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Generalized variation and translation operator
in some sequence spaces
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Abstract. There are defined and investigated some spaces of
r

sequences provided with tw0-modular structure given by generalized varia-
tions and the translation operator. The results are applied to obtain an
approximation theorem by means of translated sequences.

1. Let x=(t_{i})=(t_{i})_{i=0}^{\infty} be a sequence of real numbers. We denote also
(x)_{j}=t_{j} for j=0,1,2 , \ldots We introduce two auxiliary notations: this of
the \Phi-variation of x and that of the sequential modulus of x .

1. 1. Let X be the space of all real sequences and let \Phi be a \varphi -function
(see e . g . [4], 1. 9). The \Phi variation w_{\Phi}(x) of x\in X is defined as

w_{\Phi}(\chi)=su(n_{l}\theta_{i=1}^{\Sigma^{\infty}\Phi(|t_{n_{i}}-t_{n_{i-1}}|)} ,

where the supremum runs through all increasing subsequences (n_{i}) of in-
dices (see [2]). w_{\Phi} is a pseudomodular in X defining the modular space

X_{\Phi}=X_{w_{\Phi}}= {x\in X:w_{\Phi}(\lambda x)- 0 as \lambdaarrow 0_{+} }

(see [7], [5] and also [8]). ||\cdot||_{\Phi} will denote the Luxemburg pseudonorm in
X_{\Phi} (see [4]). It is easily seen that X_{\Phi}\subset c , where c is the space of conver-
gent sequences, and X_{\Phi} is strongly modular complete and complete in the
norm (see [2] and [5]).

1. 2. Given any sequence x=(t_{i})_{i=0}^{\infty} , we write

(\tau_{m}x)_{j}=\{
t_{j} for j<m ,
t_{m+j} for j\geq m ,

where m, j=0,1,2, . . (see [3], also [4], 7. 17). The sequence \tau_{m}x=

((\tau_{m}x)_{j})_{j=0}^{\infty} is called the m-translation of the sequence x .
1. 3. The sequential modulus of the sequence x=(t_{i})_{i=0}^{\infty} is defined as

\omega(x, r)=\sup_{m\geq r}\sup_{i}|(\tau_{m}x)_{i}-t_{i}| ,

where r=0,1,2 , \ldots Obviously, we have

\omega(x, r)=\sup_{m\geq r}\sup_{i\geq m}|t_{m+i}-t_{i}|
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for r=0,1,2 , \ldots

For example, taking x=(a^{i})_{i=0}^{\infty} with 0<a<1 or x=( \frac{1}{i+1})_{i=0}^{\infty} or x=

(1+ \frac{1}{2}+\cdots+\frac{1}{i+1})_{i=0}^{\infty} , then we have \omega(x, r)=a^{r}(1-a^{r}) for r\geq-\ln 2/\ln a

or \omega(x, r)=\frac{r}{(r+1)(2r+1)} for r\geq 1 or \omega(x, r)=\ln 2 for r\geq 0 , respective-

ly.
2. We shall consider two spaces of sequences X(\Psi) and X(\Phi, \Psi) ,

defined by means of the sequential modulus and \Phi-variation of the sequence.
2. 1. Let \Phi be a \varphi-function and let \Psi be a nonnegative, nondecreasing

function of u\geq 0 such that \Psi(u)– 0 as u– 0_{+} . Then we write
X(\Psi)= {x\in X:r\Psi(\omega ( \lambda x , r ) )arrow 0 as rarrow\infty for a \lambda>0 },
X(\Phi, \Psi)=X_{\Phi}\cap X(\Psi) .

Obviously, X(\Psi) and X(\Phi, \Psi) are vector spaces. If \Psi satisfies the condi-
tion (\Delta_{2}) for small u\geq 0 , then one may take fixed \lambda=1 in the definition of
X(\Psi) .

2. 2. We define now for every x\in X

\zeta(x)=\sup_{r}r\Psi(\omega(x, r)) .

Obviously, \zeta is a pseudomodular in X. The respective modular space will
be denoted by X_{\zeta} ; we have X(\Phi, \Psi)\subset X(\Psi)\subset X_{\zeta} .

