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0. Introduction

Let ¢: GXM— M be a smooth action of a connected Lie group G on
a compact orientable manifold M. If for every point z of M the isotropy
subgroup G is discrete, ¢ is said to be locally free. If the orbits of ¢ have
codimension one, we call ¢ a codimension one action. Suppose that G is
nilpotent and ¢ is a locally free codimension one action. Some dynamical
properties of such an action ¢ and topological properties of M are stated in
the paper [HGM]. We will consider this in detail. The object of this paper
is to prove the following

THEOREM. Let M be a connected closed orientable manifold. Suppose
that M adwmits a locally free codimension one smooth action ¢ of a connected
nilpotent Lie group G such that 1) ¢ has no compact orbits and i) the
dimension of the commutator [G, G] is one. Then M is homeomorphic to a
nilmanifold i. e. the homogeneous space of a connected nilpotent Lie group.

REMARK. (1) A compact nilmanifold always admits a locally free
codimension one smooth action of a connected nilpotent Lie group which
satisfies the above conditon i). (2) A Heisenberg group is a good example
of a nilpotent Lie group which satisfies the above condition ii).

The theorem is a finer version of theorem (2.7) of under the
assumption ii).

Unless otherwise specified, we consider in the smooth (C*) category.

1. Unipotent flows on the space of lattices

Our method of proving the theorem is deeply concerned with characteri-
zation of a compact minimal set of a unipotent flow on the space of lattices.
We describe it here.

Denote by < (k) the space of lattices in k-dimensional euclidean space
E (cf. [C]). Fix abasis vy, -, v of E. Then every element b of a lattice
A has a expression bzg(%‘. bi;m;)v; where my's are integers and (b;) is
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nonsingular matrix. Thus lattices can be represented as non-singular
matrices, but this representation is not unique. If A and B are two matrix
representations of the same lattice, the coefficients of A™'B are integers and
its determinant is *1. That is, &(#) can be regarded as GL(k, R)/{£1}X
SL(k, Z).

Let f: E— E be a nilpotent linear map, exp #f be the exponential of
tf and U, :Z(k)—> £ (k) be a map induced by exp #f. We say the action
U: Rxz(k)—> (k) the unipotent flow on £ (k) defined by f. Recall that
a minimal set of U is a nonempty, closed, U-invariant set which is also
minimal with respect to these properties. Assume that there exists a com-
pact minimal set .#. Then we obtain the following result for an element of
M.

(1.1) LEMMA. If the dimension of Im(f) is one, then theve exist a
basis U1, -, Ux of E and an integer p(1=p=Fk) such that v., -, Ur spans
Ker(f), f(vi)=uv. and to the basis vi, -, Ux every element of A is ve-
presented by a matrix (ai;) which satisfies a; =0 for 1<i<p and p+1=j=k

PROOF: Choose a basis vi, -+, Ur such that v, -, v. spans Ker(f)
and f(v))=uv. and fix an element A of #. Let (b;;) be a matrix representa-
tion of A. Without loss of generality, we may assume that |det(b;)|=1
because det(U;)=1. And we suppose that an element of E is expressed by
its coefficient to the basis uvi, -+, Uk, that is, b=Zi‘. b:v; is expressed to (b,

-+ by). Thus Udb)=(by, +, br-1, thi+bx) where b=(by, -, b) and b=
(bn, Tty bkl), oty bk:(blk, Tty bkk) is a basis of A.

Assume that bi1, -+, bir are independent over Z where Z is the ring of
integers. We will show that this assumption contradicts to the compactness
of #. Since # is compact, there exists a ball B(e) centered at O with
radius €>0 such that every element of .# has no point in B(e) other than O.
For this € and (b;), from [C, Theorem III, page 73] it follows that there
exists a point b=mu b+ -+ mrbr=(b1, -+, bx) of A other than O such that
|b;|<ek™ for 1<k and |be|<&'*k*7'. Since bu, -+, bir are independent
over Z, bi#0. It follows that there exists a real number ¢ such that U.(b)
=(by, -+, bu_1,0) and therefore |U:(b)|<e. Since U:(A) is an element of
A, this induces a contradiction.

