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On positive solutions of quasi-linear
elliptic equations

J. CHABROWSKI
(Received May 6, 1987)

ABSTRACT. In this note we prove the existence of positive solutions of
the Dirichlet problem for a quasi-linear elliptic equation. Our boundary data
belongs to L^{2} and a corresponding solution is in a weighted Sobolev space.

1. Introduction.

Let Q\subset R_{n} be a bounded domain with the boundary \partial Q of class C^{2} .
In Q we consider the Dirichlet problem

(1) Lu=- \sum_{i,j=1}^{n}D_{i}(a_{ij}(x, u)D_{j}u)+\alpha_{)}(x)u=f(x, u) in Q,

(2) u(x)=\phi(x) on \partial Q ,

where \phi is a non-negative function in L^{2}(\partial Q) .
Throughout this paper we make the following assumptions
(A) There is a positive constant \gamma such that

\gamma^{-1}|\xi|^{2}\leq\sum_{i,j=1}^{n}a_{ij}(x, u)\xi_{i}\xi_{j}\leq\gamma|\xi|^{2}

for all \xi\in R_{n} and (x, u)\in Q\cross R ; a_{ij}(x, u)=a_{ji}(x, u)(i, j=1, \ldots, n) for all
(x, u)\in Q\cross R . Moreover, we assume that a_{ij}(\cdot, \cdot)\in C(\overline{Q}\cross R)(i, j=1 , \ldots ,

n) and for each u\in R, a_{ij}(\cdot, u)\in C^{1}(\overline{Q})(i, j=1, \ldots.n) and that there exist
functions A_{ij}\in C^{1}(\overline{Q}) such that

\lim_{|u|arrow\infty}a_{ij}(x, u)=A_{ij}(x) and \lim_{|y|arrow\infty}D_{\chi}a_{ij}(x, u)=D_{x}A_{ij}(x)(i, j=1 , \ldots

n)

uniformly on \overline{Q} . Finally, the coefficient a_{0}(x) is non-negative and belongs
to L^{\infty}(Q) .

(B) The nonlinearity f : Q\cross R -arrow R satisfies the Carath\’eodory condi-
tions, i . e .

(i) for each u\in R , the function xarrow f(x, u) is measurable in Q ,

(ii) for each x\in Q(a. e.) , the function uarrow f(x, u) is continuous on R .
Further assumptions on f will be formulated later on.
In this note we use the notion of a generalized (weakQ solution of (1)

involving the Sobolev spaces W_{1OC}^{1,2}(Q) , W^{1,2}(Q) and W^{1,2}(Q) (for the
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definitions of these spaces see [10] ) .
A function u is said to be a generalized (weak) solution of (1) if u\in

W_{1OC}^{1,2}(Q) and satisfies
(3) \int_{Q}\sum_{i,j=1}^{n}[a_{ij}(x, u)D_{i}uD_{j}v+\emptyset(x)uv]dx=\int_{Q}f(x, u)vdx

for each v\in W^{1,2}(Q) with compact support, provided f(\cdot, u(\cdot))\in L_{1OC}^{2}(Q) .
There is an extensive literature on positive solutions for semi-linear

elliptic equations (see survey articles [1] and [8]). Most of these results
are concerned with solutions with zero or smooth boundary data for semi-
linear elliptic equations. Terefore solutions belong to the usual Sobolev
space W^{1,2}(Q) or to the H\"older space C^{2,a}(\overline{Q}) , depending on the regularity
of coefficients. The results of this paper are related to those of [7], where
some existence theorems of positive solutions in C^{2,a}(\overline{Q}) for quasi-linear
elliptic equations were obtained.

In this paper we assume that \phi\in L^{2}(\partial Q) and consequently we cannot
expect to find a solution in the Sobolev space W^{1,2}(Q) . On the other hand,
the boundary condition (2) requires a proper formulation due to the fact
that not every function in L^{2}(\partial Q) is a trace of an element from W^{1,2}(Q) .