Let us remark that if \Psi is increasing and s -convex for u\geq 0 with some
0<s\leq 1 , then \zeta is an s -convex pseudomodular in X and

||x||_{\zeta}^{s}= \sup_{r\geq 1}(\frac{\omega(x,r)}{\Psi^{-1}(1/r)})^{s} .

where \Psi^{-1} is the inverse to \Psi , because

||x||_{\zeta}^{s}= \inf\{u>0:\zeta(\frac{x}{u^{1/S}})\leq 1\}

= \inf\{u>0:\frac{\omega(x,r)}{u^{1/S}}\leq\Psi^{-1}(\frac{1}{r}) for all r\geq 1\} .

For example, taking x=(a^{i})_{i=0}^{\infty},0<a<1 and both \Phi , \Psi s-convex with
0<s\leq 1 , we have w_{\Phi}(\lambda x)\leq\Phi(\lambda)(1-a^{s})^{-1} for \lambda>0 and r\Psi(\omega(\lambda x, r))\leq

r\Psi(\lambda a^{r})\leq r(a^{s})^{r}\Psi(\lambda)arrow 0 as rarrow\infty . Hence x\in X(\Phi, \Psi) .
2. 3. Let \overline{c} be the space of all sequences x=(t_{i})_{i=0}^{\infty} such that t_{0} and t_{1}

are arbitrary and t_{i}=t_{i+1} for i=1,2 , \ldots . Let \Phi be a \varphi-function and let \Psi

be a nonnegative, increasing function such that \Psi(u)–0 as uarrow 0_{+} .
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Then w_{\Phi}(x)=\Phi(|t_{1}-t_{0}|) and \omega(x, r)=0 , r=0,1,2 , . . for x\in\overline{c} . Hence \overline{c} is
a vector subspace of X(\Phi, \Psi) and x\in\overline{c} is equivalent to |x|_{\zeta}--0 , where |\cdot|_{\zeta}

is the F-pseudonorm generated by \zeta (see [4], 1. 5). Consequently, one may
consider quotient space

\overline{X}_{\zeta}=X_{\zeta}/\overline{c},\overline{X}(\Psi)=X(\Psi)/\overline{c} and \tilde{X}(\Phi, \Psi)=X(\Phi, \Psi)/\overline{c}

whose elements will be denoted by \overline{x} , etc. Since |x|_{\zeta} is constant in each of
the classes \overline{x} , we may define |\overline{x}|_{\zeta}=|x|_{\zeta} , x\in\overline{x} . In case if \Psi is \backslash ’\backslash -convex, 0<
s\leq 1 , we may define ||\overline{x}||_{\zeta}^{s}=||x||_{\zeta}^{s} , x\in\overline{x} .

2. 4. The following condition will be needed (see [4]):
(+) there exists a u_{0}>0 such that for every \delta>0 there is an \eta>0 satisfy-
ing the inequality \Psi(\eta u)\leq\delta\Psi(u) for all 0\leq u\leq u_{0} .

In particular, every s -convex \varphi-function \Psi , 0<s\leq 1 , satisfies (+) .
There are \varphi-functions \Psi not satisfying (+) , for example

\Psi(u)=

0 for u=0,

\frac{1}{\sqrt{-\ln u}} for 0<u \leq\frac{1}{e} ,

-arbitrary for u> \frac{1}{e} .

It is easily seen that (+) is equivalent to the following condition:
(++) for any u_{1}>0 and \delta_{1}>0 there is an \eta_{1}>0 such that \Psi(\eta u)\leq\delta_{1}\Psi(u)

for all 0\leq u\leq u_{1} and 0<\eta\leq\eta_{1} .

2. 5. THEOREM. Let \Psi be an increasing, continuous function of u\geq 0 ,

\Psi(0)=0 , satisfying the condition 2.4(+). Then \tilde{X}_{\zeta} and \tilde{X}(\Psi) are Fr\’echet
spaces with respect to the F-norm |\cdot|_{\zeta} .

