu is uniform and \mu^{*} (SA(\mu ))>0, then we have
\dim(span SA(\mu ))<\infty . The 0-1 law is not valid for SA(ju).

(4) Suppose that \mu is uniform and let L=A_{\mu}-A_{\mu} or A_{\tilde{\mu}}-A_{\tilde{\mu}} . If
\mu^{*}(L)>0 , then we have \dim(spanL)<\infty .

\S 2. Uniform measure

Let E be a real locally convex Hausdorff space and C(E, E’) be the
cylindrical \sigma-algebra generated by the topological dual E’ Let \mu be a
probability measure on C(E, E’) and \tau_{\mu} be the topology of convergence in
measure on E’ (regarding each x’\in E’ as a \mu-measurable function) semi
-metrized by

d(x’, y’)_{\mu}= \int_{E}|x’(x)-y’(x)|/(1+|x’(x)-y’(x)|)d\mu(x) .

Let \mu and \nu be probability measures on C(E, E’) . After Dudley [5], we
say \mu is subordinate to \nu (denoted by \mu s\nu ) if the identity (E’, \tau_{1/})-arrow(E’. \tau_{\mu})

is continuous, that is, \tau_{\nu} is finer than \tau_{\mu} . For each A and B in C(E, E’) , we
set \mu_{A}(B)=\mu(A\cap B)/\mu(A) . The measure \mu is said to be uniform if it holds
that \mu s\mu_{A} whenever \mu(A)>0 .

The uniformness is characterized as follows. The measure \mu is uniform
if and only if for every sequence x_{\acute{n}} in E’. \mu(x;x_{\acute{n}}(x)-arrow 0)>0 implies that X\acute{n}_{j}

(x)arrow 0\mu-almost everywhere for a suitable subsequence x_{\acute{n}_{j}} , see Takahashi
and Okazaki [11]. In particular, the convex measures of Borell [2] and the
p-stable measures are uniform.

PROPOSITION 1. Let E, F be locally convex Hausdorff spaces and \Pi : E
arrow F be a continuous linear mapping. If \mu is a uniform measure on C(E,
E’) , then the image measure \Pi(\mu) is a uniform measure on C(F, F’) .

PROOF. Suppose that \Pi(\mu)(A)>0 and y_{\acute{n}}arrow 0 in \tau\Pi(\mu)_{A} . Then y_{\acute{n}}\circ\Piarrow 0

in \tau_{\mu_{\Pi(A)}}1 with \mu(\Pi^{-1}(A))>, 0. By the uniformness of \mu it follows that y_{\acute{n}}\circ

\Piarrow 0 in \tau_{\mu} , that is, y_{\acute{n}}arrow 0 in \tau\Pi(\mu) .
The next result was proved in Takahashi and Okazaki [11]. We give a

proof for the sake of completeness.

PROPOSITION 2. Let \mu be a uniform Radon probability measure on the
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Borel fietd on E. Then for every closed linear subspace F of E, we have
\mu(F)=0 or 1.

PROOF. Let F be a closed linear subspace and let D=\{x’\in E’;F\subset ker

x’\} , where ker x’=\{x\in E,\cdot x’(x)=0\} , x’\in E’ . Then the net F_{a}= \bigcap_{x’\in a}kerx’(\alpha

be a finite subset of D) is decreasing, closed and \bigcap_{a}F=F . We have \mu(F_{a})

=0 or 1 by the uniformness. Hence it holds that \mu(F)=0 or 1, remarking
that \mu(F)=\inf_{a}\mu(F_{a}) since \mu is Radon.

\S 3. Kernels

Let E be a real locally convex Hausdorff space and \mu be a probability
measure on C(E, E’) . We set \tau_{x}(\mu)(A)=\mu(A-x) for A\in C(E, E’) and x
\in E .

