0-1 laws for kernels of a linear uniform measure

By Yoshiaki Okazaki and Yasuji Takahashi
(Received March 29, 1986, Revised February 9, 1987)

§ 1. Introduction

The notions of the Lusin affine kernel and the Lusin kernel were first introduced by Hoffmann-J ϕ rgensen [6] for the product measure $\mu=\Pi \mu_{n}$ on \boldsymbol{R}^{∞}. The Lusin affine kernel $A_{L}(\mu)$ is defined by $A_{L}(\mu)=\cap\{A ; A$ is an affine subspace with $\sup \{\mu(K) ; K \subset A, K$ is compact convex $\}=1\}$. The Lusin kernel $K_{L}(\mu)$ is defined by $K_{L}(\mu)=\cap\{S ; S$ is a linear subspace with sup $\{\mu(K) ; K \subset S, \quad K$ is compact convex $\}=1\}$. Hoffmann-Jørgensen [6] determined explicitly the Lusin affine kernel $A_{L}(\mu)$ and the Lusin kernel $K_{L}(\mu)$ for the product measure $\mu=\Pi \mu_{n}$ on \boldsymbol{R}^{∞}.

Borell [3] considered the Lusin affine kernel $A_{L}(\mu)$ and the Lusin kernel $K_{L}(\mu)$ on the dual locally convex Hausdorff space E^{\prime} instead of \boldsymbol{R}^{∞}. Let μ be a Radon probability measure on E^{\prime}, where we put the weak* topology on E^{\prime}. The definitions of $A_{L}(\mu)$ and $K_{L}(\mu)$ are the same as those of Hoffmnn $-\mathrm{J} \phi$ rgensen. Borell [3] proved a $0-1$ law for $A_{L}(\mu)$ in the case where μ is an s-convex measure with $s>-1$. If μ is an s-convex measure with $s>-1$, then $\mu\left(A_{L}(\mu)\right)=0$ or 1 according as $\operatorname{dim} K_{L}(\mu)=\infty$ or $\langle\infty$, see Borell [3], Theorem 2.4(c).

Similar 0-1 law was obtained by Zinn [12] for a p-stable measure on a separable Banach space E. Let μ be a probability measure on E and set A_{μ} $=\left\{x ; \tau_{x}(\mu) \sim \mu(\right.$ equivalent $\left.)\right\}$, where $\tau_{x}(\mu)(C)=\mu(C-x)$. Then for a p-stable measure μ on E, it holds that $\mu\left(A_{\mu}-A_{\mu}\right)=0$ or the linear span of A_{μ} is finite dimensional, see Zinn [12], Proposition 3 and Corollary 5.3.

In this paper, we introduce several notions of kernels of a probability measure on a locally convex Hausdorff space and investigate the $0-1$ laws of kernels for a uniform probability measure. The uniformness of a measure on a linear space was first introduced by Dudley [5] and studied in Takahashi and Okazaki [11]. The p-stable measures and the convex measures are uniform.

We introduce the following kernels $K(\mu)$ (the kernel), $A(\mu)$ (the affine kernel), $S K(\mu)$ (the strict kernel), $S A(\mu)$ (the strict affine kernel), $C(\mu)$ (the centered kernel) and $S C(\mu)$ (the strict centered kernel). Also we consider A_{μ} (the admissible translates) and $A_{\tilde{\mu}}$ (the partially admissible translates).

Our definitions of $K(\mu)$ and $A(\mu)$ are equal to those of $K_{L}(\mu)$ and $A_{L}(\mu)$, respectively, in the case of Hoffmann-J ϕ rgensen [6] or of Borell [3].

The kernel $K(\mu)$ naturally arises if we consider the translation subordination of μ. For example, it holds that $K(\mu)=\left\{x \in E ; \tau_{x}(\mu) s \mu\right\}$, see section 2 for the definition of the subordination $\tau_{x}(\mu)_{s} \mu . \quad A(\mu)$ is closely related to the centeredness of μ as we describe below.
μ is called scalarly centered at 0 (resp. strictly scalarly centered at 0) if for every measurable linear subspace S of the form $S=\left\{x \in E ; x_{n}^{\prime}(x) \rightarrow 0\right\}$, x_{n}^{\prime} $\in E^{\prime}, \tau_{x}(\mu)(S)=1$ implies $x \in S$ (resp. $\tau_{x}(\mu)(S)>0$ implies $\left.x \in S\right)$. The centeredness was introduced by Hoffmann-J ϕ rgensen [6], see also Chevet [4]. We have the following characterization. μ is scalarly centered at 0 (resp. strictly scalarly centered at 0) iff $0 \in A(\mu)$ (resp. $0 \in S A(\mu)$) and iff $C(\mu)=K(\mu)$ (resp. $S C(\mu)=S K(\mu)$). If we consider the translation heredit of the centeredness, the kernels $K(\mu)$ and $S K(\mu)$ arise as follows. If μ is scalarly centered at 0 , then $\tau_{x}(\mu)$ is scalarly centered at 0 iff $x \in K(\mu)$ (the strict case is $S K(\mu)$ instead of $K(\mu)$). In general, $\tau_{x}(\mu)$ is scalarly centered at 0 iff $C(\mu)=x+K\left(\tau_{x}(\mu)\right)$ (the strict case is $S C(\mu)=x+S K\left(\tau_{x}(\mu)\right)$.