PROOF. Let ( \tilde{x}_{n}) be a Cauchy sequence in \tilde{X}_{\zeta} and let x_{n}\in\tilde{x}_{n} , x_{n}=

(t_{i}^{n})_{i=0}^{\infty} be such that t_{1}^{n}=0 for all n . Let an \epsilon>0 be given a1ld let \Psi^{-1} be
the inverse to \Psi . There is an N such that |x_{p}-x_{q}|_{\zeta}<\Psi(\epsilon) for p, q>N .
Hence there exists a u_{\epsilon} , 0<u_{\epsilon}<\Psi(\epsilon) , for which

r \Psi(\frac{\omega(x_{p}-x_{q},r)}{u_{\epsilon}})\leq u_{\epsilon}

for p, q>N and r=1,2 , . whence

\omega(x_{p}-x_{q}, r)\leq u_{\epsilon}\Psi^{-1}(\frac{\mathcal{U}\epsilon}{r})\leq u_{\epsilon}\cdot\epsilon<\epsilon\Psi(\epsilon)

for p, q>N , r\geq 1 . Thus
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(*) |t_{m+i}^{p}-t_{m+i}^{q}-t_{i}^{p}+t_{i}^{q}| \leq u_{\epsilon}\Psi^{-1}(\frac{u_{\epsilon}}{r})<\epsilon\Psi(\epsilon)

for p, q>N , i\geq m\geq r . Taking r=1 and m=1 we obtain
|t_{i+1}^{p}-t_{i+1}^{q}|\leq|t_{i}^{p}-t_{i}^{q}|+\epsilon\Psi(\epsilon)

for p , q>N , i=1,2 , Hence, because t_{1}^{n}=0 for all n , we see that
(t_{i}^{n})_{n=0}^{\infty} are Cauchy sequence for i=1,2 , ... Let t_{i}= \lim_{narrow\infty}t_{i}^{n} for i=1,2 , \ldots .

t_{0}=0 , x=(t_{i})_{i=0}^{\infty} . Taking qarrow\infty in (*) , we have

(**) |t_{m+i}^{p}-t_{m+i}-t_{i}^{p}+t_{i}| \leq u_{\epsilon}\Psi^{-1}(\frac{\mathcal{U}\epsilon}{r})

for p>N , i\geq m\geq r\geq 1 . Thus

r \Psi(\frac{\omega(x_{p}-x,r)}{u_{\epsilon}})\leq u_{\epsilon}

for p>N , r\geq 1 . We shall see that this implies x_{p}-x\in X_{\zeta} for large p, i . e .
x\in X_{\zeta} . Indeed, let u_{\epsilon}>0 and p>N be fixed and let \delta>0 be arbitrary.

Taking \delta_{1}=\delta/u_{\epsilon} , u_{1}=\Psi^{-1}(u_{\epsilon}) and u= \frac{\omega(x_{p}-x,r)}{\mathcal{U}\epsilon} in 2.4(++), we obtain

for 0< \lambda\leq\frac{\eta_{1}}{u_{\epsilon}}

r \Psi(\lambda\omega(x_{p}-x, r))=r\Psi(\lambda u_{\epsilon}\frac{\omega(x_{p}-x,r)}{\mathcal{U}\epsilon})\leq\delta_{1}

uniformly with respect to r . Thus, \zeta(\lambda(x_{p}-x))–0 as \lambdaarrow 0_{+} , i . e . x_{p}-x

\in X_{\zeta} . Moreover, |x_{p}-x|_{\zeta}\leq u_{\epsilon}\leq\Psi(\epsilon) for p>N , i . e . |x_{p}-x|_{\zeta}arrow 0 as p
arrow\infty . Thus, \tilde{X}_{\zeta} is complete.

We have still to show that \tilde{X}(\Psi) is closed in \tilde{X}_{\zeta} with respect to |\cdot|_{\zeta} .
Let \tilde{x}_{p}arrow\tilde{x} in \tilde{X}_{\zeta},\tilde{x}_{p}\in\tilde{X}(\Psi) , and let x_{p}\in\overline{x}_{p} , x\in\overline{x} . Then for every \lambda

>0 ,

r\Psi(\omega(\lambda(x_{p}-x), r))arrow 0 as p— \infty

uniformly with respect to r . Let us fix \lambda>0 and \epsilon>0 . There is an index
p_{0} such that r \Psi(2\omega(\lambda(x_{p}-x), r))<\frac{1}{2}\epsilon for p\geq p_{0} and all r . We may

choose an r_{0} such that r \Psi(2\omega(\lambda x_{p_{0}}, r))<\frac{1}{2}\epsilon for all r\geq r_{0} . Hence

r\Psi(\omega(\lambda x, r))\leq r\Psi(2\omega(\lambda(x-x_{p_{0}}), r))+r\Psi(2\omega(\lambda x_{p_{0}}, r))<\epsilon

for r\geq r_{0} . This shows that x\in X(\Psi) , i . e.\tilde{x}\in\overline{X}(\Psi) .
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We are going now to express Theorem 2. 5 replacing the F-norm |\cdot|_{\zeta} by
the pseudomodular \zeta itself.