N_{oTATIONS}

K(\mu)=\cap\{Z,\cdot\mu(Z)=1, Z=\{x;x_{\acute{n}}(x)-arrow 0\}, x_{\acute{n}}\in E’\}

A( \mu)=\bigcap_{x\in E}(x+K(\tau_{-X}(\mu)))

SK(\mu)=\cap\{Z ; \mu(Z)>0, Z=\{x;x_{\acute{n}}(x)-arrow 0\}, x_{\acute{n}}\in E’\}

SA(\mu )= \bigcap_{x\in E}(x+SK(\tau_{-X}(\mu)))

We shall call K(\mu) , A(\mu) , SK(\mu) and SA(ju) the kernel, the affine kernel,
the strict kernel and the strict affine kernel, respectively. The spaces K_{L}(\mu)

and A_{L}(\mu) of Hoffmann-J\emptyset rgensen and Borell are same to K(\mu) and A(\mu) ,

see Hoffffmann-J\emptyset rgensen[6] , Theorem 4.4 and Borell [3], Theorem 2.1.

PROPOSITION 3. (1) SK(\mu)\subset K(\mu) and SA(\mu )\subset A(\mu ).
(2) For every fixed x\in E, il holds that A(\mu)=x+A(\tau_{-x}(\mu)) and

SA(\mu)=x+SA(\tau_{-x}(\mu)) .

PROOF. (1) is obvious. (2) By the definition of the affine kernel,
we have x+A( \tau_{-x}(\mu))=x+\bigcap_{y\in E}(y+K(\tau_{-y}(\tau_{-x}(\mu))))=x+\bigcap_{y\in E}(y+K(\tau-(x+y)\mu)))

= \bigcap_{y\in E}(x+y+K(\tau-(x+y\rangle(\mu)))=\bigcap_{z\in E}(z+K(\tau_{-Z}(\mu)))=A(\mu) . The case for SA(/u)

is analogous.

PROPOSITION 4. (1) It holds that A(\mu)=\cap\{x+Z ; x\in E, Z=\{y;x_{\acute{n}}(y)

arrow 0\} , \mu(Z+x)=1 , x_{\acute{n}}\in E’\} .
(2) If O\in A(\mu) , then we have A(\mu)=K(\mu) .

PROOF. (1) By the definition of K(\tau_{-X}(\mu)) , we have A( \mu)=\bigcap_{x\in E}(x

+ \cap\{z : \tau_{-x}(\mu)(Z)=1, Z=\{y:x_{\acute{n}}(y)arrow 0\}, x_{\acute{n}}\in E’\})=\bigcap_{x\in E}\bigcap_{Z}\{x+Z ; \mu(Z+x)=1 ,



0-1 laws for kernels of a linear uniform measure 227

Z=\{y;x_{\acute{n}}(y)-arrow 0\} , x_{\acute{n}}\in E’\} , which proves (1). (2) By (1) it follows that if
O\in A(\mu) , then for every linear subspace Z of the form Z=\{y;x_{\acute{n}}(y)-arrow 0\} with
\mu(x+Z)=1 for some x\in E , we have 0\in x+Z , that is, x+Z=Z. Hence
we have A(\mu)=K(\mu) , by the definition of K(\mu) .

By Proposition 4, we can see that A(\mu) is the intersection of all affine
subspaces of measure 1 of the form x+Z, where x\in E and Z=\{y;x_{\acute{n}}(y)-arrow

0\} , x_{\acute{n}}\in E’ A similar characterization for SA(\mu ) is obtained analogously.

PROPOSITION 5. (1) It holds that SA(\mu )=\cap {x+Z ; x\in E, Z=\{y :
x_{\acute{n}}(y)arrow 0\} , \mu(Z+x)>0 , x_{\acute{n}}\in E’\} .

(2) If O\in SA(\mu) , then we have SA(\mu )=SK (\mu) .

The probability measure \mu on C(E, E’) is called scalarly centered at 0
if for every linear subspace Z of the form Z=\{y;x_{\acute{n}}(y)-arrow 0\} , x_{\acute{n}}\in E’ . \tau_{x}(\mu)(Z)

=\mu(Z-x)=1 implies x\in Z . And \mu is strictly scalarly centered at 0 if for
every linear subspace Z of the form Z=\{y;x_{\acute{n}}(y)-arrow 0\} , x_{\acute{n}}\in E’ . \tau_{x}(\mu)(Z)=

\mu(Z-x)>0 implies that x\in Z . The scalarly centeredness was introduced
by Hoffmann-J\emptyset rgensen and investigated by Chevet [4].

