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Generalized variation and translation operator
in some sequence spaces

J. MUSIELAK and A. WASZAK
(Received August 5, 1987, Revised February 23, 1988)

Abstract. There are defined and investigated some spaces of
sequences provided with two-modular structure given by generalized varia-
tions and the translation operator. The results are applied to obtain an
approximation theorem by means of translated sequences.

1. Let x=(t)=(#:):20 be a sequence of real numbers. We denote also
(x);=t; for j=0,1,2,.... We introduce two auxiliary notations: this of
the ®-variation of x and that of the sequential modulus of x.

1.1. Let X be the space of all real sequences and let ® be a ¢-function
(see e. g. [4], 1.9). The ®-variation ws(x) of xEX is defined as

WQ(x):SUP_Z@('tni_tﬂi—ll)y

(n;) i=1

where the supremum runs through all increasing subsequences (#:) of in-

dices (see [2]). we is a pseudomodular in X defining the modular space
Xo=Xp,={xEX : wo(Ax)—0 as A—0.}

(see [7], and also [8]). |-l will denote the Luxemburg pseudonorm in

Xo (see [4]). It is easily seen that X+Cc, where c is the space of conver-
gent sequences, and X ¢ is strongly modular complete and complete in the

norm (see [2] and [5)).

1.2. Given any sequence x=(t:)%0, we write

(z x):{tj for j<m,
P \tmyy; for j=m,

where m, 7=0,1,2,... (see , also , 7.17). The sequence Tmx=
((tmx);)iZ0 is called the m-translation of the sequence x.
1.3. The sequential modulus of the sequence x=(#:)iZo is defined as

(x, v)=sup sup|(rnx): — 1,

where »=0, 1,2,.... Obviously, we have

w(x, 7)=sup sup|tm+:—ti|

M=y 1=m
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for »=0,1,2,....

For example, taking x=(a")7 with 0<a<1 or x=(l+%> or x=

=0

<1+%+m+7i—1>% , then we have w(x, r)=a"(1—a") for »=—1In2/lna

_ (4 _ .
or w(x, 7)*(r+1)(27+1) for =1 or w(x, »)=1In2 for »=>0, respective-

ly.
2.  We shall consider two spaces of sequences X(¥) and X(®,¥),
defined by means of the sequential modulus and ®-variation of the sequence.
2.1. Let ® be a ¢-function and let ¥ be a nonnegative, nondecreasing
function of #>0 such that ¥(«)—0 as ¥——0,. Then we write

XW)={xeX: r¥(w(ix, ))—0 as »—— for a A1>0},
X(®,¥)=XoN X(W).

Obviously, X(¥) and X(®, ¥) are vector spaces. If ¥ satisfies the condi-
tion (Az) for small % >0, then one may take fixed A=1 in the definition of
X(W).

2.2. We define now for every x&X

§(x)=sup r¥(w(x, r)).

Obviously, ¢ is a pseudomodular in X. The respective modular space will
be denoted by X;; we have X (&, ¥)C X(¥)C X;.

Let us remark that if ¥ is increasing and s-convex for =0 with some
0<s<1, then ¢ is an s-convex pseudomodular in X and

Iet=sup( 17y

where ¥~ is the inverse to ¥, because
Jxel=int{o>0- g(ﬁ)gl}
=inf{u >O:Q%’7—SQS\IFI<%> for all 7’21}.

For example, taking x=(a%)%0, 0<a<1 and both ®, ¥ s-convex with
0<s<1, we have wo(Ax)< ®(A)(1—¢a®)"' for A>0 and » ¥(w(lx, 7)) <
¥ ¥(Aa")<r(a®)y¥(A)—0 as »—— 0. Hence xE X(®, V).

2.3. Let ¢ be the space of all sequences x=(%;)7 such that % and 4
are arbitrary and ¢,=t;+1 for 1=1,2,.... Let ® be a ¢-function and let ¥
be a nonnegative, increasing function such that ¥(x)—0 as u——0,.
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Then we(x)=®(|ti—tl|) and w(x, »)=0, r=0,1,2,...for x€¢. Hence ¢ is
a vector subspace of X(®,¥) and xE ¢ is equivalent to |x|¢=0, where |+|;
is the F-pseudonorm generated by ¢ (see [4], 1.5). Consequently, one may
consider quotient space

Xi=Xi/¢c, X(¥)=X(¥)/¢c and X(®, ¥)=X(®, ¥)/c.

whose elements will be denoted by %, etc. Since |x|¢ is constant in each of
the classes ¥, we may define |%|:=|x|¢, x€%. Incaseif ¥is s-convex, 0<
s<1, we may define |Z[i=|x[$, x=*.