Let us remark that \overline{c}=\{x\in X:\zeta(x)=0\} . Moreover, \zeta(x)=0 implies
\zeta(2x)=0 for all x\in X . By [1], 3. 3, 3. 2 and 3. 5, \tilde{\zeta}(\overline{x})=\inf\{\zeta(y):y\in\tilde{x}\}

is a modular in \tilde{X}_{\zeta} and \tilde{X}_{\zeta}=X_{\zeta}/\overline{c}=(X/\overline{c})- .
Let us still recall that a sequence (x_{n}) is called \zeta-Cauchy, if there is a k

>0 such that for every \epsilon>0 there exists an index N for which \zeta(k(x_{p}-x_{q}))

<\epsilon for all p, q>N . A modular space is called \zeta-complete, if every \zeta -

Cauchy sequence of its elements is \zeta-convergent to an element of this space
(see [5], 1.0 }.

2. 6. THEOREM. Let \Psi be an increasing, continuous function of u\geq 0 ,
\Psi(0)=0 , satisfying the condition 2.4(+). The spaces \tilde{X}_{\zeta} and \tilde{X}(\Psi) are

\tilde{\zeta}-complete.

Proof is similar to that of 2. 5, and we give an outline only. Let \tilde{x}_{n}\in

\tilde{X}_{\zeta} , x_{n}=(t_{i}^{n})_{i=0}^{\infty}\in\overline{x}_{n} , t_{1}^{n}=0 for all n , and let ( \tilde{x}_{n}) be \tilde{\zeta} -Cauchy in \tilde{X}_{\zeta} . For
every \epsilon>0 there exists an N such that \tilde{\zeta}(2k(\overline{x}_{p}-\tilde{x}_{q}))<\epsilon for p, q>N , k>
0 being fixed. There exists a y\in 2k(\tilde{x}_{p}-\tilde{x}_{q}) such that \zeta(y)<\epsilon . Let us
remark that if z_{1} , z_{2}\in X_{\zeta} , z_{1}-z_{2}\in\overline{c} , then

\zeta(z_{2})\leq\zeta(2z_{1})+\zeta(2(z_{2}-z_{1}))=\zeta(2z_{1}) .

Taking z_{1}= \frac{1}{2}y , z_{2}k(x_{p}-x_{q}) , we thus have \zeta(k(x_{p}-x_{q}))\leq\zeta(y)<\epsilon for p, q

>N . Hence \omega(k(x_{p}-x_{q}), r)<\Psi^{-1}(\epsilon/r) for p, q>N and all r . Arguing as
in the proof of 2. 5, we obtain inequalities (*) and (**) with right-hand side

changed to \frac{1}{k}\Psi^{-1}(\epsilon/r) , which gives r\Psi(\omega(k(x_{p}-x), r))<\epsilon for p>N and

every r\geq 1 . This implies x_{p}-x\in X_{\zeta} , as in the proof of 2. 5. Moreover, x_{p}

\in X_{\zeta} , and so x\in X_{\zeta} . Further, \zeta(k(x_{p}-x))\leq\epsilon for p>N . This implies
that (x_{n}) is \zeta-convergent to x . We have \overline{\zeta}(k(\tilde{x}_{p}-\tilde{x}))=\inf\{\zeta(y):y\in k(\tilde{x}_{p}

-\tilde{x})\}\leq\zeta(k(x_{p}-x))\leq\epsilon for p>N . Thus, (\overline{x}_{n}) is \overline{\zeta} -convergent to \tilde{x} . Con-
sequently, \tilde{X}_{\zeta} is \overline{\zeta} -complete. Finally, we prove \tilde{X}(\Psi) to be \overline{\zeta} -closed in
\tilde{X}_{\zeta} . Let \tilde{x}_{p}\in\tilde{X}(\Psi),\tilde{x}_{p}arrow\overline{\zeta}\tilde{x} . Then \tilde{x}\in\tilde{X}_{\zeta} and \tilde{\zeta}(2\lambda(\overline{x}_{p}-\overline{x}))arrow 0 as
parrow\infty , for some \lambda>0 . Arguing as in the first part of the proof we obtain
that \zeta(\lambda(x_{p}-x))arrow 0 as parrow\infty . This implies x\in X(\Psi) , i . e.\tilde{x}\in\tilde{X}(\Psi) ,
as in the proof of 2. 5.