To describe our approach to the problem (1), (2) we need some termi-
nology. It follows from the regularity of the boundary \partial Q that there exists
a number \delta_{0}>0 such that, for \delta\in(0, \delta_{0}) , the domain Q_{\delta}=Q \cap\{x;\min_{y\in\partial Q}|x-

y|>\delta\} with the bonudary \partial Q_{\delta} possesses the property that to each x_{1}\in\partial Q

there exists a unique point x_{\delta}(x_{\}})\in\partial Q_{\delta} such that x_{\delta}(x_{1})=x_{1}-\delta\nu(\chi_{)}) , where \nu

(x_{)}) is the outward normal to \partial Q at x_{1} . The above relation gives a one-t0-
one mapping, of class C^{1} , \partial Q onto \partial Q_{\delta} .

According to Lemma 14. 16 in [10] (p. 355), the distance function
r(x)=dist(x, \partial Q) belongs to C^{2}(\overline{Q}-Q_{\delta 0}) if \delta_{0} is sufficiently small. We
denote by \rho(x) the extension of the function r(x) into \overline{Q} satisfying the

following properties: \rho(x)=r(x) for x\in\overline{Q}-Q_{\delta_{0}} , \rho\in C_{2}(\overline{Q}) , \rho(x)\geq\frac{3\delta_{0}}{4} in
Q_{\delta_{0}} , \gamma_{1}^{-1}r(x)\leq\rho(x)\leq\gamma_{1}r(x) in Q for some positive constant \gamma_{1} .

Guided by the results of [3], [4] and [5], we adopt the following
approach to the Dirichlet problem (1), (2).

Let \phi\in L^{2}(\partial Q) . A weak solution u\in W_{1OC}^{1,2}(Q) of (1) is a solution of
the Dirichlet problem with the boundary conditin (2) if

\lim_{\deltaarrow 0}\int_{\partial Q}[u(x_{\delta}(x))-\phi(x)]^{2}dS_{x}=0 .

It follows from [4], that if the problem (1), (2) admits a solution u

such that f(\cdot, u(\cdot))\in L^{2}(Q) , then u\in\tilde{W}^{1,2} where \tilde{W}^{1,2}(Q) is a weighted
Sobolev space defined by
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\tilde{W}^{1,2}(Q)=\{u;u\in W_{1OC}^{1,2}(Q)and\int_{Q}|Du(x)|^{2}r(x)dx+\int_{Q}u(x)^{2}dx<\infty\}

and equipped with the norm

||u||_{W^{12}}^{2}= \int_{Q}|Du(x)|^{2}r(x)dx+\int_{Q}u(x)^{2}dx.

To proceed further we set for every v\in L^{2}(Q)

L_{u}^{v}=- \sum_{i,j=1}^{n}D_{i}(a_{ij}(x, v(x))D_{j}u)+a_{)}(x)u

and consider the eigenvalue problem in [mathring]_{W}^{1,2}(Q)

(EVP) L_{u}^{v}=\lambda m(x)u in Q,

u(x)=0 on \partial Q,

where m\in L^{\infty}(Q) and m(x)>0 on some subset of Q of positive measure.
By virtue of Theorem 1. 13 in [8] the first positive eigenvalue \lambda_{1}(m, v) is
simple and the corresponding eigenfunction can be taken positive on Q. Set

\mathscr{H}_{1}(m)=\inf\lambda_{1}(m, v)v\in L^{2}(Q)

Combining the argument of the proof of Proposition 1. 11 in [8] with the
variational characterization of eigenvalues (Proposition 1. 10 in [8]), it is
easy to check that \mathscr{H}_{1}(m)>0 . L_{o}et\overline{\mu}(m) be the first eigenvalue associated
with the eigenvalue problem in W^{1,2}(Q)

(EVP)_{1} \{

- \sum_{i,j=1}^{n}D_{i}(A_{ij}(x)D_{j}u)+a_{1}(x)u=\lambda m(x)u in Q,

u(x)=0 on \partial Q.

It is obvious that \mathscr{H}_{1}(m)\leq\overline{\mu}(m) . One can give examples of quasilinear
elliptic operators for which cases \overline{\mu}(m)=\mathscr{H}_{1}(m) and \mathscr{H}_{1}(m)<\overline{\mu}(m) occur
(for more details see [6]).