For stable or convex measure μ, the following $0-1$ law is known. For every measurable linear subspace $S, \mu(S)=0$ or 1 . The uniform measure satisfies the $0-1$ law only for closed subspaces, see Proposition 2. In the $0-1$ law for the kernel $K(\mu)$ of a convex measure due to Borell [3], the most interesting point is " $\mu(K(\mu))>0$ implies that $\operatorname{dim} K(\mu)<+\infty$ ". To prove this 0-1 law, Borell [3] used particular properties of s-convex measures ($s>-1$) such as the $0-1$ law, integrability of measurable seminorm, $K(\mu)$ is a dual Banach space and so on, which are not valid for uniform measures. The 0-1 law of Zinn [12] is concerned with A_{μ} which says that if $\mu\left(A_{\mu}-A_{\mu}\right)$ >0 then $\operatorname{dim}\left(\operatorname{span} A_{\mu}\right)<+\infty$, where μ is a stable measure. This result depends on the Sudakov-Feldman's theorem of the non-existence of an E-quasi-invariant measure on E with $\operatorname{dim} E=\infty$. In this paper, we shall prove that if μ is uniform, then $\mu^{*}(K(\mu))>0$ imply that $\operatorname{dim} K(\mu)<+\infty$ and $\mu^{*}(K(\mu))=1$ (since we consider the cylindrical σ-algebra, the measurability of $K(\mu)$ is not assured, so we take the outer measure $\left.\mu^{*}\right)$. We also prove the similar 0-1 laws for the kernels $A(\mu), S K(\mu), C(\mu)$ and $S C(\mu)$. For $L=A_{\mu}-A_{\mu}$ or $A_{\tilde{\mu}}-A_{\tilde{\mu}}$, we prove that $\mu^{*}(L)>0$ implies that $\operatorname{dim}(\operatorname{span} L)<+\infty$. Our proof is completely different from that of Borell [3] and Zinn [12]. We use the fact that every nuclear Banach space is finite -dimensional. We start with the following lemma: for a measure μ (not necessarily uniform), if $\mu^{*}(K(\mu))=1$, then (E^{\prime}, τ_{μ}) is nuclear and locally convex, see Lemma 1.

The main results are as follows.
(1) It holds that $A(\mu)=x+K\left(\tau_{-x}(\mu)\right)$ for every $x \in A(\mu)$ and $S A(\mu)$ $=x+S K\left(\tau_{-x}(\mu)\right)$ for every $x \in S A(\mu)$.
(2) Suppose that μ is uniform and let L be each one of $K(\mu), A(\mu)$, $S K(\mu), C(\mu)$ or $S C(\mu)$. Then it holds that $\mu^{*}(L)=0$ or 1. If $\mu^{*}(L)=1$, then $\operatorname{dim}(\operatorname{span} L)<\infty$, where μ^{*} is the outer measure and $\operatorname{span} L$ is the linear span of L.
(3) Suppose that μ is uniform and $\mu^{*}(S A(\mu))>0$, then we have $\operatorname{dim}(\operatorname{span} S A(\mu))<\infty$. The $0-1$ law is not valid for $S A(\mu)$.
(4) Suppose that μ is uniform and let $L=A_{\mu}-A_{\mu}$ or $A_{\tilde{\mu}}-A_{\tilde{\mu}}$. If $\mu^{*}(L)>0$, then we have $\operatorname{dim}(\operatorname{span} L)<\infty$.

§2. Uniform measure

Let E be a real locally convex Hausdorff space and $C\left(E, E^{\prime}\right)$ be the cylindrical σ-algebra generated by the topological dual E^{\prime}. Let μ be a probability measure on $C\left(E, E^{\prime}\right)$ and τ_{μ} be the topology of convergence in measure on E^{\prime} (regarding each $x^{\prime} \in E^{\prime}$ as a μ-measurable function) semi -metrized by

$$
d\left(x^{\prime}, y^{\prime}\right)_{\mu}=\int_{E}\left|x^{\prime}(x)-y^{\prime}(x)\right| /\left(1+\left|x^{\prime}(x)-y^{\prime}(x)\right|\right) d \mu(x) .
$$

Let μ and ν be probability measures on $C\left(E, E^{\prime}\right)$. After Dudley [5], we say μ is subordinate to ν (denoted by $\mu \mathrm{s} \nu$) if the identity $\left(E^{\prime}, \tau_{\nu}\right) \rightarrow\left(E^{\prime}, \tau_{\mu}\right)$ is continuous, that is, τ_{ν} is finer than τ_{μ}. For each A and B in $C\left(E, E^{\prime}\right)$, we set $\mu_{A}(B)=\mu(A \cap B) / \mu(A)$. The measure μ is said to be uniform if it holds that $\mu \mathrm{s} \mu_{A}$ whenever $\mu(A)>0$.

The uniformness is characterized as follows. The measure μ is uniform if and only if for every sequence x_{n}^{\prime} in $E^{\prime}, \mu\left(x ; x_{n}^{\prime}(x) \rightarrow 0\right)>0$ implies that $x_{n_{j}}^{\prime}$ $(x) \rightarrow 0 \mu$-almost everywhere for a suitable subsequence x_{n}^{\prime}, see Takahashi and Okazaki [11]. In particular, the convex measures of Borell [2] and the p-stable measures are uniform.

Proposition 1. Let E, F be locally convex Hausdorff spaces and $\Pi: E$ $\rightarrow F$ be a continuous linear mapping. If μ is a uniform measure on $C(E$, $\left.E^{\prime}\right)$, then the image measure $\Pi(\mu)$ is a uniform measure on $C\left(F, F^{\prime}\right)$.

Proof. Suppose that $\Pi(\mu)(A)>0$ and $y_{n}^{\prime} \rightarrow 0$ in $\tau_{\Pi(\mu)}$. Then $y_{n}^{\prime} \circ \Pi \rightarrow 0$ in $\tau_{\mu_{\left.\Pi^{-} / A\right)}}$ with $\mu\left(\Pi^{-1}(A)\right)>0$. By the uniformness of μ it follows that $y_{n}^{\prime} \circ$ $\Pi \rightarrow 0$ in τ_{μ}, that is, $y_{n}^{\prime} \rightarrow 0$ in $\tau_{\Pi(\mu)}$.

The next result was proved in Takahashi and Okazaki [11]. We give a proof for the sake of completeness.

Proposition 2. Let μ be a uniform Radon probability measure on the

Borel field on E. Then for every closed linear subspace F of E, we have $\mu(F)=0$ or 1 .

