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\S 1. Introduction

Let G be a locally compact Abelian group with dual group \hat{G} and let m_{G}

denote the Haar measure on G. Let L^{1}(G) and M(G) be the group algebra
on G and the measure algebra on G, respectively. For a subset E of \hat{G}, M_{E}

(G) denotes the space of measures whose Fourier-Stieltjes transforms vanish
off E. For \mu in M(G) , \mu_{s} denotes the singular part of \mu with respect to m_{G} .
For a closed subgroup H of G, H^{\perp} means the annihilator of H. The
symbols Z, Z_{+} , R, R_{+} , and T will denote the integers, the nonnegative
integers, the real numbers, the nonnegative real numbers, and the circle
group, respectively.

For a locally compact Abelian group with ordered dual group, a relation
between the F. and M. Riesz theorem and the group structures was
investigated in [3] and [5] : if G is a locally compact Abelian group with
ordered dual group \hat{G} and if P is a nondense order in \hat{G}(i. e. , P is a nondense
subsemigroup of \hat{G} such that P\cup(-P)=\hat{G} and P\cap(-P)=\{0\}) , then M_{P}

(G)\subset L^{1}(G) if and only if G is isomorphic to R\cross\Delta or T\cross\Delta , where \Delta is
discrete. Moreover, there exists a nonzero measure \mu\in M_{P}(G) which is
singular with respect to m_{G} unless G=R\cross\Delta or T\cross\Delta for a discrete group \Delta .

In his recent paper, I. Glicksberg showed that the above result holds in
a more general setting:

THEOREM 1 ([2, Theorem 1]). Let G be a locally compact Abelian
group with dual group \hat{G} and let S be a proper closed generating subsemigroup
of \hat{G}(i. e. , S is a proper closed subsemigroup of \hat{G} such that S-S is dense
in \hat{G}J . Then

(i) there exists non-zero \mu\in M_{S^{c}}(G) which is singular with respect to
m_{G} unless G=R\cross\Delta or T\cross\Delta for a discrete group \Delta ,

(ii) if G=R\cross\Delta or T\cross\Delta for a discrete group \Delta and if \mu\in M_{S^{c}}(G) , then
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\mu is absolutely continuous with respect to m_{G} .

His proof for this theorem requires the theory of uniform algebra (the

existence of analytic discs, Gleason part, etc.), and is complicated. In
particular, the proof of assertion (ii) seems to be obscure. In this note, we
first prove a theorem which gives a relation between generating subsemi-
groups and orders in an ordered locally compact Abelian group (Section 2).

We next apply it to prove assertion (i) of Theorem 1. Also, we give a very
simple proof of assertion (ii) of Theorem 1 by using the original F. and M.
Riesz theorem (Section 3). Our treatment seems to be simpler and clearer
than that of Glicksberg.

\S 2. Generating Subsemigroups and Orders

In this section we prove a theorem which gives a relation between
generating subsemigroups and orders. Note that an Abelian group G is
ordered if and only if G is torsion-free ([3]). Our theorem is the following:

THEOREM 2. Let G be a torsion-free locally compact Abelian group and
let S be a proper closed generating subsemigroup of G. Then there exist x_{0}\in

G and a nondense order P in G such that P contains x_{0}+S.
To prove Theorem 2 we need a result due to Glicksberg. For complet-

eness we include the proof.

LEMMA 1 ([1, Section 1. 6]). Let n\in Z_{+} . Let F be a locally compact
Abelian group which contains a compact open subgroup and let S be a proper
closed generating subsemigroup of R^{n}\cross F satisfying S\cap(-S)=\phi . Suppose
that \pi(S)=F/F_{0} for some compact open subgroup F_{0} of F, where \pi denotes
the natural homomorphism from R^{n}\cross F onto F/F_{0} . Then there exists a

continuous homomorphism \rho from R^{n}\cross F to R which is nonnegative and
nontrivial on S.

