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Introbuction

Let \mathscr{F}\cong GF(q) , q=p^{m} . be a field of matrices in GL(3m, p)\cup\{a_{m}\} .
Then \pi=F_{p}^{3m}\oplus F_{p}^{3m} becomes a \mathscr{C}--GL(2, \mathscr{F}) -module under the natural
action of \mathscr{C}\cong GL(2, q) on \Pi :

\underline{x}\oplus\underline{y}\mapsto(\underline{x}a+\underline{y}b)\oplus(\underline{x}c+\underline{y}d)

whenever a, b, c, d\in \mathscr{F} and ad-bc\neq 0 .
We regard this action of \mathscr{C} on \pi as defining the \underline{Desarguesian} representa-

tion of GL(2, q) , of order q^{3} , because under this representation GL(2, q)

leaves invariant (several) Desarguesian spreads of order q^{3} , on \pi . Thus, if
\mathscr{M}\cong GF(q^{3}) is a field of matrices containing \mathscr{F} then \mathscr{M} defines a \mathscr{C} -invariant
Desarguesian spread \Gamma_{l} whose components, apart from Y=a_{m}\oplus F_{p}^{3m} . have
the generic form:

\{(\underline{x}, \underline{x}M):\underline{x}\in F_{p}^{3m}\} for M\in \mathscr{M}

Also there are often many non-Desarguesian spreads on \pi that are
invariant under the Desarguesian representation of GL(2, q) . The first
infinite families of such spreads were discovered by Kantor [7, 8] , and later
more examples were given in Bartolone-Ostrom [1]. Recently [5], we de-
scribed a technique for constructing such spreads that yields all the above-
mentioned spreads of Kantor and Bartolone-Ostrom, and, in addition, yields
many new examples. Our method allows one to construct a \mathscr{C} -invariant
spread “

\pi , ”- whenever one has a fixed-point-free collineation \mathscr{O}\in P\Gamma L

(3, q)- PGL(3, q) of the Desarguesian projective plane PG(2, q) . These “
\pi_{\theta} ”.

which we shall call “ generalized Desarguesian spreads ” seem too numer-
ous to classify as nonconjugate \mathscr{O} usually yield nonisomorphic spreads.

The object of this note is to show that the only non-Desarguesian spreads
invariant under the Desarguesian action of GL(2, q) (of order q^{3} ) are the
generalized Desarguesian spreads.

THEOREM A. Let \pi be a Desarguesian GL(2, q) -module of order q^{3}
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Then the only spreads on \pi invariant under this Desarguesian representation
of GL(2, q) are either Desarguesian spreads or generalized Desarguesian
spreads.

REMARK. The converse, that every generalized Desarguesian spread
of order q^{3} (cf. result 1. 4)- is invariant under a Desarguesian representation
of GL(2, q) , has been proved in [5].

The following corollary also follows from Bartolone and Ostrom [1].

COROLLARY B. Let p be a prime and let \pi admit a Desarguesian
representation of GL(2, q) of order p^{3} Then any spread on \pi, invariant
under this representation, is necessarily a Desarguesian spread.

The module-theoretic characterization of the generalized Desarguesian
spreads given in Theorem A, seems a good base from which to obtain
geometric characterizations of the corresponding translation planes. One
such characterization will be given in a sequel [6].

1. The Generalized Desarguesian Spreads.

In this section, we review our construction of the generalized
Desarguesian spreads [5], and take the opportunity to introduce some nota-
tion.

Throughout the article, \pi=F_{p}^{3m}\oplus F_{p}^{3m} is a vector space of 3m-tuples
over the prime field GF(p) , and \mathscr{F}\cong GF(q) , q=p^{m}\geq p , is a field of 3m\cross 3m

matrices over GF\{p ). \pi is regarded as a \mathscr{C}=GL(2, \mathscr{F}) -module defined by
the following action:

(\underline{x}\oplus\underline{y})\{\begin{array}{ll}A BC D\end{array}\}--(\underline{x}A+\underline{y}C)\oplus(\underline{x}B+\underline{y}D)

whenever

\{\begin{array}{ll}A BC D\end{array}\}\in \mathscr{C} and \underline{x},\underline{y}\in F_{p}^{3m} .