2.4.  The following condition will be needed (see [4]):
(+) there exists a #o>0 such that for every 6>0 there is an 7>0 satisfy-
ing the inequality W(7u)<oW () for all 0<u<uw,.

In particular, every s-convex ¢-function ¥, 0<s<1, satisfies (+).
There are ¢-functions ¥ not satisfying (+), for example

0 for u=0,
. for 0< u<i
WU(u)=+ J/—In u 0 ~ e’

arbitrary for u >%.

It is easily seen that (+) is equivalent to the following condition :
(++) for any >0 and 6:>0 there is an 7 >0 such that ¥(7u)<8¥(u)
for all 0<u<wu; and 0<7p<7.

2.5. THEOREM. Let ¥ be an increasing, continuous function of u=0,
W(0)=0, satisfying the condition 2.4(+). Then X. and X(¥) are Fréchet
spaces with respect to the F-norm |+|:.

Proor. Let (%¥.) be a Cauchy sequence in X, and let x, € %n, xn=
(t7-0 be such that #'=0 for all #». Let an >0 be given and let ¥~ ' be
the inverse to ¥. There is an N such that |x,—xq|:<¥(e) for p, ¢>N.
Hence there exists a u#., 0<u.<¥(¢), for which

N,( co(xp;xq, r) )g ”

for p,¢g>N and »=1,2,..., whence

u; >£ue'z-:< e¥(e)

o(xp—xq, )< ue\If’1<

for p,q>N, r=1. Thus
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Ue
7

<*> |trg+i_trg+i_tzp‘}‘tzg'the‘I’_l( ><€\I’(€)

for p,q>N, 1=2m=>r. Taking »=1 and m=1 we obtain
|l’f+1—l‘zg+1‘£|l‘f_ iq|+5\1r(5)

for p, ¢>N, 1=1,2,.... Hence, because t{'=0 for all »#, we see that
(tH)n-o are Cauchy sequence for 1=1,2,.... Let t;=lim¢? for i=1,2, ...,

n—oo

tr=0, x=(#;)70. Taking g— 0 in (), we have

(**) |t,‘,§+z~—tm+i—tf’+ti|£ue\lf“1(%f~>

for p>N, i12m>r=>1. Thus

m,( w(xp—x, 7) >£ue
Ue

for p>N, »r=1. We shall see that this implies x,—x< X; for large p, i.e.

xE X¢. Indeed, let ue>0 and p>N be fixed and let § >0 be arbitrary.

Taking 61=06/ue, uu=%""(u.) and u:pru—x,_r) in 2.4(++), we obtain

€

for O<A£l
u

€

r¥(ote—x, )= r¥( 2B 5 )<

[

uniformly with respect to . Thus, {(A(xp—x))—0 as A—0,, i.e. xp—x
€ X,. Moreover, |x,—x|:<u.< ¥(e) for p>N, i.e. |xp—x|c——0 as p
——oo, Thus, X; is complete.

We have still to show that X(¥) is closed in X; with respect to |+|s.
Let ¥,—— % in X, Z»€X(¥), and let ¥ %p, xE%. Then for every A
>0,

r¥U(w(A(xp—x), 7)) —0 as p—— 0
uniformly with respect to ». Let us fix A>0 and €>0. There is an index

po such that » ¥Q2w(A(x,—x), 7))<%5 for p=po and all ». We may

choose an 7 such that »¥(2w(Axp,, r))<%e for all »>7,. Hence

rW(w(Ax, 7)< rVQw(A(x —xp,), 7))+ T2 w(Axp,, 7)) < €
for »>7,. This shows that x€ X (¥), i.e. T€X(¥).
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We are going now to express Theorem 2.5 replacing the F-norm ||, by
the pseudomodular ¢ itself.

Let us remark that ¢={x€X: {(x)=0}. Moreover, &(x)=0 implies
¢(2x)=0 for all x&€X. By [1], 3.3, 3.2 and 3.5, £(%)=inf{¢(y): ye %}
is a modular in X; and X.=X./c=(X/¢):.

Let us still recall that a sequence (x») is called ¢-Cauchy, if there is a k&
>0 such that for every >0 there exists an index N for which &(&(x,—x,))
<e for all p,g>N. A modular space is called ¢-complete, if every ¢-
Cauchy sequence of its elements is {-convergent to an element of this space

(see [5], 1.04).