PROOF. First note that we have n\geq 1 under our assumption. Indeed,
suppose n=0. Then we have F\neq F_{0} and F_{0}\cap S=\phi because a closed
subsemigroup of a compact group is a subgroup ([4, Theorem (9. 16)]), S
is proper, and S\cap(-S)=\phi . Let x\in F|F_{0} . Since \pi(S)=F/F_{0} , there
exists x_{0}\in F_{0} such that x+x_{0}\in S,\cdot similarly there exists x_{\acute{0}}\in F_{0} such that - x+
x_{\acute{0}}\in S. Thus we have x_{0}+x_{\acute{0}}=x+\chi_{)}+(-x)+x_{\acute{0}}\in F_{0}\cap S. But this is a
contradiction.

We put G=R^{n}\cross F, G_{0}=R^{n}\cross F_{0} , and S_{3}=G_{0}\cap S. Let \alpha be the
projection from G onto R^{n} . Note that G_{0}\cap S\neq\phi and hence \alpha(S_{)})\neq\phi

because \pi(S)=F/F_{0} . We now show that there exists a linear functional \Psi

on R^{n} which is nonnegative and nontrivial on \overline{\alpha(S_{)})} ( = the closure of \alpha(S_{)}) ).
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We first note that \overline{\alpha(S_{)})}\cap(-\overline{\alpha(S_{)})})=\phi . This can be easily verified by using
the fact that (\{0\}\cross F_{0})\cap S=\phi and a compactness argument. Moreover we
can show that

(1) (R_{+}\cdot\overline{\alpha(S_{J})})\cap(-R_{+}\cdot\overline{\alpha(S_{0})})=\{0\} .
Indeed, suppose tr=-t’r’ for t, t’>0 and r, r’\in\overline{\alpha(S_{)})} . Then r and r’ are
nonzero vectors because \overline{\alpha(S_{)})}\cap(-\overline{\alpha(S_{)})})=\phi . If t/t’ is rational, then
mr=-nrr for some positive integers m and n. But this contradicts \overline{\alpha(S_{)})}\cap

(-\overline{\alpha(S_{0})})=\phi . If t/t’ is irrational, then \overline{\alpha(S_{)})}\cap\{0\} contains { kr-l (t/t’)r :
k, l\in Z_{+}\} which is dense in the line through 0 and r . (Note that \{ k-1(t/f)
: k, l\in Z_{+} } is dense in R.) But this also contradicts \overline{\alpha(S_{)})}\cap(-\overline{\alpha(S_{0})})=\phi .
Thus we have (R_{+}\cdot\overline{\alpha(S_{)})})\cap(-R_{+}\cdot\overline{\alpha(S_{)})})=\{0\} . Let E be a linear subspace
of R^{n} generated by a maximal independent set in \overline{\alpha(S_{)})}. Then the interior
of R_{+}\cdot\overline{\alpha(S_{)})} in E is nonempty and so (1) implies R_{+}\cdot\overline{\alpha(S_{)})})^{-} is proper in E.
Thus (R_{+}\cdot\overline{\alpha(S_{0})})^{-} is a proper closed convex cone in E and its interior is
nonempty. Hence there exists a linear functional \psi on E which is
nonnegative and nontrivial on \overline{\alpha(S_{)})} . Let \Psi be an extension of \psi to R^{n} .
Then \Psi is a linear functional on R^{n} as asserted.

Now note that S\cap((r, x)+G_{0})\neq\phi for each (r, x)\in G because \pi(S)=

F/F_{0} . Thus, for each (r, x)\in G, we can define

h((r, x))= \inf\{(\Psi\circ\alpha)((r’, x’))=\Psi(r’) : (r’. x’)\in S\cap((r, x)+

G_{0})\} .

Then we have

(2) h((0,0))\geq 0

and

(3) h((r, x)+(r’, x\gamma)\leq h((r, x))+h((r’, x\gamma) .

