On positive solutions of quasi-linear elliptic equations

J. CHABROWSKI (Received May 6, 1987)

ABSTRACT. In this note we prove the existence of positive solutions of the Dirichlet problem for a quasi-linear elliptic equation. Our boundary data belongs to L^2 and a corresponding solution is in a weighted Sobolev space.

1. Introduction.

Let $Q \subset R_n$ be a bounded domain with the boundary ∂Q of class C^2 . In Q we consider the Dirichlet problem

(1) $Lu = -\sum_{i,j=1}^{n} D_i(a_{ij}(x, u)D_ju) + a_0(x)u = f(x, u)$ in Q,

(2)
$$u(x) = \phi(x)$$
 on ∂Q ,

where ϕ is a non-negative function in $L^2(\partial Q)$.

Throughout this paper we make the following assumptions

(A) There is a positive constant γ such that

$$\gamma^{-1}|\boldsymbol{\xi}|^2 \leq \sum_{i,j=1}^n a_{ij}(x, u) \ \boldsymbol{\xi}_i \boldsymbol{\xi}_j \leq \gamma |\boldsymbol{\xi}|^2$$

for all $\xi \in R_n$ and $(x, u) \in Q \times R$; $a_{ij}(x, u) = a_{ji}(x, u)$ (i, j=1, ..., n) for all $(x, u) \in Q \times R$. Moreover, we assume that $a_{ij}(\bullet, \bullet) \in C(\bar{Q} \times R)$ (i, j=1, ..., n) and for each $u \in R$, $a_{ij}(\bullet, u) \in C^1(\bar{Q})$ (i, j=1, ..., n) and that there exist functions $A_{ij} \in C^1(\bar{Q})$ such that

$$\lim_{|u| \to \infty} a_{ij}(x, u) = A_{ij}(x) \text{ and } \lim_{|u| \to \infty} D_x a_{ij}(x, u) = D_x A_{ij}(x) \quad (i, j = 1, ..., n)$$

n)

uniformly on \overline{Q} . Finally, the coefficient $a_0(x)$ is non-negative and belongs to $L^{\infty}(Q)$.

(B) The nonlinearity $f: Q \times R \rightarrow R$ satisfies the Carathéodory conditions, i. e.

(i) for each $u \in R$, the function $x \rightarrow f(x, u)$ is measurable in Q,

(ii) for each $x \in Q(a. e.)$, the function $u \rightarrow f(x, u)$ is continuous on R. Further assumptions on f will be formulated later on.

In this note we use the notion of a generalized (weak) solution of (1) involving the Sobolev spaces $W_{\text{loc}}^{1,2}(Q)$, $W^{1,2}(Q)$ and $\mathring{W}^{1,2}(Q)$ (for the

definitions of these spaces see [10]).

A function u is said to be a generalized (weak) solution of (1) if $u \in W^{1,2}_{loc}(Q)$ and satisfies

(3) $\int_{Q} \sum_{i,j=1}^{n} [a_{ij}(x, u) D_{i}u \ D_{j}v + a_{0}(x)u \ v] \ dx = \int_{Q} f(x, u)v \ dx$

for each $v \in W^{1,2}(Q)$ with compact support, provided $f(\bullet, u(\bullet)) \in L^2_{loc}(Q)$.

There is an extensive literature on positive solutions for semi-linear elliptic equations (see survey articles [1] and [8]). Most of these results are concerned with solutions with zero or smooth boundary data for semi-linear elliptic equations. Terefore solutions belong to the usual Sobolev space $W^{1,2}(Q)$ or to the Hölder space $C^{2,\alpha}(\bar{Q})$, depending on the regularity of coefficients. The results of this paper are related to those of [7], where some existence theorems of positive solutions in $C^{2,\alpha}(\bar{Q})$ for quasi-linear elliptic equations were obtained.

In this paper we assume that $\phi \in L^2(\partial Q)$ and consequently we cannot expect to find a solution in the Sobolev space $W^{1,2}(Q)$. On the other hand, the boundary condition (2) requires a proper formulation due to the fact that not every function in $L^2(\partial Q)$ is a trace of an element from $W^{1,2}(Q)$.

To describe our approach to the problem (1), (2) we need some terminology. It follows from the regularity of the boundary ∂Q that there exists a number $\delta_0 > 0$ such that, for $\delta \in (0, \delta_0)$, the domain $Q_{\delta} = Q \cap \{x; \min_{\nu \in \partial Q} | x - y| > \delta\}$ with the boundary ∂Q_{δ} possesses the property that to each $x_0 \in \partial Q$ there exists a unique point $x_{\delta}(x_0) \in \partial Q_{\delta}$ such that $x_{\delta}(x_0) = x_0 - \delta \nu(x_0)$, where ν (x_0) is the outward normal to ∂Q at x_0 . The above relation gives a one-toone mapping, of class C^1 , ∂Q onto ∂Q_{δ} .

