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\S 1. Introduction

In 1916 F. and M. Riesz published the following result: if \mu is a bounded
complex Borel measure on the unit circle T such that

\hat{\mu}(n)=\int_{T}e^{-in\theta}d\mu(\theta)=0 for n=-1, -2, \ldots ,

then \mu is absolutely continuous with respect to the Lebesgue measure on \bm{T} .
Some forty years later, Helson and Lowdenslager generalized this theorem
to compact Abelian groups with ordered dual ([5]). Since then a number of
related results have been obtained under more general settings ([1], [2], [4],
[6], [10], [15], [17] ) .

In his papers [13] and [14] Sarason showed that H^{\infty}(\bm{T})+C(\bm{T}) is a
closed subalgebra of L^{\infty}(\bm{T}) , and that H^{\infty}(\bm{R})+C_{u}(\bm{R}) is a closed subalgebra
of L^{\infty}(\bm{R}) . Subsequently, Rudin [12] and Yamaguchi [16] investigated
spaces of type H^{\infty}+C on locally compact Abelian groups with ordered dual.

Meanwhile, Hewitt, Koshi, and the author recently presented simple
proofs for results in [1], [2], and [17] and recognized that the embedding
theorem of a locally compact Abelian group into a locally compact divisible
Abelian group is useful in dealing with more general subsemigroups instead
of orders ([7]). In the present paper we continue to use the embedding
theorem and study the relation between the F. and M. Riesz theorem and
spaces of type H^{\infty}+C .

In section 2 we describe our notation and state main theorem which gives
a generalization of a theorem of Yamaguchi ([16]]). In fact our result
supplies more information on the relation between the F. and M. Riesz
theorem and spaces of type H^{\infty}+C . Some preliminary lemmas are proved
in section 3. We give the proof of our main theorem in section 4.

\S 2. Notation and Main Theorem

Throughout this paper, the symbols \bm{Z} , \bm{Z}_{+} , \bm{R}, \bm{R}_{+} , and \bm{T} will denote the
integers, the nonnegative integers, the real numbers, the nonnegative real
numbers, and the circle group respectively and the term “ locally compact
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Abelian group ” means “ locally compact Abelian group satisfying
Hausdorff’s separation axiom ”

Let G be a locally compact Abelian group and let \hat{G} denote its dual
group. A fixed but arbitrary Haar measure on G will be denoted by m_{G} .
Let L^{1}(G) be the space of all Haar integrable functions on G and M(G) be
the Banach algebra of all bounded regular complex Borel measures on G

with convolution multiplication and the total variation norm. As usual, we
identify the measures in M(G) that are absolutely continuous with respect to
m_{G} with elements of L^{1}(G) . Given a subset E of \hat{G}, we denote by M_{E}(G)

the set of all measures in M(G) whose Fourier-Stieltjes transforms vanish
on \hat{G}\backslash E.

Let L^{\infty}(G) be the Banach algebra of all complex-valued Haar
measurable essentially bounded functions on G under pointwise multiplica-
tion and the essential supremum norm and let C_{u}(G) be the Banach algebra
of all complex-valued bounded uniformly contiunous functions on G under
pointwise multiplication and the supremum norm. (For a compact Abelian
group G , we simply write C(G) in place of C_{u}(G)) .

For an element x of G, \delta_{x} denotes the Dirac measure at x . We denote
the Fourier-Stieltjes transform of a measure \mu in M(G) by \hat{\mu} and convolution
of measures \mu and \nu in M(G) by \mu*\nu . For a closed subgroup H of G,
H^{\perp} means the annihilator of H. For x\varepsilon G and \gamma\varepsilon\hat{G}, we denote by (x, \gamma)

the value of \gamma at x .
Recall the definition of an ordered group.

DEFINITION 1. Let G be an Abelian group. G is said to be \mathscr{o}\mathscr{r}\mathscr{d}\mathscr{e}\mathscr{r}\mathscr{e}\mathscr{d} if
there exists a subsemigroup P of G such that

P\cup(-P)=G and P\cap(-P)=\{0\} .

For brevity’s sake, we will refer to P as an \mathscr{o}\mathscr{r}\mathscr{d}\mathscr{e}\mathscr{r} \mathscr{i}\mathscr{n} G .
For example, \bm{Z}_{+} and \bm{R}_{+} are order in \bm{Z} and \bm{R} respectively. It is well

known that an Abelian group G is ordered if and only if G is torsion-free
([6]). Details on orders in locally compact Abelian groups can be seen in
[6].

The following definition is convenient for our purpose.

DEFINITION 2. Let G be a locally compact Abelian group with dual
group \hat{G}. A subset E in \hat{G} is said to have the FMR properpty if M_{E}(G)\subset

L^{1}(G) .

The F. and M. Riesz theorem says that \bm{Z}_{+} in \bm{Z} has the FMR property.
We can also see that \bm{R}_{+} in \bm{R} has the FMR property by the F. and M. Riesz
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theorem for \bm{R} ([11, Theorem 8. 2. 7]). A well-known theorem of Bochner
says that \bm{Z}_{+}\cross \bm{Z}_{+} in \bm{Z}^{2} has the FMR property (cf. [11, Theorem 8. 2. 5]).

Now recall a result on the F. and M. Riesz theorem and group
structures. It is due to Hewitt, Koshi, and Yamaguchi.