2.6. THEOREM. Let ¥ be an increasing, continuous function of u =0,
‘I:(())=O, satisfying the condition 2.4(+). The spaces X¢ and X(¥) are
&-complete.

Proof is similar to that of 2.5, and we give an outline only. Let %.E
Xe, xa=(t170E %, =0 for all n, and let (£.) be ¢-Cauchy in X;. For
every €>0 there exists an N such that £(2k(%,— x4))<e for p, g>N, k>
0 being fixed. There exists a yE2k(X,— ¥4) such that &(y)<e. Let us
remark that if z, 2€X;, 21— <, then

8(2)<8(22)+ (22— 21))=¢(221).

Taking zlz—%-y, 2k(xp—x4), we thus have ¢(k(xp—x4))<E(v)<e for p, q

>N. Hence w(k(xp—2xq), r)<¥ efr) for p,¢g>N and all ». Arguing as
in the proof of 2.5, we obtain inequalities (*) and (**) with right-hand side

changed to %\If‘l(e/r), which gives »W(w(k(x,—x), v))<e for p>N and

every »=1. This implies xp—xE X, as in the proof of 2.5. Moreover, x»
€X:, and so xEX;. Further, {(k(xp—x))<e for p>N. This implies
that (x.) is ¢-convergent to x. We have C(k(%,— %))=inf{¢(y): yEk(%,
— %)} <t(k(xp—x))<e for p>N. Thus, (Z.) is ¢-convergentto %. Con-
sequently, X; is {-complete. Finally, we prove X(¥) to be -closed in
X:. Let z,€X(¥), ¥p—— %. Then #€X; and £QAN%,— %)) —0 as
p— 0, for some A>0. Arguing as in the first part of the proof we obtain
that §(A(xp—x))—0 as p——oo. This implies xEX(¥), i.e. TE€X(¥),
as in the proof of 2.5.

3. One may ask also the question, whether Theorems 2.5 and 2.6
remain true, if we replace the space X(¥) by X(®, ¥), or equivalently,
whether X(®, ¥) is a closed subspace of X(¥) with respect to the F-norm
|*l¢, or the modular . A negative answer to this question is provided by
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the example ®(u)=|u|, ¥(u)=u* and x=(t:)70, x»=(47)7=0, where t;=
(—1)/(i+1), t?=t; for i<n, t=0 for i>n. Obviously, x»EX(®, V), x
c X(¥), but x¢ Xe. This negative answer leads to putting the same ques-
tion in context of two-modular convergence in X(®, ¥).

3.1. Let us recall the notion of two-modular convergence (7-
convergence), (see or [4], p. 169). Let <X, ¢, &> be a triple, where
¢ and ¢ are two modulars in a vector space X. A set K={xE Xy : ¢ (kox)
<M,} with some ki, My>0 is called a ¢’-ball. A sequence (x»), x.€X is
called &-bounded, if the sequence (exx») is {’-convergent to 0 for every
sequence of numbers e,——0. If (x.) is ¢’-bounded, then x,.€K, n=1,
2,..., for some ko, Mo>0 (see @ or , 5.5). A sequence (x.) is called
y-convergent to x, x»——x, if (x.) is ¢’-bounded and ¢-convergent to x.
The two-modular space, i.e. the triple <X, {’, {> is called y-complete, if
for every fixed &’-ball K and every sequence (x.), x»€ K, which is {-Cauchy,
there exists an element ¥ K such that x,——x.

We are going now to investigate the two-modular space < X(®, ¥), i,
¢ >, where @Wo(%)=inflws(y): vEX}.

Let us remark that @ o(X)=w o( ¥), where x=(t:)%0, ¥ =(1:)70, to=
f, tq: for i=1. Obviously, ¥ %, and so We(%)<we(X). Now, let y=
(s:)0E %, then s;—t;=Fk for i=1,2,...with some constant .. Denoting ¥
=(5:)%0, where So=hH+k, S:f:+k for i=1, we have wo(y)=wo(¥)=
wo(%). This implies Wol X)=wol X).

3.2. THEOREM. Let ® be a o-function and let ¥ be an increasing,
continuous function of u=0, satisfying the condition 2.4(+) and such that
W(0)=0. Then the two-modular space

<X(®, W), Wo, &>
is y-complete.
PrROOF. Let K be a ive-ball in X(®,¥) and let £.€K for n=1,

9. ..., (%) be -Cauchy. By 2.6, (%) is {-convergent to an element ¥ €

X(¥). Hence #.—— %. We have to show that fEK. It is easily seen
that taking x.€ %, 2= Xe in such a manner that the first two coordinates
of x. are the same, we have wo(koxs) <M, for some ko, Mo>0.