According to Lemma 14. 16 in [10] (p. 355), the distance function $r(x) = \text{dist}(x, \partial Q)$ belongs to $C^2(\bar{Q} - Q_{\delta_0})$ if δ_0 is sufficiently small. We denote by $\rho(x)$ the extension of the function r(x) into \bar{Q} satisfying the following properties: $\rho(x) = r(x)$ for $x \in \bar{Q} - Q_{\delta_0}$, $\rho \in C_2(\bar{Q})$, $\rho(x) \ge \frac{3\delta_0}{4}$ in Q_{δ_0} , $\gamma_1^{-1} r(x) \le \rho(x) \le \gamma_1 r(x)$ in Q for some positive constant γ_1 .

Guided by the results of [3], [4] and [5], we adopt the following approach to the Dirichlet problem (1), (2).

Let $\phi \in L^2(\partial Q)$. A weak solution $u \in W^{1,2}_{loc}(Q)$ of (1) is a solution of the Dirichlet problem with the boundary conditin (2) if

$$\lim_{\delta\to 0}\int_{\partial Q} [u(x_{\delta}(x))-\boldsymbol{\phi}(x)]^2 dS_x=0.$$

It follows from [4], that if the problem (1), (2) admits a solution u such that $f(\cdot, u(\cdot)) \in L^2(Q)$, then $u \in \tilde{W}^{1,2}$ where $\tilde{W}^{1,2}(Q)$ is a weighted Sobolev space defined by

$$\tilde{W}^{1,2}(Q) = \{ u \; ; \; u \in W^{1,2}_{loc}(Q) \; \text{ and } \int_{Q} |Du(x)|^2 r(x) dx + \int_{Q} u(x)^2 dx < \infty \}$$

and equipped with the norm

$$\|u\|_{\tilde{W}^{1,2}}^2 = \int_Q |Du(x)|^2 r(x) \, dx + \int_Q u(x)^2 \, dx$$

To proceed further we set for every $v \in L^2(Q)$

$$L_{u}^{v} = -\sum_{i,j=1}^{n} D_{i}(a_{ij}(x, v(x))D_{j}u) + a_{0}(x)u$$

and consider the eigenvalue problem in $W^{1,2}(Q)$

(EVP) $L_u^v = \lambda m(x) u$ in Q, u(x) = 0 on ∂Q ,

where $m \in L^{\infty}(Q)$ and m(x) > 0 on some subset of Q of positive measure. By virtue of Theorem 1.13 in [8] the first positive eigenvalue $\lambda_1(m, v)$ is simple and the corresponding eigenfunction can be taken positive on Q. Set

$$\mathscr{H}_{i}(m) = \inf \lambda_{1}_{v \in L^{2}(Q)}(m, v)$$

Combining the argument of the proof of Proposition 1. 11 in [8] with the variational characterization of eigenvalues (Proposition 1. 10 in [8]), it is easy to check that $\mathscr{H}_1(m) > 0$. Let $\bar{\mu}(m)$ be the first eigenvalue associated with the eigenvalue problem in $\mathring{W}^{1,2}(Q)$

$$(\text{EVP})_1 \quad \begin{cases} -\sum_{i,j=1}^n D_i (A_{ij}(x) D_j u) + a_0(x) u = \lambda m(x) u \text{ in } Q, \\ u(x) = 0 \text{ on } \partial Q. \end{cases}$$

It is obvious that $\mathscr{H}_1(m) \leq \overline{\mu}(m)$. One can give examples of quasilinear elliptic operators for which cases $\overline{\mu}(m) = \mathscr{H}_1(m)$ and $\mathscr{H}_1(m) < \overline{\mu}(m)$ occur (for more details see [6]).

2. Main result.

To establish our main theorem we need some modification of results contained in papers [5] and [6] for the Dirichlet problem

(4) $Lu = \mu m(x)u + h(x)$ in Q.

(5) $u(x) = \phi(x)$ on ∂Q ,

where $h \in L^2(Q)$ and $\mu \ge 0$ is a parameter.

LEMMA, 1. Let $0 < \mu \leq \mathscr{H}_1(m)$ and $\mathscr{H}_1(m) < \overline{\mu}(m)$. Then for each $\phi \in C^1(\partial Q)$ there exists at least one solution $u \in W^{1,2}(Q)$ of the problem (4), (5), which is non-negative if $\phi \geq 0$ on ∂Q and $h \geq 0$ on Q.