THEOREM A ([6] and [10]). Let G be a locally compact Abelian group
with ordered dual group \hat{G} and let P be an order in \hat{G} which is not dense in
\hat{G} . Then P has the FMR property if and only if G is isomorphic to \bm{R}\cross\Delta

or \bm{T}\cross\Delta , where \Delta is discrete. Moreover, there exists \mu\varepsilon M_{P}(G) which is
singular with respect to m_{G} unless G is isomorphic to \bm{R}\cross\Delta or \bm{T}\cross\Delta for a

discrete group \Delta .
We give another definition to state our main theorem.

DEFINITION 3. Let G be a locally compact Abelian group with dual
group \hat{G} and let P be a subsemigroup of \hat{G} such that P\cup(-P)=\hat{G}. We
define H_{P}^{1}(G) and H_{P}^{\infty}(G) as follows:

H_{P}^{1}(G)=\{ f\varepsilon L^{1}(G) : \hat{f}(\gamma)=0 for \gamma\varepsilon P\} ;

H_{P}^{\infty}(G)=\{ g\varepsilon L^{\infty}(G) : \int_{G}f(x)g(x)dm_{G}(x)=0 for f\varepsilon H_{P}^{1}(G)\} .

Let H^{1}(\bm{R}) , H^{\infty}(\bm{R)} , H^{1}(\bm{T}) and H^{\infty}(\bm{T}) denote the usual Hardy spaces.
If G=\bm{R} and P=\bm{R}_{+} , then H_{P}^{1}(G)=H^{1}(\bm{R}) and H_{P}^{\infty}(G)=H^{\infty}(\bm{R}) . If G=\bm{T}

and P=\bm{Z}_{+} , then H_{P}^{1}(G)=H^{1}(\bm{T}) and H_{P}^{\infty}(G)=H_{0}^{\infty}( \bm{T}) , where H_{0}^{\infty}( \bm{T})=\{f

\varepsilon H^{\infty}(\bm{T}):\hat{f}(0)=0\} . Note that H_{0}^{\infty}( \bm{T})+C(\bm{T})=H^{\infty}(\bm{T})+C(T). H^{\infty}(\bm{T})+

C(\bm{T}) and H^{\infty}(\bm{R})+C_{u}(\bm{R})are a closed subalgebra of L^{\infty}(T) and a closed
subalgebra of L^{\infty}(\bm{R)} respectively ([13], [14]).

Yamaguchi showed the following theorem, which generalized an earlier
result of Rudin.

THEOREM B([16]) . Let G be a locally compact Abelian group with
ordered dual group \hat{G} and let P be an order in \hat{G} which is not dense in \hat{G} .
Then H_{P}^{\infty}(G)+C_{u}(G) is an algebra if and only if G is isomorphic to \bm{R}\cross\Delta

or \bm{T}\cross\Delta , where \Delta is discrete.

Rudin ([12, Theorem 3. 6]) proved Theorem B for the case where G is
compact.

From Theorems A and B we can see that an order P in \hat{G} which is not
dense in \hat{G} has the FMR property if and only if H_{P}^{\infty}(G)+C_{u}(G) is an
algebra. Our purpose in this paper is to prove this equivalence under a more
general setting that P is a subsemigroup in \hat{G} such that P\cup(-P)=\hat{G}. Our
treatment seems to supply directer and simpler one to relate two properties.
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The key to our arguments is to connect these two properties through certain
conditions concerning measures.

We now state our main theorem.

THEOREM. Let G be a locally compact Abelian group with dual group \hat{G} and
let P be a subsemigroup of \hat{G} which is not dense in \hat{G} such that P\cup(-P)=
\hat{G} . Then the following statements are equivalent.

(i) H_{P}^{\infty}(G)+C_{u}(G) is an algebra.
(ii) \mu*(\gamma\nu)\varepsilon L^{1}(G) for each \mu\varepsilon M_{P^{c}}(G) , \nu\varepsilon M_{(-P)^{c}}(G) , and \gamma\varepsilon

\hat{G} .
(iii) \mu*(\gamma\nu)\varepsilon L^{1}(G) for each \mu and \nu\varepsilon M_{P^{c}}(G) and \gamma\varepsilon\hat{G} .
(iv) P^{c} has the FMR property.
(v) P has the FMR property.
(vi) G is isomorphic to \bm{R}\cross\Delta or \bm{T}\cross\Delta , where \Delta is discrete.

REMARK 1. It is easy to see that H_{P}^{\infty}(G) is a weak*-closed translation
invariant subspace of L^{\infty}(G) . Hence H_{P}^{\infty}(G)+C_{u}(G) is a closed subspace
of L^{\infty}(G) by [12, Theorem 3. 3].

Finally recall the embedding theorem of locally compact Abelian groups
mentioned in section 1.

THEOREM C ([8, (25. 32) (a) and Theorem (A. 15)]). Let G be a
locally compact Abelian group. Then there exists a locally compact divisible
Abelian group G_{0} which contains G as an open subgroup.

Note that \hat{G}_{0} is torsion-free ([9, Theorem (24. 23)]) and therefore \hat{G}_{0} is
ordered.

\S 3. Some Lemmas

The following fact is easily seen; so we omit the proof.

LEMMA 1. Let G be a torsion-free Abelian group and let S be a
subsemigroup of G such that S\cup(-S)=G. Then S\cap(-S) has an order
and, for any such order P, the set (S\backslash (-S))\cap P is an order in G.

LEMMA 2. Let G be a locally compact Abelian group and let \mu be an
element of M(G) . Then \mu\varepsilon L^{1}(G) if and only if \mu*L^{\infty}(G)\subset C_{u}(G) .