Indeed, we have (2) because \Psi\geq 0 on \overline{\alpha(S_{)})} . Since

S\cap((r, x)+G_{0})+S\cap((r’, x\gamma+G_{0})\subset S\cap((r,x)+(r’,x\gamma+G_{0})

for all (r, x) and (r’, x\gamma\in G, we have (3). Note that h((r, x)) is finite for
each (r, x)\in G because

h((r, x))+h(-(r, x))\geq h((0,0))\geq 0

by (2) and (3).

Now put

\Sigma=\{(t, x)\in R\cross F : t>h(x)(=h((0, x)))\} .
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Then \sum is a subsemigroup of R\cross F by (3). Moreover we have \sum\cap(-\sum)=

\phi . Indeed, let (t, x)\in\Sigma\cap(-\Sigma) . Then t>h(x) , -t>h(-x) , and so
0\leq h(O)\leq h(x)+h(-x)<0 by (2) and (3). This is a contradiction.
Applying Zorn’s lemma, we can find a maximal subsemigroup \sum_{0} among the
subsemigroups \Sigma’ of R\cross F containing \Sigma with \Sigma’\cap(-\Sigma\gamma\subset\{0\} . Then we
can easily see that each element of \sum_{0} other than 0 has infinite order, while
(R \cross F)|(\sum_{0}\cup(-\sum_{0})) consists of elements of finite order. Since \sum_{0}\cap((t,
x)+R\cross F_{0})\neq\phi for each (t, x)\in R\cross F, which we can easily see, we can
define

H((t, x))= \inf\{ t’\in R:(t’. x\gamma\in\Sigma_{0}\cap((t, x)+R\cross F_{0})\}

for each (t, x)\in R\chi F. Since

(\Sigma_{0}\cap((t, x)+R\cross F_{0}))+(\Sigma_{0}\cap((t’. x9+R\cross F_{0})

\subset\Sigma_{0}\cap((t, x)+(t’x0+R\cross F_{0})

for all (t, x) and ( t’ . x\gamma\in R\cross F, we have

(4) H((t, x)+(t’. x0)\leq H((t, x))+H((t’, x\gamma) .

Note that H((t, x)) is finite for each (t, x)\in R\cross F. Indeed, by (4), it
suffices to show that H((0,0)) is finite. Let x_{0}\in F_{0} and t<-h((0,0)) .
Since ] h((0,0)) , \infty[\cross F_{0}\subset\Sigma\subset\Sigma_{0}, (t, x_{)})\in(-\Sigma_{0}) , and so (t, X_{)})\not\in \Sigma_{0}

because \Sigma_{0}\cap(-\Sigma_{0})=\{0\} . Hence (]-\infty, - h((0,0))[\cross F_{0})\cap\Sigma_{0}=\phi .
Thus we have - h((0,0))\leq t for each (t, x_{)})\in(R\cross F_{0})\cap\Sigma_{0} . This implies
H((0, O))\geq-h((0,0)) and so H((0,0)) is finite. In particular we have H
((0,0))\geq 0 by (4). We shall show that H is a continuous homomorphism
from R\cross F to R. We first show that H is a homomorphism. Let (/, x)\in

R\cross F. Then H((t, x))-\epsilon\neq 0 for all small positive numbers \epsilon and therefore
(H((t, x))-\epsilon , x) has infinite order. Thus we have (H((t, x))-\epsilon, x)\in\Sigma_{0}

\cup(-\Sigma_{0}) . But, in fact, we have (H((t, x))-\epsilon, x)\in(-\Sigma_{0}) by the
definition of H. Hence - H((t, x))+\epsilon\geq H(-(t, x)) and so - H((t, x))\geq

H(-(t, x)) . But then 0\leq H((0, O))\leq H((t, x))+H(-(t, x))\leq 0 and
therefore we have H(-(t, x))=-H((t, x)) . Now let (t, x) and (t’x\gamma

be in R\cross F. Then

H((t, x))=H((t, x)+(t’-x\gamma-(t’, x\gamma)

\leq H((t, x)+(t’x0)+H (-(t_{2}’x0)

=H((t, x)+(t’x0)-H((t’x0) .