If M is any 3m\cross 3m matrix over GF(p) , we define the corresponding
subspace of \pi by

\underline{" y=xM}"=\{(\underline{x}, \underline{x}M)\cdot. \underline{x}\in F_{p}^{3m}\}.

Thus, if M is nonsingular, “ y=xM ” is a GF(p) -subspace of order q^{3}

(and rank 3m). A routine computation allows one to determine the image of
“ y=xM ” under any g\in \mathscr{C}
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1. LEMMA. Suppose g=\{\begin{array}{ll}a bc d\end{array}\} is any element of \mathscr{C} : thus a, b, c, d

are block-matrices in \mathscr{F} . with ad -bc \^i O. Then

g : “ y=xM ”– “ y=x(a+Mc)^{-1}(b+Md) ”

whenever a+Mc is a nonsingular matrix.

The following partial spread of q+1 components will be contained in the
generalized Desarguesian spreads that we shall define shortly.

2. NOTATION. \delta_{\mathscr{L}^{-}}=\{"y =xf” :f\in^{}\}\cup\{O\oplus F_{p}^{3m}\} .
In passing, we note that \delta_{J}- is actually a Desarguesian partial spread (it

lies in \Gamma_{{?}} , defined in the Introduction). To extend \delta_{\mathcal{F}} to a non-Desarguesian
spread we require the following concept.

3. DEFINITION. If T\in GL(2, p) , we call ( T_{7}J^{}) an \underline{irreducible}\underline{pair}

on V=F_{p}^{3m} (which is chosen to be a \underline{column} space, for convenience) if
(i) T\in NcL(3m,p)(\mathscr{F})-CGL(3m,p)(^{}) : and
(ii) T does not fix any nonzero proper \mathscr{F} -subspace of V. with T and

\mathscr{F} acting on V from the left.

It is easily seen (cf. [5]) that an irreducible pair exists on the column
3m-tuples V=F_{p}^{3m} iff the Desarguesian plane PG(2, p^{m}) admits a fixed-
point-free collineation \mathscr{O}\in P\Gamma L(3, q)-PGL(3, q) : however, we shall not use
this connection–we only mention it to indicate that large numbers of irreduc-
ible pairs exist (in fact, whenever q=p^{m}>p, cf. [5, section 6]).

We now define the generalized Desarguesian spreads on \pi via the follow-
ing result.

4. Result. (Jha and Johnson [5]). Let ( T, \mathscr{F}) be an irreducible
pair on the column space V=F_{p}^{3m} p^{m}=q . Then

\pi_{T,\mathscr{L}}-=\delta_{\mathscr{L}}-\cup Orb_{\wp}(" y=xT")

is a \mathscr{C} -invariant (strictly non-Desarguesian) spread on the “ row ” space
\pi=F_{p}^{3m}\oplus F_{p}^{3m}

Any spread isomorphic to a \pi_{(T} , r^{-}\rangle will be called a \underline{generalized}

\underline{Desarguesiansp}read.

2. Proof of Theorem A.

To prove Theorem A, we assume \Gamma to be any spread on \pi whose
components are left invariant by the action of \mathscr{C} on \pi . So our objective is
to show that either \Gamma=\pi_{(T,\mathscr{L}^{-})} , where ( T. \mathscr{F} ) is an irreducible pair, or \Gamma is
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Desarguesian.