PROOF. We can see that \mu\varepsilon L^{1}(G) implies \mu*L^{\infty}(G)\subset C_{u}(G) by [8,
Theorem (20. 16) ]. Conversely, suppose \mu*L^{\infty}(G)\subset C_{u}(G) . Then we in
particular have

\mu(x-E)=\mu*\chi_{E}(x)\varepsilon C_{u}(G)
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for any Borel subset E of G , where \chi_{E} denotes the characteristic function of
E . By [8, (19. 27)] , we have \mu\varepsilon L^{1}(G) .

Lemma 3. Let G be a locally compact Abelian group and let P be a

subsemigroup of \hat{G} satisfying P\cup(-P)=\hat{G} .

(a) If f\varepsilon L^{\infty}(G) and \mu\varepsilon M_{(-P)^{c}}(G) , then f*\mu\varepsilon H_{P}^{\infty}(G) .

(b) If h\varepsilon H_{P}^{\infty}(G) and \nu\varepsilon M_{(-P)}(G) , then h*\nu=0 .

PROOF. ( a) For g\varepsilon H_{P}^{1}(G) , we define \tilde{g}(x)=g(-x) . Then, since
\hat{\tilde{g}}(\gamma)=\hat{g}(-\gamma)=0 for all \gamma\varepsilon -

P,\hat{\mu}\cdot\hat{\tilde{g}}\equiv 0 and so \mu*\tilde{g}=0 . Hence we have

\int_{G}(f*\mu)(x)g(x)dm_{G}(x)=\int_{G}(f*\mu)(x)\tilde{g}(-x)dm_{G}(x)

=((f*\mu)*\tilde{g})(0)

=(f*(\mu*\tilde{g}))(0)

=0.

This implies f*\mu\varepsilon H_{P}^{\infty}(G) .
(b) Let k\varepsilon L^{1}(G) . As in ( a) we consider the function \tilde{k} defined by

\tilde{k}(x)=k(-x) . Then we have

\int_{G}(h*\nu)(x)k(x)dm_{G}(x)=\int_{G}(h*\nu)(x)\tilde{k}(-x)dm_{G}(x)

=((h*\nu)*\tilde{k})(0)

=(h*(\nu*\tilde{k}))(0)

= \int_{G}h(x)(\nu*\tilde{k})(-x)dm_{G}(x)

= \int_{G}h(x)(\nu*\tilde{k})\tilde(x)dm_{G}(x) .

Since
((\nu*\tilde{k})\tilde)\hat(\gamma)=\hat{\nu}(-\gamma)\hat{k}(\gamma)=0

for all \gamma\varepsilon P , we have (\nu*\tilde{k})\tilde\varepsilon H_{P}^{1}(G) . This implies

\int_{G}(h*\nu)(x)k(x)dm_{G}(x)=0 .

Since k is an arbitrary element of L^{1}(G) , we have h*\nu=0 .

LEMMA 4. Let G be a locally compact Abelian group and let \mu and \nu be
elements of M(G) . Then (\gamma_{1}\mu)*(\gamma_{2}\nu)\varepsilon L^{1}(G) for all \gamma_{1} and \gamma_{2}\varepsilon\hat{G} if
and only if |\mu|*|\nu|\varepsilon L^{1}(G) , where |\mu| denotes the total variation measure
of \mu .
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PROOF. Suppose |\mu|*|\nu|\varepsilon L^{1}(G) . If A is a subset of G with m_{G}(A)=

0 , then (|\mu|*|\nu|)(A)=0 and therefore

|((\gamma_{1}\mu)*(\gamma_{2}\nu))(A)|\leqq(|\gamma_{1}\mu|*|\gamma_{2}\nu|)(A)=(|\mu|*|\nu|)(A)=0 .

Hence, (\gamma_{1}\mu)*(\gamma_{2}\nu) belongs to L^{1}(G) .
Conversely, suppose (\gamma_{1}\mu)*(\gamma_{2}\nu)\varepsilon L^{1}(G) for all \gamma_{1} and \gamma_{2}\varepsilon\hat{G}. Then

we have (p_{1}\mu)*(p_{2}\nu)\varepsilon L^{1}(G) for all trigonometric polynomials p_{1} and p_{2} on
G. Now choose sequences \{p_{n}\} and \{ q_{n}\} of trigonometric polynomials on
G such that

\lim_{narrow\infty}||p_{r\psi}-|\mu|||=0 and \lim_{narrow\infty}||q_{n}\nu-|\nu|||=0 .

(Note that the set of all trigonometric polynomials is dense in L^{1}(|\mu|) ,
where L^{1}(|\mu|) denotes L^{1} -space with respect to |\mu| .) Then we have

\lim_{narrow\infty}||(p_{f}\mu)*(q_{n}\nu)-|\mu|*|\nu|||=0 .

Since (p,\mu)*(q_{n}\nu)\varepsilon L^{1}(G) for all n and L^{1}(G) is a closed subspace of M
(G) , we have |\mu|*|\nu|\varepsilon L^{1}(G) .

LEMMA 5. Let G=\bm{R}\cross K for a compact Abelian group K and let P be
a subsemigroup of G which is not dense in G such that P\cup(-P)=G. Then
P satisfies the following ( a) or ( b) :

(a) P=\{ (r, k)\varepsilon \bm{R}\cross K : r>0 and k\varepsilon K\} \cup(P\cap(\{0\}\cross K)) ;

(b) P=\{ (r, k)\varepsilon \bm{R}\cross K : r<0 and k\varepsilon K\} \cup(P\cap(\{0\}\cross K)) .