3. One may ask also the question, whether Theorems 2. 5 and 2. 6
remain true, if we replace the space \tilde{X}(\Psi) by \tilde{X}(\Phi, \Psi) , or equivalently,
whether \tilde{X}(\Phi, \Psi) is a closed subspace of \tilde{X}(\Psi) with respect to the F-norm
|\cdot|_{\zeta} , or the modular \tilde{\zeta} A negative answer to this question is provided by
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the example \Phi(u)=|u| , \Psi(u)=u^{2} and x=(t_{i})_{i=0}^{\infty} , x_{n}=(t_{i}^{n})_{i=0}^{\infty} , where t_{i}=

(-1)^{i}/(i+1) , t_{i}^{n}=t_{i} for i\leq n , t_{i}^{n}=0 for i>n . Obviously, x_{n}\in X(\Phi, \Psi) , x
\in X(\Psi) , but x\not\in X_{\Phi} . This negative answer leads to putting the same ques-
tion in context of tw0-modular convergence in \tilde{X}(\Phi, \Psi) .

3. 1. Let us recall the notion of tw0-modular convergence ( \gamma -

convergence), (see [6] or [4], p. 169). Let <X , \zeta’ . \zeta>be a triple, where
\zeta’ and \zeta are two modulars in a vector space X. A set K=\{x\in X_{\zeta’} : \zeta’(k_{0}x)

\leq M_{0}\} with some k_{0} , M_{0}>0 is called a \zeta’-ball. A sequence (x_{n}) , x_{n}\in X is
called \zeta’- bo\iota^{\prec}.nded , if the sequence (\epsilon_{n}x_{n}) is \zeta’-convergent to 0 for every
sequence of numbers \epsilon_{n}arrow 0 . If (x_{n}) is \zeta’ -bounded, then x_{n}\in K , n=1 ,

2, \ldots . for some k_{0} , M_{0}>0 (see [6] or [4], 5. 5). A sequence (x_{n}) is called
\gamma-convergent to x , x_{n}arrow x\gamma , if (x_{n}) is \zeta’-bounded and \zeta-convergent to x .
The tw0-modular space, i . e . the triple <X , \zeta’ . \zeta> is called \gamma-complete, if
for every fixed \zeta’-ball K and every sequence (x_{n}) , x_{n}\in K , which is \zeta-Cauchy,

there exists an element x\in K such that x_{n}arrow x\gamma .
We are g oing now to investigate the tw0-modular space <\tilde{X}(\Phi, \Psi),\overline{w}_{\Phi} ,

\tilde{\zeta}> , where \overline{w}_{\Phi}(\tilde{x})=\inf\{w_{\Phi}(y):y\in\overline{x}\} .
Let us remark that \overline{w}\Phi(\overline{x})=w_{\Phi}(\overline{x}) , where x=(t_{i})_{i=0}^{\infty},\overline{x}=(\overline{t}_{i})_{i=0}^{\infty} , \overline{t}_{0}=

t_{1} , \overline{t}_{i}t_{i} for i\geq 1 . Obviously, \overline{x}\in\overline{x} , and so \overline{w}_{\Phi}(\overline{x})\leq w_{\Phi}(\overline{x}) . Now, let y=
(s_{i})_{i=0}^{\infty}\in\tilde{x} , then s_{i}-t_{i}=k for i=1,2 , with some constant k . Denoting \overline{y}

=(\overline{s}_{i})_{i=0}^{\infty} , where \overline{s}_{0}=t_{1}+k , \overline{s}_{i}T_{i}+k for i\geq 1 , we have w_{\Phi}(y)\geq w_{\Phi}(\overline{y})=

w_{\Phi}(\overline{x}) . This implies \overline{w}_{\Phi}(\overline{x})\geq w_{\Phi}(\overline{x}) .

