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On the energy decay of a weak solution of the
M. H. D. equations in a three-dimensional exterior domain
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Introduction

Let O be a bounded domain in R?® with smooth boundary 0. We set
Q= R*—0. For simplicity, we assume that Q is simply connected. In @
: =0 X% (0,00), we consider the following magnetohydrodynamic(M. H. D.)
equations ;

oit— Adu+(u, V)u+ BXrotB+Vrn=f in Q,

0.B— 4B+ (u, V)B—(B, V)u=0 in Q,
(M.H.D.) div =0, div B=0 in Q,

u=0, Bev=0, rotBXxv=0, on 9) X (0, c0),

ul,:():uo, B|t:0:Bo-

Here u=u(x, t)=Cu'(x, t), u*(x, t), u*(x, 1)), B=B(x, t)=(B'(x, t), B?
(x, t), B*(x,t)) and #==n(x, t) denote respectively the unknown velocity
field of the fluid, magnetic field and pressure of the fluid, f=f(x, )=
(f'(x, t), f2x, t), f3(x t)) denotes the given external force, uo=1(x)=
(uo(x), us(x), ui(x)) and By=B,(x)=(Bs(x), Bi(x), Bi(x)) denote the
given initial data and v denotes the unit outward normal on 2.

Our problem reads as follows.

PrOBLEM
Construct a weak solution {u, B} of (M. H. D.) on (0,00) such that

E():=1/2) [ (ulx O*+|Bx D% dx

tends to zervo as t—co.

In this paper, we solve this problem affimatively. To this end, we shall
use the methods developed by Masuda and Sohr in the case of the
Navier-Stokes equations.

As is shown by Masuda [5, Corollary 2], we shall show at first that if
{u, B} is a weak solution of (M.H.D.) such that E(¢) tends to some
constant E as t—oo, then E=0. For such a weak solution, we shall
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construct the one satisfying the energy inequality of strong form (see
Masuda [5, subsection 1.2 Remarks 3]). This procedure is due to Sohr [10].

1. Preliminary and Result

1.1 of weak solution
Let us introduce some function spaces. o s() denotes the set of all
C=-real vector functions ¢ =(¢"', ¢? ¢*) with compact support in Q such
that div ¢ =0. H is the completion of C{,(Q) with respect to the L?*-norm
I I ; (,) denotes the L%-inner product. The Hilbert space V, is the
subspace of the Sobolev space H§(Q)3, consisting of all vector functions # in
5(Q)* with div «=0. The Hilbert space V, is the subspace of the Sobolev
space H'(Q)3, consisting of all vector functions B in H'(Q)?® with div B=0
in Q and B+«v=0 on 2Q.
If X is a Hilbert or Banach space, then L?(0, T ; X), 1< p<co, denotes
the set of all measurable functions #(¢) with values in X such that

fTI!u(t) 1% dt<oco(| |y is the norm of X). L=(0, T ; X) denotes the set
0

of all essentially bounded (in the norm of X) measurable functions of ¢ with
values in X. In the case of X =L"(Q), wedenoteby | |I.,and | |, - the
norms on L?(0, T ; L"(Q)) and L=(0, T ; L"(Q)), respectively.

Let C™([s, t]; X) denote the set of all X-valued m-times continuously
differentiable functions of z(s<z<t¢). For an interval I, C{"({ ; X) is the
set of all X-valued m-times continuously differentiable functions on / with
compact support in I. Throughout this paper, C denotes the positive
constants which may change from line to line.

We define a weak solution of (M. H.D.) for v, &H and B,&H as
follows :

DEFINITION

Let vweH, BB.€H and f<L'(0,c0; H).
A pair of measurable functions # and B on Q is called a weak solution of
(M.H.D.) if

(i) ueLl>0,c0; H)NL}(0,00; V). BEL*(0,00; H)NL{(0,00; Vo).
(ii) For any ® €Ci([0,0); Vi) and any ¥ &Ci([0,0) ; V), the equalities

fow{—w, 0.0)+ (P u, PVO)+((u, VYu— (B, V)B,®)} di

:<m,<1><0>>+f0°°o: ®) dt 1.0

fom{—w, 30+ (rot B, rot W)+ ((u, V)B—(B, P)u,¥)} dt
=(B,, v(0)) (1.2)
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are satisfied.
Concerning the definition of weak solutions of (M. H.D.), see Sermange and

Temam [8].