1. LEMMA. \delta , is a\mathscr{C} -Orbit and \Gamma\supset\delta\nearrow .

PROOF. It is a routine matter (based mostly on Lemma 1. 1) to verify
that \delta , is a \mathscr{C} -0rbit. To show that \Gamma\supset\delta_{F} let \{P_{i} : 1\leq i\leq q+1\} denote the
set of Sylow p-subgroups of \mathscr{C} and write F_{i}=Fix(P_{i}) . If P_{1} is the upper-
triangular Sylow p-subgroup in \mathscr{C} then F_{1}=O\oplus F_{p}^{3m}\in\delta\nearrow . Hence by the
transitivity of \mathscr{C} on \delta , we find that \delta, =\{F_{i} : 1\leq i\leq q+1\} , and each |F_{i}|=

q^{3} . In particular, Sylow P^{-}subgroups of \mathscr{C} are either all elation groups of
order q or are all Baer groups of same order. In the latter event, q is a
square and so, since now q\geq 4 , \{P_{i} : 1\leq i\leq q+1\} generates the nonsolvable
group SL(2, q) . We now have enough conditions to force \Gamma to be either a
Hall spread, or have order 16, using [3, Theorem 1. 2] and [4, Theorem
B] ; but in either case we have a contradiction, since 16 is not a cube, and a
Hall plane of order q^{3} cannot admit GL(2, q) . Thus each member of \delta_{\nearrow} is an
elation axis of a nontrivial elation group in Aut \Gamma . Hence \delta , consists of q+
1 components of \Gamma and the lemma is proved.

If we write J=F_{p}^{3m} then the lemma above implies that

X=J\oplus O, Y=O\oplus J and I=\{(\underline{x}, \underline{x}):\underline{x}\in J\}

are all in \Gamma Hence, we have the well-known fact (cf. Foulser [2]) that
every component of \Gamma-\{Y\} can be written uniquely in the form “ y=xS ”

where S\in GL(3m, p)\cup\{O_{3m}\} , and the set of all such matrices \mathscr{L} is the spread-
set associated with \Gamma : thus

\mathscr{L}=\{S\in GL(3m, p) : " y=xS "\in\Gamma\}\cup\{G_{m}\} .

Any spread-set satisfies an appropriate generalization of the following
easily-checked conditions.

2. LEMMA. \llcorner{?} is a set of q^{3} matrices such that
(i) a_{m} and I_{3m}\in \mathscr{L} ; and
(ii) X, Y\in \mathscr{L}\supset X-Y is nonsingular or zero.
We now list properties of the spread-set \mathscr{L} that take into account the

\mathscr{C} -invariance of \Gamma . These properties will sometimes be used without explicit
citation.

3. LEMMA. ( a) \mathscr{L}\supset \mathscr{F}

(b) M\in \mathscr{L}^{*}=(\mathscr{L}-\{\underline{O}\})\supset M^{-1}\in \mathscr{L}^{*} .
(c) M\in \mathscr{L}-\mathscr{F}\Rightarrow\alpha+\beta M\gamma\in \mathscr{L}^{*}\forall\alpha, \beta, \gamma\in \mathscr{F}^{*}

(d) M\in \mathscr{L}-\mathscr{F}\supset(\mathscr{F}\oplus MJ^{})\cup(J^{}\oplus_{J^{}M)\subseteq \mathscr{L}} .
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(N. B. : In part ( d) , and the rest of the section, we minimize brackets
by assuming \mathscr{F}\oplus x\mathscr{F} {resp., \mathscr{F}\oplus_{arrow}\pi x ) denotes \mathscr{F}\oplus(x\mathscr{P}^{-}) : a similar con-
vention holds even when the sum is not direct.)

