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Convolution semigroups of local type
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\S 1. Introduction

Hypergroups are locally compact spaces with a group-like structure on
which the bounded measures admit a convolution similar to that on a locally
compact group. Important examples of hypergroups are double coset
spaces, conjugacy spaces and duals of compact groups and also orbit spaces
of certain locally compact groups. Moreover, the sets Z_{+} , R_{+} of non-
negative integers and reals respectively, the unit interval I and the unit disk
D are also hypergroups with special operations different from the usual
semigroup operations. In fact, a hypergroup K can be viewed as a
probabilistic structure in the sense that to each pair x, y of points in K there
exists a probability measure \epsilon_{X}^{*}\epsilon_{\mathcal{Y}} on K with compact support such that
(x, y)arrow supp(\epsilon_{X}*\epsilon_{\mathcal{Y}}) is a \backslash continuous mapping from Kx K into the space of
compact subsets of K . The convolution * between Dirac measures extends
to all bounded measures on K and transplants the algebraic-topological
analysis from the sparcely structured basic space K to the generalized
measure algebra of K .

In this paper we continue studying convolution semigroups of measures
on K in terms of their generators. Our discussion is based on previous work
on the subject as f. e . the contributions [4], [5], [6] of W. R. Bloom and
the author, and the article [14] of R. Lasser.

For the full axiomatic of a hypergroup we refer to the paper [12] of R.
I. Jewett. It is essentially Jewett’s terminology that we adopt. To review
some notation will prove useful. By K we denote a commutative hypergroup
with involution - and neutral element e. Occasionally we need to deal with
the pointed hypergroup K^{\cross}: =K\backslash \{e\} . For every x\in K the symbol \mathfrak{V}_{x}(K)

stands for the system of open neighborhoods of x(inK) . It is known that K
has a Haar measure \omega_{K} and a Plancherel measure \pi on the dual space K^{\wedge} of
K . For a complex-valued function f on K the function f^{-} is defined by
f^{-}(x) : =f(x^{-}) for all x\in K . The translate by x\in K of an admissible
function f on K is given by
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T^{x}f(y) := \int f(z)\epsilon_{X}*\epsilon_{\mathcal{Y}}(dz)

which can be written as f_{x}(y) or f(x*y) for all y\in K . Given a bounded
nonnegative measure \mu and a function f on K we shall agree on the notation

\mu*f(x) := \int f_{X}^{-}d\mu=\int f(x*y^{-})\mu(dy)

whenever x\in K . The symbols \mu^{\wedge} and J’\vee

, for the Fourier transform of a
bounded measure and its inverse transform of K^{\wedge} and K respectively are
chosen in accordance with [12].

It is the purpose of our contribution to initiate the analysis of local
convolution semigroups on a hypergroup K and the corresponding diffusion
processes with K as their state space. Much of the basic theory can be
developed as in the group case; the appropriate reference is the book [3] by
C. Berg and G. Forst. There are, however, significant limitations of the
translation procedure. Some of these points will be prepared in Section 2.
In Section 3 we study the generators of convolution semigroups of measures
on various function spaces and give a first characterization of locality
(Theorem 3. 3). A construction due to C. Berg [2] of the L\’evy measure of
a convolution semigroup is extended to hypergroups in Section 4. Theorem
4. 1 is slightly more general than the corresponding result of R. Lasser in
[14]. In Section 5 we prove a characterization of local convolution semi-
groups in terms of their L\’evy measures and, under additional assumptions,
also in terms of their L\’evy-Khintchine representations (Theorem 5. 3).

Some applications to transient convolution semigroups follow. The paper
ends with a discussion of examples, in which local convolution semigroups
are exhibited.

\S 2. Preparations.