N_{oTATIONS}

C(\mu)= {x;\tau_{x}(\mu) is scalarly centered at 0}
SC(\mu)= {x;\tau_{x}(\mu) is strictly scalarly centered at 0}

We shall call C(\mu) and SC(\mu) the centered kernel and the strict centered
kernel, respectively.

PROPOSITION 6. (1) It holds that C( \mu)=-A(\mu)=\bigcap_{x\in E}(x+K(\tau_{x}(\mu))) .

(2) It holds that SC( \mu)=-SA(\mu)=\bigcap_{x\in E}(x+SK(\tau_{x}(\mu))) .

PROOF. (1) We show that C( \mu)=\bigcap_{x\in E}(x+K(\tau_{x}(\mu))) . Let y\in C(\mu) ,
that is, \tau_{y}(\mu) is scalarly centered at 0. For every x\in E and every Z=\{z :
x_{\acute{n}}(z)arrow 0\} such that \tau_{x}(\mu)(Z)=\mu(Z-x)=1 , we have \tau_{y}(\mu)(Z+y-x)=\mu(Z

-x)=1 . Since \tau_{y}(\mu) is scalarly centered at 0, it follows that y-x\in Z .
This implies that y\in x+K(\tau_{x}(\mu)) for every x\in E , since Z is arbitrary such
as \tau_{x}(\mu)(Z)=1 . Hence we have C( \mu)\subset\bigcap_{x\in E}(x+K(\tau_{x}(\mu))) . Conversely sup-

pose that y \in\bigcap_{x\in E}(x+K(\tau_{x}(\mu))) . Assume that \tau_{x}(\tau_{y}(\mu))(Z)=1 for Z=\{z :
x_{\acute{n}}(z)arrow 0\} . We must prove that x\in Z . Since y\in(x+y)+K(\tau_{(x+y)}(\mu)) by
the assumption, we have y\in(x+y)+Z . In fact, by \tau_{(x+y\rangle}(\mu)(Z)=

\tau_{x}(\tau_{y}(\mu)(Z))=1 , K(\tau_{(y+y)}(\mu)) is contained in Z . Thus we have proved that x
\in Z as desired. (2) The proof is analogous to (1).
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COROLLARY 1. (1) \mu is scalarly centered at 0 if and only if 0\in A(\mu) .
(2) \mu is slrictly scalarly centered at 0 if and only if O\in SA(\mu) .

THEOREM 1. (1) For every x in A(\mu) (resp. C(\mu) ), it colds that
A(\mu)=x+K(\tau_{-X}(\mu)) (resp. C(\mu)=x+K(\tau_{x}(\mu)) ).

(2) For every x in SA(v) ( resp. SC(\mu) ), it holds that SA(v)= x
+SK(\tau_{-\chi}(\mu)) (resp. SC(\mu)=x+SK(\tau_{x}(\mu)) ).

PROOF. (1) Since A(\mu)=-C(\mu) by Proposition 6, we shall only
prove that C(\mu)=x+K(\tau_{x}(\mu)) for every x\in C(\mu) . The inclusion C(\mu)\subset x

+K(\tau_{x}(\mu)) is obvious by Proposition 6. Now let y\in K(\tau_{x}(\mu)) is arbitrary,
where x\in C(\mu) is fixed. We prove that x+y\in C(\mu) , that is, \tau_{(x+y)}(\mu) is
scalarly centered at 0. Take any u\in E and Z=\{v;x_{\acute{n}}(v) -arrow 0\} , x_{\acute{n}}\in E’ such
that \tau_{u}(\tau_{(x+y)}(\mu))(Z)=1 . We must show that u\in Z . Since \tau_{x}(\mu)(Z-y-u)

=\tau_{u}(\tau_{(x+y)}(\mu))(Z)=1 and x\in C(\mu) , it follows that y+\^u Z. Thus we have
\tau_{x}(\mu)(Z)=1 . In particular K(\tau_{x}(\mu))\subset Z by the definition of K(\tau_{x}(\mu)) ,
which implies that y\in Z . Consequently we have u\in Z as desired. The
proof of (2) is completely analogous to (1).