PROOF. ( a) is the spread-set version of Lemma 1. By Lemma 1. 1,
we get the image of “ y=xM ” to be “ y=xM^{-1} ” if we apply the transforma-

tion: \{\begin{array}{ll}0 1l 0\end{array}\} . Thus ( b) holds. Part ( c) is similarly obtained by

computing the images of “ y=xM ” under the upper-triangular group in \mathscr{C}

Part ( d) is a special case of ( c) if we note that \mathscr{F}+\mathscr{F}M=\mathscr{F}\oplus \mathscr{F}M ,

since otherwise M\in \mathscr{F}

DEFINITION. \mathscr{B} is the set of all \mathscr{F} -spaces of type \mathscr{F}\oplus \mathscr{F}M where M
\in_{\mathscr{L}}-\mathscr{F}

4. LEMMA. |\mathscr{B}|=q+1 .

PROOF. The collection \{(\mathscr{F}\oplus \mathscr{F}M)\backslash \mathscr{F}:M\in \mathscr{L}\backslash \mathscr{F}\} partitions the
q^{3}-q elements of \mathscr{L}^{-}\mathscr{F} into classes of size q^{2}-q .

We now verify that \mathscr{F}^{*} induces a permutation group on \mathscr{B} , under right
multiplication by \mathscr{F}^{*} .

5. LEMMA. If x\in_{c}\swarrow^{*} . then
\overline{x} : \mathscr{B} \mathscr{B}

J^{}\oplus \mathscr{F}Marrow \mathscr{F}\oplus \mathscr{F}Mx

is a bijection on \mathscr{B} . Hence
\mathscr{F}^{*}arrow\overline{J^{*}}

x\mapsto\overline{x}

is a group homomorphism from \mathscr{F}^{*} into symm(B).

PROOF. By lemma 3, M\in\llcorner Z-\mathscr{F}\supset \mathscr{F}Mx\in \mathscr{L}^{-}\mathscr{F} Hence
\mathscr{F}\oplus \mathscr{F}M\in \mathscr{B}\Rightarrow^{}\oplus \mathscr{F}Mx\in \mathscr{B} .

Further, the image of ^{}\oplus \mathscr{F}M under \overline{x} is unambiguous because
\mathscr{F}\oplus \mathscr{F}M=\mathscr{F}\oplus \mathscr{F}N

\supset N=\alpha+\beta M\exists\alpha\in \mathscr{F} \beta\in \mathscr{F}^{*}

\Rightarrow \mathscr{F}\oplus \mathscr{F}Nx=\mathscr{F}\oplus\backslash \mathscr{F}Mx.

Now xarrow\overline{x} is easily seen to be a group homomorphism from \mathscr{F}^{*} into
Symm(y\mathscr{B}) .
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We now wish to show that \overline{\mathscr{F}^{*}}fifixes an element of \mathscr{B} .

6. LEMMA. Let u be an odd prime divisor of |J^{*}|=q-1 , and U the
Sylow u-subgroup of J^{*} . Then \exists M\in \mathscr{L}-^{} such that \mathscr{F}\oplus \mathscr{F}M\gamma=\mathscr{F}\oplus

\mathscr{F}M\forall\gamma\in U.

PROOF. By lemma 4, (|U|, |\mathscr{B}|)=1 . Hence, by lemma 5, \overline{U} fixes a
member of \mathscr{B} , and this is the required conclusion.

We can now strengthen lemma 6.

7. LEMMA. \exists T\in \mathscr{L}-\mathscr{F} such that TJ^{}\subseteq \mathscr{F}\oplus \mathscr{F}T

PROOF. If M\in \mathscr{L}^{-}J^{} we write
L_{M}=\{x\in \mathscr{F}:\mathscr{F}\oplus \mathscr{F}Mx\subseteq\swarrow^{}\oplus J^{}M\} .

Since L_{M} is additively and multiplicatively closed, and contains 0 and 1,
it must be a subfield of \mathscr{F} If \mathscr{F} is a prime field then L_{M}=\mathscr{F} and we are
done. Hence we assume q=p^{m}>p , and now by Zsygmondy’s theorem we
need to consider the following cases:

(i) q-1 has a primitive divisor u :
(ii) q=64 :
(iii) q=p^{2} and p+1=2^{m}>2 .
In case ( i ) , let U be the Sylow u-subgroup of J^{*} . Hence by the last

lemma,

\exists T\in \mathscr{L}-\mathscr{F} such that the field L_{T}\supseteq U .

