0-1 laws for kernels of a linear uniform measure

By Yoshiaki OKAZAKI and Yasuji TAKAHASHI (Received March 29, 1986, Revised February 9, 1987)

§1. Introduction

The notions of the Lusin affine kernel and the Lusin kernel were first introduced by Hoffmann-Jørgensen [6] for the product measure $\mu = \prod \mu_n$ on \mathbb{R}^{∞} . The Lusin affine kernel $A_L(\mu)$ is defined by $A_L(\mu) = \bigcap \{A; A \text{ is an affine subspace with sup}\{\mu(K); K \subset A, K \text{ is compact convex}\}=1\}$. The Lusin kernel $K_L(\mu)$ is defined by $K_L(\mu) = \bigcap \{S; S \text{ is a linear subspace with sup}\{\mu(K); K \subset S, K \text{ is compact convex}\}=1\}$. Hoffmann-Jørgensen [6] determined explicitly the Lusin affine kernel $A_L(\mu)$ and the Lusin kernel $K_L(\mu)$ for the product measure $\mu = \prod \mu_n$ on \mathbb{R}^{∞} .

Borell [3] considered the Lusin affine kernel $A_L(\mu)$ and the Lusin kernel $K_L(\mu)$ on the dual locally convex Hausdorff space E' instead of \mathbb{R}^{∞} . Let μ be a Radon probability measure on E', where we put the weak* topology on E'. The definitions of $A_L(\mu)$ and $K_L(\mu)$ are the same as those of Hoffmnn –J ϕ rgensen. Borell [3] proved a 0–1 law for $A_L(\mu)$ in the case where μ is an *s*-convex measure with s > -1. If μ is an *s*-convex measure with s > -1, then $\mu(A_L(\mu))=0$ or 1 according as dim $K_L(\mu)=\infty$ or $<\infty$, see Borell [3], Theorem 2.4(c).

Similar 0-1 law was obtained by Zinn [12] for a *p*-stable measure on a separable Banach space *E*. Let μ be a probability measure on *E* and set $A_{\mu} = \{x ; \tau_x(\mu) \sim \mu(equivalent)\}$, where $\tau_x(\mu)(C) = \mu(C-x)$. Then for a *p*-stable measure μ on *E*, it holds that $\mu(A_{\mu}-A_{\mu})=0$ or the linear span of A_{μ} is finite dimensional, see Zinn [12], Proposition 3 and Corollary 5.3.

In this paper, we introduce several notions of kernels of a probability measure on a locally convex Hausdorff space and investigate the 0-1 laws of kernels for a uniform probability measure. The uniformness of a measure on a linear space was first introduced by Dudley [5] and studied in Takahashi and Okazaki [11]. The p-stable measures and the convex measures are uniform.

We introduce the following kernels $K(\mu)$ (the kernel), $A(\mu)$ (the affine kernel), $SK(\mu)$ (the strict kernel), $SA(\mu)$ (the strict affine kernel), $C(\mu)$ (the centered kernel) and $SC(\mu)$ (the strict centered kernel). Also we consider A_{μ} (the admissible translates) and A_{μ}^{\sim} (the partially admissible translates).

Our definitions of $K(\mu)$ and $A(\mu)$ are equal to those of $K_L(\mu)$ and $A_L(\mu)$, respectively, in the case of Hoffmann-J ϕ rgensen [6] or of Borell [3].

The kernel $K(\mu)$ naturally arises if we consider the translation subordination of μ . For example, it holds that $K(\mu) = \{x \in E ; \tau_x(\mu) \le \mu\}$, see section 2 for the definition of the subordination $\tau_x(\mu) \le \mu$. $A(\mu)$ is closely related to the centeredness of μ as we describe below.

 μ is called scalarly centered at 0 (resp. strictly scalarly centered at 0) if for every measurable linear subspace *S* of the form $S = \{x \in E ; x'_n(x) \to 0\}, x'_n \in E', \tau_x(\mu)(S) = 1$ implies $x \in S$ (resp. $\tau_x(\mu)(S) > 0$ implies $x \in S$). The centeredness was introduced by Hoffmann-Jørgensen [6], see also Chevet [4]. We have the following characterization. μ is scalarly centered at 0 (resp. strictly scalarly centered at 0) iff $0 \in A(\mu)$ (resp. $0 \in SA(\mu)$) and iff $C(\mu) = K(\mu)$ (resp. $SC(\mu) = SK(\mu)$). If we consider the translation heredit of the centeredness, the kernels $K(\mu)$ and $SK(\mu)$ arise as follows. If μ is scalarly centered at 0, then $\tau_x(\mu)$ is scalarly centered at 0 iff $x \in K(\mu)$ (the strict case is $SK(\mu)$ instead of $K(\mu)$). In general, $\tau_x(\mu)$ is scalarly centered at 0 iff $C(\mu) = x + K(\tau_x(\mu))$ (the strict case is $SC(\mu) = x + SK(\tau_x(\mu))$).