By this inequality and (4), H is a homomorphism. To show that H is
continuous, first note that H^{-1}(R_{+}) has interior because R\cross F_{0}\subset H^{-1}(R_{+})

and R\cross F_{0} is open in R\cross F. Let (t_{0}, x_{)}) be an interior point of H^{-1}(R_{+}) and
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let U be a neighborhood of (0, 0) such that (4, x_{)})+U is included in H^{-1}

(R_{+}) . Choose a negative real number r_{0} such that H((t_{0}, x_{)}))+r_{0}<0 . We
can easily see the following: if H is discontinuous at (0, 0) , then, for each
neighborhood V of (0, 0) and each r<0 , there exists (t, x)\in V such that H
((t, x))<r. Thus we can find (t, x)\in U such that H((t, x))<r_{0} . But then

H((t_{0}, x_{0})+(t, x))=H((t_{0}, x_{)}))+H((t, x))

<H((t_{0}, x_{)}))+r_{0}<0 .

This is a contradiction. Thus H is continuous.
Now we define a continuous homomorphism \rho from G to R as follows:

\rho=\Psi\circ\alpha-H\circ\beta, -n-1-where \beta denotes the natural homomorphism from G=R\cross\ldots\cross R\cross(R\cross F)

onto R\cross F. It is easy to see that h\geq H\circ\beta on G and \Psi\circ\alpha\geq h on S. Thus \rho

is nonnegative on S. Since (\Psi\circ\alpha)((r_{0}, x_{)}))>0 for some (r_{0}, x_{)})\in G_{0}\cap S and
(H\circ\beta)((r_{0}, x_{)}))=H((0,0))=0 , \rho((r_{0}, x_{)}))>0 . Thus \rho is nontrivial on S.
This completes the proof.

PROOF 0F THEOREM 2. By the structure theorem of a locally compact
Abelian group ([4, Theorem (24. 30)]), G has the form R^{n}\cross F, where n\in

Z_{+} and F contains a compact open subgroup. Let F_{0} be a compact open
subgroup of F and let \pi denote the natural homomorphism from G=R^{n}\cross F

onto F/F_{0} . Put \tilde{S}=\pi(S) . Then it is easy to see that \tilde{S} is a closed
generating subsemigroup of F/F_{0} . (Note that F/F_{0} is discrete.) We
examine two cases.

Case 1: \tilde{S}\neq F/F_{0} . Choose \tilde{y}\in\tilde{S} such that -\tilde{y}\text{\‘{e}}\tilde{S}. Such a choice of \tilde{y}

is possible because \tilde{S} is proper and generating. It is easy to see that \tilde{y}+\tilde{S} is
a proper subsemigroup of F/F_{0} and (\tilde{y}+\tilde{S})\cap(-\tilde{y}-\tilde{S})=\phi . We claim that
there exists a subsemigroup \tilde{Q} of F/F_{0} such that

\tilde{Q}\cap(-\tilde{y}-\tilde{S})=\phi and \tilde{Q}\cup(-\tilde{Q})=F/F_{0} .