Given a locally compact space K we will write \mathscr{C}(K) for the space of
continuous functions on K . The inclusion \mathscr{K}(K)\subset \mathscr{C}^{0}(K)\subset \mathscr{C}^{b}(K) con-
tains the subspaces of functions in \mathscr{C}(K) that are of compact support,
vanish at infinity or are j\dot{u}st bounded respectively. Analoguously there is the
inclusion \mathscr{M}^{1}(K)\subset \mathscr{M}^{(1)}(K)\subset \mathscr{M}^{b}(K) between the spaces of probability mea-
sures, (nonnegative) contraction measures and arbitrary bounded measures
on K , respectively. \mathscr{C}(K) will be furnished with the compact-0pen topol-
ogy \mathscr{T}_{CO} , \mathscr{C}^{b}(K) with the topology induced by the uniform morm ||\cdot|| . In
\mathscr{M}^{b}(K) we shall consider the norm topology and also the weak topology \mathscr{T}_{w}

according to our particular demands. In the space \mathscr{M}_{+}(K) of all non-
negative (not necessarily bounded Radon) measures on K we are given the
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vague topology \mathscr{T}_{v} .
From now on we assume that K is a commutative hypergroup. For any

p\in[1^{ },\infty] the spaces L^{p}(K, \omega_{K}) are defined as in the group case. There is
also the space \mathscr{C}_{u}(K) of bounded uniformly continuous functions on K .
Here, a function f on K is said to be uniformly continuous if for given \epsilon>0

and any x_{)}\in K there exists a U\in \mathfrak{V}_{xo}(K) such that |\psi_{xo}-f_{x}||<\epsilon for all x\in U .

2. 1 THEOREM. ([10], 2. 7). \mathscr{K}(K)\subset \mathscr{C}_{u}(K)

Now let (_{\mu t})_{t\geqq 0} denote a continuous convolution semigroup of measures
in \mathscr{M}^{(1)} where continuity is understood in the sense of \mathscr{T}_{v}-\lim_{tarrow 0}\mu_{t}=\epsilon_{e} . For
any of the Banach spaces E=\mathscr{C}^{0}(K) , \mathscr{C}_{\mathcal{U}}(K) and L^{2}(K, \omega_{K})(_{\mu t})_{t\geq 0}

induces a strongly continuous contraction semigroup (P_{t})_{t\geq 0} of operators on
E defined by

(C) Pf :=\mu_{t^{*}}f

for all f\in E, t\geqq 0 . Clearly, (P_{t})_{t\geq 0} is translation invariant in the sense that
(a) P_{t}E\subset E and
(b) T^{x}P_{t}=P_{t}T^{x}

hold for all x\in K(t\geqq 0) . One easily verifies that if (_{\mu t})_{t\geq 0} is a convolution
semigroup in \mathscr{M}^{1}(K) , then (P_{t})_{t\geq 0} is Markovian in the sense of the property

(M) sup \{Pf : f\in E, 0\leqq f\leqq 1\}=1 for all t\geqq 0 .

If, moreover, (_{\mu t})_{t\geqq 0} is symmetric and E=L^{2}(K, \omega_{K}) then (P_{t})_{t\geq 0} is
selfadjoint which means that P_{t} is a selfadjoint operator for every t\geqq 0 . The
converse of these statements is contained in the following

2. 2 THEOREM. ([10], 1. 7 of Chapitre III). There is a one-tO-One corre-
spondence between continuous convolution semigroups (_{\mu t})_{t\geq 0}in\mathscr{M}^{(1)}(K) and
translation invariant, strongly continuous semigroups (P_{t})_{t\geq 0} of positive con-
traction operators on E which is given by (C). For this correspondence we
have that

(i) (_{\mu t})_{t\geq 0} is in \mathscr{M}^{1}(K) iff (P_{t})_{t\geq 0} is Markovian,
and in the case of E=L^{2}(K, \omega_{K}) that

(ii) (_{\mu t})_{t\geq 0} is symmetric iff (P_{t})_{t\geq 0} is selfadjoint.

2. 3 REMARK. The Markovian property (M) of (P_{t})_{t\geq 0} on E=L^{2}(K, \omega_{K})

can generally not be replaced by the property

(M’)||P_{t}||=1 for all t\geqq 0 .