The following lemma is essentially due to Serrin [9]. Hence we omit the proof.

LEmma 1.1

Let {u, B} be a weak solution of (M.H.D.). After a suitable
vedefinition of u(t) and B(t) at a set of measure zevo on (0, 0), we have
that both u and B ave weakly continuous in H as functions of t and that for
any s<I,

ft{—-w, 3, 0)+ (VP u, VO)+(u, V)u— (B, F)B, ®)) dr

=—(u(t), () +(uls), c1><s>>+f‘o§q>> dr (1.3)
/t{—(B, 9,%)+ (rot B, rot W)+ ((u, P)B—(B.V)u, W)} dr
= —(B(D), WD)+ (B(s), ¥(s)) (1.4

Jor every ®EC'([s, t]; Vi) and every ¥ &C'([s, t]; Vo).

1.2 Operators A,,, and Ay,
Let H, be the closure of C5°,(Q) in L(Q) : =L(Q)3*(»>1). Asis well
known, we have

L (Q)=H,®G, (direct sum),

where G,={VzE€L"(Q) ;x €L}, (Q)}.
Let P, be the projection operator from L"(Q) onto H, along G,. We
define the operators A, ,, and Ay, as follows:

D(AD(7)>:Hrﬂ{u€W2' Q) ; u’agzo},

Apiyu=—P, du for u€D(A,,,,),

DAy, ) =H,N{BEW?>"(Q) ; Bev=0, rot BXv=0 on 3Q},
Ay B=— 4B for BED(Ay,,,).

Note that A, ,, maps D(Ay,,,) into H,.

It follows from Miyakawa [6, 7] that both —A,,,, and — A,,,, generate
the holmorphic semi-groups ¢, ande ", in H,. Moreover, we can
define the fractional powers A%,,, and A%, of ADM :=1+A4,.,,and Ay, :

=1+Ay,,, respectively.
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REMARK 1.2

We denote A, and Ay, simply by A, and Ay, respectively. Let
a,(, ) and ay( , ) be non-negative quadratic forms on V, and V.,
respectively defined by

ap(u, v)=_(Vu, Vv) foru, vEV)
and
ay(B, C)=(rot B, rot C) for B, C&€V;.

Then A, and A, coincide with the self-adjoint operators defined by a,( , )
and a,( , ), respectively. Hence we have

DAY =Vi, 1A% ul*=1V ul? for u€D(ALD, (1.5)
DAY =V,, |AX*B|*=|rot Bl for BED(AY>. (1.6)
1.3 Result

We can now introduce the following assumptions.
Assumption 1

~.

o is in HND(ASA2 ) and B, is in HND (AN ), where 7
=5/4 and € >0.

Assumption 2
fis in L'(0, 00 ; L*(Q)) N L*(0, 00 ; L*(Q) N L™(0, 00 ; L*(Q)).
Our result reads:

THEOREM

Under the assumptions 1 and 2, there exists a weak solution {u, B} of
(M. H. D.) such that

E@ :=0/DUuOPP+ 1B

tends to zero as t—oo.
We shall prove this theorem with the aid of the following two proposi-
tions.

PROPOSITION 1
Let uy and B, be in H and let f be in L'(0,00 ; L*(Q)). Then any weak
solution {u, B} of (M. H. D.) with

me Vulr)|? dr<co and foo Irot B(z)|? dr<co satisfies
0 0
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lim {[(A4+Ap) u® [+ 1A+ A B |} =0. (W.D)

t—o0

PRrROPOSITION 2
Under the assumptions of there is a weak solution {u, B} of
(M. H. D.) such that the energy inequality of strong form :

() I+ IBCOIE+2 [ (17wl P+ vt B(D)I®) dr
< Ju) P+ B F+2 [ (), u(r) dr (E.L S)

holds for almost all s=0, including s=0. and all t>s.
Propositions 1 and 2 are essentially due to Masuda [5, Theorem 4] and to
Sohr [10], respectively.

1.4 Proof of Theorem

For a moment, we assume that the propositions 1 and 2 hold true. We
follow the arguments developed by Sohr [10].