To prove this claim, let \sum denote the set of all subsemigroups of F/F_{0} which
don’t intersect (-\tilde{y}-\tilde{S}) . Then \sum is nonempty because {0} is included in
\sum . We define the partially order on \sum by inclusion relation of sets. It is
easy to see that \sum is inductively ordered. Hence, by Zorn’s lemma, there
exists a maximal element \tilde{Q} of \sum . Of course \tilde{Q}\cap(-\tilde{y}-\tilde{\theta}=\phi . We also
have \tilde{Q}\cup(-\tilde{Q})=F/F_{0} . To see this, suppose \tilde{Q}\cup(-\tilde{Q})\neq F/F_{0} . Then
there exists \tilde{z}\in F/F_{0} such that \tilde{z} and -

\tilde{z}\not\in\tilde{Q}. Since \tilde{Q} is maximal, there
exist positive integers m and n and elements \tilde{a} and \theta in \tilde{Q} such that

m\tilde{z}+\tilde{a}\in(-\tilde{y}-\tilde{S}) and -
n\tilde{z}+\theta\in(-\tilde{y}-\tilde{\theta} .
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Then we have
n\tilde{a}+m\theta=n(m\tilde{z}+ \text{\^{a}}) +m (-n\tilde{z}+b)\in(-\tilde{y}-\tilde{S}) .

But this contradicts the fact that \tilde{Q}\cap(-\tilde{y}-\tilde{S})=\phi . Thus we have esta-
blished the claim. Put

Q=\pi^{-1}(\tilde{Q}) .

Then Q is a nondense subsemigroup of G and Q\cup(-Q)=G. Choose x_{0}\in S

|(-S) such that \pi(\chi_{)})=\tilde{y}. Then (x)+S)\cap(-x_{)}-S)=\phi and Q contains
x_{0}+S. If Q\cap(-Q)=\{0\} , then we have only to put P=Q. Next we
consider the case where Q\cap(-Q)\neq\{0\} . If Q\cap(-x_{)}-S)=\phi , choose any
order Q_{0} in Q\cap(-Q) and put

P=(Q|(-Q))\cup Q_{0} .

Then we can easily see that P is a nondense order in G and that P contains
x_{0}+S. Finally, let Q\cap(-x_{)}-S)\neq\phi . Since Q\cap(-x_{)}-S) and (-Q)\cap
(x)+S) are subsemigroups and they are mutually disjoint, there exists an
order Q_{1} in Q\cap(-Q) such that Q_{1} contains (-Q)\cap(x_{)}+S) . (For the
existence of such an order, see [3, (2. 3) Lemma and (2. 5) Theorem .)

Now put

P=(Q|(-Q))\cup Q_{1} .

Then we can easily see that P is a nondense order in G and contains x_{0}+S.
Case 2: \tilde{S}=F/F_{0} . Choose s_{0}\in S such that -

s_{0} \’eS. Then s_{0}+S is a
proper closed generating subsemigroup of G and (s_{0}+S)\cap(-s_{0}-S)=\phi .
We also have \pi(s_{0}+S)=F/F_{0} because \pi(S)=\tilde{S}=F/F_{0} . By Lemma 1,
there exists a proper closed subsemigroup P_{0} of G such that P_{0} contains s_{0}+

S and P_{0}\cup(-P_{0})=G . Now choose t_{0}\in P_{0}|(-P_{0}) and put x_{0}=s_{0}+t_{0} . Then
it is easy to see that (-P_{0})\cap(x_{)}+S)=\phi and x_{0}+S is included in P_{0} . If P_{0}\cap

(-P_{0})=\{0\} , we have only to put P=P_{0} . If P_{0}\cap(-P_{0})\neq\{0\} , choose any
order Q_{2} in P_{0}\cap(-P_{0}) and put

P=(P_{0}|(-P_{0}))\cup Q .

Then P is a nondense order in G and contains x_{0}+S. This completes the
proof.

\S 3. Another Proof of a Theorem of Glicksberg

In this section we apply our theorem to give another proof of assertion
(i) in Theorem 1. We also give a simple proof of assertion ( ii) in
Theorem 1 by using the original F. and M. Riesz theorem. To carry out the
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proofs, we need two Lemmas.