In fact, if we wish to preserve the statements of the theorem with (M)
being replaced by (M’) we have to make the additional (Godement)
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assumption that the unit character 1 of K belongs to the support of the
Plancherel measure \pi .

Let (\rho_{\lambda})_{\lambda>0} denote the resolvent family associated with (_{\mu t})_{t\geqq 0} given by

\rho_{\lambda}(f) := \int_{0}^{\infty}e^{-\lambda t}\mu t(f)dt

for all f\in \mathscr{C}b(K) . There always exists the extended real number

\lim_{\lambdaarrow 0}\rho_{\lambda}\sigma)=\int_{0}^{\infty}\mu t(f)dt

for all f\in \mathscr{C}^{b}(K) . If this limit is finite for all f\in \mathscr{K}(K) then

\kappa:=\mathscr{T}_{v}-\lim_{\lambdaarrow 0}\rho_{\lambda}

defines the potential kernel \kappa of (_{\mu t})_{t\geqq 0} as a measure in \mathscr{M}_{+}(K) . In this case
(_{\mu t})_{t\geq 0} is called a transient convolution semigroup.

2. 4 THEOREM. ([6], 5. 3). A measure \kappa\in \mathscr{M}_{+}(K) is the potential kernel
of a transient convolution semigroup in\mathscr{M}^{(1)}(K) iff \kappa admits a fundamental
family (\sigma_{V})_{V\in \mathfrak{V}} of measures in\mathscr{M}^{(1)}(K) indexed by a base \mathfrak{V} of compact open
neighborhoods of e, which has the following properties valid for all V\in \mathfrak{V} :

(a) \sigma_{V}*\kappa\leqq\kappa , \sigma_{V}*\kappa\neq\kappa .
(b) \sigma_{V}*\kappa=\kappa on G V
(c) \mathscr{T}_{v}-\lim_{narrow\infty}\sigma_{V}^{n}*\kappa=0 .

\S 3. Generators.

The generator of a convolution semigroup (_{\mu t})_{t\geqq 0} in \mathscr{M}^{(1)}(K) can be
introduced as the infinitesimal generator (A, D(A)) of the contraction semi-
group (P_{t})_{t\geq 0} on E which corresponds to (_{\mu t})_{t\geqq 0} by Theorem 2. 2. More
explicitly we have

Af : \lim_{tarrow 0}\frac{1}{t} (Ff-f)

for all

f\in D(A) : { h\in E : \lim_{tarrow 0}\frac{1}{t}(P_{t}h-h) exists}.

Let (R_{\lambda})_{\lambda>0} denote the resolvent of (P_{t})_{t\geq 0} which admits the representa-
tion

R_{\lambda}f=\rho_{\lambda}*f

for all f\in E , \lambda>0 . As in the case of an Abelian group K([3], 12.11) one
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shows
(1) R_{\lambda}(E)\subset D(A) for all \lambda>0 .
(2) A is translation invariant in the sense that

(a) T^{x}D(A)\subset D(A) and
(b) T^{\chi}A=AT^{x}

hold for all x\in K .
(3) For any f\in D(A) and g\in\vee \mathscr{K}(K) the function f*g\in D(A) , and

A(f*g)=(Af)*g.

For i=0, u , 2 the pair (A_{i}, D_{i}) denotes the infinitesimal generator of
the semigroup (P_{t})_{t\geqq 0} considered as a translation invariant, strongly contin-
uous contraction semigroup on \mathscr{C}^{0}(K) , \mathscr{C}_{u}(K) and L^{2}(K, \omega_{K}) , respective-
ly.

From now on we shall assume that the dual K^{\wedge} of K is a hypergroup
(with respect to pointwise multiplication of characters). In this case \pi=

\omega_{K^{\wedge}} .
The proofs of the following results are carried out in analogy to the

group case treated in [9] or [3], \S 18. One just has to apply Theorems 2. 1
and 2. 4.