Let {u#, B} be the weak solution of (M. H.D.) costructed in Proposition
2. As is shown by Masuda [5, Corollary 1], it follows from (W.D.) that

lim [ E(r) dr=0. 1.7

t—co Jt

On the other hand, by (E.I.S.) we have

E(l‘)éE(S)JrMofstHf(r) | dr 1.8)

for almost all s=0, including s=0, and all ¢>s, where M,: =sup lee(z) .
T>

For &>0, we choose s,=s(e) such that wllf(r) | dr<e/2M,.
Moreover, we see that the measure of theset {7=s;; S& (r)<e/2} cannot be
zero, since otherwise we have ft tHE (r) dr=¢e/2 for any t=s, and this
contradics (1.7).

Hence there is s,=s, such that E(s;) <e/2. It follows from (1.8) that

EWSEG)+M, [TIf (D] dr<e/2+e/2=e

for all £>s;. This completes the proof of Theorem.
We shall prove the propositions 1 and 2 in sections 2 and 3, respectively.
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2. Proof of Proposition 1

In this section, we follow Masuda [5].

At the first step, we show that zero is not an eienvalue of A, or A,. In
fact, by (1.5) it is easy to see that zero is not an eigenvalue of A,.
Suppose that A,B=0 for BeD(A,). Then by (1.6), rot B=0 in Q.

Since div B=0 in Q and since B.v=0 on 8Q, it follows from the classical
potential theory that there is a scalar function p with pELL.(Q), pe
L*(Q) and

4p=01n Q, 9p/0v=0 on aQ

such that B=F p.
According to Miyakawa [7, Lemma 1. 4], such p must satisfy that 7 p—=
0 and hence B=0. Thus zero is not an eigenvalue of A,,. At this stage, as

is shown by Masuda [5], it suffices to show that there is a positive number
C such that the inequality

1A+ AR u(t) P4+ 1+ Ap) B (1) |)?
< ”e—(t—s)A (1+AD>*”4M(S> “2+ ”e—<t—s>A (1+AN)71/4B(S> “2

C [P uCo) I+ Irot B(r) ) dr+ C[W@ldr @D

holds for all 0<s<t.
In fact, we have

lim [e™ =241+ A,) " u(s) [*=0,

t—o00

lim e 914+ A4 )" "B(s)|?=0

t—oco
for any s=0, since zero is not an eigenvalue of the non-negative self-adjoint
operator A, or Ay. Therefore letting ¢ tend to infinity in (2. 1), we get

tlim sup [(14+Ap) " u(t) H2+t1im sup [(1+A,) "Bt |?
=C [P uto) ot B de+C [7If (0] de.

It follows from the assumptions of this proposition that the right hand
side of the above inequality tends to zero as s—oo. Hence we obtain the
desired result.

Now we shall prove (2.1).

Suppose that p is a C* function in R* with support in |#|<1 such that
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p(t)=0, p(t)=p(—1t) and /wp(t) dt=1. For >0 and 2>0, we choose
the test functions ®=®, , and Y=V, , in (1.3) and (1.4) as follows;

2, (D=U.(0) [ ‘p(r—0)Ulo)u(o) do,

V. (D)= V(0 [ pz—0) V() B(o) do, (sST=1)

where p,(7)=1/Wp.(z/h), U (z)=e T4 (14+A,) " and V.(z)=
e” st (14 A7, Then we have the followings :

(i) @.,€C'((s t]; VoNC s, t]; DAY,
Y, ,ECY([s, t]; VooNC (s, t]; D(AW)

and the equalities
t
8.0, (1) =A@, ,()+ U(2) [ 8,p(r—) U, ()ulo) do,
BN ()= AT WD)+ V(D) [ 8p(z—) V.(0)B(o) do.

hold.
(ii) There is a positive constant M, such that the inequalities

sup @, (D) I=M,, sup IV, (DI M,,

>0 >0

Sglg H(De #(T) ||L3(Q) <M, Sg% “q)e 2(T) ”LG(Q) =M,
sup AR, (D)< M,

>

hold for all e >0 and all 2> 0.
(iii) There is a positive constant M, such that the inequalities

) t ¢

%11_r>r01 supfs 1@, () Lo, dr < szs 17 u(z)|? dr,
lim sup ft 1AV, ()| de< sztllrot B(o)|? dr
h—0 S S

hold for all & >0.