LEMMA 2. Let G be a locally compact Abelian group and let H be an
open subgroup of G. Let \tilde{E} be a subset of \hat{G}/H^{\perp}and put E=\pi^{-1}(\tilde{E}) , where
\pi denotes the natural homomorphism from \hat{G} onto \hat{G}/H^{\perp} . If \mu\in M_{E}(G) ,

then (\mu_{x+H})*\delta_{-x}\in M_{\overline{E}}(H) for all x\in G, where \mu_{x+H} denotes the restriction
of \mu to the coset x+H and \delta_{-x} denotes the Dirac measure at - x.

PROOF. Since H is open, H^{\perp} is a compact subgroup of \hat{G} . Let \sigma be
the normalized Haar measure of H^{\perp} . Then its “ invers\"e’’ Fourier
transform \check{\sigma} is nothing but the characteristic function of H. Therefore \mu_{H}=

\check{\sigma}\mu and

(5) \hat{\mu}_{H}(\gamma_{0})=\int_{H^{\perp}}\hat{\mu}(\gamma_{0}-\gamma)d\sigma(\gamma)

whenever \mu\in M(G) and \gamma_{0}\in\hat{G}.
Now suppose \mu\in M_{E}(G) . Pick any \gamma_{0}\in\hat{G} with \gamma_{0}|H=\pi(\gamma_{0})\not\in\tilde{E}.

Then \gamma_{0}+H^{\perp}\subset E^{c} and so \hat{\mu}=0 on \gamma_{0}+H^{\perp} Hence

\hat{\mu}_{H}(\pi(\gamma_{0}))=\hat{\mu}_{H}(\gamma_{0})=0

by (5) whenever \pi(\gamma_{0})\not\in\tilde{E}, that is, \mu_{H}\in M_{\tilde{E}}(H) . Since M_{E}(G) is transla-
tion-invariant, it follows that (\mu*\delta_{x})_{H}\in M_{\overline{E}}(H) for all x\in G, as desired.

LEMMA 3. Let G=R\cross K(G=Z\cross K) with a compact group K and let
S be a proper closed generating subsemigroup of G. Then S is contained in
R_{+}\cross K or R_{-}\cross K (resp. Z_{+}\cross K or Z_{-}\cross K), where R_{-}(Z_{-}) denotes the
nonpositive real numbers (resp. the nonpositive integers).

PROOF. We consider G=R\cross K. (We can also prove for G=Z\cross K by
the same argument.) Let \pi denote the projection from G onto R. Then \pi is
a closed mapping because K is compact. Hence S_{1}=\pi(S) is a closed subse-
migroup of R. Also, since S is generating, S_{1} is generating. Moreover, S_{1}

is proper. To see this, choose x\in S such that - x\not\in S. Then -x\‘eK+S.
Indeed, suppose that - x=k+s for k\in K and s\in S. Then - k=s+x\in S\cap

K, and so - s-x\in S\cap K because S\cap K is a group ([4, Theorem (9. 16)]).
Hence - x\in S+S\subset S, but this is a contradiction. Thus we have - x\not\in K+S.
If S_{1}=R, then

R\cross K=\pi^{-1}(S_{1})=K+S.

But this is a contradiction. Thus S_{1} is a proper closed generating subse-
migroup of R. Now suppose that S_{1} contains both a positive number and a
negative one. Then the following three cases have to be considered: (a) S_{1}
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has both a positive minimum element and a negative maximum one, (b) S_{1}

has neither a positive minimum element nor a negative maximum one, and
(c) neither (a) nor (b) holds. Clearly (c) is impossible. If (a) holds,
then it is easy to see that S_{1}=cZ for c= \min\{S_{1}\cap(R_{+}|\{0\})\} but this
contradicts the fact that S_{1} generates R. If (b) holds, then we can easily
show that S_{1} is dense in R. Since S_{1} is closed, we have S_{1}=R . But this is a
contradiction because S_{1} is proper. Thus we have S\subset R_{+}\cross K or S\subset R_{-}\cross K.
This completes the proof.