PROOF. Let \pi denote the projection from G onto \bm{R}. Then \pi is a closed
mapping because K is compact ([8, Theorem (5. 18)]). Hence \tilde{P}=\pi(\overline{R}

is a closed subsemigroup of \bm{R}, where \overline{P} denotes the closure of P. Moreover,
\tilde{P} is proper in \bm{R}. Indeed, choose x\varepsilon\overline{P} such that -x \varepsilon

\overline{P}. Then, noting
that a closed subsemigroup of a compact group is a subgroup ([8, Theorem
(9. 16) ]), we have - x \varepsilon \overline{P}+(\{0\}\cross K) . If \tilde{P}=\bm{R}, then

\bm{R}\cross K=\pi^{-1}(\tilde{P})=\overline{P}+(\{0\}\cross K) .

But this is a contradiction because -x \varepsilon \overline{P}+(\{0\}\cross K) . Thus \tilde{P} is a proper
closed subsemigroup of \bm{R} satisfying \tilde{P}\cup(-\tilde{P}=\bm{R}. Now suppose that \tilde{P}

contains both a positive number and a negative one. Then the following
three cases are considered: ( a) \tilde{P} has both a positive minimum element and
a negative maximum one; ( b) \tilde{P} has neither a positive minimum element
nor a negative maximum one: ( c) neither ( a) nor ( b) holds. Clearly
(c) is impossible. If ( a) holds, then it is easy to see that \tilde{P}=c\bm{Z} for c=
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\min \{\tilde{P}\cap(\bm{R}\backslash \{0\})\} but this is a contradiction because \tilde{P}\cup(-{}^{\tilde}P)=\bm{R} . If
(b) holds, then we can easily show that \tilde{P} is dense in \bm{R}. Since \tilde{P} is closed,
we have \tilde{P}=\bm{R}. But this is a contradiction because \tilde{P} is proper in \bm{R}. Thus
we saw that \tilde{P}\subset[0, +\infty) or \tilde{P}\subset(-\infty, 0] . But since \tilde{P}\cup(-\tilde{P})=\bm{R}, we have

\tilde{P}=[0, +\infty) or (-\infty, 0] .

Let \tilde{P}=[0, +\infty) . Then it is clear that

P\subset\{( r, k) \varepsilon \bm{R}\cross K : r\geqq 0 andk\varepsilon K\} .

Let r>0 and k\varepsilon K. If (r, k) \varepsilon P, then (r, k)\varepsilon-P , and so (-r, - k)\varepsilon

P . But this contradicts \tilde{P}=[0, +\infty) . Thus we have (a). If \tilde{P}=(-\infty, 0] ,
we can show ( b) by the same argument.

REMARK 2. By an argument similar to the one used above, we can
prove the following. Let G=\bm{Z}\cross K for a compact Abelian group K and let
P be a subsemigroup of G which is not dense in G such that P\cup(-P)=G .
Then P satisfies the following ( a) or ( b) :

(a) P=\{ (n, k)\varepsilon \bm{Z}\cross K : n>0 andk\varepsilon K\} \cup(P\cap(\{0\}\cross K)) ;
(b) P=\{ (n, k)\varepsilon \bm{Z}\cross K:n<0 andk\varepsilon K\} \cup(P\cap(\{0\}\cross K)) .
The following lemma holds under a more general setting; see [9].

LEMMA 6. Let G be a torsion-free locally compact Abelian group and let
P be a subsemigroup of G which is not dense in G such that P\cup(-P)=G.
Then there exist an element x_{0} in G and an order P_{0} in G which is not dense
in G such that x_{0}+P is included in P_{0} .

PROOF. If P\cap(-P)=\{0\} , then we have only to put P_{0}=P. Let P\cap

(-P)\neq\{0\} . Then, by Lemma 1, there exists an order P_{0} in G such that

P\backslash (-P)\subset P_{0}\subset P .

Of course P_{0} is not dense in G because P is so. Choose and fix any x_{0}\varepsilon P \backslash

(-P) . Then we can easily show that P_{0} contains x_{0}+P .

LEMMA 7. Let G be a locally compact Abelian group and let H be an
open subgroup of G. Let \tilde{E} be a subset of \hat{G}/H^{\perp}and put E=\pi^{-1}(\tilde{E}) , where
\pi denotes the natural homomorphism from \hat{G} onto \hat{G}/H^{\perp} If \mu\varepsilon M_{E}(G) ,

then (\mu_{x+H})*\delta_{-X}\varepsilon M_{E}(H) for all x\varepsilon G, where \mu_{x+H} denotes the restriction
of \mu to the coset x+H.

PROOF. The proof of this lemma is based on the argument in [15, pp.
114-115]. Since \mu has \sigma -compact support, there exists a sequence \{x_{n}\}

consisting of elements in G such that
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\mu=\sum_{n=1}^{\infty}\mu_{x_{n}+H} and x_{i}+H\neq x_{j}+H(i\neq j) .

Note that

|| \mu||=\sum_{n=1}^{\infty}||_{\mu_{x_{n}+H}}|| .