In fact, (i) can be seen casily. Since A, and A, are non-negative
self-adjoint operators in H, we have |U,(7) |z, ,=1and | V.(2) g, =<1 for
all e>0 and all z=0. Hence it follows

sup @, ,(z)[<sup lu(z)|l and sup ¥, ,(z)|<sup [|B(z)|
>0 >0 >0 >0
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for all >0 and all 2> 0.
Similarly, since |AN*(1+Ay) gy, =1, we have

sup AN, (1) Hésu% IB(z)| for all >0 and all 2>0.
> >

Moreover, by the Sobolev’s imbedding theorem, we have (1+A4,) "¢ &
L*(Q) and (14+Ay) "¢ €L5(Q) for all ¢ €H. It follows from the closed
graph theorem that (14+A4,)"“&B(H, L*(Q)) with bound C, and that
(1+A,)"*&€B(H, L(Q)) with bound C,. (B(X, Y): the set of all
bounded linear operators from X to Y) Then we have

sup [P, ,(7) [l :q, =< C%sup |lu(z)| and
>0 >0

SUD “(De h(7> I|L5(Q)§‘ CZ Sup HM(T> H

>0 >0

for all e>0 and 2>0. Hence (ii) follows.
By the Sobolev inequality and (1.5), there is a constant C, independent
of € or & such that

19,4 oo <G [ ‘pr(r— ) |AY u(o) |? do. (2.2)

Integrating both sides of (2.2) in 7 from s to ¢ and then taking #—0, we
have

lim sup [ 1. () P, dr
. p i e h Le(Q)
t
<G [1A¥ u P dr=C [ 17 ul) dr,
since | Fu(« )| &L*0,00). Similarly by (1.6), we have

lim sup [*IAK* ¥, ()| dr< [ ‘Irot B(o)|? dr.

Hence (iii) follows.
Now substituting ®=®, , in (1.3) and ¥=¥, , in (1.4) and then

adding these equations, we have
fst{((u, P)u+Bxrot B, ®, )+ ((u, P)B—(B, Pu, ¥, )} dr
=—(u(t), ®.,()—(BW), ¥, ,(D))+(uls), ®, ,(s)
B, Yo+ [(f0.0 dr, 2.3
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since the following identities hold :

[, 3.0 )@+ (P u(®), 7O, (2D} dr
= [(=u(®), 42,2+ V(D) [‘3.pu(r—0) Ul ulo) do)
+u(r), Ap®, ()} dr (by (1))
=~ [ [ ap(z—a)(U.(Ou), Ulo)u(o)) dodr
=0 (by the symmetry of p),

[ (=B, 3%, () + (ot B(x), rot ¥, ,(0)} dr
= [({=B®), 4V D+ V(D) [Bp(r=0) V(@) B(o) do)
+(B(r), Ay¥, (v} dr
S ft]t 3.pu(t— ) (V.(1)B(1), V.(6)B(0)) dodr=0.

By the Holder inequality, the Gagliardo-Nirenberg inequality (see, e. g.,
Tanabe [12, Capter 1 Lemma 1.2.1]) and Duvaut-Lions [2, Capter 7
Theorem 6.1], we have

and

lft((u, V)u+BXrot B, ®, ,) dr/|
gf%”““[j(g) 17l ||(I)e,hHL3(Q)+HB”L3(Q) Irot Bl ”q)e,h”Lb‘(Q)> dr
t

=sup [0,,4(7) | 2y fs lotl oy | 7 2]l

t
+C fs IB % IBI"2[rot B 1@, 4l ;q, dr
<Csup [@, (o) | WP ul? de+Csup 1B [ 1@, 4lPra, d
= S,‘i% en(T) L»?m)'/; ull” ar + ST‘iIg 7) j; e.nll'Loy AT

t

+C(sup D, 1(2) [ 1eq,+sup |B(z) li)f lrot BI?* dr

>0 >0 S

t
<2CM, [ (U7 ul+ Irot B+ 19, ufra) de (by (i)

| [ 7IB=(B 7w ¥, dr
= | [‘trot (Bxw), ¥, dr!:lfst(BxM, rot ¥, ,) dr|
t
< 1Bl a0t ¥, | de

t i
<C [CIBI"IB I, 17 ul Irot ¥, | dr
S
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<C [ (vt BI+IBIDI7 ul lrot . 4| dz