PROOF OF ASSERTION (i) IN T HEOREM 1. By [4, (25. 32) (a) and
Theorem (A. 15) ] , there exists a divisible locally compact Abelian group G_{0}

such that G is an open subgroup of G_{0} . Thus \hat{G}_{0} is torsion-free ([4,
Theorem (24. 23) ] . Our assumption is that G is neither of the form R\cross\Delta

nor T\cross\Delta for a discrete group \Delta . We can easily see that G_{0} is neither of the
form R\cross\Delta nor T\cross\Delta for a discrete group \Delta . Put

S_{)}=S\cup\{0\} .

Then clearly S_{J} is a proper closed generating subsemigroup of \hat{G}_{0}/G^{\perp}\cong\hat{G} .
Define

S_{1}=\pi^{-1}(S_{)}) ,

where \pi denotes the natural homomorphism from \hat{G}_{0} onto \hat{G}_{0}/G^{\perp} . Then S_{1}

is a proper closed subsemigroup of \hat{G}_{0} . Noting that O\in S), we can easily see
that S_{1} is generating. Since \hat{G}_{0} is torsion-free, by Theorem 2, there
exist \gamma_{0}\in\hat{G}_{0} and a nondense order P in \hat{G}_{0} such that P contains \gamma_{0}+S_{1} .
By our assumption and [3, (5. 6) Theorem], there exists a non-zero
measure \nu in M_{P^{c}}(G_{0}) which is singular with respect to m_{G_{0}} . Of course this
measure \nu is included in M_{(\gamma_{0}+S_{1})^{c}}(G_{0}) . Now consider the measure \overline{\gamma}_{0}\nu\in M

(G_{0}) . Then \overline{\gamma}_{0}\nu is a measure in M_{S_{1}^{c}}(G_{0}) which is singular with respect to
m_{G_{0}} . Put

\mu=((\overline{\gamma}_{0}\nu)_{x_{)}+G})*\delta_{-x_{0}} ,

where x_{0} is an element of G_{0} such that (\overline{\gamma}_{0}\nu)_{x_{)}+G}\neq 0 . Then, by Lemma 2, \mu

is included in M_{S}(G) and therefore in M_{S^{c}}(G) . Moreover, noting that G is
an open subgroup of G_{0} , we can see that \mu is singular with respect to m_{G} .
This completes the proof.

PROOF OF ASSERT1ON (ii) 1N THEOREM 1. We may suppose that \Delta is
countable. Indeed, let \mu be a measure in M_{S^{c}}(G) . Since \mu is regular, there
exists a countable subgroup \Delta_{0} of \Delta such that supp(\mu)\subset R\cross\Delta_{0} . Put G’=
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R\cross\Delta_{0} . Then we can regard \mu as an element of M(G9 . Let \alpha denote the
natural homomorphism \hat{G} onto \hat{G}/(G0^{\perp} and put S’=\alpha(S) . Then we can
easily see that S’ is a proper closed generating subsemigroup of \hat{G}/(G’)^{\perp} .
(Note that \alpha is a closed mapping because ( G9^{\perp} is compact.) Moreover, we
have \mu\in M_{(s\gamma^{c}}(G0 . If the assertion (ii) holds for \Delta countable, then \mu is
absolutely continuous with respect to m_{G} . Since G’ is open in G, \mu is
absolutely continuous with respect to m_{G} .

Now we consider G=R\cross\Delta with \Delta countable. Let K denote the dual
group of \Delta . By Lemma 3, we may suppose that S is contained in R_{+}\cross K.
Let \mu be a measure in M_{S^{c}}(G) . Henceforth we write an element \gamma in \hat{G}=R\cross

K as \gamma=(r, k) , where r\in R and k\in K. We first show the following:

(6) \hat{\mu}_{s}(n\gamma)=0 for all \gamma=(r, k)\in S with r>0 and n\in Z .