But as U cannot lie in a proper subfield of \mathscr{F}^{*} , we have L_{T}=\mathscr{F} as required.
Case ( ii) is proved in the same way if we choose U to be the cyclic group
of order 9 in GF(2^{6})^{*} . To treat case (iii), let V be the Sylow 2-subgroup of

\mathscr{F}^{*} . Since 2||q+1 , lemmas 4 and 5 imply that an index 2-subgroup of V say
R , must fix some \mathscr{F}\oplus \mathscr{F}T in \mathscr{B} : that is, \mathscr{F}\oplus \mathscr{F}TR\subseteq \mathscr{F}\oplus \mathscr{F}T. But since
|R|=2^{m+1}/2=p+1 , R cannot lie in a subfield of \mathscr{F} Hence we again have
L_{T}=z\llcorner since L_{T}\supseteq R . Thus the lemma is proved.

8. LEMMA. Suppose M\in \mathscr{L}-’ is chosen so that M\mathscr{F}\subseteq \mathscr{F}\oplus \mathscr{F}M.
Then

W\in J^{}\oplus \mathscr{F}M\backslash \mathscr{F}\supset W^{2}\in \mathscr{F}\oplus \mathscr{F}M.

PROOF. It is obvious that \mathscr{F}\oplus \mathscr{F}M=\mathscr{F}\oplus \mathscr{F} W. whenever W\in \mathscr{F}\oplus

\mathscr{F}M\backslash \mathscr{F} Since by hypothesis M\mathscr{F}\subseteq \mathscr{F}\oplus \mathscr{F}M , we have
J^{}W\mathscr{F}\subseteq \mathscr{F}\oplus J^{}W (i)(i)
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If the lemma is false, we further have
W^{2}\in \mathscr{F}\oplus \mathscr{F}W\exists W\in \mathscr{F}\oplus^{}M\backslash \mathscr{F}

Now we claim \mathscr{F}\oplus J^{}W is multiplicatively closed. For if x, y, u, v\in \mathscr{F}

then

(x+yW)(u+vW)\equiv yWu+yWvW mod \mathscr{F}\oplus \mathscr{F}W ( ii)

But by ( i ) , yWu\in \mathscr{F}\oplus \mathscr{F}W and

Wv=v_{1}+v_{2}W\exists v_{1} , v_{2}\in \mathscr{F}

Thus ( ii) yields

(x+yW)(u+vW)\equiv y(v_{1}+v_{2}W)W mod(^{c^{-}}\oplus \mathscr{F}W) ,

and now, since W^{2}\in J^{}\oplus \mathscr{F}W we have

(x+yW)(u+vW)\in \mathscr{F}\oplus J^{}W

Thus \mathscr{F}\oplus \mathscr{F}W is multiplicatively, as well as additively closed. Since
the nonzero elements of \mathscr{F}\oplus \mathscr{F}W are nonsingular (being in the spread set
\mathscr{L} . because of lemma 3) we therefore conclude that

\mathscr{M}=\mathscr{F}\oplus J^{}W\cong GF(q^{2}) .

This means that the spread \Gamma , “ coordinatized ” by the spread-set \mathscr{L} , con-
tains the rational Desarguesian partial spread

\delta_{X}=\{" y=xM " : M\in \mathscr{M}\}\cup\{O\oplus F_{p}^{3m}\} .

Thus the translation plane of order q^{3} . associated with \Gamma . contains
(Desarguesian) subplanes of order q^{2} (whose lines include all the members of
\delta_{\mathscr{H}}) , and we contradict the Baer condition. The lemma follows.