<C sup ot ¥, ()| [ (Irot B+ 7 ul?) d=

+Csup IB| [P ult+ lrot ¥, 4 dr

<2CM, [ (17 ul*+lrot B+ Irot ¥ ,[» dr,  (by (ii))

where C is a positive constant independent of ¢ or 2. Taking 2—0 in the
above inequalities, we have by (iii)

lhil’I(‘)l sup ]ft((u, V)u+BXrot B, ®, ;) dr|
t
<4CM, f (17 wl?+ [rot B|® dr 2.4)
and
lim sup |/’<<u, VYB—(B, V)u, ¥, ) dr|
h—0 S
<4CM, j:(lquHz—i—l|rot BI®) dr (2.5)

for all e >0. Clearly the inequality

|fstcf,c1>e,h> dr|< M, fst I£1l dz (2.6)

holds for all e >0 and all 2>0.
Moreover, since U,(c)u(o) and V.(6)B(c¢) are continuous in o &
[s, t] in the weak topology of H, it follows that

lim lim (u(#), @, ,(t))

e—0 h—0

=lim lim [ pu(z—0)(U.(Hu(t), U.()u(c)) do

e—0 >0
:ilfol {W/2DNUHul)?}
=1/ 1A+Ap) " ult)|? 2.7
and that

lim lim (B(®), ¥, () =Q/D A+ A0 "B@®|* (2.8

e—0 h—0

Similarly we have
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lm lim (u(s), @. () =(1/2) le”"" %1+ Ap) " u(O |?
2.9

and

lim lim (B(s), ¥, x(s))=1/Dle” "MW1+ Ay B(s) [
(2.10)

Now letting 2—0 and then e—0 in (2. 3), we get the desired estimate (2.1)
by (2.4)-(2.10). This completes the proof of Proposition 1.

3. Proof of Proposition 2

In the case of the Navier-Stokes equations, Proposition 2 is due to Sohr
[10]. Since our argument is parallel to that of [10], we shall give an
outline of the proof. The L,-estimates of the solution for linearlized
equations of (M. H.D.) play an important role.

We approximate (M. H.D.) by the following initial-boundary value
problem (A.P.),, k& being an arbitrary positive integer ;

owuu— du+ Jou, V)Ou—(L,B, V)B+Vx'=f in Q,
o:B— 4B+ (Juu, V)B—(L,B, V)u+ Vz?*=0in Q,

(A.P), divu=0, div B=0 in @,
u=0, Bev=0, rot BXxv=0, on 9Q X (0, c0),
ult:O:]kuO; BIt:t:LkBO;

where J,.=(1+ (/) A, and L,= A+ 1/ A)
Note that A,=1+A, and 4, =1+A4,.

Since H*(Q)CL>(Q), J.u and L,B are in L*(Q) for all # and B in H ;
so there exists for each & a solution {u, B, z', z%}={u., Bs, n}, 2} of
(A. P.), satisfying the following properties :

(i) Forany T>0,
ucsl*0, T; D(Ap))NL=(0,c0;H), w'L*0, T ;H),
Va'eL*(0,T; L*(Q)),
BeL*0, T;D(Ay))NL=(0,0; H), B€L*0, T ; H),
Va*eL*0, T ; L*(Q));

(ii)
w— du+ (Juu, V)u—(L.B, V)B+Vx'=f in L*(Q), 3.1
B — 4B+, V)B—(L,B, V)u+ Vz?=0 in L*(Q) (3.2

for almost all =0 with
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u(0)=Juts, B(0)=L,By;
(iii) The inequality
sup o, (2) HZ+S¢1£ 1B (1) H2+f0w(l| V u, (o) I°+ llrot Bu(z) ) dz
<@+ 201F 10,0010 U@ PP+ 1F 1210, 005100 €XP 1S 20,01
(3.3

holds for all k. -

By (3.3) there exist a subsequence of {u., B.}, which we denote by
{un, B,} for simplicity, and functions u« €L>(0,c0; H) N L{,(0,00; Vi) and
BeL~(0,00 ; H)N L (0,00 ; V,) such that

in L=(0,00; H) weakly-star,

Mp— U

" in L2(0, T ; Vo) weakly,
: (3.4

in L*(0,c0; H) weakly-ster,

B}[‘“’B .
in L*(0, T ; Vo) weakly,

for all 7T°>0.

Moreover, we can choose a subsequence of {u,., B.}, which we denote by
{u,, B,} for simplicity, such that

u,—u in L*(0, T ; L*(K)) strongly,
(3.5)
B,—B in L*0, T ; L*(K)) strongly

for all 7 >0 and all compact set K contained in .