This completes the proof.

COROLLARY 2. Suppose \tau_{-\chi}(\mu) is scalarly centered at 0. Then we have
A(\mu)=x+K(\tau_{-x}(\mu)) .

PROOF. \tau_{-x}(\mu) is scalarly centered at 0 if and only if x\in A(\mu) , see
Proposition 6. Thus the assertion follows by Theorem 1.

Let \mu be an s -convex measure or a p -stable measure such that s>-1 , p
>1 and such that \mu is Radon satisfying \sup{\mu(K);K is compact and convex)
=1 . Then the mean vector m\in E exists. In fact, it is well-known that \tau_{\mu}

is equivalent to the L^{1}-metric, see Borell [2] and de Acosta [1]. Moreover
\tau_{\mu} is weaker than the Mackey topology as easily seen, which implies that the
natural mapping i:(E’. \tau_{k}) -arrow L^{1}(E, \mu) is continuous, where \tau_{k} denotes the
Mackey topology. Taking the adj oint i^{*}: L^{\infty}(E, \mu) -arrow E , m=i^{*}(1) is the

mean vector, that is x’(m)= \int_{E}x’(x)d\mu(x) for every x’\in E’

COROLLARY 3. Let \mu be an s -convex or p -stable (s>-1, p>1) proba-
bility measure satisfying \sup{\mu(K);K is compact convex}=1 . Let m be the
mean vector of \mu . Then we have A(\mu)=m+K(\tau_{-m}(\mu)) .

PROOF. It is sufficient to see that \tau_{-m}(\mu) is scalarly centered at 0 by
Corollary 2. Since \tau_{-m}(\mu) is a centered s-convex or p-stable measure (s>
-1 , p>1) , the assertion follows by Chevet [4], (2.3), Example 2.
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N_{oTATIONS}

A_{\mu}= {x\vee. \mu\sim\tau_{x}(\mu) (equivalent)}
A_{\tilde{\mu}}= { x;\mu\perp\tau_{x}(\mu)\wedge (not singular)}

The subset A_{\mu} (resp. A_{\mu}^{\sim} ) is called the admissible translates (resp. the par-
tially admissible translates) of \mu , see Takahashi [10].

p_{ROPOSITION}7 . A_{\mu}\subset A_{\mu}^{\sim}\subset K(\mu) .

PROOF. The first inclusion is obvious. Suppose that x\in A_{\mu}^{\sim} and x\not\in

K(\mu) for some x\in E . Since x\not\in K(\mu) , there exists a sequence x_{\acute{n}} in E’
such that \mu(y;x_{\acute{n}}(y)arrow 0)=1 and x\not\in\{y;x_{\acute{n}}(y)arrow 0\} , see the definition of K(\mu) .

So it follows that \mu(Z)=1 , \tau_{x}(\mu)(Z+x)=1 and Z\cap(Z+x)=\phi , where Z=
\{y;x_{\acute{n}}(y)-arrow 0\} . This means that \mu and \tau_{x}(\mu) are singular, which contaradicts
to x\in A_{\mu}^{\sim} .

\S 4. 0-1 laws for kernels

Let E be a locally convex Hausdorff space, \mu be a probability measure
on C(E, E’) and \tau_{\mu} be the topology of convergence in measure restricted on
E’ . Let (E’)^{a} be the algebraic dual of E’ . Then the dual (E’. \tau_{\mu})’ is a
linear subspace of (E’)^{a} . We may regard \mu a probability measure on
C((E’)^{a}, E’) naturally by the embedding Earrow(E’)^{a} . Let \mu^{*} be the outer
measure derived by \mu .

The next lemma was proved in Okazaki and Takahashi [8], Theorem 2,

but we give a proof for the sake of completeness. See also Kwapien and
Smolenski [7].