We have only to show that

(\mu_{x_{n}+H})*\delta_{-x_{n}}\varepsilon M_{E}(H)

for all n . We first claim that

\mu_{x_{n}+H}\varepsilon M_{E}(G)

for all n . To show this claim, let f be a function in L^{1}(\hat{G}) with supp(f)\subset
E^{c}, where supp (f) denotes the support of f. Then we have

0= \int_{G^{\hat{\mu}(\gamma)f(\gamma)}}dm_{\hat{G}}(\gamma)

= \int_{G}\hat{f}(x)d\mu(x)

= \sum_{n=1}^{\infty}(\mu_{x_{n}+H})(f\hat{)} .

For \gamma_{*}\varepsilon H^{\perp} , we define f_{\gamma_{*}}\varepsilon L^{1}(\hat{G}) by f_{\gamma_{*}}(\gamma)=f(\gamma-\gamma_{*}) . Then, since H^{\perp}+

E^{c}\subset E^{c} , we have supp(f_{\gamma_{*}})\subset E^{c}. Hence

0= \sum_{n=1}^{\infty}(\mu_{x_{n}+H})((f_{\gamma_{*}})\hat)

= \sum_{n=1}^{\infty}\int_{G}(-x, \gamma_{*})\hat{f}(x)d(\mu_{x_{n}+H})(x)

= \sum_{n=1}^{\infty}(-\dot{x}_{n}, \gamma_{*})\int_{G}\hat{f}(x)d(\mu_{x_{n}+H})(x)

= \sum_{n=1}^{\infty}(-\dot{x}_{n}, \gamma_{*})(\mu_{x_{n}+H})(f\hat{)} ,

where x_{n}\varepsilon\dot{x}_{n}\varepsilon G/H. Since \gamma_{*} is an arbitrary element in H^{\perp} we have

0= \sum_{n=1}^{\infty}p(\dot{x}_{n})(\mu_{x_{n}+H})(f\hat{)}

= \int_{G/H}p(\dot{x})\mu_{x}.(\hat{f})dm_{G/H}(\dot{x})

for all trigonometric polynomials p on G/H, where \mu_{\dot{x}}(f\hat{)}=(\mu_{x+H}) (f\hat{)} with
x\varepsilon\dot{x} . Since the function \dot{x}arrow\mu x^{.}(f\hat{)} is an element of L^{1}(G/H) and the set
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of all trigonometric polynomials on G/H is weak*-dense in L^{\infty}(G/H) , we
have (\mu_{x_{n}+H})(f\hat{)}=0 for all n . Hence

\int_{G}(\mu_{x_{n}+H})\hat(\gamma)f(\gamma)dm_{\hat{G}}(\gamma)=\int_{G}\hat{f}(x)d(\mu_{x_{n}+H})(x)

=(\mu_{x_{n}+H})\hat{(f})

=0

for all n . Since f is an arbitrary function in L^{1}(\hat{G}) with supp (f)\subset Ec, we
have

\mu_{x_{n}+H}\epsilon M_{E}(G)

for all n . Thus we showed the claim. Now recall that the dual group of H
is \hat{G}/H^{\perp} . As a measure in M(H) , each (\mu_{x_{n}+H})*\delta_{-x_{n}} has a Fourier-Stieltjes
transform constant on cosets of H^{\perp} . Thus we may write ((\mu_{x_{n}+H})*\delta_{-x_{n}})\hat

(\gamma+H^{\perp}) for \gamma\varepsilon\hat{G}. For \gamma+H^{\perp} with \gamma\varepsilon E^{c}, we have

(( \mu_{x_{n}+H})*\delta_{-x_{n}})(\gamma+H^{\perp})=\int_{H}(-h, \gamma+H^{\perp})d((\mu_{x,,+H})*\delta_{-x_{n}})(h.)

= \int_{G}(-z, \gamma)d((\mu_{x_{n}+H})*\delta_{-x_{n}})(z)

= \int_{G}\int_{G}(-x-y, \gamma)d(\mu_{x_{n}+H})(x)d\delta_{-x_{n}}(y)

=(x_{n}, \gamma)\int_{G}(-x, \gamma)d(\mu_{x_{n}+H})(x)

=(x_{n}, \gamma)(\mu_{x+H})\hat(\gamma)

=0.

Hence we have

(\mu_{x_{n}+H})*\delta_{-x_{n}}\varepsilon M_{E^{\hat}}(H)

for all n .

\S 4. Proof of Main Theorem

(i)\Rightarrow (ii) : Suppose that there exist \mu\varepsilon M_{P^{c}}(G) , \nu\varepsilon M_{(-P)^{c}}(G) , and \gamma_{0}

\varepsilon\hat{G} such that \mu*(\gamma_{0}\nu) \varepsilon L^{1}(G) . Then, by Lemma 2, there exists f\varepsilon L^{\infty}(G)

such that

f*(\mu*(\gamma_{0}\nu)) \varepsilon C_{u}(G) .

Since \nu\varepsilon M_{(-P)^{c}}(G) , we have (\overline{\gamma}_{0}f)*\nu\varepsilon H_{P}^{\infty}(G) by Lemma 3 ( a) . We
claim that

\gamma_{0}\cdot((\overline{\gamma}_{0}f)*\nu)\varepsilon H_{P}^{\infty}(G)+C_{u}(G) .
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Since \gamma_{0}\varepsilon C_{u}(G) and (\overline{\gamma_{0}}f)*\nu\varepsilon H_{P}^{\infty}(G) , we obtain that H_{P}^{\infty}(G)+C_{u}(G) is
not an algebra. To prove the claim, suppose

\gamma_{0}\cdot((\overline{\gamma}_{0}f)*\nu)=g+h

for some g\varepsilon C_{u}(G) and h\varepsilon H_{P}^{\infty}(G) . Then we have

(\gamma_{0}\cdot((\overline{\gamma}_{0}f)*\nu))*\mu=g*\mu+h*\mu .