We shall call an additive subgroup \Sigma\subseteq GL((N, p)\cup\{O_{N}\} an \underline{additive}

spread-set if | \sum|=p^{N} Thus, an additive spread-set is a spread-set \sum which
happens to be an additive group of matrices. It is generally realized that all
additive spread sets arise as matrix representations of the additive group of
slope maps (cf. Foulser [2]) of some semifield (but we shall avoid using this
fact).

9. LEMMA. \exists T\in \mathscr{L}-\mathscr{F} and \sigma\in Aut(\mathscr{F}, +, \circ ) such that
(i) fT=Tf^{\sigma}\forall f\in \mathscr{F} ; and
(ii) A=\mathscr{F}\oplus J^{}T\oplus \mathscr{F}T^{2} is an additive spread-set.

PROOF. By lemma 7 we may choose an M\in \mathscr{L}-\mathscr{F} such that
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M\mathscr{F}\subseteq \mathscr{F}\oplus \mathscr{F}M .

Assign to each f\in \mathscr{F} the map
\hat{f} : \mathscr{F}\oplus \mathscr{F}Marrow \mathscr{F}\oplus \mathscr{F}M

\alpha+\beta Marrow(\alpha+\beta M)f .

Then \hat{\mathscr{F}}^{*} is a group of \mathscr{F} -linear maps of the \underline{left} vector space \Lambda--\mathscr{F}\oplus J^{c^{-}}M ,

and this group leaves invariant the subspace \mathscr{F} Hence \hat{\mathscr{F}}^{*} also fixes a
Maschke complement of \mathscr{F} in \Lambda . Thus

\exists T\in \mathscr{F}\oplus \mathscr{F}M-\mathscr{F} and a map \mathscr{F}:\mathscr{F}arrow \mathscr{F}

such that

Tf=f^{r}T\forall f\in \mathscr{F}

It is obvious now that \mathscr{F} is an additive and multiplicative bijection of the
field \mathscr{F} . and hence ( i) follows if we choose \sigma=\mathscr{F}^{-1} . To prove ( ii) it is
sufficient to establish that

(*) x+yT+zT^{2} is nonsingular \forall x, y, z\in \mathscr{F} unless x=y–z=0

Since \mathscr{F}\oplus \mathscr{F}T\subset \mathscr{L} (lemma 3), we may further assume that z\neq 0 .
Right-multiplying (*) by T^{-1} . it is now sufficient to verify that

(**) xT^{-1}+y+zT is nonsingular if z\neq 0 .

But by lemma 3, - xT^{-1} and y+zT are both in \mathscr{L} . and this forces their
difference xT^{-1}+y+zT to be either nonsingular or zero. But if xT^{-1}+y+

zT=0 then -zT^{2}=x+yT forcing T^{2}\in \mathscr{F}\oplus \mathscr{F}T . contrary to lemma 8.
Hence (**) holds, and the required result follows.

In the following corollary, T and \sigma are as in the lemma above.

10. COROLLARY. Let V=F_{p}^{3m} be the column-space of 3m-tuples over
GF(p) . Define

\overline{T} : Varrow V
\underline{x}arrow T\underline{x}.

Then
(i) \overline{T}(\underline{fx})=f^{\sigma}\overline{T}(\underline{x})\forall\underline{x}\in V, f\in \mathscr{F} and
(ii) T does not fix any \mathscr{F} -subspaces of V, other than \underline{O} and V.

PROOF. The semilinearity condition is lemma 9 ( i ) . To verify that
\overline{T} does not fix any proper nonzero subspace, assume, in order to get a
contradiction, that for some nonzero \underline{x}\in V the \mathscr{F} subspace W generated by
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\{\underline{x},\underline{Tx}\} is T -invariant. Since the \mathscr{F}-rank of W\leq 2 , and T^{2}\underline{x}\in W . we
obtain

T^{2}\underline{x}=\alpha\underline{x}+\beta T\underline{x}\exists\alpha, \beta\in \mathscr{F}

Hence T^{2}-\beta T-\alpha is a singular matrix, contradicting lemma 9(ii). The
lemma follows.