Proof. Let F be a closed linear subspace and let $D=\left\{x^{\prime} \in E^{\prime} ; F \subset \mathrm{ker}\right.$ $\left.x^{\prime}\right\}$, where $\operatorname{ker} x^{\prime}=\left\{x \in E ; x^{\prime}(x)=0\right\}, x^{\prime} \in E^{\prime}$. Then the net $F_{\alpha}=\bigcap_{x^{\prime} \in \alpha} \operatorname{ker} x^{\prime}(\alpha$ be a finite subset of D) is decreasing, closed and $\bigcap_{\alpha} F=F$. We have $\mu\left(F_{\alpha}\right)$ $=0$ or 1 by the uniformness. Hence it holds that $\mu(F)=0$ or 1 , remarking that $\mu(F)=\inf _{\alpha} \mu\left(F_{\alpha}\right)$ since μ is Radon.

§ 3. Kernels

Let E be a real locally convex Hausdorff space and μ be a probability measure on $C\left(E, E^{\prime}\right)$. We set $\tau_{x}(\mu)(A)=\mu(A-x)$ for $A \in C\left(E, E^{\prime}\right)$ and x $\in E$.

Notations

$$
\begin{aligned}
K(\mu) & =\cap\left\{Z ; \mu(Z)=1, Z=\left\{x ; x_{n}^{\prime}(x) \rightarrow 0\right\}, x_{n}^{\prime} \in E^{\prime}\right\} \\
A(\mu) & =\bigcap_{x \in E}\left(x+K\left(\tau_{-x}(\mu)\right)\right) \\
S K(\mu) & =\bigcap\left\{Z ; \mu(Z)>0, Z=\left\{x ; x_{n}^{\prime}(x) \rightarrow 0\right\}, x_{n}^{\prime} \in E^{\prime}\right\} \\
S A(\mu) & =\bigcap_{x \in E}\left(x+S K\left(\tau_{-x}(\mu)\right)\right)
\end{aligned}
$$

We shall call $K(\mu), A(\mu), S K(\mu)$ and $S A(\mu)$ the kernel, the affine kernel, the strict kernel and the strict affine kernel, respectively. The spaces $K_{L}(\mu)$ and $A_{L}(\mu)$ of Hoffmann-Jørgensen and Borell are same to $K(\mu)$ and $A(\mu)$, see Hoffmann-Jørgensen [6], Theorem 4.4 and Borell [3], Theorem 2.1.

Proposition 3. (1) $S K(\mu) \subset K(\mu)$ and $S A(\mu) \subset A(\mu)$.
(2) For every fixed $x \in E$, it holds that $A(\mu)=x+A\left(\tau_{-x}(\mu)\right)$ and $S A(\mu)=x+S A\left(\tau_{-x}(\mu)\right)$.

Proof. (1) is obvious. (2) By the definition of the affine kernel, we have $\left.x+A\left(\tau_{-x}(\mu)\right)=x+\bigcap_{y \in E}\left(y+K\left(\tau_{-y}\left(\tau_{-x}(\mu)\right)\right)\right)=x+\bigcap_{y \in E}\left(y+K\left(\tau_{-(x+y)} \mu\right)\right)\right)$ $=\bigcap_{y \in E}\left(x+y+K\left(\tau_{-(x+y)}(\mu)\right)\right)=\bigcap_{z \in E}\left(z+K\left(\tau_{-z}(\mu)\right)\right)=A(\mu)$. The case for $S A(\mu)$ is analogous.

Proposition 4. (1) It holds that $A(\mu)=\cap\left\{x+Z ; x \in E, Z=\left\{y ; x_{n}^{\prime}(y)\right.\right.$ $\left.\rightarrow 0\}, \mu(Z+x)=1, x_{n}^{\prime} \in E^{\prime}\right\}$.
(2) If $0 \in A(\mu)$, then we have $A(\mu)=K(\mu)$.

Proof. (1) By the definition of $K\left(\tau_{-x}(\mu)\right)$, we have $A(\mu)=\bigcap_{x \in E}(x$ $\left.+\cap\left\{Z ; \tau_{-x}(\mu)(Z)=1, Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}, x_{n}^{\prime} \in E^{\prime}\right\}\right)=\bigcap_{x \in E} \bigcap_{Z}\{x+Z ; \mu(Z+x)=1$,
$\left.Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}, x_{n}^{\prime} \in E^{\prime}\right\}$, which proves (1). (2) By (1) it follows that if $0 \in A(\mu)$, then for every linear subspace Z of the form $Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}$ with $\mu(x+Z)=1$ for some $x \in E$, we have $0 \in x+Z$, that is, $x+Z=Z$. Hence we have $A(\mu)=K(\mu)$, by the definition of $K(\mu)$.

By Proposition 4, we can see that $A(\mu)$ is the intersection of all affine subspaces of measure 1 of the form $x+Z$, where $x \in E$ and $Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow\right.$ $0\}, x_{n}^{\prime} \in E^{\prime}$. A similar characterization for $S A(\mu)$ is obtained analogously.

Proposition 5. (1) It holds that $S A(\mu)=\cap\{x+Z ; x \in E, Z=\{y$; $\left.\left.x_{n}^{\prime}(y) \rightarrow 0\right\}, \mu(Z+x)>0, \quad x_{n}^{\prime} \in E^{\prime}\right\}$.
(2) If $0 \in S A(\mu)$, then we have $S A(\mu)=S K(\mu)$.

The probability measure μ on $C\left(E, E^{\prime}\right)$ is called scalarly centered at 0 if for every linear subspace Z of the form $Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}, x_{n}^{\prime} \in E^{\prime}, \tau_{x}(\mu)(Z)$ $=\mu(Z-x)=1$ implies $x \in Z$. And μ is strictly scalarly centered at 0 if for every linear subspace Z of the form $Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}, x_{n}^{\prime} \in E^{\prime}, \tau_{x}(\mu)(Z)=$ $\mu(Z-x)>0$ implies that $x \in Z$. The scalarly centeredness was introduced by Hoffmann-Jørgensen and investigated by Chevet [4].