For stable or convex measure μ , the following 0-1 law is known. For every measurable linear subspace S, $\mu(S)=0$ or 1. The uniform measure satisfies the 0-1 law only for closed subspaces, see Proposition 2. In the 0-1 law for the kernel $K(\mu)$ of a convex measure due to Borell [3], the most interesting point is " $\mu(K(\mu)) > 0$ implies that dim $K(\mu) < +\infty$ ". To prove this 0-1 law, Borell [3] used particular properties of s-convex measures (s > -1) such as the 0-1 law, integrability of measurable seminorm, $K(\mu)$ is a dual Banach space and so on, which are not valid for uniform measures. The 0-1 law of Zinn [12] is concerned with A_{μ} which says that if $\mu(A_{\mu} - A_{\mu})$ >0 then dim(span A_{μ}) < + ∞ , where μ is a stable measure. This result depends on the Sudakov-Feldman's theorem of the non-existence of an E-quasi-invariant measure on E with dim $E = \infty$. In this paper, we shall prove that if μ is uniform, then $\mu^*(K(\mu)) > 0$ imply that dim $K(\mu) < +\infty$ and $\mu^*(K(\mu))=1$ (since we consider the cylindrical σ -algebra, the measurability of $K(\mu)$ is not assured, so we take the outer measure μ^*). We also prove the similar 0-1 laws for the kernels $A(\mu)$, $SK(\mu)$, $C(\mu)$ and $SC(\mu)$. For $L = A_{\mu} - A_{\mu}$ or $A_{\mu} - A_{\mu}$, we prove that $\mu^{*}(L) > 0$ implies that dim(span L) < + ∞ . Our proof is completely different from that of Borell [3] and Zinn [12]. We use the fact that every nuclear Banach space is finite -dimensional. We start with the following lemma: for a measure μ (not necessarily uniform), if $\mu^*(K(\mu))=1$, then (E', τ_{μ}) is nuclear and locally convex, see Lemma 1.

The main results are as follows.

(1) It holds that $A(\mu) = x + K(\tau_{-x}(\mu))$ for every $x \in A(\mu)$ and $SA(\mu) = x + SK(\tau_{-x}(\mu))$ for every $x \in SA(\mu)$.

(2) Suppose that μ is uniform and let L be each one of $K(\mu)$, $A(\mu)$, $SK(\mu)$, $C(\mu)$ or $SC(\mu)$. Then it holds that $\mu^*(L)=0$ or 1. If $\mu^*(L)=1$, then dim(span L) < ∞ , where μ^* is the outer measure and span L is the linear span of L.

(3) Suppose that μ is uniform and $\mu^*(SA(\mu)) > 0$, then we have dim(span $SA(\mu)) < \infty$. The 0-1 law is not valid for $SA(\mu)$.

(4) Suppose that μ is uniform and let $L = A_{\mu} - A_{\mu}$ or $A_{\mu} - A_{\mu}$. If $\mu^*(L) > 0$, then we have dim(span L) < ∞ .

§ 2. Uniform measure

Let *E* be a real locally convex Hausdorff space and C(E, E') be the cylindrical σ -algebra generated by the topological dual *E'*. Let μ be a probability measure on C(E, E') and τ_{μ} be the topology of convergence in measure on *E'* (regarding each $x' \in E'$ as a μ -measurable function) semi -metrized by

$$d(x', y')_{\mu} = \int_{E} |x'(x) - y'(x)| / (1 + |x'(x) - y'(x)|) d\mu(x).$$

Let μ and ν be probability measures on C(E, E'). After Dudley [5], we say μ is subordinate to ν (denoted by $\mu \le \nu$) if the identity $(E', \tau_{\nu}) \rightarrow (E', \tau_{\mu})$ is continuous, that is, τ_{ν} is finer than τ_{μ} . For each A and B in C(E, E'), we set $\mu_A(B) = \mu(A \cap B)/\mu(A)$. The measure μ is said to be uniform if it holds that $\mu \le \mu_A$ whenever $\mu(A) > 0$.

The uniformness is characterized as follows. The measure μ is uniform if and only if for every sequence x'_n in E', $\mu(x; x'_n(x) \rightarrow 0) > 0$ implies that $x'_{n_j}(x) \rightarrow 0$ μ -almost everywhere for a suitable subsequence x'_{n_j} , see Takahashi and Okazaki [11]. In particular, the convex measures of Borell [2] and the p-stable measures are uniform.

PROPOSITION 1. Let E, F be locally convex Hausdorff spaces and $\Pi : E \to F$ be a continuous linear mapping. If μ is a uniform measure on C(E, E'), then the image measure $\Pi(\mu)$ is a uniform measure on C(F, F').

PROOF. Suppose that $\Pi(\mu)(A) > 0$ and $y'_n \to 0$ in $\tau_{\Pi(\mu)_A}$. Then $y'_n \circ \Pi \to 0$ in $\tau_{\mu_{\Pi^{-1}(A)}}$ with $\mu(\Pi^{-1}(A)) \ge 0$. By the uniformness of μ it follows that $y'_n \circ \Pi \to 0$ in τ_{μ} , that is, $y'_n \to 0$ in $\tau_{\Pi(\mu)}$.

The next result was proved in Takahashi and Okazaki [11]. We give a proof for the sake of completeness.

PROPOSITION 2. Let μ be a uniform Radon probability measure on the

Borel field on E. Then for every closed linear subspace F of E, we have $\mu(F)=0$ or 1.