Since h\varepsilon H_{P}^{\infty}(G) and \mu\varepsilon M_{P^{c}}(G)\subset M_{(-P)}(G) , we have h*\mu=0 by Lemma
3 (b). Since g\varepsilon C_{u}(G) implies g*\mu\varepsilon C_{u}(G) ,

f*(\mu*(\gamma_{0}\nu))=(f*(\gamma_{0}\nu))*\mu=(\gamma_{0}\cdot((\overline{\gamma}_{0}f)*\nu))*\mu\varepsilon C_{u}(G) .

But this is a contradiction.
(ii)\Leftrightarrow (iii) : For \sigma\varepsilon M(G) , we define elements \sigma’ and \tilde{\sigma} as follows:

\sigma’(E)=\sigma(-E) and \theta(E)=\overline{\sigma(-E)}

for any Borel subset E of G. Then it is easy to see that

(\sigma’)\hat(\gamma)=\hat{\sigma}(-\gamma) , (\tilde{\sigma})^{\hat}(\gamma)=\overline{\hat{\sigma}(\gamma)} ,

and therefore
((\tilde{\sigma})’)\hat(\gamma)=\overline{\sigma^{\hat}(-\gamma)}

for any \gamma\varepsilon\hat{G}. Also note that
|\sigma|^{\sim}=|\tilde{\sigma}|=|\sigma’|=|\sigma|’. (|\sigma|^{\sim})’=|\sigma| ,

and so we have |(\tilde{\sigma})’|=|\sigma| . Thus we obtain that \sigma\varepsilon M_{(-P)^{c}}(G) if and
only if (\tilde{\sigma})’\varepsilon M_{P^{c}}(G) . Suppose that \mu*(\gamma\nu)\varepsilon L^{1}(G) for all \mu\varepsilon M_{P^{c}}(G) ,

\nu\varepsilon M_{(-P)^{c}}(G) , and \gamma\varepsilon\hat{G}. Then

(\gamma_{1}\mu)*(\gamma_{2}\nu). =\gamma_{1}\cdot(\mu*(\overline{\gamma}_{1}\gamma_{2}\nu))\varepsilon L^{1}(G)

for all \mu\varepsilon M_{P^{c}}(G) , \nu\varepsilon M_{(-P)^{c}}(G) , and \gamma_{1} and \gamma_{2}\varepsilon\hat{G}. Hence, by Lemma
4, we have

|\mu|*|\nu|\varepsilon L^{1}(G) and so |\mu|*|(\tilde{\nu})’|\varepsilon L^{1}(G)

for all \mu\varepsilon M_{P^{c}}(G) and \nu\varepsilon M_{(-P)^{c}}(G) . Again, by Lemma 4, we have

\mu*(\gamma(\tilde{\nu})’)\varepsilon L^{1}(G)

for all \mu\varepsilon M_{P^{c}}(G) , \nu\varepsilon M_{(-P)^{c}}(G) , and \gamma\varepsilon\hat{G}. Since \sigma\varepsilon M_{(-P)^{c}}(G) if and
only if (\tilde{\sigma})’\varepsilon M_{P^{c}}(G) , we have
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\mu*(\gamma\nu)\varepsilon L^{1}(G)

for all \mu and \nu\varepsilon M_{P^{c}}(G) and \gamma\varepsilon\hat{G}. Thus ( ii) implies (iii). To prove
that (iii) implies (ii), we have only to trace this argument conversely.

(iii)\Rightarrow (vi) : By Theorem C, there exists a locally compact divisible
Abelian group G_{0} such that G is an open subgroup of G_{0} . Then \hat{G}_{0} is
torsion-free. Suppose that G is neither of the form \bm{R}\cross\Delta nor \bm{T}\cross\Delta for a
discrete group \Delta . Since an open subgroup of \bm{R}\cross\Delta(\bm{T}\cross\Delta) has the form of
\bm{R}\cross\Delta’ (resp. \bm{T}\cross\Delta’) for a subgroup \Delta’ of \Delta , we see that G_{0} is neither of the
form \bm{R}\cross\Delta nor \bm{T}\cross\Delta for a discrete group \Delta . Put

P_{0}=\pi^{-1}(P) ,

where \pi denotes the natural homomorphism from \hat{G}_{0} onto \hat{G}_{0}/G^{\perp} . (Recall
that the dual group of G is \hat{G}_{0}/G^{\perp} .) Then P_{0} is a subsemigroup of \hat{G}_{0} which
is not dense in \hat{G}_{0} such that P_{0}\cup(-P_{0})=\hat{G}_{0} . By Lemma 6, there exist \gamma_{0}\varepsilon

\hat{G}_{0} and an order P_{1} in \hat{G}_{0} which is not dense in \hat{G}_{0} such that P_{1} contains \gamma_{0}+

P_{0} . Since G_{0} is neither of the form \bm{R}\cross\Delta nor \bm{T}\cross\Delta for a discrete group \Delta , we
can find \mu\varepsilon M_{P_{1}^{c}}(G_{0}) such that \hat{\mu}

\varepsilon C_{0}(\hat{G}_{0}) , where C_{0}(\hat{G}_{0}) denotes the space
of all continuous functions on \hat{G}_{0} which vanish at infinity ([10]). Of course
this measure \mu is included in M_{(\gamma_{0}+P_{0})^{c}}(G_{0}) . Now consider the measure \nu=

\overline{\gamma}_{0}\mu\varepsilon M(G_{0}) . Then \nu is a measure in M_{P_{0}^{c}}(G_{0}) such that \hat{\nu} \mbox{\boldmath $\varepsilon$} C_{0}(\hat{G}_{0}) and
therefore \nu*\nu\varepsilon L^{1}(G_{0}) . Since \nu has \sigma -compact support and G is an open
subgroup of G_{0} , there exists a sequence \{x_{n}\} of elements of G_{0} such that

\nu=\sum_{n=1}^{\infty}\nu_{x_{n}+G} and x_{i}+G\neq x_{j}+G(i\neq j) .