Notations

$$
\begin{aligned}
C(\mu) & =\left\{x ; \tau_{x}(\mu) \text { is scalarly centered at } 0\right\} . \\
S C(\mu) & =\left\{x ; \tau_{x}(\mu) \text { is strictly scalarly centered at } 0\right\}
\end{aligned}
$$

We shall call $C(\mu)$ and $S C(\mu)$ the centered kernel and the strict centered kernel, respectively.

Proposition 6. (1) It holds that $C(\mu)=-A(\mu)=\bigcap_{x \in E}\left(x+K\left(\tau_{x}(\mu)\right)\right)$.
(2) It holds that $S C(\mu)=-S A(\mu)=\bigcap_{x \in E}\left(x+S K\left(\tau_{x}(\mu)\right)\right)$.

Proof. (1) We show that $C(\mu)=\bigcap_{x \in E}\left(x+K\left(\tau_{x}(\mu)\right)\right)$. Let $y \in C(\mu)$, that is, $\tau_{y}(\mu)$ is scalarly centered at 0 . For every $x \in E$ and every $Z=\{z$; $\left.x_{n}^{\prime}(z) \rightarrow 0\right\}$ such that $\tau_{x}(\mu)(Z)=\mu(Z-x)=1$, we have $\tau_{y}(\mu)(Z+y-x)=\mu(Z$ $-x)=1$. Since $\tau_{y}(\mu)$ is scalarly centered at 0 , it follows that $y-x \in Z$. This implies that $y \in x+K\left(\tau_{x}(\mu)\right)$ for every $x \in E$, since Z is arbitrary such as $\tau_{x}(\mu)(Z)=1$. Hence we have $C(\mu) \subset \bigcap_{x \in E}\left(x+K\left(\tau_{x}(\mu)\right)\right)$. Conversely suppose that $y \in \bigcap_{x \in E}\left(x+K\left(\tau_{x}(\mu)\right)\right)$. Assume that $\tau_{x}\left(\tau_{y}(\mu)\right)(Z)=1$ for $Z=\{z$; $\left.x_{n}^{\prime}(z) \rightarrow 0\right\}$. We must prove that $x \in Z$. Since $y \in(x+y)+K\left(\tau_{(x+y)}(\mu)\right)$ by the assumption, we have $y \in(x+y)+Z$. In fact, by $\tau_{(x+y)}(\mu)(Z)=$ $\tau_{x}\left(\tau_{y}(\mu)(Z)\right)=1, K\left(\tau_{(y+y)}(\mu)\right)$ is contained in Z. Thus we have proved that x $\in Z$ as desired. (2) The proof is analogous to (1).

Corollary 1. (1) μ is scalarly centered at 0 if and only if $0 \in A(\mu)$.
(2) μ is strictly scalarly centered at 0 if and only if $0 \in S A(\mu)$.

Theorem 1. (1) For every x in $A(\mu)$ (resp. $C(\mu)$), it colds that $A(\mu)=x+K\left(\tau_{-x}(\mu)\right)\left(\right.$ resp. $\left.. C(\mu)=x+K\left(\tau_{x}(\mu)\right)\right)$.
(2) For every x in $S A(\mu)($ resp. $S C(\mu))$, it holds that $S A(\mu)=x$ $+S K\left(\tau_{-x}(\mu)\right)\left(\right.$ resp. $\left.S C(\mu)=x+S K\left(\tau_{x}(\mu)\right)\right)$.

Proof. (1) Since $A(\mu)=-C(\mu)$ by Proposition 6, we shall only prove that $C(\mu)=x+K\left(\tau_{x}(\mu)\right)$ for every $x \in C(\mu)$. The inclusion $C(\mu) \subset x$ $+K\left(\tau_{x}(\mu)\right)$ is obvious by Proposition 6. Now let $y \in K\left(\tau_{x}(\mu)\right)$ is arbitrary, where $x \in C(\mu)$ is fixed. We prove that $x+y \in C(\mu)$, that is, $\tau_{(x+y)}(\mu)$ is scalarly centered at 0 . Take any $u \in E$ and $Z=\left\{v ; x_{n}^{\prime}(v) \rightarrow 0\right\}, x_{n}^{\prime} \in E^{\prime}$ such that $\tau_{u}\left(\tau_{(x+y)}(\mu)\right)(Z)=1$. We must show that $u \in Z$. Since $\tau_{x}(\mu)(Z-y-u)$ $=\tau_{u}\left(\tau_{(x+y)}(\mu)\right)(Z)=1$ and $x \in C(\mu)$, it follows that $y+u \in Z$. Thus we have $\tau_{x}(\mu)(Z)=1$. In particular $K\left(\tau_{x}(\mu)\right) \subset Z$ by the definition of $K\left(\tau_{x}(\mu)\right)$, which implies that $y \in Z$. Consequently we have $u \in Z$ as desired. The proof of (2) is completely analogous to (1).

This completes the proof.
Corollary 2. Suppose $\tau_{-x}(\mu)$ is scalarly centered at 0 . Then we have $A(\mu)=x+K\left(\tau_{-x}(\mu)\right)$.

Proof. $\tau_{-x}(\mu)$ is scalarly centered at 0 if and only if $x \in A(\mu)$, see Proposition 6. Thus the assertion follows by Theorem 1.

Let μ be an s-convex measure or a p-stable measure such that $s>-1, p$ >1 and such that μ is Radon satisfying $\sup \{\mu(K) ; K$ is compact and convex $\}$ $=1$. Then the mean vector $m \in E$ exists. In fact, it is well-known that τ_{μ} is equivalent to the L^{1}-metric, see Borell [2] and de Acosta [1]. Moreover τ_{μ} is weaker than the Mackey topology as easily seen, which implies that the natural mapping $i:\left(E^{\prime}, \tau_{k}\right) \rightarrow L^{1}(E, \mu)$ is continuous, where τ_{k} denotes the Mackey topology. Taking the adjoint $i^{*}: L^{\infty}(E, \mu) \rightarrow E, m=i^{*}(1)$ is the mean vector, that is $x^{\prime}(m)=\int_{E} x^{\prime}(x) d \mu(x)$ for every $x^{\prime} \in E^{\prime}$.