Since bu1, -+, bir are not independent over Z, it follows that there exist
co-prime integers mu, -+, my such that mibu+--+meb,=0. If a point b of
A is of the form b=wud where u is real number and d=wmb:+ -+ m.bx,
then u is an integer because ;s are co-prime. From [C, Corollary 3,
page 14] we see that there exists a basis di, -, dv»=d of A, that is, there
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exists an another matrix representation (di;) of A such that di.=0. Again
by [C, Theorem IIl, page 73] there exists a point d=mudi+ -+ m.dr=(d,
- dr) of A other than O such that |dj|<ek™! for 1</<k and |dil<
81—kkk—1.

(1) If du, -, dir-1 are independent over Z and di=0, then d:»=0 for
1=/<k—1. In fact, € can be chosen such as ek '<|du| for 1=</<k—1
with di#0 and d=m.d.=(0, mrdzr, -+, mrdr.) from the assumption.

(2) If du, -, dir-1 are independent over Z and di#0, by the same
argument as to bu, '+, b1z, we see that this case does not occur.

(3) If du, -, dir-1 are not independent over Z, by the same argument
as above we obtain new basis £, -, fi-1, fr=dx of A such that fir-1=s1.=0
where (f;;) is its new matrix representation. If necessary, by selecting an
another basis of E, we can assume that fix=0 for 1=:<k—2. Therefore
by the same argument as in (1), we see that dir-1=0 for 1=/<k—2.

In this way, this series of arguments and the minimality of .# induces a
complete proof of the lemma.

The following lemma is an easy consequence to lemma (1. 1).

(1.2) LEMMA. Under the same assumption as in lemma (1. 1), there
exists a non-trivial proper subspace E, of E such that E, contains Im(f)
and thevefore is invariant under U: and every element A of # is uniform in
E., i. e, ANE: is a lattice in E.

2. Proof of the theorem

Let ¢: GXM— M be a locally free smooth action of a connected Lie
group G on a manifold M. The orbits of a locally free smooth action ¢ are
leaves of a foliation. We call the foliation the orbit foliation of the action ¢.
In particular, if G is nilpotent, the orbit foliation is called a nilfoliation in
[HGM]. We shall quote the necessary facts from those of [HGM].

We assume that M is a connected, orientable closed manifold, G is a
connected, simply connected nilpotent Lie group such that dim G=dim M
—1 and ¢ is a locally free smooth action of G on M. Denote by %, the
orbit foliation of ¢. ¥, is a codimension one nilfoliation. For z€M let
G denote the isotropy subgroup of ¢ at z and G. denote the Malcev closure
of G. in G (i.e. the unique closed connected subgroup G. of G such that G,
is contained in G, and the homogeneous space G./G; is compact). The

following two results are in [HGM].

(2.1) LEMMA. Supose that ¥4 has no compact leaves. Then all
leaves are dense in M.
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(2.2) LEMMA. Under the same assumption as above, G: is a fixed
normal subgroup of G which is independent of the choice of z.

Let N denote a fixed normal subgroup as in lemma (2. 2), thatis, N=
G.. Now assume that ¢ has no compact orbits (in other words, % has no
compact leaves) and ¢ is not free. Then we obtain the following

(2.3) LEMMA. If the dimension of [G, G is equal to one then there
exists a non-trivial closed connected normal subgroup K of G such that K 1is
contained in the center of G and K/IKNG; is compact (in this case we shall
say that G: is uniform in K) for any z€M.

If [N, N] is non-trivial, [N, N] satisfies the conditions of the lemma.
In fact a uniform subgroup of N is uniform in [N, N] (cf. [Ra]) and [N, N]
is contained in the center of G because G is 2-step. Now we consider the
case that N is abelian. Denote by £ (k) the space of lattices in N where
k=dim N. Define a map x: M—> (k) by x(2)=G: and an action Ad: G
X Z(ky—<(k) by Ad(g, A)=gAg™" where A is a lattice. Then the follow-
ing lemma is easily proved.