Note that the above series converges to \nu in the total variation norm. Put

\nu_{n}=\nu_{x_{n}+G}*\delta_{-x_{n}}

for n=1,2, \cdots Then by Lemma 7 we have

\nu_{n}\varepsilon M_{P^{c}}(G)

for n=1,2, \cdots Since

\nu*\nu=\sum_{m,n=1}^{\infty}\nu_{m}*\nu_{n}*\delta_{x_{m}}*\delta_{x_{n}}

and this series converges in the total variation norm, we can find m_{0} and n_{0}

such that

\nu_{m^{*}}\nu_{n_{0}}*\delta_{x_{m_{0}}},*\delta_{Xn_{0}}
\varepsilon L^{1}(G_{0}) .
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Thus \nu_{m}*\nu_{n_{0}} is a measure in M(G) such that \nu_{m}*\nu_{n_{0}}
\varepsilon L^{1}(G_{0}) . Since G is an

open subgroup of G_{0} , we have \nu_{m_{0}}*\nu_{no}
\varepsilon L^{1}(G) . Thus (iii) implies (vi).

(vi)\Rightarrow (iv) : The proof of this implication is included in [4, section
2]. But his proof seems to be obscure. A very simple proof can be seen
in [9].

(iv)\Rightarrow (vi) : This implication has been already proved in the
implication “ (iii)\Rightarrow (vi) ”

(vi)\Rightarrow (i): Suppose G is isomorphic to \bm{R}\cross\Delta or T\cross\Delta for a
discrete group \Delta . Let K be the dual group of \Delta . Thus K is compact.
We first consider the case where G is isomorphic to \bm{R}\cross\Delta . By Lemma
5, we may suppose

P=\{ ( r, k) \varepsilon \bm{R}\cross K : r>0andk\varepsilon K\} \cup(P\cap(\{0\}\cross K)) .

We claim that

H_{P}^{1}(\bm{R}\cross\Delta)=\{ f\varepsilon L^{1} (\bm{R}\cross\Delta):f (\cdot, d)\varepsilon H^{1} (\bm{R}) foreachd\varepsilon\Delta\} .

To show this claim, let r\varepsilon \bm{R} with r<0 and let f\varepsilon H_{P}^{1}(\bm{R}\cross\Delta) . From
the form of P we have (r, k)\varepsilon P for each k\varepsilon K . Thus

\int_{\Delta}(-d, k)\int_{\bm{R}}e^{-ixr}f(x, d)dm_{\bm{R}}(x)dm_{\Delta}(d)

= \int_{\Delta}\int_{\bm{R}} (-(x, d), (r, k))f(x, d)dm_{\bm{R}}(x)dm_{\Delta}(d)

=\hat{f}((r, k))

=0.

Hence the uniqueness theorem implies

\int_{\bm{R}}e^{-ixr}f(x, d)dm_{\bm{R}}(x)=0

for each d\varepsilon\Delta because \Delta is discrete. Thus we have f(\cdot, d)\varepsilon H^{1}(\bm{R}) for
each d\varepsilon\Delta . Conversely, suppose that f\varepsilon L^{1}(\bm{R}\cross\Delta) and f(\cdot, d)\varepsilon H^{1}(\bm{R})

for each d\varepsilon\Delta . Then (f(. , d))\hat(0)=0 because (f(\cdot, d))\hat is continuous on
\bm{R}. Let (r, k)\varepsilon P. From the form of P , we have r\leqq 0 . Thus

\int_{\bm{R}\cross\Delta} (-(x, d), (r, k))f(x, d)dm_{\bm{R}\cross\Delta}(x, d)

= \int_{\Delta}(-d, k)\int_{\bm{R}}e^{-ixr}f(x, d)dm_{\bm{R}}(x)dm_{\Delta}(d)

= \int_{\Delta}(-d, k)\cdot 0 dm_{\Delta}(d)

=0.
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Hence we have f\varepsilon H_{P}^{1}(\bm{R}\cross\Delta) . This proves the claim. By the claim, we
can easily see that

H_{P}^{\infty}(\bm{R}\cross\Delta)=\{g\varepsilon L^{\infty}(\bm{R}\cross\Delta) :g(\cdot, d)\varepsilon H^{\infty}(\bm{R}) for each d\varepsilon\Delta\} .

Once we obtain these, we can proceed in the same methods as Yamaguchi’s
([16, Theorem 21]).

We next consider the case where G is isomorphic to \bm{T}\cross\Delta . By Remark
2, we may suppose

P=\{ ( n, k) \varepsilon Z\cross K : n>0andk\varepsilon K\} \cup(P\cap(\{0\}\cross K)) .