2. Main result.

To establish our main theorem we need some modification of results
contained in papers [5] and [6] for the Dirichlet problem

(4) Lu=\mu m(x)u+h(x) in Q.
(5) u(x)=\phi(x) on \partial Q ,

where h\in L^{2}(Q) and \mu\geq 0 is a parameter.

LEMMA, 1. Let 0<\mu\leq \mathscr{H}_{1}(m) and \mathscr{H}_{1}(m)<\overline{\mu}(m) . Then for each \phi

\in C^{1}(\partial Q) there exists at least one solution u\in W^{1,2}(Q) of the problem (4),
(5), which is non-negative if \phi\geq 0 on \partial Q and h\geq 0 on Q.
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PROOF. If \mu<\mathscr{H}_{1}(m) the result is an immediate consequence of the
Schauder fixed point theorem. To show that this continues to hold for \mu=
\mathscr{H}_{1}(m) , we consider for each integer k>1 the Dirichlet problem for the
equation

(4k) Lu=(1- \frac{1}{k})\mathscr{H}_{1}(m)m(x)u+h(x) in Q

with the boundary condition (5). Since \phi can be extended to an element \Phi

\in C^{1}(\overline{Q}) by means of the transformation\circ u-\Phi , the problem (4k) , (5) can
be reduced to the Dirichlet prob1em_{o} in W^{1,2}(Q) . By the previous case, for
each k there exists a solution u_{k}\in W^{1,2}(Q) . It is sufficient to show that \{u_{k}\}

is bounded in W^{1,2}(Q) . Then a suitable subsequence is convergent weakly
in W^{1,2}(Q) and strongly in L^{2}(Q) to a solution of (4), (5) with \mu=\mathscr{H}_{1}(m) .
If we assume, contrary to the assertion, that \{u_{k}\} is unbounded in W^{1,2}(Q) ,
then we may assume that ||u_{k}||_{W^{1,2}}arrow\infty as karrow\infty and consequently v_{k}=

u_{k}||u_{k}||_{W^{1,2}}^{-1} contains a subsequence convergent to a function v , weakly in
W^{1,2}(Q) and strongly in L^{2}(Q) . Using the fact that a_{ij}(x, t)arrow A_{ij}(x) and
D_{X}a_{ij}(x, t)arrow D_{x}A_{ij}(x) as |t|arrow\infty uniformly on \overline{Q} , we show that v satisfies
the equation

- \sum_{i,j=1}^{n}D_{i}(A_{ij}(x)D_{j}v)=\mathscr{H}_{1}(m)m(x)v

and moreover that v_{k}arrow v strongly in [mathring]_{W}^{1,2}(Q) . Therefore ||v||_{W^{1,2}}=1 and this
contradicts the fact that \mathscr{H}_{1}(m)<\overline{\mu}(m) . Details of the proof are similar to
the argument used un [5]. If \phi\geq 0 on \partial Q and h\geq 0 on Q, then the maximum
principle implies that u\geq 0 on Q in the case when \mu<\mathscr{H}_{1}(m) . If \mu=\mathscr{H}_{1}(m) ,
then the solutions u_{k} of (4_{k}) , (5) are non-negative and hence u\geq 0 on Q.

LEMMA, 2. Suppose that \mathscr{H}_{1}(m)<\overline{\mu}(m) , 0<\mu<\leq \mathscr{H}_{1}(m) and \phi\in L^{2}

(\partial Q) . Let \{u_{k}\} be a sequence of solutions of (4), (5) in W^{1,2}(Q) with \phi=

\phi_{k} and \phi_{k}\in C^{1}(\partial Q) . If \lim_{karrow\infty}\phi_{k}=\phi in L^{2}(\partial Q) , then a subsequence of \{u_{k}\}

converges in \tilde{W}^{1,2}(Q) to a function u satisfying (4), (5).