J. Chabrowski

PROOF. If $\mu < \mathscr{H}_1(m)$ the result is an immediate consequence of the Schauder fixed point theorem. To show that this continues to hold for $\mu = \mathscr{H}_1(m)$, we consider for each integer k > 1 the Dirichlet problem for the equation

(4k)
$$Lu = (1 - \frac{1}{k}) \mathscr{H}_1(m) m(x)u + h(x)$$
 in Q

with the boundary condition (5). Since ϕ can be extended to an element $\Phi \in C^1(\bar{Q})$ by means of the transformation $u-\Phi$, the problem (4k), (5) can be reduced to the Dirichlet problem in $\mathring{W}^{1,2}(Q)$. By the previous case, for each k there exists a solution $u_k \in \mathring{W}^{1,2}(Q)$. It is sufficient to show that $\{u_k\}$ is bounded in $W^{1,2}(Q)$. Then a suitable subsequence is convergent weakly in $W^{1,2}(Q)$ and strongly in $L^2(Q)$ to a solution of (4), (5) with $\mu = \mathscr{H}_1(m)$. If we assume, contrary to the assertion, that $\{u_k\}$ is unbounded in $W^{1,2}(Q)$, then we may assume that $\|u_k\|_{W^{1,2}} \to \infty$ as $k \to \infty$ and consequently $v_k =$ $u_k \|u_k\|_{W^{1,2}}^{-1}$ contains a subsequence convergent to a function v, weakly in $W^{1,2}(Q)$ and strongly in $L^2(Q)$. Using the fact that $a_{ij}(x, t) \to A_{ij}(x)$ and $D_x a_{ij}(x, t) \to D_x A_{ij}(x)$ as $|t| \to \infty$ uniformly on \bar{Q} , we show that v satisfies the equation

$$-\sum_{i,j=1}^{n} D_{i}(A_{ij}(x)D_{j}v) = \mathscr{H}_{1}(m)m(x)v$$

and moreover that $v_k \rightarrow v$ strongly in $\mathring{W}^{1,2}(Q)$. Therefore $||v||_{W^{1,2}} = 1$ and this contradicts the fact that $\mathscr{H}_1(m) < \overline{\mu}(m)$. Details of the proof are similar to the argument used un [5]. If $\phi \ge 0$ on ∂Q and $h \ge 0$ on Q, then the maximum principle implies that $u \ge 0$ on Q in the case when $\mu < \mathscr{H}_1(m)$. If $\mu = \mathscr{H}_1(m)$, then the solutions u_k of (4_k) , (5) are non-negative and hence $u \ge 0$ on Q.

LEMMA, 2. Suppose that $\mathscr{H}_1(m) < \overline{\mu}(m)$, $0 < \mu < \leq \mathscr{H}_1(m)$ and $\phi \in L^2$ (∂Q). Let $\{u_k\}$ be a sequence of solutions of (4), (5) in $W^{1,2}(Q)$ with $\phi = \phi_k$ and $\phi_k \in C^1(\partial Q)$. If $\lim_{k \to \infty} \phi_k = \phi$ in $L^2(\partial Q)$, then a subsequence of $\{u_k\}$ converges in $\tilde{W}^{1,2}(Q)$ to a function u satisfying (4), (5).

To prove our assertion it is sufficient to show that $\{u_k\}$ is bounded in $\tilde{W}^{1,2}(Q)$. The proof is similar to the argument used in the proof of Lemma 1. Again the assumption that $\lim_{|t|\to\infty} a_{ij}(x, t) = A_{ij}(x)$ and $\lim_{|t|\to\infty} D_x a_{ij}(x, t) = D_x A_{ij}(x)$ (i, j=1, ..., n) uniformly on \bar{Q} is essential in the proof, as well as the compactness of the imbedding of $\tilde{W}^{1,2}(Q)$ in $L^2(Q)$ (Theorem 4.11 in [11]). All details can be found in [5] or [6] (Theorem 6).

We are now in a position to establish our main existence result.

THEOREM 1. suppose that the nonlinearity f(x, u) satisfies the follow-

ing two conditions

- $(a) f(x, 0) \ge 0 \text{ on } Q,$
- (b) there exist functions $g \in L^{\infty}(Q)$ and $c \in L^2(Q)$ such that

 $f(x, s) \leq g(x)s + c(x)$

for all $s \ge 0$ and $x \in Q$; moreover $c(x) \ge 0$ in Q and $\mathscr{H}_1(g) \ge 1$.