Since P is dense in \{O\}\cross K (cf. [8, Theorem (9. 16)]), we can easily verify
that P\supset\{0\}\cross K if P^{\circ}\cap(\{0\}\cross K)\neq\phi and (\{0\}\cross K)\backslash P is dense in \{O\}\cross K if
P^{o}\cap(\{0\}\cross K)=\phi , where P^{o} denotes the interior of P . By using these facts
and the above arguments for G=\bm{R}\cross\Delta , it is easy to see that

H_{P}^{1}(\bm{T}\cross\Delta)=\{ f\varepsilon L^{1}(\bm{T}\cross\Delta): f (\cdot , d)\varepsilon H^{1}(\bm{T})for eachd\varepsilon\Delta\}

or
H_{P}^{1}(\bm{T}\cross\Delta)=\{ f\varepsilon L^{1}(\bm{T}\cross\Delta) : f(\cdot , d)\varepsilon H_{0}^{1}(\bm{T})for eachd\varepsilon\Delta\} ,

where H_{0}^{1}(\bm{T})=\{f\varepsilon H^{1}(\bm{T}):\hat{f}(0)=0\} . Thus we have

H_{P}^{\infty}(\bm{T}\cross\Delta)=\{ g\varepsilon L^{\infty}(\bm{T}\cross\Delta) : g(\cdot, d)\varepsilon H_{0}^{\infty} (\bm{T})for eachd\varepsilon\Delta\}

or

H_{P}^{\infty}(\bm{T}\cross\Delta)=\{ g\varepsilon L^{\infty}(\bm{T}\cross\Delta) : g(\cdot , d)\varepsilon H^{\infty}(\bm{T})for eachd\varepsilon\Delta\} .

Hence we can proceed in the same methods as Yamaguchi’s ([16, Theorem
20]).

(iv)\Leftrightarrow (v) : Note that P has the FMR property if and only if -P has the
FMR property. Thus we see that M_{P}(G)\subset L^{1}(G) implies M_{P^{c}}(G)\subset L^{1}(G) .
Conversely, suppose M_{P^{c}}(G)\subset L^{1}(G) and \mu\varepsilon M_{(-P)}(G) and fix \gamma_{0}\varepsilon -P.
Then we have P+\gamma_{0}\subset(-P)^{c} . Hence

(\overline{\gamma}_{0}\mu)\hat(\gamma)=\hat{\mu}(\gamma+\gamma_{0})=0

for all \gamma\varepsilon P , and so \overline{\gamma}_{0}\mu\varepsilon M_{P^{c}}(G) , where \overline{\gamma}_{0} denotes the complex conjugate
of \gamma_{0} . By our assumption, \overline{\gamma}_{0}\mu\varepsilon L^{1}(G) and therefore we have \mu\varepsilon L^{1}(G) .

REMARK 3. If G is a locally compact Abelian group with ordered dual
group \hat{G} and if P is an order in \hat{G} which is not dense in \hat{G}, then the implica-
tions “ (iii)\Rightarrow (vi) ” and “ (iv)\Rightarrow (vi) ” can be easily proved by using only
Lemma 4 and Theorem 1 in [10].
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The proof of Theorem 3 in [18] is incomplete. But the following is true:

THEOREM ([18, Corollary]). Let p_{1} and p_{2} be numbers in the closed
interval [1, 2] . Suppose \mu\varepsilon M(R^{N})(N\geq 2) satisfies the following two
conditions ;

(a) there exists a function f\varepsilon L^{p_{1}}(R^{N}) such that

\hat{\mu}(t)=\hat{f}(t)m_{R^{N}}-a . e . t\varepsilon \{ t=(t_{j})\varepsilon R^{N} : t_{1}\geq 0\} ,

and

(b) for each t_{1}<0 ,

\hat{\mu}(t_{1} , u)=\hat{f_{t_{1}}}(u)m_{R^{N}}-a . e . u\varepsilon R^{N-1}

for some f_{t_{1}}\varepsilon L^{p_{2}}(R^{N-1}) .
Then \mu is absolutely continuous with respect to the Lebesgue measure m_{R^{N}}

on R^{N}

PROOF. Let \mu be a measure satisfying our assumption. By the
condition ( a) and [2, Main Theorem], there exists a function h in L^{1}(\bm{R}^{N})

such that

\hat{\mu}(t)=\hat{h}(t)m_{R^{N}}-a . e . t\varepsilon \{ t=(t_{j})\varepsilon \bm{R}^{N} : t_{1}>0\} .

Since \hat{\mu} and \hat{h} are continuous on \bm{R}^{N} and the subset \{ t=(t_{j})\varepsilon \bm{R}^{N} : t_{1}>0\} is
open, we have

\hat{\mu}(t)=\hat{h}(t) on \{ t=(t_{j})\varepsilon \bm{R}^{N} : t_{1}>0\}

and hence on \{ t=(t_{j})\varepsilon R^{N} : t_{1}\geq 0\} . By the condition ( b) and [8,
Theorem 31. 33], \hat{\mu}(t_{1}, \cdot) \varepsilon(L^{1}(R^{N-1}))^{\wedge} for each t_{1}<0 . Since \hat{h}(t_{1}, \cdot)\varepsilon

(L^{1}(R^{N-1}))\hat for each t_{1}\varepsilon R, we have

\hat{\mu}(t_{1}, \cdot)-\hat{h}(t_{1}, \cdot)\varepsilon(L^{1}(R^{N-1}))\hat

By [18, Theorem 1], the measure (\mu-h) is absolutely continuous with
respect to m_{R^{N}} . Then, of course, \mu is absolutely continuous with respect to
m_{R^{N}} .
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