Indeed, for a complete orthonormal system {¢,}%, (¢, €C5’-(Q)) in H,
we see that for each fixed j the families {(u.(%), ¢,) }5-1 and {(B.(1), ¢,) }r=1
respectively form uniformly bounded and equicontinuous ones of continuous
functions on [0, T] (see, e. g., Ladyzehenskaya [3, p.175]). Hence by
the Ascoli-Arzerd theorem and the usual diagonal argument, there exist
subsequences #,(t) and B, (t) of u.(t) and B.(#) which converge respecti-
vely to some #(¢) and B(t) uniformly in ¢ €[0, T'] in the weak topology of
H. For simplicity, we shall assume that the original sequences u, and B
converge respectively to # and B. Hence using the techniques of the
Friedrichs inequality (Courant-Hilbert [1, p.519]) and Duvaut-Lions [2,
Chapter 7 Theorem 6.1], we have (3.5) by (3.3). See, e. g., Ladyzehen-
skaya [3, p.176].

Now by (3.4) and (3.5), it is easy to see that {#, B} is a weak
solution of (M. H.D.).
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To show that this {#, B} is the desired solution, we need the following
lemma.

LemMma 3.1

For any T >0, we have the followings :

(i)  The sequence w, and the sequence B, rvemain in a bounded set of
L*0, T ; W>7(Q)). The sequence u, and the sequence B) remain in a
bounded set of L*(0, T ; L"(Q)). (#,=5/4)

(i) The sequence V n}, and the sequence V ni vemain in a bounded set
of L*(0, T ; L*(Q)).

(iii)  The sequence n} and the sequence mi remain in a bounded set of
L"’(O, T ;LSVO/(B*;'O)(Q)).

PROOF.
We can rewrite the equations (3.1) and (3.2) respectively as

Ui— dup+ Vri=F} in L*(Q), (3.6)
Bi— 4B+ V#i=F%in L*(Q), 3.7

Whel‘e i:f—(fkuk, V>Mk+<LkBk, V)Bk and FZZ—Ukuk, V)Bk"l‘
(L.B., V)u.,. Then we have

the sequence F', and the sequence F?% are bounded
in L7C0, T ; L*(Q)). (3.8

In fact, by the Holder inequality, the Gagliardo-Nirenberg inequality
(Tanabe [12, Chapter 1 Lemma 1.2.1]) and Duvaut-Lions [2, Chaptrer 7
Theorem 6.1], we get

”]kuk, V)u, “5/4§ “]kuk “10/3 “ V uy ”
< CIP Jatu V| g 50239 |
S Clou PPV e 1¥°< Cllage 3% | 7 w15,

T
| Uatte, 7 lsasin = Cllan 25 ( /O |7 wu () |2 dt)¥s

< Clluel3 17 unl3s,
I(LiBr, V) trllsis < | LuBe oz V B [
<C|L.B. ”31(111/(%53/10) | Ly B, |23 7 B, |
S ClBel3% Clrot Bel+ 1B )"
S CU B3 o+ [ Bel3% [rot B, [*®),
ICLeBe, V) Belisiasias CU Bl o+ 1B 3% [rot B33,
[(Jette, V) Bllsia= ”]kuk o | 7 Byl
< C P Jurtn |PV2310| Jaa, | 1202360 | 7 B, |
< Clou 3%V we [*°1 7 Bl
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< Clae 3%V up P°Clirot Bel+ 1Be D
S CUur 3517w P rot Bill 4 ot 132 1| Bi ll2,eo | 7 242 %),
”(.[kuk’ V>Bk H5/4 5/4

< C{ llute |2 (f 17 2 [**|lrot B, [** dt)**

B2 Bl [ 17 20 d)*)

= Clunl3% 7 w33 Irot Byl 2+
22 132 | B 2,0 | 7 24 133,
ICLeBy, V) tp | S N LeBi 103l V7 24l
< C| LB “31511’/(%53/10) | LeBy |22 300 7 44, ||
< C|B:l3%Clirot Bel+1BelD¥*| 7
ICLiBy, V) ttrllas.as

< ClB.l5% {f (Irot Bell+ 1B D¥*I 7 we|** dt }*°
S CIBl3Sl 7 trllo, o Cllrot Bellz 2+ | Billz )™,

where C is a positive constant independent of 2. Hence we obtain (3.8) by
(3.3).
On the other hand, since u, €D (A5 Y/*¢) and since B, €D (A Y lir+e

7’ ’

(1) and (ii) follows from Solonmkov [1], p. 489 Corollary 2] and
Ladyzehenskaya-Solonnikov-Ural’ceva [4, Theorem 10.4]. Now we shall
show (iii). We set

gy=—usr+ du,+ F} and
gi=—B,+ 4B.+ F3.