If $\mathscr{H}_1(g) < \overline{\mu}(g)$, $\phi \in L^2(\partial Q)$ and $\phi \neq 0$ on ∂Q , then the Dirichlet problem (1), (2) admits at least one positive solution $u \in \tilde{W}^{1,2}(Q)$.

PROOF. Let $\{\phi_k\}$ be a sequence of non-nnegative C^1 -functions on ∂Q such that $\lim \phi_k = \phi$ in $L^2(\partial Q)$.

By Lemma 1, for each k > 1 the Dirichlet problem

(6)
$$Lu = g(x)u + c(x)$$
 in Q

(2_k)
$$u(x) = \phi_k(x)$$
 on ∂Q

admits a non-negative solution $\bar{u}_k \in W^{1,2}(Q)$. It follows from the assumption (b) that \bar{u}_k is a supersolution of the problem (1), (2_k). Since, by the assumption (a), $\bar{u}_k \equiv 0$ on Q is a subsolution of (1), (2_k), the results of [9] (p. 51) yield the existence of a solution $u_k \in W^{1,2}(Q)$ of (1), (2_k) such that $0 \le u_k(x) \le \bar{u}_k(x)$ on Q for each k. It follows from LEMMA 2 that a subsequence of $\{\bar{u}_k\}$ converges strongly in $\tilde{W}^{1,2}(Q)$ to a function \bar{u} satisfying (6), (2). We now show that there exists a constant C > 0 such that

(7)
$$\int_{Q} |Du_{k}(x)|^{2} r(x) dx \leq C \left[\int_{\partial Q} \phi_{k}(x)^{2} dSx + \int_{Q} u_{k}(x)^{2} dx \right]$$

 $k=1, 2, \ldots$, To establish this estimate we take as test functions in (3)

$$v_k(x) = \begin{bmatrix} u_k(x)(\rho(x) - \delta) & \text{for } x \in Q_\delta, \\ 0 & \text{for } x \in Q - Q_\delta, \end{bmatrix}$$

where $0 < \delta < \delta_0$. Letting $\delta \rightarrow 0$ we obtain

(8)
$$\int_{Q} \sum_{i,j=1}^{n} a_{ij}(x, u_{k}) D_{i}u_{k}D_{j}u_{k}\rho dx + \int_{Q} \sum_{i,j=1}^{n} a_{ij}(x, u_{k}) D_{i}u_{k}u_{k}D_{j}\rho dx + \int_{Q} a_{0}(x) u_{k}^{2}\rho dx = \int_{Q} f(x, u_{k}) u_{k}\rho dx.$$

Integrating by parts we obtain

$$(9) \quad \int_{Q} \sum_{i,j=1}^{n} a_{ij}(x, u_{k}) D_{i}u_{k}u_{k}D_{j}\rho dx = \frac{1}{2} \int_{Q} \sum_{i,j=1}^{n} D_{i}(\int_{0}^{u_{k}^{*}} a_{ij}(x, s) ds) D_{j}\rho dx$$
$$-\frac{1}{2} \int_{Q} \sum_{i,j=1}^{n} \int_{0}^{u_{k}^{*}} D_{i}a_{ij}(x, s) ds D_{j}\rho dx = -\frac{1}{2} \int_{\partial Q} \sum_{i,j=1}^{n} \int_{0}^{\phi_{k}^{*}} a_{ij}(x, s) ds D_{i}\rho D_{i}\rho dS_{x}$$
$$-\frac{1}{2} \int_{Q} \sum_{i,j=1}^{n} \int_{0}^{u_{k}^{*}} a_{ij}(x, s) ds D_{ij}\rho dx - \frac{1}{2} \int_{Q} \sum_{i,j=1}^{n} \int_{0}^{u_{k}^{*}} D_{i}a_{ij}(x, s) ds D_{j}\rho dx.$$

The estimate (7) readily follows from (8), (9) and (b) and the ellipticity condition in(A). Since $0 \le u_k \le \bar{u}_k$, the estimate (7) implies that

the sequence $\{u_k\}$ is bounded in $\tilde{W}^{1,2}(Q)$. By Theorem 4.11 in [9], $\tilde{W}^{1,2}(Q)$ is compactly imbedded in $L^2(Q)$. Therefore we may assume that u_k converges weakly in $\tilde{W}^{1,2}(Q)$ and strongly in $L^2(Q)$ to a function u. It is easy to check that u is a solution of (1). By Theorem 1 in [4] there exists a function $\xi \in L^2(\partial Q)$ such that $u(x_{\delta}) \rightarrow \xi$ in $L^2(\partial Q)$ as $\delta \rightarrow 0$. Repeating the argument from Theorem 3 in [4], we show that $\xi = \phi$ a. e. on ∂Q . Finally we notice that $u(x) \leq \bar{u}(x)$ on Q.