3. 1 THEOREM. \mathscr{K}(K)\cap fl\cap a is a dense subspace of \mathscr{K}(K) , \mathscr{C}_{u}(K)

and L^{2}(K, \omega_{K}) .

PROOF. The measure \rho_{1} is the potential kernel of the convolution
semigroup (e^{-t}\mu i)_{t\geqq 0} which is obviously transient. Then by Theorem 2. 4
for every compact V\in \mathfrak{V}_{e}(K) there exists a measure \sigma_{V}\in \mathscr{M}^{(1)}(K) satisfying
the inequalities

(a) \rho_{1}*\sigma_{V}\leqq\rho_{1} , \rho_{1}*\sigma_{V}\neq\rho_{1} .
(b) \rho_{1}*\sigma_{V}=\rho_{1} on G V

After appropriate norming by numbers a_{V}>0 the measures
\eta_{V} : =a_{V}(\rho_{1}-\rho_{1}*\sigma_{V})

are in \mathscr{M}^{1}(K) and have supp \mu_{V}\subset V Now we take a function f\in \mathscr{K}_{+}(K)

and an \epsilon>0 . We want to show that for every U\in \mathfrak{V}_{e}(K) there is a function
g\in \mathscr{K}_{+}(K)\cap fl\cap\Omega satisfying supp g\subset(suppf)*U such that

(^{*}) | \int-g||<\epsilon

holds. From Theorem 2. 1 we infer that for given f there exists a compact
V\in \mathfrak{V}_{e}(K) , V\subset U such that

| \int_{X^{-}}-f||<\epsilon
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for all x\in V The function
g=\mu_{V^{*}}f

=\rho_{1}*(a_{V}f)-\rho_{1}*\sigma_{V}*(a_{V}f)

belongs to \mathscr{K}(K) and satisfies (^{*}) . Since the measure \sigma_{V} is bounded, \sigma_{V}*

(a_{V}f)\in \mathscr{C}^{0}(K)\cap L^{2}(K, \omega_{K}) and hence
g\in\rho_{1}*(\mathscr{C}^{0}(K)\cap L^{2}(K, \omega_{K}))\subset fl\cap \mathfrak{Q} .

3. 2 COROLLARY. Let U and V be relatively compact open subsets of K
such that \overline{U}\subset V. There exists a function f\in fl\cap b satisfying

\{

0\leqq f\leqq 1 ,

f=1 on U, and
f=0 on GV.

PROOF. For the given sets U and V there is a relatively compact
W\in \mathfrak{V}_{e}(K) such that

(\overline{W}*\overline{U})\cap(\overline{W}*GV)=\emptyset .

But then there is a function g\in \mathscr{K}_{+}(K) satisfying

\{

0\leqq g\leqq 1 ,
g=1 on W*U, and
g=0 on W*GV.

It follows from the proof of the theorem that we can find a function h\in \mathscr{K}_{+}

(K)\capn \cap a such that supp h\subset W and \int hd\omega_{K}=1 . From (3) we infer that

f :=g*h\in fl\cap b , and by construction f has the required properties.

3. 3 THEOREM. The following statements are equivalent:
(i) supp (A_{0}f)\subset suppf for all f\in R .
(ii) supp (\^A f, Csupp/ for all f\in D_{u} .
(iii) supp (A_{2}f)\subset suppf for all f\in D .
PROOF. The implication ( ii)\supset(i) is clear. Since the remaining

implications ( i)\supset(iii) and (iii)\Rightarrow(ii) are shown similarly, we
restrict ourselves to the proof of ( i)\supset(iii) .