PROOF. Let *F* be a closed linear subspace and let $D = \{x' \in E'; F \subset \ker x'\}$, where ker $x' = \{x \in E; x'(x) = 0\}$, $x' \in E'$. Then the net $F_{\alpha} = \bigcap_{x' \in \alpha} \ker x'$ (α be a finite subset of *D*) is decreasing, closed and $\bigcap_{\alpha} F = F$. We have $\mu(F_{\alpha}) = 0$ or 1 by the uniformness. Hence it holds that $\mu(F) = 0$ or 1, remarking that $\mu(F) = \inf_{\alpha} \mu(F_{\alpha})$ since μ is Radon.

§ 3. Kernels

Let *E* be a real locally convex Hausdorff space and μ be a probability measure on C(E, E'). We set $\tau_x(\mu)(A) = \mu(A-x)$ for $A \in C(E, E')$ and $x \in E$.

NOTATIONS

$$K(\mu) = \bigcap \{Z ; \mu(Z) = 1, Z = \{x ; x'_n(x) \to 0\}, x'_n \in E'\}$$

$$A(\mu) = \bigcap_{x \in E} (x + K(\tau_{-x}(\mu)))$$

$$SK(\mu) = \bigcap \{Z ; \mu(Z) > 0, Z = \{x ; x'_n(x) \to 0\}, x'_n \in E'\}$$

$$SA(\mu) = \bigcap_{x \in E} (x + SK(\tau_{-x}(\mu)))$$

We shall call $K(\mu)$, $A(\mu)$, $SK(\mu)$ and $SA(\mu)$ the kernel, the affine kernel, the strict kernel and the strict affine kernel, respectively. The spaces $K_L(\mu)$ and $A_L(\mu)$ of Hoffmann-Jørgensen and Borell are same to $K(\mu)$ and $A(\mu)$, see Hoffmann-Jørgensen [6], Theorem 4.4 and Borell [3], Theorem 2.1.

PROPOSITION 3. (1) $SK(\mu) \subset K(\mu)$ and $SA(\mu) \subset A(\mu)$. (2) For every fixed $x \in E$, it holds that $A(\mu) = x + A(\tau_{-x}(\mu))$ and $SA(\mu) = x + SA(\tau_{-x}(\mu))$.

PROOF. (1) is obvious. (2) By the definition of the affine kernel, we have $x + A(\tau_{-x}(\mu)) = x + \bigcap_{y \in E} (y + K(\tau_{-y}(\tau_{-x}(\mu)))) = x + \bigcap_{y \in E} (y + K(\tau_{-(x+y)}(\mu)))$ $= \bigcap_{y \in E} (x + y + K(\tau_{-(x+y)}(\mu))) = \bigcap_{z \in E} (z + K(\tau_{-z}(\mu))) = A(\mu)$. The case for $SA(\mu)$ is analogous.

PROPOSITION 4. (1) It holds that $A(\mu) = \bigcap \{x + Z ; x \in E, Z = \{y ; x'_n(y) \rightarrow 0\}, \mu(Z+x) = 1, x'_n \in E'\}.$ (2) If $0 \in A(\mu)$, then we have $A(\mu) = K(\mu)$.

PROOF. (1) By the definition of $K(\tau_{-x}(\mu))$, we have $A(\mu) = \bigcap_{x \in E} (x + \bigcap\{Z ; \tau_{-x}(\mu)(Z) = 1, Z = \{y ; x'_n(y) \to 0\}, x'_n \in E'\}) = \bigcap_{x \in E} \bigcap_{Z} \{x + Z ; \mu(Z + x) = 1, Z = \{y ; x'_n(y) \to 0\}, x'_n \in E'\}$

 $Z = \{y; x'_n(y) \to 0\}, x'_n \in E'\}$, which proves (1). (2) By (1) it follows that if $0 \in A(\mu)$, then for every linear subspace Z of the form $Z = \{y; x'_n(y) \to 0\}$ with $\mu(x+Z)=1$ for some $x \in E$, we have $0 \in x+Z$, that is, x+Z=Z. Hence we have $A(\mu) = K(\mu)$, by the definition of $K(\mu)$.

By Proposition 4, we can see that $A(\mu)$ is the intersection of all affine subspaces of measure 1 of the form x+Z, where $x \in E$ and $Z = \{y ; x'_n(y) \rightarrow 0\}$, $x'_n \in E'$. A similar characterization for $SA(\mu)$ is obtained analogously.

PROPOSITION 5. (1) It holds that $SA(\mu) = \bigcap \{x + Z ; x \in E, Z = \{y ; x'_n(y) \rightarrow 0\}, \mu(Z+x) > 0, x'_n \in E'\}.$ (2) If $0 \in SA(\mu)$, then we have $SA(\mu) = SK(\mu)$.

The probability measure μ on C(E, E') is called scalarly centered at 0 if for every linear subspace Z of the form $Z = \{y; x'_n(y) \rightarrow 0\}, x'_n \in E', \tau_x(\mu)(Z) = \mu(Z-x)=1$ implies $x \in Z$. And μ is strictly scalarly centered at 0 if for every linear subspace Z of the form $Z = \{y; x'_n(y) \rightarrow 0\}, x'_n \in E', \tau_x(\mu)(Z) = \mu(Z-x) > 0$ implies that $x \in Z$. The scalarly centeredness was introduced by Hoffmann-Jørgensen and investigated by Chevet [4].