Corollary 3. Let μ be an s-convex or p-stable $(s>-1, p>1$) probability measure satisfying $\sup \{\mu(K) ; K$ is compact convex $\}=1$. Let m be the mean vector of μ. Then we have $A(\mu)=m+K\left(\tau_{-m}(\mu)\right)$.

Proof. It is sufficient to see that $\tau_{-m}(\mu)$ is scalarly centered at 0 by Corollary 2. Since $\tau_{-m}(\mu)$ is a centered s-convex or p-stable measure ($s>$ $-1, p>1$), the assertion follows by Chevet [4], (2.3), Example 2.

Notations

$$
\begin{aligned}
& \left.A_{\mu}=\left\{x ; \mu \sim \tau_{x}(\mu) \quad \text { (equivalent }\right)\right\} \\
& \left.A_{\tilde{\mu}}=\left\{x ; \mu \perp \tau_{x}(\mu) \text { (not singular }\right)\right\}
\end{aligned}
$$

The subset A_{μ} (resp. $A_{\tilde{\mu}}$) is called the admissible translates (resp. the partially admissible translates) of μ, see Takahashi [10].

Proposition 7. $\quad A_{\mu} \subset A_{\mu} \subset K(\mu)$.
Proof. The first inclusion is obvious. Suppose that $x \in A_{\tilde{\mu}}$ and $x \notin$ $K(\mu)$ for some $x \in E$. Since $x \notin K(\mu)$, there exists a sequence x_{n}^{\prime} in E^{\prime} such that $\mu\left(y ; x_{n}^{\prime}(y) \rightarrow 0\right)=1$ and $x \notin\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}$, see the definition of $K(\mu)$. So it follows that $\mu(Z)=1, \tau_{x}(\mu)(Z+x)=1$ and $Z \cap(Z+x)=\phi$, where $Z=$ $\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}$. This means that μ and $\tau_{x}(\mu)$ are singular, which contaradicts to $x \in A_{\tilde{\mu}}$.

§ 4. 0-1 laws for kernels

Let E be a locally convex Hausdorff space, μ be a probability measure on $C\left(E, \mathrm{E}^{\prime}\right)$ and τ_{μ} be the topology of convergence in measure restricted on E^{\prime}. Let $\left(E^{\prime}\right)^{a}$ be the algebraic dual of E^{\prime}. Then the dual $\left(\mathrm{E}^{\prime}, \tau_{\mu}\right)^{\prime}$ is a linear subspace of $\left(E^{\prime}\right)^{a}$. We may regard μ a probability measure on $C\left(\left(E^{\prime}\right)^{a}, E^{\prime}\right)$ naturally by the embedding $E \rightarrow\left(E^{\prime}\right)^{a}$. Let μ^{*} be the outer measure derived by μ.

The next lemma was proved in Okazaki and Takahashi [8], Theorem 2, but we give a proof for the sake of completeness. See also Kwapien and Smolenski [7].

Lemma 1. Suppose that $\mu^{*}\left(\left(E^{\prime}, \tau_{\mu}\right)^{\prime}\right)=1$. Then $\left(E^{\prime}, \tau_{\mu}\right)$ is a locally convex nuclear semi-metric space.

Proof. Let $V_{n}=\left\{x^{\prime} ; \mu\left(x ; x^{\prime}(x)>1 / n\right)<1 / n\right\}$ be the basis of neighborhoods of 0 in $\tau_{\mu}, V_{n}^{o}=\left\{z \in\left(E^{\prime}\right)^{a} ;\left|x^{\prime}(z)\right| \leqq 1\right.$ for every $\left.x^{\prime} \in V_{n}\right\}$. First we show that τ_{μ} equals the uniform convergence topology on each V_{n}° (the local convexity of τ_{μ}). Assume that $x_{n}^{\prime} \rightarrow 0$ in τ_{μ}. For every m and j, there exists $N=N(m, j)$ such that $j x_{n}^{\prime} \in V_{m}$ for every $n>N$, that is, $\sup \left\{\left|x_{n}^{\prime}(x)\right| ; x \in V_{m}^{\circ}\right\}$ $\leqq 1 / j$ for $n>N$. Thus τ_{μ} is stronger than the uniform convergence topology on each V_{n}°. Note that $\left(E^{\prime}, \tau_{\mu}\right)^{\prime}=\cup V_{n}^{\circ}$. Since $\mu^{*}\left(\cup V_{n}^{\circ}\right)=1$, the converse is obvious.

Remark that each V_{n}° is $\sigma\left(\left(E^{\prime}\right)^{a}, E^{\prime}\right)$-compact,so we may assume that μ is a $\sigma\left(\left(E^{\prime}\right)^{a}, E^{\prime}\right)$-Radon measure concentrated on $U V_{n}^{\circ}$ since $\mu^{*}\left(\cup V_{n}^{\circ}\right)=1$. Let $U_{n}=\left\{x^{\prime} \in E^{\prime} ;\left|x^{\prime}(x)\right| \leqq 1\right.$ for every $\left.x \in V_{n}^{\circ}\right\}$. Then $\left\{U_{n}\right\}$ is a basis of neighborhoods of 0 in τ_{μ} and $V_{n} \subset U_{n}$. For every but fixed n, take $m, j>n$
such as $\mu\left(U_{j}^{\circ}\right) \geqq 1-1 / m$. We shall show that the natural mapping $E_{U_{j}} \rightarrow E_{U_{n}}$ is p-summing for every $p>0$, where $E_{U_{n}}$ is the seminormed space with the unit ball U_{n}. For every $x^{\prime} \in U_{n}$ we have

$$
\int_{U_{j}^{\prime} \cap\left\{x ;\left|x^{\prime}(x)\right|>1 / n\right\}}\left|x^{\prime}(x)\right|^{p} d \mu(x) \geqq n^{\frac{1}{\rho}\left(\frac{1}{n}-\frac{1}{m}\right)},
$$

which implies that

$$
\left|x^{\prime}\right|_{U_{n}}^{p} \leqq n^{p+1} m /(m-n) \int_{U_{j}}\left|x^{\prime}(x)\right|^{p} \mathrm{~d} \mu(x),
$$

where $\left|\left.\right|_{U_{n}}\right.$ is the gauge seminorm of U_{n}. Thus the natural mapping $E_{U_{j} \rightarrow} \rightarrow$ $E_{U_{n}}$ is p-summing by Pietsch [9], Theorem 2.3.3. By Pietsch [9], Theorem 4.1.5, it follows that $\left(E^{\prime}, \tau_{\mu}\right)$ is nuclear. This completes the proof.