3. 2. THEOREM. Let \Phi be a \varphi-function and let \Psi be an increasing,
continuous function of u\geq 0 , satisfying the condition 2.4(+) and such that
\Psi(0)=0 . Then the twO-modular space

<\overline{X}(\Phi, \Psi),\overline{w}_{\Phi},\overline{\zeta}>

is \gamma-complete.

p_{ROOF} . Let \overline{K} be a \overline{w}_{\Phi}-ball in \tilde{X}(\Phi, \Psi) and let \tilde{x}_{n}\in\tilde{K} for n=1 ,

2, ( \tilde{x}_{n}) be \overline{\zeta} -Cauchy. By 2. 6, ( \tilde{x}_{n}) is \tilde{\zeta} -convergent to an element \tilde{x}\in

\tilde{X}(\Psi) . Hence \tilde{x}_{n}arrow\tilde{x}\gamma . We have to show that \overline{x}\in\overline{K} . It is easily seen
that taking x_{n}\in\tilde{x}_{n} , x_{n}\in X_{\Phi} in such a manner that the first two coordinates
of x_{n} are the same, we have w_{\Phi}(k_{0}x_{n})\leq M_{0} for some k_{0} , M_{0}>0 .

Thus, writing x_{n}=(t_{i})_{i=0}^{\infty} , we have

\sum_{i=1}^{\infty}\Phi(k_{0}|t_{n_{i}}^{p}-t_{n_{i-1}}^{p}|)\leq M_{0}

for p=1,2 , and any increasing sequence (n_{i}) of positive integers. Since
l_{l}^{P}arrow t_{i} as parrow\infty , where x=(t_{i})_{i=0}^{\infty} , we obtain easily
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\sum_{i=1}^{\infty}\Phi(k_{0}|t_{n_{i}}-t_{n_{i-1}}|)\leq M_{0}

whence w_{\Phi}(k_{0}x)\leq M_{0} . Consequently, \overline{w}_{\Phi}(k_{0}\tilde{x})\leq M_{0} , i . e.\tilde{x}\in\tilde{K} .
4. Let \Phi be a \varphi-function and let \Psi be an increasing, continuous func-

tion for u\geq 0 such that \Psi(0)=0 . We apply now the \gamma convergence in \tilde{X}(\Phi ,
\Psi) in order to obtain an approximation theorem by means of the m-
translation, i . e . a result of the form \tau_{m}x-xarrow 0 in an Orlicz sequence
space 1^{\Gamma} with a \varphi-function \Gamma satisfying the following condition:

(i) there exist positive constants a , b , u_{0} such that \Gamma(au)\leq b\Phi(u)\Psi(u)

for 0\leq u\leq u_{0} .

It is easily seen that ( i) implies, that for every u_{1}\geq 0 there exists a c
>0 such that \Gamma(cu)\leq b\Phi(u)\Psi(u) for 0\leq u\leq u_{1} ; indeed, if u_{1}\leq u_{0} we may
take c=a, and if u_{1}>u_{0} , we may put c=au_{0}(u_{1})^{-1} .

4. 1. LEMMA. Let the assumptions of 4 be satisfied and let w_{\Phi}(\lambda x)<\infty

for a \lambda>0 . Then

\sum_{i=1}^{\infty}\Gamma(c\lambda|(\tau_{r}x)_{i}-(x)_{i}|)\leq br\Psi(\omega(\lambda x, r))w_{\Phi}(\lambda x)

for every r\geq 0 .

PROOF. Since x=(t_{i})_{i=0}^{\infty} is bounded, so taking u_{1}=2 \lambda\sup_{i}|t_{i}| , fixing r
and choosing m\geq r arbitrarily, we obtain

\sum_{i=1}^{\infty}\Gamma(c\lambda|(\tau_{m}x)_{i}-(x)_{i}|)=\sum_{i=m}^{\infty}\Gamma(c\lambda|t_{m+i}-t_{i}|)

\leq b\Psi(\omega(\lambda x, r))\sum_{i=m}^{\infty}\Phi(\lambda|t_{m+i}-t_{i}|)

\leq b\Psi(\omega(\lambda x, r))\sum_{k=1}^{\infty}\sum_{i=km}^{(k+1)m-1}\Phi(\lambda|t_{m+i}-t_{i}|)

\leq b\Psi(\omega(\lambda x, r))\sum_{j=m}^{2m-1}\sum_{k=1}^{\infty}\Phi(\lambda|t_{km+j}-t_{(k-1)m+j}|)

\leq b\Psi(\omega(\lambda x, r))mw_{\Phi}(\lambda x) .

Taking m=r , we get the required ineguality.