We mention here that for semi-linear elliptic equations in the case of $C^{2,\alpha}$ -solutions, the result of this type is essentially due to Amann [1].

We also observe that if $g(x) \le 0$ on Q, then the assumption $\mathscr{H}_1(g) \ge 1$ should be dropped.

To obtain the existence result when $\mathscr{H}_1(g) = \overline{\mu}(g)$ we replace the inequality $\mathscr{H}_1(g) \ge 1$ in (b) by $\mathscr{H}_1(g) > 1$.

THEOREM 2. Suppose that the nonlinearity f(x, u) satisifies (a) and (b) with $\mathscr{H}_1(g) > 1$. If $\mathscr{H}_1(g) = \overline{\mu}(g)$, $\phi \in L^2(\partial Q)$ and $\phi \equiv 0$, then the problem (1), (2) admits at least one positive solution.

The proof is based on modifications of LEMMAS 1 and 2 which continue to hold in the case $\mathscr{H}_1(m) = \overline{\mu}(m)$ provided $\mu < \mathscr{H}_1(m)$.

It is worthwhile to notice that in the case $\phi \equiv 0$ on ∂Q , the assumption (a) must be replaced by the stronger condition

 $g(x, s) \ge g_0(x)s$ for $0 < s < s_0$,

for some $s_0 > 0$, with $\mathscr{H}_2(g_0) \le 1$, where $\mathscr{H}_2(g_0) = \sup_{v \in L_2(Q)} \lambda_1(v_1, g_0)$. Here $\lambda_1(v_1, g_0)$ denotes the first eigenvalue of (EVP) with $m = g_0$ (see [7]). Then according to [2] and [7], for each r > 0 there exists a positive eigenfunction w, with $\|w\|_{L^2} = r$, of the problem $Lu = \lambda g_0(x)u$ in Q, u(x) = 0 on ∂Q for some $\mathscr{H}_1(g_0) \le \lambda \le \mathscr{H}_2(g_0)$. It turns out that w, with r sufficiently small, is a suitable subsolution of the problem (1), (2). This also requires some stronger assumptions on a_{ij} , c and g_0 to ensure that the outward normal derivative $\frac{dw}{dv}$ is negative on ∂Q . Since w > 0 on Q, the corresponding non-nogative solution of (1), (2) is non-trivial (for details see [7]).

Examples of functions $f: Q \times R \rightarrow R$ satisfying the conditions (a) and (b) can be found in [7] and [8].

References

- H. AMANN, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18(2) (1976), 620-709.
- [2] L. BOCCARDO, Positive eigenfunctions for a class of quasi-linear operators, Boll. Un. Mat. Ital. (5) 18-B (1981), 951-959.

- [3] J. CHABROWSKI and B. THOMPSON, On the boundary values of the solutions of linear elliptic equations, Bull. Austral. Math. Soc. 27(1) (1983), 1-30.
- [4] J. CHABROWSKI, On boundary values of solutions of quasi-linear partial differential equation of elliptic type, Rocky Mountain J. Math. 16(2), (1986), 223-236.
- [5] J. CHABROWSKI, On the Dirichlet problem for a quasi-linear elliptic equation, Rend. Circ. Mat, Palermo 35 (1986), 159-168.
- [6] J. CHABROWSKI, On the solvability of the Dirichlet problem for non-linear elliptic equation, to appear in J. d' Analyse Mathématique.
- [7] P. DRÁBEK, Positive solutions of some quasi-linear elliptic problem, Coment. Math. Univ. Carolinae, 24(2) (1983), 267-279.
- [8] D. G. de FIGUEIREDO, Positive solutions of semilinear elliptic problems, Lecture Notes in Mathematics, 957 Springer Verlag (1981), 34-87.
- [9] J. DEUEL and P. HESS, A criterion for the existence of solutions of non-linear elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A. 74(3), 1974/75, 49-54.
- [10] D. GILBARG, N. S. TRUDINGER, Elliptic partial differential equations of second order, Grundlehren der matematischen Wissenschaften 224, Springer-Verlag, Berlin Heidelberg New York Tokyo (1983), Second edition.
- [11] R. D. MEYER, Some embedding theorems for generalized Sobolev spaces and applications to degenerate elliptic differential operator, J. Math. Mech. 16 (1967), 739-760.

Department of Mathematics The University of Queensland