To prove our assertion it is sufficient to show that \{u_{k}\} is bounded in
\tilde{W}^{1,2}(Q) . The proof is similar to the argument used in the proof of Lemma
1. Again the assumption that \lim_{|t|arrow\infty}a_{ij}(x, t)=A_{ij}(x) and \lim_{|t|arrow\infty}D_{x}a_{ij}(x, t)=

D_{x}A_{ij}(x)(i, j=1, \ldots.n) uniformly on \overline{Q} is essential in the proof, as well as
the compactness of the imbedding of \tilde{W}^{1,2}(Q) in L^{2}(Q) (Theorem 4. 11 in
[11] ) . All details can be found in [5] or [6] (Theorem 6).

We are now in a position to establish our main existence result.

THEOREM 1. suppose that the nonlinearity f(x, u) satisfies the follow-
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ing two conditions
(a) f(x, 0)\geq 0 on Q,

(b) there exist functions g\in L^{\infty}(Q) and c\in L^{2}(Q) such that

f(x, s)\leq g(x)s+c(x)

for all s\geq 0 and x\in Q ; moreover c(x)\geq 0 in Q and \mathscr{H}_{1}(g)\geq 1 .
If \mathscr{H}_{1}(g)<\overline{\mu}(g) , \phi\in L^{2}(\partial Q) and \phi\not\equiv 0 on \partial Q, then the Dirichlet prob-

lcm (1), (2) admits at least one positive solution u\in\tilde{W}^{1,2}(Q) .

PROOF. Let \{\phi_{k}\} be a sequence of non-nnegative C^{1}- functions on \partial Q

such that \lim_{karrow\infty}\phi_{k}=\phi in L^{2}(\partial Q) .

By Lemma 1, for each k>1 the Dirichlet problem
(6) Lu=g(x)u+c(x) in Q
(2_{k}) u(x)=\phi_{k}(x) on \partial Q

admits a non-negative solution \overline{u}_{k}\in W^{1,2}(Q) . It follows from the assump-
tion ( b) that \overline{u}_{k} is a supersolution of the problem (1), (2_{k}) . Since, by the
assumption ( a),\overline{u}_{k}\equiv 0 on Q is a subsolution of (1), (2_{k}) , the results of [9]
(p. 51) yield the existence of a solution u_{k}\in W^{1,2}(Q) of (1), (2_{k}) such that
0\leq u_{k}(x)\leq\overline{u}_{k}(x) on Q for each k . It follows from LEMMA 2 that a subse-
quence of \{\overline{u}_{k}\} converges strongly in \tilde{W}^{1,2}(Q) to a function \overline{u} satisfying (6),

(2). We now show that there exists a constant C>0 such that

(7) \int_{Q}|Du_{k}(x)|^{2}r(x)dx\leq C[\int_{\partial Q}\phi_{k}(x)^{2}dSx+\int_{Q}u_{k}(x)^{2}dx]

k=1,2 , \ldots To establish this estimate we take as test functions in (3)

v_{k}(x)=\{
u_{k}(x)(\rho(x)-\delta) for x\in Q_{\delta},

0 for x\in Q-Q_{\delta},

where 0<\delta<\delta_{0} . Letting \deltaarrow 0 we obtain

(8) \int_{Q}\sum_{i,j=1}^{n}a_{ij}(x, u_{k})D_{i}u_{k}D_{j}u_{k}\rho dx+\int_{Q}\sum_{i,j=1}^{n}a_{ij}(x, u_{k})D_{i}u_{k}u_{k}D_{j}\rho dx

+ \int_{Q}a_{)}(x)u_{k}^{2}\rho dx=\int_{Q}f(x, Uk) ukpdx.