This is proved as follows. Let \gamma=(r, k)\in S with r>0 and put \Lambda=\{n\gamma : n\in

Z\} . Then it is obvious that \Lambda is isomorphic to Z. Put H=\Lambda^{\perp} . Then H is
countable. To see this, put \Delta=\{d_{j} : j=1,2_{ },,\ldots\} and choose \{\beta_{j}\}_{j=1}^{\infty}\subset[0 ,
2\pi) such that e^{i\beta_{J}}=(d_{j}, k) for each j. Define

H_{j}= { (x, d_{j})\in R\cross\Delta : ( (x, d_{j}), (nr, nk))=1 for all n\in Z }.

If (x, d_{j})\in H_{j} , then

1=((x, d_{j}), (nr, nk))
=e^{ixnr}(d_{j}, nk)

=e^{ixnr}e^{i\beta_{J}n}

for all n\in Z , and so we have x\in(2\pi Z-\beta_{j})/r. Hence H_{j} is countable and

therefore H is so because H= \bigcup_{j=1}\infty H_{j} . Now let \pi be the natural homom0-
rphism from G onto G/H. Then, since H is countable, we have

\pi(\nu)_{S}=\pi(\nu_{S})

for each \nu\in M(G) . Since \mu\in M_{S^{c}}(G) , we have

(\pi(\mu))\wedge(n\gamma)=\hat{\mu}(n\gamma)=0

for all n>0 . Applying the F. and M. Riesz theorem to \pi(\mu)\in M(G/H) ,

we have \pi(\mu)_{S}=0 , and therefore

\pi(\mu_{S})=\pi(\mu)_{S}=0 .

Thus (6) holds.
Next, let \gamma\in S and \gamma’=(r’. k\gamma\in S with r’>0 and define \nu\in M(G) by
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\nu=\overline{\gamma}\mu . Then \nu\in M_{S^{c}}(G) and by (6) \hat{\nu}_{S}(-\gamma 0=0 . Hence we have

(7) \hat{\mu}_{S}(\gamma-\gamma 9=0 .

Since \gamma’-\gamma=2\gamma-’(\gamma’+\gamma) , we also have

(8) \hat{\mu}_{S}(\gamma’-\gamma)=0 .

Using (7) and (8) we can prove the following:

(9) \grave{\acute{\mu}}_{S}(\gamma)=0 for all \gamma\in\hat{G}|(\{0\}\cross K) .

Indeed, let \gamma=(r, k)\in\hat{G}|(\{0\}\cross K) . Since S generates \hat{G}, there exist
sequences \{\gamma_{n}=(r_{n}, k_{n})\} and \{ r_{\acute{n}}=(r_{\acute{n}}, k_{\acute{n}})\} of elements in S such that
\{\gamma_{n}-\gamma_{n}’\} converges to \gamma . Then there exists a subsequence\{n_{j}\} such that
either r_{n} , or r_{n}’ , is nonzero for all j, because r\neq 0 . By (7) and (8), \hat{\mu}_{S}(\gamma_{n_{j}}-

\gamma_{n}’,)=0 and therefore we have

\hat{\mu}_{S}(\gamma)=\lim_{jarrow\infty}\hat{\mu}_{S}(\gamma_{n},-\gamma_{n_{J}}’)=0 .

Thus (9) holds.
Finally, since supp(\hat{\mu}_{S})\subset\{0\}\cross K by (9) and K is compact, we have \acute{\mu}_{S}\backslash

\in L^{1}(\hat{G}) . Hence, by the inversion theorem, \mu_{S}\in L^{1}(G) , and so \mu_{S}=0 .

This completes the proof for G=R\cross\Delta . We can also prove for G=T\cross\Delta by
the same argument.

The authors would like to thank professor H. Yamaguchi for many
helpful discussions and comments and also thank the referee for an
improvement of proof of Lemma 2.
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