Thus, writing x.=(t;)7=, we have

g@(/@oi l‘rﬁ_ t?’ﬁ—l‘) SA/MO

for p=1,2, ... and any increasing sequence (#:) of positive integers. Since
tP—— t; as p—— 00, where x=(t:)7-0, we obtain easily
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Dol b~ ) < M

whence was(kox)<M,. Consequently, Wo(koZ)<M,, i.e. *EK.

4. Let ® be a ¢-function and let ¥ be an increasing, continuous func-
tion for # >0 such that ¥(0)=0. We apply now the y-convergence in X(®,
V) in order to obtain an approximation theorem by means of the m-
translation, i.e. a result of the form rmx—x——0 in an Orlicz sequence
space 1" with a ¢-function I" satisfying the following condition :

(i) there exist positive constants a, &, uo such that I'(au) < b®(u)¥ ()
for 0<u<wo.

It is easily seen that (i) implies, that for every ;>0 there exists a ¢
>0 such that I'(cu)<b®(u)¥(u) for 0<u<u ; indeed, if :<wu, we may
take c=a, and if u1>wu,, we may put c=auo(u1)™".

4.1. LEMMA. Let the assumptions of 4 be satisfied and let wo(Ax)<oo
for a A>0. Then
ST (Al (r)i— () ) < br U (w(ix, 7)) wali)

for every r=0.

PROOF.  Since x=(#:)70 is bounded, so taking u1=2Asupl|#|, fixing 7

and choosing m > arbitrarily, we obtain

STl (mmt)i— (1)) = BT (cAltmei— )
<bW(w(2x, 7)) 2O tmei— )

<b¥(w(Ax, 7’))‘2‘.1 (k+%m_l®(ﬂ|tm+i— tl)

= i=hkm
2m—1 o

<b¥(w(Ax, 7’))j§n §1®(A|l‘km+j_t(k—1)m+jl)
<b¥(w(Ax, 7)) mwe(Ax).

Taking m=r, we get the required ineguality.

4.2. THEOREM. Let ® and T be ¢-functions and let ¥ be an increasing,
continuous function for u=0, w(0)=0, such that 4(i) holds. Let xExE
X(®,¥). Then tx—x<E1" for all =0, and tx—x——0 in the sense of
modular convergence in 1°.

PROOF. Since xEX(®,¥), so waolAx)<oo and » ¥(w(lx, 7)) —0 as
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r—— oo for sufficiently small A>0. By Lemma 4.1, tx—x€1F for all »=
0. Also, taking »——© in the inequality of Lemma 4.1, we obtain zx
—x——0 in the sense of modular convergence in 1'.

4.3. LEMMA. Let xa=(tH70 EX o, tI'=0, for n=1, 2, ... , and let
x2EK, wheve K is a we-ball in Xo. Then there is a constant L>0 such
that |tH<L for i=0,1,2, ...and n=1,2,....

PROOF. Let wolkoxn) <M, for n=1,2, ... with some ky, M,>0, then
® (kolt?])= ®(kolt!—t#)< Mo, and so |t|<L for some L>0, because
®(y)—co as y——> o,

4.4. THEOREM. Let the same assumptions as in 4.3 be satisfied. Let
. €X(@, %), .0 in <X(®, V), WWo, > as n—> and x,(tH70E
Xn, 10=0,t'=0 for n=1,2,.... Then twxn—x—0 with respect to modu-
lar convergence in 1° as n——> 0, uniformly for r=0.

PrROOF. Since X,—— 0, so 557,6[?, where K is a ie-ball. But
wolkoXn) < Mo with some ko, Mo>0. By Lemma 4.3, |t/|<L for all i, n,

with an L>0. Let u1=2AL, c=auo/u,, where 0<A<k,. Then, by
Lemma 4.1 we have

g‘bf‘(c/li( Trxn) i — (xn) ) < BE(Axn) wa Axn) < bE(Axn) Mo.

By assumption there exi~sts a A>0 such that for every €>0 there is an
integer N for which ¢(24%.)=inf{¢(y): vE2A%,}<e for n>N. Hence

there exist y»E21%,, n>N, such that &(yv.)<e. But %yn—/lxne c. Ar-

guing as in the proof of Theorem 2.6, with le%yn, 22=Axn, we obtain

E(Axn)<t(yn)<e for n>N. Hence &(Ax,)—0 as n—> 0.
We are indebted to the refree for his kind remarks which enabled to
improve the paper, especially in parts concerning the modular §.
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