NOTATIONS $C(\mu) = \{x; \tau_x(\mu) \text{ is scalarly centered at } 0\}$ $SC(\mu) = \{x; \tau_x(\mu) \text{ is strictly scalarly centered at } 0\}$

We shall call $C(\mu)$ and $SC(\mu)$ the centered kernel and the strict centered kernel, respectively.

PROPOSITION 6. (1) It holds that
$$C(\mu) = -A(\mu) = \bigcap_{x \in E} (x + K(\tau_x(\mu))).$$

(2) It holds that $SC(\mu) = -SA(\mu) = \bigcap_{x \in E} (x + SK(\tau_x(\mu))).$

PROOF. (1) We show that $C(\mu) = \bigcap_{x \in E} (x + K(\tau_x(\mu)))$. Let $y \in C(\mu)$, that is, $\tau_y(\mu)$ is scalarly centered at 0. For every $x \in E$ and every $Z = \{z; x'_n(z) \to 0\}$ such that $\tau_x(\mu)(Z) = \mu(Z - x) = 1$, we have $\tau_y(\mu)(Z + y - x) = \mu(Z - x) = 1$. Since $\tau_y(\mu)$ is scalarly centered at 0, it follows that $y - x \in Z$. This implies that $y \in x + K(\tau_x(\mu))$ for every $x \in E$, since Z is arbitrary such as $\tau_x(\mu)(Z) = 1$. Hence we have $C(\mu) \subset \bigcap_{x \in E} (x + K(\tau_x(\mu)))$. Conversely suppose that $y \in \bigcap_{x \in E} (x + K(\tau_x(\mu)))$. Assume that $\tau_x(\tau_y(\mu))(Z) = 1$ for $Z = \{z; x'_n(z) \to 0\}$. We must prove that $x \in Z$. Since $y \in (x + y) + K(\tau_{(x+y)}(\mu))$ by the assumption, we have $y \in (x + y) + Z$. In fact, by $\tau_{(x+y)}(\mu)(Z) =$ $\tau_x(\tau_y(\mu)(Z)) = 1$, $K(\tau_{(y+y)}(\mu))$ is contained in Z. Thus we have proved that $x \in Z$ as desired. (2) The proof is analogous to (1). COROLLARY 1. (1) μ is scalarly centered at 0 if and only if $0 \in A(\mu)$. (2) μ is strictly scalarly centered at 0 if and only if $0 \in SA(\mu)$.

THEOREM 1. (1) For every x in $A(\mu)$ (resp. $C(\mu)$), it colds that $A(\mu) = x + K(\tau_{-x}(\mu))$ (resp. $C(\mu) = x + K(\tau_{x}(\mu))$).

(2) For every x in $SA(\mu)$ (resp. $SC(\mu)$), it holds that $SA(\mu) = x + SK(\tau_{-x}(\mu))$ (resp. $SC(\mu) = x + SK(\tau_{x}(\mu))$).

PROOF. (1) Since $A(\mu) = -C(\mu)$ by Proposition 6, we shall only prove that $C(\mu) = x + K(\tau_x(\mu))$ for every $x \in C(\mu)$. The inclusion $C(\mu) \subset x$ $+K(\tau_x(\mu))$ is obvious by Proposition 6. Now let $y \in K(\tau_x(\mu))$ is arbitrary, where $x \in C(\mu)$ is fixed. We prove that $x + y \in C(\mu)$, that is, $\tau_{(x+y)}(\mu)$ is scalarly centered at 0. Take any $u \in E$ and $Z = \{v; x'_n(v) \to 0\}, x'_n \in E'$ such that $\tau_u(\tau_{(x+y)}(\mu))(Z) = 1$. We must show that $u \in Z$. Since $\tau_x(\mu)(Z - y - u)$ $= \tau_u(\tau_{(x+y)}(\mu))(Z) = 1$ and $x \in C(\mu)$, it follows that $y + u \in Z$. Thus we have $\tau_x(\mu)(Z) = 1$. In particular $K(\tau_x(\mu)) \subset Z$ by the definition of $K(\tau_x(\mu))$, which implies that $y \in Z$. Consequently we have $u \in Z$ as desired. The proof of (2) is completely analogous to (1).

This completes the proof.

COROLLARY 2. Suppose $\tau_{-x}(\mu)$ is scalarly centered at 0. Then we have $A(\mu) = x + K(\tau_{-x}(\mu))$.

PROOF. $\tau_{-x}(\mu)$ is scalarly centered at 0 if and only if $x \in A(\mu)$, see Proposition 6. Thus the assertion follows by Theorem 1.

Let μ be an *s*-convex measure or a *p*-stable measure such that s > -1, p > 1 and such that μ is Radon satisfying $\sup\{\mu(K); K \text{ is compact and convex}\} = 1$. Then the mean vector $m \in E$ exists. In fact, it is well-known that τ_{μ} is equivalent to the L^1 -metric, see Borell [2] and de Acosta [1]. Moreover τ_{μ} is weaker than the Mackey topology as easily seen, which implies that the natural mapping $i: (E', \tau_k) \to L^1(E, \mu)$ is continuous, where τ_k denotes the Mackey topology. Taking the adjoint $i^*: L^{\infty}(E, \mu) \to E, m = i^*(1)$ is the mean vector, that is $x'(m) = \int_{F} x'(x) d\mu(x)$ for every $x' \in E'$.