Theorem 2. Suppose that μ is uniform. Then it holds that $\mu^{*}(K(\mu))$ $=0$ or 1 . If $\mu^{*}(K(\mu))=1$, then $\operatorname{dim} K(\mu)<\infty$.

Proof. Assume that $\mu^{*}(K(\mu))>0$. Let $V_{n}=\left\{x^{\prime} \in E^{\prime} ; \mu\left(x ; x^{\prime}(x)>1 / n\right)\right.$ $<1 / n\}$ and $B_{n}=\left\{x \in E ;\left|x^{\prime}(x)\right| \leqq 1\right.$ for every $\left.x^{\prime} \in V_{n}\right\}=V_{n}^{\circ} \cap E$. Remark that $K(\mu) \subset \cup B_{n}=\left(E^{\prime}, \tau_{\mu}\right)^{\prime} \cap E$. In fact, for each $x \in K(\mu)$, if $x_{n}^{\prime} \rightarrow 0$ in τ_{μ}, then for every subsequence $\left\{x_{n_{j}}^{\prime}\right\}$ such that $x_{n_{j} \rightarrow 0}^{\prime} \mu$-almost everywhere, it follows that $x_{n_{j}}^{\prime}(x) \rightarrow 0$ by the definition of $K(\mu)$. Hence $x^{\prime} \rightarrow x^{\prime}(x)$ is τ_{μ}-continuous for every $x \in K(\mu)$. Since $\mu^{*}\left(\cup B_{n}\right)>0$, there exists an n such that $\mu^{*}\left(B_{n}\right)>0$. Take $C \in C\left(E, E^{\prime}\right)$ such that $B_{n} \subset C$ and $\mu(C)=\mu^{*}\left(B_{n}\right)>0$. Let ν be the resriction of μ to C, that is, $\nu(A)=\mu(A \cap C) / \mu(C)$. By the uniformness of μ, it follows that $\tau_{\nu} \sim \tau_{\mu}$ (equivalent). We have $\nu^{*}\left(\left(E^{\prime}, \tau_{\nu}\right)^{\prime}\right)$ $=\nu^{*}\left(\left(E^{\prime}, \tau_{\mu}\right)^{\prime}\right) \geqq \nu^{*}\left(B_{n}\right)=1$. Consequently by Lemma 1, it follows that $\left(E^{\prime}\right.$, τ_{ν}) and (E^{\prime}, τ_{μ}) are nuclear locally convex spaces. We show further that (E^{\prime}, τ_{μ}) is a seminormed space. We prove that τ_{μ} is equivalent to the uniform convergence topology on B_{n}. Suppose that $x_{n}^{\prime} \rightarrow 0$ uniformly on B_{n}. Then $\mu\left(x ; x_{n}^{\prime}(x) \rightarrow 0\right) \geqq \mu^{*}\left(B_{n}\right)>0$, which implies $x_{n}^{\prime} \rightarrow 0$ in τ_{μ} by the uniformness. Conversely, if $x_{n}^{\prime} \rightarrow 0$ in τ_{μ}, then $x_{n}^{\prime} \rightarrow 0$ uniformly on each V_{n}° as proved in the proof of Lemma 1, in particular, $x_{n}^{\prime} \rightarrow 0$ uniformly on B_{n}. Thus we have proved that if $\mu^{*}(K(\mu))>0$, then $\left(E^{\prime}, \tau_{\mu}\right)$ is a nuclear seminored space. So we have $\operatorname{dim}\left(E^{\prime}, \tau_{\mu}\right)^{\prime}<\infty$. Since $K(\mu) \subset\left(E^{\prime}, \tau_{\mu}\right)^{\prime}$, it follows also $\operatorname{dim} K(\mu)<\infty$. Now we show that $\mu^{*}(K(\mu))=1$. Take any $D \in C(E$, $\left.E^{\prime}\right)$ such that $K(\mu) \subset D$. By the definition of the cylindrical σ-algebra $C(E$, $\left.E^{\prime}\right)$, there exists a sequence $\left\{x_{n}^{\prime}\right\}$ and a Borel subset B in \boldsymbol{R}^{∞} such that $D=$ $\Pi^{-1}(B)$, where $\Pi: E \rightarrow \boldsymbol{R}^{\infty}$ be $\Pi(x)=\left\{x_{n}^{\prime}(x)\right\}$. Let: $\Pi(\mu)$ be the image measure. Then $\Pi(\mu)$ is uniform by Proposition 1. Since $\Pi(K(\mu))$ is a finite dimensional subspace of \boldsymbol{R}^{∞}, it is a closed subspace. If we remark that
$\Pi(\mu)(\Pi(K(\mu)))=\mu\left(\Pi^{-1}(\Pi(K(\mu))) \geqq \mu^{*}(K(\mu))>0\right.$, it holds that $\Pi(\mu)(\Pi(K(\mu)))=1$ by Proposition 2. Since $B \supset \Pi \Pi^{-1}(B)=\Pi(D) \supset$ $\Pi(K(\mu))$, it follows that $\mu(D)=\Pi(\mu)(B)=1$, which proves the assertion. This completes the proof.

Proposition 8. Let μ be a Radon probability measure such that τ_{μ} is locally convex and weaker than the Mackey topology. Then if $\operatorname{dim} K(\mu)<\infty$, it holds that $\mu(K(\mu))=1$.