LEMMA 1. Suppose that \mu^{*}((E’. \tau_{\mu})’)=1 . Then (E’. \tau_{\mu}) is locally
convex nuclcar semi-metric space.

PROOF. Let V_{n}=\{x’ ; \mu(x;x’(x)>1/n)<1/n\} be the basis of neighbor-
hoods of 0 in \tau_{\mu} , V_{[mathring]_{n}}= { z\in(E’)^{a} : |x’(z)|\leqq 1 for every x’\in V_{n}}. First we show
that \tau_{\mu} equals the uniform convergence topology on each V_{[mathring]_{n}} (the local
convexity of \tau_{\mu}). Assume that x_{\acute{n}}arrow 0 in \tau_{\mu} . For every m and j , there exists
N=N(m, j) such that jx_{\acute{n}}\in V_{m} for every n>N , that is, \sup\{|x_{n}’(x)| ; x\in V_{[mathring]_{m}}\}

\leqq 1/j for n>N . Thus \tau_{\mu} is stronger than the uniform convergence topology
on each V_{[mathring]_{n}} . Note that (E’-\tau_{\mu})’=\cup V_{[mathring]_{n}} . Since \mu^{*}(\cup V_{[mathring]_{n}})=1 , the converse
is obvious.

Remark that each V_{n}^{o} is \sigma((E’)^{a}, E’)-compact,so we may assume that \mu

is a \sigma((E’)^{a}, E’)-Radon measure concentrated on \cup V_{[mathring]_{n}} since \mu^{*}(\cup V_{[mathring]_{n}})=1 .

Let U_{n}= {x’\in E’ : |x’(x)|\leqq 1 for every x\in V_{[mathring]_{n}} }. Then \{ U_{n}\} is a basis of
neighborhoods of 0 in \tau_{\mu} and V_{n}\subset U_{n} . For every but fixed n , take m, j>n
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such as \mu(U_{j}^{o})\geqq 1-1/m . We shall show that the natural mapping E_{U_{j}}arrow E_{Un}

is -summing for every p>0 , where E_{Un} is the seminormed space with the
unit ball U_{n} . For every x’\in U_{n} we have

\int_{U_{J}\cap\{x,|x(x)|>1/n\}}|x’(x)|^{p}d\mu(x)\geqq n^{\frac{1}{p}(\frac{1}{n}-\frac{1}{m})} ,

which implies that

|x’|_{Un}^{p} \leqq n^{p+1}m/(m-n)\int_{U_{J}^{q}}|x’(x)|^{p}d\mu(x) ,

where ||_{U_{n}} is the gauge seminorm of U_{n} . Thus the natural mapping E_{U_{j}}arrow

E_{Un} is p -summing by Pietsch [9], Theorem 2.3.3. By Pietsch [9], Theorem
4.1.5, it follows that (E’, \tau_{\mu}) is nuclear. This completes the proof.

THEOREM 2. Suppose that \mu is uniform. Then it holds that \mu^{*}(K(\mu))

=0 or 1. If \mu^{*}(K(\mu))=1 , then dim K(\mu)<\infty .

PROOF. Assume that \mu^{*}(K(\mu))>0 . Let V_{n}=\{x’\in E’ ; \mu(x;x’(x)>1/n)
<1/n\} and B_{n}= {x\in E:|x’(x)|\leqq 1 for every x’\in V_{n} } =V_{[mathring]_{n}}\cap E . Remark that
K(\mu)\subset\cup B_{n}=(E’\tau_{\mu})’\cap E . In fact, for each x\in K(\mu) , if x_{\acute{n}}arrow 0 in \tau_{\mu} , then
for every subsequence \{x_{\acute{n}_{j}}\} such that x_{\acute{n}_{j}}arrow 0\mu-almost everywhere, it fol-
lows that x_{\acute{n}_{j}}(x) -arrow 0 by the definition of K(\mu) . Hence x’arrow x’(x) is \tau_{\mu^{-}}contin-
uous for every x\in K(\mu) . Since \mu^{*}(\cup B_{n})>0 , there exists an n such that
\mu^{*}(B_{n})>0 . Take C\in C(E, E’) such that B_{n}\subset C and \mu(C)=\mu^{*}(B_{n})>0 .
Let \nu be the resriction of \mu to C, that is, \nu(A)=\mu(A\cap C)/\mu(C) . By the
uniformness of \mu , it follows that \tau_{\nu}\sim\tau_{\mu} (equivalent). We have f\nearrow(*(E’. \tau_{1/})’)