COROLLARY 3. Let μ be an s-convex or p-stable (s > -1, p > 1) probability measure satisfying $\sup\{\mu(K); K \text{ is compact convex}\}=1$. Let m be the mean vector of μ . Then we have $A(\mu)=m+K(\tau_{-m}(\mu))$.

PROOF. It is sufficient to see that $\tau_{-m}(\mu)$ is scalarly centered at 0 by Corollary 2. Since $\tau_{-m}(\mu)$ is a centered *s*-convex or *p*-stable measure (*s* > -1, *p*>1), the assertion follows by Chevet [4], (2.3), Example 2.

NOTATIONS

 $A_{\mu} = \{x ; \mu \sim \tau_{x}(\mu) \ (equivalent)\} \\ A_{\mu}^{\sim} = \{x ; \mu \perp \tau_{x}(\mu) \ (not \ singular)\}$

The subset A_{μ} (resp. $A_{\tilde{\mu}}$) is called the admissible translates (resp. the partially admissible translates) of μ , see Takahashi [10].

PROPOSITION 7. $A_{\mu} \subset A_{\tilde{\mu}} \subset K(\mu)$.

PROOF. The first inclusion is obvious. Suppose that $x \in A_{\tilde{\mu}}$ and $x \in K(\mu)$ for some $x \in E$. Since $x \notin K(\mu)$, there exists a sequence x'_n in E' such that $\mu(y; x'_n(y) \to 0) = 1$ and $x \notin \{y; x'_n(y) \to 0\}$, see the definition of $K(\mu)$. So it follows that $\mu(Z)=1$, $\tau_x(\mu)(Z+x)=1$ and $Z \cap (Z+x)=\phi$, where $Z=\{y; x'_n(y) \to 0\}$. This means that μ and $\tau_x(\mu)$ are singular, which contaradicts to $x \in A_{\tilde{\mu}}$.

\S 4. 0-1 laws for kernels

Let E be a locally convex Hausdorff space, μ be a probability measure on C(E, E') and τ_{μ} be the topology of convergence in measure restricted on E'. Let $(E')^a$ be the algebraic dual of E'. Then the dual $(E', \tau_{\mu})'$ is a linear subspace of $(E')^a$. We may regard μ a probability measure on $C((E')^a, E')$ naturally by the embedding $E \to (E')^a$. Let μ^* be the outer measure derived by μ .

The next lemma was proved in Okazaki and Takahashi [8], Theorem 2, but we give a proof for the sake of completeness. See also Kwapien and Smolenski [7].

LEMMA 1. Suppose that $\mu^*((E', \tau_{\mu})')=1$. Then (E', τ_{μ}) is a locally convex nuclear semi-metric space.

PROOF. Let $V_n = \{x'; \mu(x; x'(x) > 1/n) < 1/n\}$ be the basis of neighborhoods of 0 in τ_{μ} , $V_n^{\circ} = \{z \in (E')^a; |x'(z)| \leq 1 \text{ for every } x' \in V_n\}$. First we show that τ_{μ} equals the uniform convergence topology on each V_n° (the local convexity of τ_{μ}). Assume that $x'_n \to 0$ in τ_{μ} . For every m and j, there exists N = N(m, j) such that $jx'_n \in V_m$ for every n > N, that is, $\sup\{|x'_n(x)|; x \in V_m^{\circ}\} \leq 1/j$ for n > N. Thus τ_{μ} is stronger than the uniform convergence topology on each V_n° . Note that $(E', \tau_{\mu})' = \bigcup V_n^{\circ}$. Since $\mu^*(\bigcup V_n^{\circ}) = 1$, the converse is obvious.

Remark that each V_n° is $\sigma((E')^a, E')$ -compact, so we may assume that μ is a $\sigma((E')^a, E')$ -Radon measure concentrated on $\bigcup V_n^{\circ}$ since $\mu^*(\bigcup V_n^{\circ})=1$. Let $U_n=\{x'\in E'; |x'(x)|\leq 1 \text{ for every } x\in V_n^{\circ}\}$. Then $\{U_n\}$ is a basis of neighborhoods of 0 in τ_{μ} and $V_n \subset U_n$. For every but fixed n, take m, j > n such as $\mu(U_j^{\circ}) \ge 1-1/m$. We shall show that the natural mapping $E_{U_j} \rightarrow E_{U_n}$ is *p*-summing for every p > 0, where E_{U_n} is the seminormed space with the unit ball U_n . For every $x' \in U_n$ we have

$$\int_{U_{i}^{r}\cap\{x\,;\,|x'(x)|>1/n\}}|x'(x)|^{p}d\mu(x)\geq n^{\frac{1}{p(n-\frac{1}{m})}},$$

which implies that

$$|x'|_{U_n}^p \leq n^{p+1} m/(m-n) \int_{U_j} |x'(x)|^p \mathrm{d}\mu(x),$$

where $||_{U_n}$ is the gauge seminorm of U_n . Thus the natural mapping $E_{U_j} \rightarrow E_{U_n}$ is *p*-summing by Pietsch [9], Theorem 2.3.3. By Pietsch [9], Theorem 4.1.5, it follows that (E', τ_{μ}) is nuclear. This completes the proof.