Proof. Since τ_{μ} is weaker than the Mackey topology, we have $\left(E^{\prime}, \tau_{\mu}\right)^{\prime}$ $\subset E$ and $K(\mu)=\left(\mathrm{E}^{\prime}, \tau_{\mu}\right)^{\prime}$. In fact, the inclusion $K(\mu) \subset\left(E^{\prime}, \tau_{\mu}\right)^{\prime}$ is always true, see the proof of Theorem 2, and the converse is proved as follows. Let $Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}$ be $\mu(Z)=1$. Then for every $x \in\left(E^{\prime}, \tau_{\mu}\right)^{\prime}, x_{n}^{\prime}(x)^{\prime} \rightarrow 0$ since x_{n}^{\prime} converges to 0 in τ_{μ}. Thus we have $x \in Z$, which implies the assertion. By the assumption $K(\mu)=\left(E^{\prime}, \tau_{\mu}\right)^{\prime}$ is a closed subspace. We have $K(\mu)=\cap$ $\left\{\operatorname{ker} x^{\prime} ; x^{\prime} \in K(\mu)^{\perp}\right\}$ where $K(\mu)^{\perp}=\left\{x^{\prime} \in E^{\prime} ; x^{\prime}(y)=0\right.$ for every $\left.y \in K(\mu)\right\}$. For every $x^{\prime} \in K(\mu)^{\perp}, x^{\prime}(y)=0$ for every $y \in\left(E^{\prime}, \tau_{\mu}\right)^{\prime}$ and τ_{μ} is locally convex, so it follows that $x^{\prime}=0$ in $\left(E^{\prime}, \tau_{\mu}\right)$, that is, $x^{\prime}(x)=0 \mu$-almost everywhere. We have proved that $\mu\left(\operatorname{ker} x^{\prime}\right)=1$ for every $x^{\prime} \in K(\mu)^{\perp}$. Thus by the argument similar to the proof of Proposition 2, it follows that $\mu(K(\mu))=$ 1.

Corollary 4. Suppose that μ is uniform and let $L=A_{\mu}-A_{\mu}$ or $L=$ $A_{\tilde{\mu}}-A_{\tilde{\mu}}$. If $\mu^{*}(L)>0$, then we have $\operatorname{dim}(\operatorname{span} L)<\infty$, where $\operatorname{span} L$ is the linear span of L.

Proof. The assertion follows by $L \subset K(\mu)$ (Proposition 7).
Remark 1. There exists a measure (not uniform) such that span $A_{\tilde{\mu}}$ $=E$, and $\operatorname{dim} E=\infty$, see Takahashi and Okazaki [11].

The $0-1$ law for $K(\mu)$ is valid for $\tau_{x}(\mu)$, where $x \in E$ is arbitrary.
Theorem 3. Suppose that μ is uniform and $x \in E$ be arbitrary. Then it holds that $\tau_{x}(\mu)^{*}(K(\mu))=0$ or 1. If $\tau_{x}(\mu)^{*}(K(\mu))=1$, then $\operatorname{dim} K(\mu)<$ ∞.

Proof. We show in fact that if $\tau_{x}(\mu)^{*}(K(\mu))=\mu^{*}(K(\mu)-x)>0$, then x $\in K(\mu)$. Then the assertion follows by Theorem 2. Assume that $x \notin K(\mu)$. Then there exists a linear subspace Z of the form $Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}$ such that $x \notin Z$ and $\mu(Z)=1$. Since $Z \cap(Z+x)=\phi$, we have $\mu(Z+x)=0$, which contradicts to $\mu^{*}(K(\mu)+x)>0$.

This completes the proof.
In the sequel, we examine the $0-1$ laws for $A(\mu), S K(\mu), C(\mu), S C(\mu)$ and $S A(\mu)$.

Theorem 4. Suppose that μ is uniform. Then it holds that $\mu^{*}(A(\mu))=$ 0 or 1 . If $\mu^{*}(A(\mu))=1$, then $\operatorname{dim}(\operatorname{span} A(\mu))<\infty$.

Proof Since $A(\mu) \subset K(\mu)$, if $\mu^{*}(A(\mu))>0$, then it follows that $\mu^{*}(K(\mu))=1$ and $\operatorname{dim} K(\mu)<\infty$ by Theorem 2. We may regard μ a probability measure concentrated on the finite dimensional subspace $K(\mu)$, in particular μ is Radon. By Proposition 4, we have $A(\mu)=\cap\{x+Z ; x \in E, Z$ $=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}, x_{n}^{\prime} \in K(\mu)^{\prime}, \mu(Z+x)=1$ and $\left.Z+x \subset K(\mu)\right\}$. For every decreasing net F_{α} of closed subsets we have $\mu\left(\cap F_{\alpha}\right)=\inf _{\alpha} \mu\left(F_{\alpha}\right)$ since μ is a Radon measure on the finite dimensioal space $K(\mu)$. Remark that $x+Z \subset$ $K(\mu)$ is closed since $\operatorname{dim} K(\mu)<\infty$. Thus by the way similar to the proof of Proposition 2, we have $\mu(A(\mu))=1$.

This completes the proof.
TheOrem 5. Suppose that μ is uniform. Then it hold that $S K(\mu)=$ $K(\mu)$ and $\mu^{*}(S K(\mu))=0$ or 1 . If $\mu^{*}(S K(\mu))=1$, then $\operatorname{dim} \operatorname{SK}(\mu)<\infty$.

Proof. $S K(\mu) \subset K(\mu)$ is clear. To show the converse, let $Z=\{x$; $\left.x_{n}^{\prime}(x) \rightarrow 0\right\}$ be $\mu(Z)>0$. We prove $K(\mu) \subset Z$. If $y \notin Z$, then $x_{n}^{\prime}(y) \longrightarrow 0$. So there exists a subsequence $\left\{x_{n_{k}}^{\prime}\right\}$ and $\varepsilon>0$ such that $\left|x_{n_{k}}^{\prime}(y)\right| \geqq \varepsilon(k=1,2, \ldots)$. Put $Z_{1}=\left\{x ; x_{n_{k}}^{\prime}(x) \rightarrow 0\right\}$, then by $Z \subset Z_{1}$, we have $\mu\left(Z_{1}\right)>0$. Since μ is uniform, it follows that $x_{n_{k}}^{\prime} \rightarrow 0$ in τ_{μ}. We can take a subsequence $\left\{x_{n_{k(i)}^{\prime}}^{\prime}\right\}$ such that $x_{n_{k}(i)}^{\prime} \rightarrow 0 \mu$-a. e.. If we set $Z_{2}=\left\{x ; x_{n_{k(i)}}^{\prime}(x) \rightarrow 0\right\}$, then $\mu\left(Z_{2}\right)=1$. Since $y \notin Z_{2}$, it follows that $y \notin K(\mu)$. Other assertions follow from Theorem 2.