Integrating by parts we obtain

(9) \int_{Q}\sum_{i,j=1}^{n}a_{ij}(x, u_{k})D_{i}u_{k}u_{k}D_{j}\rho dx=\frac{1}{2}\int_{Q}\sum_{i,j=1}^{n}D_{i}(\int_{0}^{u_{k}^{2}}a_{ij}(x, s)ds)D_{j}\rho dx

- \frac{1}{2}\int_{Q}\sum_{i,j=1}^{n}\int_{0}^{u_{k}^{2}}D_{i}a_{ij}(x, s)dsD_{j}\rho dx=-\frac{1}{2}\int_{\partial Q}\sum_{i,j=1}^{n}\int_{0}^{\phi_{k}^{2}}a_{ij}(x, s)dsD_{i}\rho D_{i}\rho dS_{x}

- \frac{1}{2}\int_{Q}\sum_{i,j=1}^{n}\int_{0}^{u_{k}^{2}}a_{ij}(x, s)dsD_{ij}\rho dx-\frac{1}{2}\int_{Q}\sum_{i,j=1}^{n}\int_{0}^{u_{k}^{2}}D_{i}a_{ij}(x, s)dsD_{j}\rho dx.

The estimate (7) readily follows from (8), (9) and ( b) and the el-
lipticity condition in(A). Since 0\leq u_{k}\leq\overline{u}_{k} , the estimate (7) implies that
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the sequence \{u_{k}\} is bounded in \tilde{W}^{1,2}(Q) . By Theorem 4. 11 in [9], \tilde{W}^{1,2}

(Q) is compactly imbedded in L^{2}(Q) . Therefore we may assume that u_{k}

converges weakly in \tilde{W}^{1,2}(Q) and strongly in L^{2}(Q) to a function u . It is
easy to check that u is a solution of (1). By Theorem 1 in [4] there exists
a function \zeta\in L^{2}(\partial Q) such that u(x_{\delta})arrow\zeta in L^{2}(\partial Q) as \deltaarrow 0 . Repeating the
argument from Theorem 3 in [4], we show that \zeta=\phi a . e . on \partial Q . Finally
we notice that u(x)\leq\overline{u}(x) on Q.

We mention here that for semi-linear elliptic equations in the case of
C^{2,a} -solutions, the result of this type is essentially due to Amann [1].

We also observe that if g(x)\leq 0 on Q, then the assumption \mathscr{H}_{1}(g)\geq 1

should be dropped.
To obtain the existence result when \mathscr{H}_{1}(g)=\overline{\mu}(g) we replace the in-

equality \mathscr{H}_{1}(g)\geq 1 in ( b) by \mathscr{H}_{1}(g)>1 .

THEOREM 2. Suppose that the nonlinearity f(x, u) satisifies ( a) and
(b) with \mathscr{H}_{1}(g)>1 . If \mathscr{H}_{1}(g)=\overline{\mu}(g) , \phi\in L^{2}(\partial Q) and \phi\not\equiv 0 , then the
problem (1), (2) admits at least one positive solution.

The proof is based on modifications of LEMMAS 1 and 2 which continue
to hold in the case \mathscr{H}_{1}(m)=\overline{\mu}(m) provided \mu<\mathscr{H}_{1}(m) .

It is worthwhile to notice that in the case \phi\equiv 0 on \partial Q , the assumption
(a) must be replaced by the stronger condition

g(x, s)\geq g_{0}(x)s for 0<s<s),

for some s_{1}>0 , with \mathscr{H}_{2}(g_{0})\leq 1 , where \mathscr{H}_{2}(g_{0})=\sup_{v\in L_{2}(Q)}\lambda_{1}(v_{1}, g_{0}) . Here \lambda_{1}(v_{1} ,

g_{0}) denotes the first eigenvalue of (EVP) with m=g_{0} (see [7]). Then
according to [2] and [7], for each r>0 there exists a positive eigenfunction
w , with ||w||_{L^{2}}=r , of the problem Lu=\lambda g_{0}(x)u in Q, u(x)=0 on \partial Q for
some \mathscr{H}_{1}(g_{0})\leq\lambda\leq \mathscr{H}_{2}(g_{0}) . It turns out that w , with r sufficiently small, is a
suitable subsolution of the problem (1), (2). This also requires some stron-
ger assumptions on a_{ij}, c and g_{0} to ensure that the outward normal derivative
\frac{dw}{d\nu} is negative on \partial Q . Since w>0 on Q, the corresponding non-nogative

solution of (1), (2) is non-trivial (for details see [7]).
Examples of functions f : Q\cross R -arrow R satisfying the conditions ( a) and

(b) can be found in [7] and [8].
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