THEOREM 2. Suppose that μ is uniform. Then it holds that $\mu^*(K(\mu)) = 0$ or 1. If $\mu^*(K(\mu))=1$, then dim $K(\mu) < \infty$.

Assume that $\mu^*(K(\mu)) > 0$. Let $V_n = \{x' \in E'; \mu(x; x'(x) > 1/n)\}$ Proof. <1/n} and $B_n = \{x \in E ; |x'(x)| \le 1$ for every $x' \in V_n\} = V_n^\circ \cap E$. Remark that $K(\mu) \subset \bigcup B_n = (E', \tau_{\mu})' \cap E$. In fact, for each $x \in K(\mu)$, if $x'_n \to 0$ in τ_{μ} , then for every subsequence $\{x'_{n_j}\}$ such that $x'_{n_j} \rightarrow 0$ μ -almost everywhere, it follows that $x'_{n,i}(x) \to 0$ by the definition of $K(\mu)$. Hence $x' \to x'(x)$ is τ_{μ} -continuous for every $x \in K(\mu)$. Since $\mu^*(\cup B_n) > 0$, there exists an *n* such that $\mu^*(B_n) > 0$. Take $C \in C(E, E')$ such that $B_n \subset C$ and $\mu(C) = \mu^*(B_n) > 0$. Let ν be the restriction of μ to C, that is, $\nu(A) = \mu(A \cap C)/\mu(C)$. By the uniformness of μ , it follows that $\tau_{\nu} \sim \tau_{\mu}$ (equivalent). We have $\nu^*((E', \tau_{\nu})')$ $=\nu^*((E', \tau_{\mu})') \ge \nu^*(B_n) = 1$. Consequently by Lemma 1, it follows that $(E', \tau_{\mu})'$ τ_{ν}) and (E', τ_{μ}) are nuclear locally convex spaces. We show further that (E', τ_{μ}) is a seminormed space. We prove that τ_{μ} is equivalent to the uniform convergence topology on B_n . Suppose that $x'_n \rightarrow 0$ uniformly on B_n . Then $\mu(x; x'_n(x) \to 0) \ge \mu^*(B_n) > 0$, which implies $x'_n \to 0$ in τ_{μ} by the uniformness. Conversely, if $x'_n \to 0$ in τ_{μ} , then $x'_n \to 0$ uniformly on each V_n° as proved in the proof of Lemma 1, in particular, $x'_n \rightarrow 0$ uniformly on B_n . Thus we have proved that if $\mu^*(K(\mu)) > 0$, then (E', τ_{μ}) is a nuclear seminored space. So we have dim $(E', \tau_{\mu})' < \infty$. Since $K(\mu) \subset (E', \tau_{\mu})'$, it follows also dim $K(\mu) \le \infty$. Now we show that $\mu^*(K(\mu)) = 1$. Take any $D \in C(E, \mu)$ E') such that $K(\mu) \subset D$. By the definition of the cylindrical σ -algebra C(E,*E'*), there exists a sequence $\{x'_n\}$ and a Borel subset *B* in \mathbb{R}^{∞} such that D = $\Pi^{-1}(B)$, where $\Pi: E \to \mathbf{R}^{\infty}$ be $\Pi(x) = \{x'_n(x)\}$. Let $\Pi(\mu)$ be the image measure. Then $\prod(\mu)$ is uniform by Proposition 1. Since $\prod(K(\mu))$ is a finite dimensional subspace of R^{∞} , it is a closed subspace. If we remark that

 $\Pi(\mu)(\Pi(K(\mu))) = \mu(\Pi^{-1}(\Pi(K(\mu))) \ge \mu^*(K(\mu)) > 0, \text{ it holds that} \\ \Pi(\mu)(\Pi(K(\mu))) = 1 \text{ by Proposition 2. Since } B \supset \Pi \Pi^{-1}(B) = \Pi(D) \supset \\ \Pi(K(\mu)), \text{ it follows that } \mu(D) = \Pi(\mu)(B) = 1, \text{ which proves the assertion.} \\ This completes the proof.$

This completes the proof.

PROPOSITION 8. Let μ be a Radon probability measure such that τ_{μ} is locally convex and weaker than the Mackey topology. Then if dim $K(\mu) < \infty$, it holds that $\mu(K(\mu))=1$.