=\nu^{*}((E’, \tau_{\mu})’)\geqq 1^{*}\nearrow(B_{n})=1 . Consequently by Lemma 1, it follows that (E’
\tau_{U}) and (E’\tau_{\mu}) are nuclear locally convex spaces. We show further that
(E’\tau_{\mu}) is a seminormed space. We prove that \tau_{\mu} is equivalent to the uni-
form convergence topology on B_{n} . Suppose that x_{\acute{n}}arrow 0 uniformly on B_{n} .
Then \mu(x;x_{\acute{n}}(x)arrow 0)\geqq\mu^{*}(B_{n})>0 , which implies x_{\acute{n}}arrow 0 in \tau_{\mu} by the uniform-
ness. Conversely if x_{\acute{n}}arrow 0 in \tau_{\mu} , then x_{\acute{n}}arrow 0 uniformly on each V_{[mathring]_{n}} as
proved in the proof of Lemma 1, in particular, x_{\acute{n}}arrow 0 uniformly on B_{n} .
Thus we have proved that if \mu^{*}(K(\mu))>0 , then (E’. \tau_{\mu}) is a nuclear seminor-
ed space. So we have \dim(E’, \tau_{\mu})’<\infty . Since K(\mu)\subset(E’. \tau_{\mu})’ . it follows
also \dim K(\mu)<\infty . Now we show that \mu^{*}(K(\mu))=1 . Take any D\in C(E ,
E’) such that K(\mu)\subset D . By the definition of the cylindrical \sigma-algebra C(E,
E’) , there exists a sequence \{x_{\acute{n}}\} and a Borel subset B in R^{\infty} such that D=
\Pi^{-1}(B) , where \Pi : Earrow R^{\infty} be \Pi(x)=\{x_{\acute{n}}(x)\} . Let \Pi(\mu) be the image mea-
sure. Then \prod(\mu) is uniform by Proposition 1. Since \prod(K(\mu)) is a finite
dimensional subspace of R^{\infty} , it is a closed subspace. If we remark that
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\Pi(\mu)(\Pi ( K( \mu)))=\mu(\Pi^{-1}(\Pi ( K(\mu)))\geqq\mu^{*}(K(\mu))>0 , it holds that
\Pi(\mu)(\Pi(K(\mu)))=1 by Proposition 2. Since B\supset\Pi\Pi^{-1}(B)=\Pi(D)\supset

\Pi(K(\mu)) , it follows that \mu(D)=\Pi(\mu)(B)=1 , which proves the assertion.
This completes the proof.

PROPOSITION 8. Let \mu be a Radon probability measure such that \tau_{\mu} is
locally convex and weaker than the Mackey topology. Then if dim K(\mu)<\infty ,

il holds that \mu(K(\mu))=1 .

PROOF. Since \tau_{\mu} is weaker than the Mackey topology, we have (E’. \tau_{\mu})’

\subset E and K(\mu)=(E’, \tau_{\mu})’ In fact, the inclusion K(\mu)\subset(E’, \tau_{\mu})’ is always
true, see the proof of Theorem 2, and the converse is proved as follows. Let
Z=\{y;x_{\acute{n}}(y)-arrow 0\} be \mu(Z)=1 . Then for every x\in(E’. \tau_{\mu})’ . x_{n}’(x) -arrow 0 since
\mathcal{X}\acute{n} converges to 0 in T\mu . Thus we have x\in Z , which implies the assertion.
By the assumption K(\mu)=(E’\tau_{\mu})’ is a closed subspace. We have K(\mu)=\cap

{ker x’ ; x’\in K(\mu)^{\perp} } where K(\mu)^{\perp}= {x’\in E’ ; x’(y)=0 for every y\in K(\mu) }.
For every x’\in K(\mu)^{\perp} , x’(y)=0 for every y\in(E’. \tau_{\mu})’ and \tau_{\mu} is locally con-
vex, so it follows that x’=0 in (E’-\tau_{\mu}) , that is, x’(x)=0\mu-almost every
where. We have proved that \mu(kerx’)=1 for every x’\in K(\mu)^{\perp} . Thus by
the argument similar to the proof of Proposition 2, it follows that \mu(K(\mu))=

1 .