4. 2. THEOREM. Let \Phi and \Gamma be \varphi-functions and let \Psi be an increasing,
continuous function for u\geq 0 , \Psi(0)=0 , such that 4(i) holds. Let x\in\tilde{x}\in

\tilde{X}(\Phi, \Psi) . Then \tau_{r}x-x\in 1^{\Gamma} for all r\geq 0 , and \tau_{r}x-xarrow 0 in the sense of
modular convergence in 1_{t}^{\Gamma}

PROOF. Since x\in X(\Phi, \Psi) , so w_{\Phi}(\lambda x)<\infty and r\Psi(\omega(\lambda x, r))arrow 0 as
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rarrow\infty for sufficiently small \lambda>0 . By Lemma 4. 1, \tau_{r}x-x\in 1^{\Gamma} for all r\geq

0 . Also, taking rarrow\infty in the inequality of Lemma 4. 1, we obtain \tau_{r}x

-xarrow 0 in the sense of modular convergence in 1^{\Gamma} .

4. 3. LEMMA. Let x_{n}=(t_{i}^{n})_{i=0}^{\infty}\in X_{\Phi} , t_{0}^{n}=0 , for n=1,2, \ldots and let
x_{n}\in K, where K is a w_{\Phi} -ball in X_{\Phi} . Then there is a constant L>0 such
that |t_{i}^{n}|\leq L for i=0,1,2, \ldots and n=1,2 , \ldots

PROOF. Let w_{\Phi}(k_{0}x_{n})\leq M_{0} for n=1,2 , \ldots with some k_{0} , M_{0}>0 , then
\Phi(k_{0}|t_{i}^{n}|)=\Phi(k_{0}|t_{i}^{n}-t_{0}^{n}|)\leq M_{0} , and so |t_{i}^{n}|\leq L for some L>0 , because
\Phi(u)arrow\infty as uarrow\infty .

4. 4. THEOREM. Let the same assumptions as in 4.3 be satisfied. Let
\tilde{x}_{n}\in\overline{X}(\Phi, \Psi),\overline{x}_{n}arrow 0\gamma in<\tilde{X}(\Phi, \Psi),\overline{w}_{\Phi},\tilde{\zeta}>asnarrow\infty and x_{n}(t_{i}^{n})_{i=0}^{\infty}\in

\tilde{x}_{n} , t_{0}^{n}=0,t_{1}^{n}=0 for n=1,2, \ldots Then \tau_{r}x_{n}-x_{n}arrow 0 with respect to modu-
lar convergence in 1^{\Gamma} as narrow\infty , uniformly for r\geq 0 .

PROOF. Since \tilde{x}_{n}arrow\gamma 0 , so x-n\in\tilde{K} , where K\sim is a w-_{\Phi^{-}}ba11 . But
w_{\Phi}(k_{0}\tilde{x}_{n})\leq M_{0} with some k_{0} , M_{0}>0 . By Lemma 4. 3, |t_{i}^{n}|\leq L for all i , n ,

with an L>0 . Let u_{1}=2\lambda L , c=au_{0}/u_{1} . where 0<\lambda\leq k_{0} . Then, by
Lemma 4. 1 we have

\sum_{i=0}^{\infty}\Gamma(c\lambda|(\tau_{r}x_{n})_{i}-(x_{n})_{i}|)\leq b\zeta(\lambda x_{n})w_{\Phi}(\lambda x_{n})\leq b\zeta(\lambda x_{n})M_{0} .

By assumption there exists a \lambda>0 such that for every \epsilon>0 there is an
integer N for which \tilde{\zeta}(2\lambda\tilde{x}_{n})=\inf\{\zeta(y):y\in 2\lambda\tilde{x}_{n}\}<\epsilon for n>N . Hence

there exist y_{n}\in 2\lambda\overline{x}_{n} , n>N , such that \zeta(y_{n})<\epsilon . But \frac{1}{2}y_{n}-\lambda x_{n}\in\overline{c} . Ar-

guing as in the proof of Theorem 2. 6, with z_{1}= \frac{1}{2}y_{n} , z_{2}=\lambda x_{n} , we obtain
\zeta(\lambda x_{n})\leq\zeta(y_{n})<\epsilon for n>N . Hence \zeta(\lambda x_{n})arrow 0 as narrow\infty .

We are indebted to the refree for his kind remarks which enabled to
improve the paper, especially in parts concerning the modular \tilde{\zeta} .
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