PROOF. Since τ_{μ} is weaker than the Mackey topology, we have $(E', \tau_{\mu})' \subset E$ and $K(\mu) = (E', \tau_{\mu})'$. In fact, the inclusion $K(\mu) \subset (E', \tau_{\mu})'$ is always true, see the proof of Theorem 2, and the converse is proved as follows. Let $Z = \{y ; x'_n(y) \rightarrow 0\}$ be $\mu(Z) = 1$. Then for every $x \in (E', \tau_{\mu})'$, $x'_n(x) \rightarrow 0$ since x'_n converges to 0 in τ_{μ} . Thus we have $x \in Z$, which implies the assertion. By the assumption $K(\mu) = (E', \tau_{\mu})'$ is a closed subspace. We have $K(\mu) = \cap$ $\{\ker x' ; x' \in K(\mu)^{\perp}\}$ where $K(\mu)^{\perp} = \{x' \in E' ; x'(y) = 0 \text{ for every } y \in K(\mu)\}$. For every $x' \in K(\mu)^{\perp}$, x'(y) = 0 for every $y \in (E', \tau_{\mu})'$ and τ_{μ} is locally convex, so it follows that x' = 0 in (E', τ_{μ}) , that is, x'(x) = 0 μ -almost everywhere. We have proved that $\mu(\ker x') = 1$ for every $x' \in K(\mu)^{\perp}$. Thus by the argument similar to the proof of Proposition 2, it follows that $\mu(K(\mu)) = 1$.

COROLLARY 4. Suppose that μ is uniform and let $L = A_{\mu} - A_{\mu}$ or $L = A_{\tilde{\mu}} - A_{\tilde{\mu}}$. If $\mu^*(L) > 0$, then we have dim(span L) < ∞ , where span L is the linear span of L.

PROOF. The assertion follows by $L \subset K(\mu)$ (Proposition 7).

REMARK 1. There exists a measure (not uniform) such that span $A_{\mu}^{2} = E$, and dim $E = \infty$, see Takahashi and Okazaki [11].

The 0-1 law for $K(\mu)$ is valid for $\tau_x(\mu)$, where $x \in E$ is arbitrary.

THEOREM 3. Suppose that μ is uniform and $x \in E$ be arbitrary. Then it holds that $\tau_x(\mu)^*(K(\mu))=0$ or 1. If $\tau_x(\mu)^*(K(\mu))=1$, then dim $K(\mu) < \infty$.

PROOF. We show in fact that if $\tau_x(\mu)^*(K(\mu)) = \mu^*(K(\mu) - x) > 0$, then $x \in K(\mu)$. Then the assertion follows by Theorem 2. Assume that $x \in K(\mu)$. Then there exists a linear subspace Z of the form $Z = \{y ; x'_n(y) \to 0\}$ such that $x \in Z$ and $\mu(Z) = 1$. Since $Z \cap (Z + x) = \phi$, we have $\mu(Z + x) = 0$, which contradicts to $\mu^*(K(\mu) + x) > 0$.

This completes the proof.

In the sequel, we examine the 0-1 laws for $A(\mu)$, $SK(\mu)$, $C(\mu)$, $SC(\mu)$ and $SA(\mu)$.

THEOREM 4. Suppose that μ is uniform. Then it holds that $\mu^*(A(\mu)) = 0$ or 1. If $\mu^*(A(\mu)) = 1$, then dim(span $A(\mu)) < \infty$.

PROOF Since $A(\mu) \subset K(\mu)$, if $\mu^*(A(\mu)) > 0$, then it follows that $\mu^*(K(\mu))=1$ and dim $K(\mu) < \infty$ by Theorem 2. We may regard μ a probability measure concentrated on the finite dimensional subspace $K(\mu)$, in particular μ is Radon. By Proposition 4, we have $A(\mu) = \bigcap\{x+Z : x \in E, Z = \{y : x'_n(y) \to 0\}, x'_n \in K(\mu)', \mu(Z+x)=1 \text{ and } Z+x \subset K(\mu)\}$. For every decreasing net F_a of closed subsets we have $\mu(\bigcap F_a) = \inf_a \mu(F_a)$ since μ is a Radon measure on the finite dimensioal space $K(\mu)$. Remark that $x+Z \subset K(\mu)$ is closed since dim $K(\mu) < \infty$. Thus by the way similar to the proof of Proposition 2, we have $\mu(A(\mu))=1$.

This completes the proof.

THEOREM 5. Suppose that μ is uniform. Then it hold that $SK(\mu) = K(\mu)$ and $\mu^*(SK(\mu)) = 0$ or 1. If $\mu^*(SK(\mu)) = 1$, then dim $SK(\mu) < \infty$.

PROOF. $SK(\mu) \subset K(\mu)$ is clear. To show the converse, let $Z = \{x ; x'_n(x) \to 0\}$ be $\mu(Z) > 0$. We prove $K(\mu) \subset Z$. If $y \notin Z$, then $x'_n(y) \longrightarrow 0$. So there exists a subsequence $\{x'_{nk}\}$ and $\varepsilon > 0$ such that $|x'_{nk}(y)| \ge \varepsilon$ (k=1, 2, ...). Put $Z_1 = \{x ; x'_{nk}(x) \to 0\}$, then by $Z \subset Z_1$, we have $\mu(Z_1) > 0$. Since μ is uniform, it follows that $x'_{nk} \to 0$ in τ_{μ} . We can take a subsequence $\{x'_{nk(i)}\}$ such that $x'_{nk(i)} \to 0$ μ -a.e.. If we set $Z_2 = \{x ; x'_{nk(i)}(x) \to 0\}$, then $\mu(Z_2) = 1$. Since $y \notin Z_2$, it follows that $y \notin K(\mu)$. Other assertions follow from Theorem 2.