Then for all ¢ €C5(Q %[0, T]) with div ¢ =0, we have

f’f gilx, e (x, ) dedt=0 (i=1,2) (3.9)

and the inequalities

IfTL gi(x, D (x, 1) dudt|
oT ‘
< [T1giCO 1l (01t
T
<C fo lgiCE L7 b () lsnscan—sy dt (by the Sobolev inequality)

é C ”gllz “rn, 7 H V d) “(37’0/(3—7’0)}*, res

where C is a constant independent of Z.
(For r>1, v*=r/(r—1).)
Hence we have by (i) that
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the sequences {gi}%-, (i=1,2) are bounded in
Lm(O’ T ’ W1,3ru/(37r0) (Q) *) )

(X * denotes the dual space of X.)

Since 7 is a bounded operator from L*(0, T ; L3/~ (Q)) into L*(0, T ;
W L3n/dn=3y*) it follows from (3.9) that there exist sequences
(7ive(i=1,2) bounded in L”*(0, T ;L*/3~™(Q)) such that gi= V7.
Since we may assume that z.=z., we have (iii).

Let #n=7.(x) (m=1,2,...) be a sequence of C=-functions in R? such
that 0<#,<1, | P #.|<C, C being a constant independent of m, and that
nm(x)—1, V nn(x)—0for each x&R®. Now take the inner products with
nmu, in (3.1) and #,B. in (3.2) respectively, add the resulting equalities
and then integrate in 7 over [s, t]. Then, after integration by parts we get

[ anClaCO 124 1Bt [9de+2 [ [ 9|7 [+ vt Bl dde
Q s Q
t
= [ anClaa(o) 4+ 1 Be(o) [Dax+2 [ [ (f maia) dxd
+2 [ [ 77 B11RS dudr, (3.10)

where RL=(1/2)V |u. |*+ B. Xrot B,,
Ri= (up By) LB, — (1/2) (lut |*+ | Be | D Juth and Ri=m st + 5B

Then it follows from (3.3) and Lemma 3.1 that {RL}%.., {R%}%, and
{R}}%-, remain in a bounded set of L'(Q;)*NL*(Q;)? L'(Q)*NL"
(Qp)%and L'(Q;)*NL¥*(Q,)° respectively (Q;=Qx (0, T)). Weset g, =
5/4, ¢;=10/9 and ¢s=30/29. For each i=1, 2, 3, there exist a subsequence
of R}, which we denote by R for simplicity, and functions R*'EL'(Q,)*N L*
(Q7)? such that

lim ftﬁz Vyn R dudr= f% Voyn R dedr (i=1,2,3)
(3.1D

hold for all m. Moreover, since |V n.(x)R'(x, ©) | C|R'(x, )| (i=1,2,
3) for all (x, 7) €Q; and all m and since |V 7.(x)R'(x, ) |—=0 (1=1,2,3)
for each (x, ) €Q; as m—oo, it follows from the Lebesgue’s dominated
convergence theorem that the right hand side of (3.11) converges to zero as
m—oo. Hence taking lim. inf in £ and then letting m—co in (3. 10), we see
by (3.4) and (3.5) that {«, B} satisfies (E.1.S.) for almost all s=0,
including s=0, and all £t>s. This completes the proof.
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Added in proof :

After this paper had been submitted, Professor Dr. Wolf von Wahl
kindly informed the author the result of H. Sohr, W. von Wahl and M.
Wiegner : Zur Asymptotik der Gleichungen von Navier-Stokes, Nachr.
Akad. Wissenschaften Gottingen II. Math. Physikalische Klasse
Jahrgang 1986, Nr. 3, 45-59. Then he pointed out that Assumption 1 might
be weakened as follows :

u, and B, are in HNH,,, respectively.

Under this assumption, we can obtain the same result of Theorem in the

similar manner as the above paper.

The author would like to express his thanks to Professor Dr. Wolf von
Wahl.
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