COROLLARY 4. Suppose that \mu is uniform and let L=A_{\mu}-A_{\mu} or L=
A_{\tilde{\mu}}-A_{\tilde{\mu}} . If \mu^{*}(L)>0 , then we have \dim(spanL)<\infty , where span L is the
linear span of L.

PROOF. The assertion follows by L\subset K(\mu) (Proposition 7).

REMARK 1. There exists a measure (not uniform) such that span A_{\mu}^{\sim}

=E, and dim E=\infty , see Takahashi and Okazaki [11].
The 0-1 law for K(\mu) is valid for \tau_{x}(\mu) , where x\in E is arbitrary.

THEOREM 3. Suppose that \mu is uniform and x\in E be arbitrary. Then
it holds that \tau_{x}(\mu)^{*}(If(\mu))=0 or 1. If \tau_{x}(\mu)^{*}(K(\mu))=1 , then dim K(\mu)<
\infty .

PROOF. We show in fact that if \tau_{x}(\mu)^{*}(K(\mu))=\mu^{*}(K(\mu)-x)>0 , then x
\in K(\mu) . Then the assertion follows by Theorem 2. Assume that x\not\in K(\mu) .
Then there exists a linear subspace Z of the form Z=\{y;x_{\acute{n}}(y)-0\} such that
x\not\in Z and \mu(Z)=1 . Since Z\cap(Z+x)=\phi , we have \mu(Z+x)=0 , which con-
tradicts to \mu^{*}(K(\mu)+x)>0 .

This completes the proof.
In the sequel, we examine the 0-1 laws for A(\mu) , SK(\mu) , C(\mu) , SC(\mu)

and SA(m)-
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THEOREM 4. Suppose that \mu is uniform. Then it holds that \mu^{*}(A(\mu))=

0 or 1. If \mu^{*}(A(\mu))=1 , then \dim(spanA(\mu))<\infty .

PROOF Since A(\mu)\subset K(\mu) , if \mu^{*}(A(\mu))>0 , then it follows that
\mu^{*}(K(\mu))=1 and dim K(\mu)<\infty by Theorem 2. We may regard \mu a proba-
bility measure concentrated on the finite dimensional subspace K(\mu) , in
particular \mu is Radon. By Proposition 4, we have A(\mu)=\cap\{x+Z;x\in E , Z
=\{y:x_{\acute{n}}(y) -arrow 0\} , x_{\acute{n}}\in K(\mu)’ . \mu(Z+x)=1 and Z+x\subset K(\mu)\} . For every
decreasing net F_{a} of closed subsets we have \mu(\cap F_{a})=\inf_{a}\mu(F_{a}) Since \mu is a

Radon measure on the finite dimensioal space K(\mu) . Remark that x+Z\subset

K(\mu) is closed since dim K(\mu)<\infty . Thus by the way similar to the proof of
Proposition 2, we have \mu(A(\mu))=1 .

This completes the proof.

THEOREM 5. Suppose that \mu is uniform. Then it hold that SK(\mu)=
K(\mu) and \mu^{*}(SK(\mu))=0 or 1. If \mu^{*}(SK(\mu))=1 , then dim SK(\mu)<\infty .