This completes the proof.
Lemma 2. Suppose that $\mu^{*}(C(\mu))>0$. Then μ is scalarly centered at 0 .
Proof. Take any $x \in E$ and any Z of the form $Z=\left\{y ; x_{n}^{\prime}(y) \rightarrow 0\right\}$ such that $\mu(Z-x)=1$. Since $K\left(\tau_{x}(\mu)\right) \subset Z$, it follows that $\mathrm{C}(\mu) \subset x+Z$ and hence $\mu(Z+x)>0$. Thus we have $(Z-x) \cap(Z+x) \neq \phi$, that is $x \in Z$, which shows that μ is scalarly centered at 0 . This proves the lemma.

Theorem 6. Suppose that μ is uniform. Then it holds that $\mu^{*}(C(\mu))=$ 0 or 1 . In fact if $\mu^{*}(C(\mu))>0$ then we have $C(\mu)=K(\mu)$.

Proof. If $\mu^{*}(C(\mu))>0$, then μ is scalarly centered at 0 by Lemma 2. By Theorem 1 (1), we have $C(\mu)=K(\mu)$. Thus the assertion follows by Theorem 2.

This completes the proof.
REmark 2. There is an example of a uniform measure μ such that $\mu(K(\mu))=1$ and $\mu(C(\mu))=0$. For example, let μ be a probability measure
on \boldsymbol{R}^{2} without point mass concentrated on the affine subspace $H=\{(t, 1) ; t \in$ $\boldsymbol{R}\}$. Then μ is uniform since μ satisfies the $0-1$ law for closed subspaces. In this example, we have $K(\mu)=\boldsymbol{R}^{2}$ and $C(\mu)=\{(t ;-1) ; t \in \boldsymbol{R}\}=-H$.

Lemma 3. Suppose that $\mu^{*}(S C(\mu))>0$. Then μ is strictly scalarly centered at 0.

Proof. The proof is analogous to that of Lemma 2.
Theorem 7. Suppose that μ is uniform. Then it holds that $\mu^{*}(\operatorname{SC}(\mu))$ $=0$ or 1 . In fact if $\mu^{*}(S C(\mu))>0$ then we have $S C(\mu)=S K(\mu)$.

PROOF. If $\mu^{*}(S C(\mu))>0$, then μ is strictly scalarly centered at 0 by Lemma 3. By Theorem 1 (2), we have $S C(\mu)=S K(\mu)$. Thus the assertion follows by Theorem 5.

This completes the proof.
THEOREM 8. Suppose that μ is uniform. If $\mu^{*}(S A(\mu))>0$, then $\operatorname{dim}(\operatorname{span} S A(\mu))<\infty$.

Proof. Since $S A(\mu) \subset A(\mu)$, the assertion follows by Theorem 4.
Remark 3. There is an example of a uniform measure μ such that $0<$ $\mu^{*}(S A(\mu))<1$. Let ν_{1} be a probability measure on \boldsymbol{R}^{2} without point mass concentrated on $H=\{(t, 1) ; t \in \boldsymbol{R}\}$ and $\nu_{2}(A)=\lambda_{G}(A \cap\{(t, s) ; t \in \boldsymbol{R}, s<0\})$ where λ_{G} is the centered Gaussian measure on \boldsymbol{R}^{2} with covariance matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then $\mu=\nu_{1} / 2+\nu_{2}$ is uniform since μ satisfies the $0-1$ law for linear subspaces. In this example, we have $S A(\mu)=H$ and $\mu(S A(\mu))=1 / 2$.

Acknowledgements. The authors would like to express their gratitudes to the referees for their helpful advices.

References

[1] A. DE Acosta : Stable measures and seminorms, The Annals of Probability 3 (1975), 865-875.
[2] C. Borell: Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239-252.
[3] C. Borell : Random linear functionals and subspaces of probability one, Ark. Mat. 14 (1976), 79-92.
[4] S. CHEVET : Kernel associated with a cylindrical measure, Lecture Notes in Math. 860, Springer-Verlag, 1981, 51-84.
[5] R. M. DUDLEY : Singularity of measures on linear spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 6 (1966), 245-252.
[6] J. HOFFMANN-JØRGENSEN : Integrability of seminorms, the 0-1 law and the affine kernel for product measures, Studia Math. 61 (1977), 137-159.
[7] S. KWAPIEN and W. SmOLENSKI: On the nuclearity of the dual space with convergence
in probability topology, Z. Wahrscheinlichkeitstheorie verw. Gebiete 59 (1982), 197-201.
[8] Y. OKAZAKI and Y. TAKAHASHI: Nuclear subspace of L^{0} and the kernel of a linear measure, to appear in J. Multiv. Analysis, Vol. 21 (1987).
[9] A. PietsCH : Nuclear locally convex spaces, Ergebnisse der Math. 66, Springer-Verlag, 1972.
[10] Y. TAKAHASHI Partially admissible shifts on linear topological spaces, Hokkaido Math. J. 8 (1979), 150-166.
[11] Y. TAKAHASHI and Y. OKAZAKI : Uniform measures on linear spaces, Hokkaido Math. J. 16 (1987).
[12] J. ZINN : Admissible translates, of stable measures, Studia Math. 54 (1976), 245-257.
Department of Mathematics Kyushu University and Yamaguchi University
(Current address: Yasuji TAKAHASHI, School of Health Sciences, Okayama University)