This completes the proof.

LEMMA 2. Suppose that $\mu^*(C(\mu)) > 0$. Then μ is scalarly centered at 0.

PROOF. Take any $x \in E$ and any Z of the form $Z = \{y; x'_n(y) \to 0\}$ such that $\mu(Z-x)=1$. Since $K(\tau_x(\mu)) \subset Z$, it follows that $C(\mu) \subset x+Z$ and hence $\mu(Z+x)>0$. Thus we have $(Z-x) \cap (Z+x) \neq \phi$, that is $x \in Z$, which shows that μ is scalarly centered at 0. This proves the lemma.

THEOREM 6. Suppose that μ is uniform. Then it holds that $\mu^*(C(\mu)) = 0$ or 1. In fact if $\mu^*(C(\mu)) > 0$ then we have $C(\mu) = K(\mu)$.

PROOF. If $\mu^*(C(\mu)) > 0$, then μ is scalarly centered at 0 by Lemma 2. By Theorem 1 (1), we have $C(\mu) = K(\mu)$. Thus the assertion follows by Theorem 2.

This completes the proof.

REMARK 2. There is an example of a uniform measure μ such that $\mu(K(\mu))=1$ and $\mu(C(\mu))=0$. For example, let μ be a probability measure

on \mathbb{R}^2 without point mass concentrated on the affine subspace $H = \{(t, 1); t \in \mathbb{R}\}$. Then μ is uniform since μ satisfies the 0-1 law for closed subspaces. In this example, we have $K(\mu) = \mathbb{R}^2$ and $C(\mu) = \{(t; -1); t \in \mathbb{R}\} = -H$.

LEMMA 3. Suppose that $\mu^*(SC(\mu)) > 0$. Then μ is strictly scalarly centered at 0.

PROOF. The proof is analogous to that of Lemma 2.

THEOREM 7. Suppose that μ is uniform. Then it holds that $\mu^*(SC(\mu)) = 0$ or 1. In fact if $\mu^*(SC(\mu)) > 0$ then we have $SC(\mu) = SK(\mu)$.

PROOF. If $\mu^*(SC(\mu)) > 0$, then μ is strictly scalarly centered at 0 by Lemma 3. By Theorem 1 (2), we have $SC(\mu) = SK(\mu)$. Thus the assertion follows by Theorem 5.

This completes the proof.

THEOREM 8. Suppose that μ is uniform. If $\mu^*(SA(\mu)) > 0$, then dim(span $SA(\mu)) < \infty$.

PROOF. Since $SA(\mu) \subset A(\mu)$, the assertion follows by Theorem 4.

REMARK 3. There is an example of a uniform measure μ such that $0 < \mu^*(SA(\mu)) < 1$. Let ν_1 be a probability measure on \mathbb{R}^2 without point mass concentrated on $H = \{(t, 1); t \in \mathbb{R}\}$ and $\nu_2(A) = \lambda_G(A \cap \{(t, s); t \in \mathbb{R}, s < 0\})$ where λ_G is the centered Gaussian measure on \mathbb{R}^2 with covariance matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then $\mu = \nu_1/2 + \nu_2$ is uniform since μ satisfies the 0-1 law for linear subspaces. In this example, we have $SA(\mu) = H$ and $\mu(SA(\mu)) = 1/2$.

ACKNOWLEDGEMENTS. The authors would like to express their gratitudes to the referees for their helpful advices.

References

- [1] A. DE ACOSTA: Stable measures and seminorms, The Annals of Probability 3 (1975), 865-875.
- [2] C. BORELL: Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239-252.
- [3] C. BORELL: Random linear functionals and subspaces of probability one, Ark. Mat. 14 (1976), 79-92.
- [4] S. CHEVET: Kernel associated with a cylindrical measure, Lecture Notes in Math. 860, Springer-Verlag, 1981, 51-84.
- [5] R. M. DUDLEY: Singularity of measures on linear spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 6 (1966), 245-252.
- [6] J. HOFFMANN-JØRGENSEN: Integrability of seminorms, the 0-1 law and the affine kernel for product measures, Studia Math. 61 (1977), 137-159.
- [7] S. KWAPIEN and W. SMOLENSKI: On the nuclearity of the dual space with convergence

in probability topology, Z. Wahrscheinlichkeitstheorie verw. Gebiete 59 (1982), 197-201.

- [8] Y. OKAZAKI and Y. TAKAHASHI: Nuclear subspace of L⁰ and the kernel of a linear measure, to appear in J. Multiv. Analysis, Vol. 21 (1987).
- [9] A. PIETSCH: Nuclear locally convex spaces, Ergebnisse der Math. 66, Springer-Verlag, 1972.
- [10] Y. TAKAHASHI Partially admissible shifts on linear topological spaces, Hokkaido Math. J. 8 (1979), 150-166.
- [11] Y. TAKAHASHI and Y. OKAZAKI: Uniform measures on linear spaces, Hokkaido Math. J. 16 (1987).
- [12] J. ZINN: Admissible translates of stable measures, Studia Math. 54 (1976), 245-257.

Department of Mathematics Kyushu University and

Yamaguchi University

(Current address: Yasuji TAKAHASHI, School of Health Sciences, Okayama University)