PROOF. SK(\mu)\subset K(\mu) is clear. To show the converse, let Z=\{x ;
x_{\acute{n}}(x)arrow 0\} be \mu(Z)>0 . We prove K(\mu)\subset Z . If y\not\in Z , then x_{\acute{n}}(y)--+0. So
there exists a subsequence \{x_{\acute{n}_{k}}\} and \epsilon>0 such that |x_{\acute{n}_{k}}(y)|\geqq\epsilon(k=1,2, .) .
Put Z_{1}=\{x;x_{\acute{n}_{k}}(x)arrow 0\} , then by Z\subset Z_{1} , we have \mu(Z_{1})>0 . Since \mu is uni-
form, it follows that x_{\acute{n}_{k}}arrow 0 in \tau_{\mu} . We can take a subsequence \{x_{\acute{n}_{k(i)}}\} such
that x_{\acute{n}_{k}}(_{i})arrow 0\mu-a . e. . If we set Z_{2}=\{x;x_{\acute{n}_{k(i)}}(x)arrow 0\} , then \mu(Z_{2})=1 . Since
y\not\in Z_{2} , it follows that y\not\in K(\mu) . Other assertions follow from Theorem 2.

This completes the proof.

LEMMA 2. Suppose that \mu^{*}(C(\mu))>0‘ . Then \mu is scalarly centered at 0.

PROOF. Take any x\in E and any Z of the form Z=\{y;x_{\acute{n}}(y)arrow 0\} such
that \mu(Z-x)=1 . Since K(\tau_{x}(\mu))\subset Z , it follows that C(\mu)\subset x+Z and
hence \mu(Z+x)>0 . Thus we have (Z-x)\cap(Z+x)\neq\phi , that is x\in Z , which
shows that \mu is scalarly centered at 0. This proves the lemma.

THEOREM 6. Suppose that \mu is uniform. Then it holds that \mu^{*}(C(\mu))=

0 or 1. In fact if \mu^{*}(C(\mu))>0 then we have C(\mu)=K(\mu) .

PROOF. If \mu^{*}(C(\mu))>0 , then \mu is scalarly centered at 0 by Lemma 2.
By Theorem 1 (1), we have C(\mu)=K(\mu) . Thus the assertion follows by
Theorem 2.

This completes the proof.

REMARK 2. There is an example of a uniform measure \mu such that
\mu(K(\mu))=1 and \mu(C(\mu))=0 . For example, let \mu be a probability measure
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on R^{2} without point mass concentrated on the affine subspace H=\{(t, 1);t\in

R\} . Then \mu is uniform since \mu satisfies the 0-llaw for closed subspaces. In
this example, we have K(\mu)=R^{2} and C(\mu)=\{(t :-1); t\in R\}=-H .

LEMMA 3. Suppose that \mu^{*}(SC(\mu))>0 . Then \mu is strictly scalarly
centered at 0.

PROOF. The proof is analogous to that of Lemma 2.

THEOREM 7. Suppose that \mu is uniform. Then it holds that \mu^{*}(SC(\mu))

=0 or 1. In fact if \mu^{*}(SC(\mu))>0 then we have SC(\mu)=SK(\mu) .

PROOF. If \mu^{*}(SC(\mu))>0 , then \mu is strictly scalarly centered at 0 by
Lemma 3. By Theorem 1 (2), we have SC(\mu)=SK(\mu) . Thus the assertion
follows by Theorem 5.

This completes the proof.

THEOREM 8. Suppose that \mu is uniform. If \mu^{*}(SA(\mu))>0 , then
\dim(span SA(\mu ))<\infty .

PROOF. Since SA(/i)cA(//), the assertion follows by Theorem 4.

REMARK 3. There is an example of a uniform measure \mu such that 0<
\mu^{*}(SA(\mu))<1 . Let \nu_{1} be a probability measure on R^{2} without point mass
concentrated on H=\{(t, 1);t\in R\} and \nu_{2}(A)=\mathcal{A}_{G}(A\cap\{(t, s) : t\in R, s<0\})

where \mathcal{A}_{G} is the centered Gaussian measure on R^{2} with covariance matrix
(\begin{array}{l}1001\end{array}) . Then \mu=\nu_{1}/2+\nu_{2} is uniform since \mu satisfies the 0-1 law for linear

subspaces. In this example, we have SA(\mu )=H and \mu(SA(\mu))=1/2 .
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