If \sigma\neq identity , then the corollary asserts that ( _{T\eta}\mathscr{F}) of lemma 9 is an
irreducible pair (cf. definition 1. 3). But if \sigma=identity , then A of lemma 9
(ii) centralizes the irreducible J^{} -linear map \overline{T} ; so by Schur’s lemma, A
must coincide with the matrix fifie1d\cong GF(q^{3}) centaralizing T Thus, using
lemma 9 and corollary 10 we have shown

11. LEMMA. \mathscr{L} contains an element T such that ( T, \mathscr{F}) is an irreduc-
iblc pair, on V=F_{p}^{3m} . except when:

T centralizes \mathscr{F} and A=J^{}+\mathscr{F}T+\mathscr{F}T^{2}\cong GF(q^{3}) .

Now consider \Theta , the \mathscr{C} -0rbit of “ y=xT ” Since \mathscr{C} leaves invariant
the spread \Gamma . one of whose components is “ y=xT’’. we have

\Theta=Orb_{\mathscr{L}}(" y=xT")\subseteq\Gamma

Since \delta_{P}\frac{-}{} is also a \mathscr{C} -0rbit (lemma 1) we obtain

\Gamma\supseteq\Theta\cup\delta_{J^{-}}.

The RHS is a disjoint union of two \mathscr{C} -0rbits such that |\delta_{J^{-}}|=q+1 and
|\Theta|=q^{3}-q : to see the latter, compute the stabilizer of “ y=xT ” using
lemma 1. 1 (for full details, see [5, section 4]). But now |\Gamma|=q^{3}+1=|\Theta|+

|\delta_{\mathscr{L}}-| , and so
\Gamma=Orb_{\mathscr{H}}(" y=xT")\cup\delta_{\mathcal{J}^{-}} .

Thus we have the following refinement of lemma 11.

11. LEMMA. \exists T\in \mathscr{L}-\mathscr{F} such that
(i) \Gamma=Orb(" y=xT") \cup\delta_{\mathcal{F}} : and
(ii) ( T, J^{}) is an irreducible pair except when

A=_{J^{}}+\mathscr{F}T+_{J^{}}T^{2}\cong GF(q^{3}) .

Let us now take a closer look at case ( ii) :

A=\mathscr{F}+\mathscr{F}T+\mathscr{F}T^{2}\cong GF(q^{3}) .

Now

\Gamma_{A}=\{" y=ax " : a\in A\}\cup O\oplus F_{p}^{3m}\}
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is a Desarguesian spread of order q^{3} on \pi and
\Gamma_{A}\cap\Gamma\supseteq\{" y=xT"\}\cup\delta_{\mathcal{F}} . (1)

Now, by applying lemma 1. 1, we can easily verify that any image of
“ y^{=xT}"- under \mathscr{C}_{r}

, has ite generic form
“ y=x(a+Tc)^{-1}(b+Td)" . (2)

But since A is a field, A^{*} is closed under inversion and multiplication,
and so (2) yields

Orb_{\mathscr{H}}(" y=xT")\subset\Gamma_{A} . (3)

But since the LHS of (3) is in \Gamma as well, equations (1) and (3) show
that

\Gamma_{A}\cap\Gamma\supseteq Orb_{\Psi}(" y=xT")\cup\delta_{F},

and since the RHS is actually the spread \Gamma (lemma 12( i )), we get \Gamma=\Gamma_{A} .
Thus lemma 12 refines to

13. PROPOSITION. \exists T\in\Gamma-\mathscr{F} such that either
(i) ( T, J^{}) is an irreducible pair, and \Gamma is the generalized

Desarguesian spread

\pi_{T,J}-=Orb_{e}(" y=xT")\cup\delta_{\mathcal{J}^{-}}

(cf. 1. 4) ; or
(ii) \Gamma is a Desarguesian spread.

In effect, proposition 13 is theorem A of the introduction.
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