Let f\in l\lambda . In view of Theorem 3. 1 it suffices to show that (\^Af,g\rangle =0
for all g\in \mathscr{K}(K) satisfying

\{

g^{-}\in nna and
supp g\cap suppf=\emptyset .
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For such functions we get

\langle A_{2}f, g\rangle=\lim_{tarrow 0}\frac{1}{t}\langle\mu_{t}*f-f, g\rangle

= \lim_{tarrow 0}\frac{1}{t}\langle f, (\mu_{t}*g^{-}-g^{-})^{-}\rangle

=\langle f, (A_{0}g^{-})^{-}\rangle=0 ,

the latter equality following from supp (A_{og}^{-})^{-}\subset suppg which is available
by hypothesis.

3. 4 COROLLARY. Let A_{0} satisfy ( i) of the theorem. Suppose that for
f\in \mathscr{C}^{b}(K) the limit

g:= \mathscr{T}_{CO}-\lim_{tarrow 0}\frac{1}{t}(\mu_{t}*f-f)

exists (\in \mathscr{C}(K)) . Then supp g\subset suppf.
The \underline{proof} runs as in the group case.

From [4] we recall that there is a one-t0-0ne correspondence between
(continuous) convolution semigroups (_{\mu t})_{t\geq 0} in \mathscr{M}^{1}(K) , (strongly) nega-
tive definite functions \psi on K^{\wedge} . and resolvent families (\rho_{\lambda})_{\lambda>0} in \mathscr{M}_{+}^{b}(K)

given by

\hat{\mu}_{t}=\exp(-t\psi)

on K^{\wedge}(t\geqq 0) and

\rho_{\lambda}=\int_{0}^{\infty}e^{-\lambda t}\mu_{t}dt

on \mathscr{C}^{b}(K)(\lambda>0) , respectively. In [5] it was shown that the domain 1\lambda of
the generator A2 can be described as the set

a=\{f\in L^{2}(K, \omega_{K}) : f\psi\in L^{2}(K^{\wedge}-\omega_{K^{\wedge}})\} ,

and that

(A_{2}f)^{\wedge}=-f\psi

whenever f\in\Omega . We shall apply this fact in the following section.

\S 4. L\’evy measures.

Let (_{\mu t})_{t\geq 0} be a convolution semigroup in \mathscr{M}^{(1)}(K) with corresponding
negative definite function \psi on K^{\wedge} The following result is a slight exten-
sion of Proposition 3. 3 of [14]. See also [2] for the group case.
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4. 1 THEOREM. There exists a measure \eta\in \mathscr{M}_{+}(K^{\cross}) satisfying

\lim_{tarrow 0}\frac{1}{t}\int fd\mu_{t}=\int fd\eta

for every f\in \mathscr{C}^{b}(K) such that supp f\subset K^{\cross}

Proof. Let

\mathscr{L} := {\mu\in \mathscr{M}^{1}(K^{\wedge}):\mu is symmetric and supp\mu is compact}.

Then for given \sigma\in \mathscr{L} and all t>0 we obtain

[ \frac{1}{t}(1-\sigma)\mu_{t}]^{\wedge}=\frac{1}{t} [\vee. 1-exp (-t\psi) ] *(\sigma-\epsilon_{1}) .

It can be easily shown that

\mathscr{T}_{CO}-\lim_{tarrow 0}[\frac{1}{t}(1-^{v}\sigma)\cdot\mu_{t}]^{\wedge}=\psi*\sigma-\psi ,

and hence \psi*\sigma-\psi is a (strongly) positive definite function on K^{\wedge} in the
sense of [4]. This means that there exists a measure \eta\sigma\in \mathscr{M}_{+}^{b}(K) satisfying

\hat{\eta}\sigma^{=}\psi*\sigma-\psi.

Applying the (continuity) Theorem 6. 5 of [4] or Satz 2. 1. 5 of [15] we
obtain

\mathscr{T}_{w}-\lim_{tarrow 0}\frac{1}{t}(1-\check{\sigma})\cdot\mu t=\eta\sigma .