(2. 4) LEMMA. x and Ad are continuous and the following diagram

GXxXM ¢ = M
idxx X
Ad
GXZ (k) - (k)

is commutative (wheve id: G— G s the identity map).

PrROOF OF LEMMA (2.3): We will apply the result of section one in
order to prove the lemma. Let g be the Lie algebra of G and n be the Lie
algebra of N such that nCg. Since N is abelian, we can identify N with n.
If 1 is not contained in the center of g, we can choose a basis Xi, ***, Xu-r, Y1,
.-, Yu of g such that Yi, -, Y spansn, Y, is a element of [g,g], [Xi, Y1]=
Y, and [Xi, Y;]=0 for 2<j<k. Setting f=adXin, from lemmas (1. 2),
(2. 1) and (2. 4), it follows that there exists a non-trivial ideal n of g such
that m&n and a lattice G: is uniform in m; for all point z of M. And we
obtain a commutative diagram

GxM ¢ = M

d X X, \ l X
Ad,

GXZ (k1)
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where k=dim(n), < (k1) is the space of lattices in m, a continuous map i :
M—> #(Fk1) is defined by the equation x1(z)=G:Nm and Ad,; is an obvious
action. If n; is not contained in the center, we apply the same argument as
above to n;. In this way, we obtain a non-trivial ideal £ (therefore normal
closed subgroup K) such that £ (resp. K) is contained in the center of g
(resp. G) and G; is uniform in £ (resp. K).

By lemma (2. 3) we can prove the theorem.

(2.5) THEOREM. Let M be a conmnected closed orientable manifold.
Suppose that M admits a locally free condimension one smooth action ¢ of a
connected wilpotent Lie group G such that 1) ¢ has no compact orbits and
ii) the dimension of the commutator |G, G] is noe. Then M is homeomor-
phic to a nilmanifold.

PROOF: By considering the universal covering projection p: G— G,
we obtain a locally free action é of G on M which is compatible with ¢,
that is, g=g¢°(pxid) (where id: M—— M is the identity map). Therefore
we may assume that G is always simply connected without loss of generality.
If the action ¢ is free, all leaves of %4 are homeomorphic to R” where n=
dim G (in this case, G must be abelian, c.f. [HGM]). Therefore by
and [Ro], M is homeomorphic to an (#+1)—torus 7"*'. When ¢ is not
free, we will apply the follwing result deduced from (see also [Ra]).

(2.6) LEMMA. If p: E— B is a principal T*bundle and B is
homeomorphic (vesp. diffeomorphic) to a compact mnilmanifold, then total
space E is homeomorphic (vesp. diffeomorphic) to a compact wnilmanifold.

According to lemma (2. 3), there exists a connected closed subgroup K
which is contained in the center of G. Denote by ¢« the restriction of ¢ to
KXM. Then the orbit foliation of ¢« is without holonomy (cf. or
[I]) from lemma (2.1) and all leaves are compact. It follows that there
exists a smooth fiber bundle p:: M—— M; whose fibers are leaves of the orbit
foliation of ¢x. Since K is contained in the center of G, the fibration p: is
a principal 7*-bundle and ¢ induces a locally free codimension one smooth
action ¢, of G/K on M, such that ¢; has no compact orbits. In the same way,
if ¢ is not free, we obtain p2, M> and ¢.. Thus we obtain a series of
fibrations

M=M, b M 2 M; br M,

such that each p.: M;-.—— M; is a principal T *-bundle, each M; admits an
induced action ¢; and the action ¢, on M, is free. Since M, is homeomorphic
to an m-torus 7™, by lemma (2. 6), it follows that M is homeomorphic to a
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nilmanifold. This completes the proof of the theorem.

(2.7 COROLLARY. If a connected closed orientable manifold M
adwmits a locally free codimension one smooth action of a Heisenberg group
such that all orbits ave nom-compact, then M is homeomorphic to a nil-
manifold.
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