Now let f\in \mathscr{C}^{b}(K) with supp f\subset K^{\cross} By Lemma 3. 1 of [14] there exists
a measure \sigma\in \mathscr{L} such that \sigma\leqq\frac{1}{2}\vee on supp f_{r} Consequently the funtion f_{\sigma}

defined by

f_{\sigma}(x) : =\{
\frac{f(x)}{1-\sigma(x)\vee} if x\in suppf

0 if x\not\in suppf

is an element of \mathscr{C}^{b}(K) , and we obtain

\lim_{tarrow 0}\frac{1}{t}\int fd\mu_{t}=\lim_{tarrow 0}\int f_{\sigma}d[\frac{1}{t}(1-\sigma)\mu_{t}]\vee.
= \int f_{\sigma}d\eta\sigma.

In particular,
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\mathscr{T}_{v}-\lim_{tarrow 0}\frac{1}{t}{\rm Res}_{K^{x}}\mu_{t}

exists as a measure \eta\in \mathscr{M}_{+}(K^{\cross}) , and

(1-^{v}\sigma)\cdot\eta={\rm Res}_{K^{x}}\eta\sigma

holds for all \sigma\in \mathscr{L} . Finally for f\in \mathscr{C}^{b}(K) with suppf\in K^{\cross} and \sigma chosen as
above we have

\lim_{tarrow 0}\frac{1}{t}\int fd\mu_{t}=\int f_{\sigma}d\eta\sigma.

= \int f_{\sigma}d({\rm Res}_{K^{x}\eta\sigma})

= \int(1-^{v}\sigma)f_{\sigma}d\eta

=\eta^{(}f) .

4. 2 DEFINITION. The measure \eta\in \mathscr{M}_{+}(K^{\cross}) constructed in the preceding
theorem is said to be the L\’evy measure of the convolution semigroup (_{\mu t})_{t\geq 0} .

4. 3 REMARK. The L\’evy measure \eta of (_{\mu_{t}})_{t\geq 0} is uniquely determined by
the equality

(1-\check{\sigma})\cdot\eta={\rm Res}_{K^{x}}\eta\sigma

valid for all \sigma\in \mathscr{L} and co\overline{l}ncides with the L\’evy measure introduced in [14].

4. 4 THEOREM. Let (_{\mu t})_{t\geqq 0} be a convolution semigroup in \mathscr{M}^{(1)}(K) with
corresponding resolvent family (\rho_{\lambda})_{\lambda>0} and negative definite function \psi .
Then for any measure \eta\in \mathscr{M}_{+}(K^{\cross}) , in particular for the L\’evy measure \eta of
(_{\mu t})_{t\geqq 0} , the following statements are equivalent:

(i) \eta=\mathscr{T}_{v}-\lim{\rm Res}_{K^{x}}\eta_{t}\underline{1} .
tarrow 0t

(ii) \eta=\mathscr{T}_{v}-\lim_{\lambdaarrow\infty}{\rm Res}_{K^{x}}\lambda^{2}\rho_{\lambda} .
(iii) \eta(f)=A_{0}f^{-}(e)

for all f\in \mathscr{K}(K) with f^{-}\in fl , suppf\subset K^{\cross}-

(iv) \eta(f)=A_{u}f^{-}(e)

for all f\in \mathscr{C}_{\mathcal{U}}(K) with f^{-}\in D_{u}, suppf\subset K^{\cross}

(v) \eta(f^{-}*\overline{g})=\langle A_{2}f, g\rangle

for all f, g\in \mathscr{K}(K) , f\in \mathfrak{Q} with supp(f^{-}*\overline{g})\subset K^{\cross} .

PROOF. 1) The equ\overline{l}valences ( i)\Leftrightarrow(iii)=(iv) follow from the
equalities
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\eta^{(}f)=\lim_{tarrow 0}\frac{1}{t}\int fd\mu_{t}

= \lim_{tarrow 0}\int fd[\frac{1}{t}(_{\mu_{t}}-\epsilon_{e})]

= \lim_{tarrow 0}\frac{1}{t}(\mu_{t}-\epsilon_{e})*f^{-}(e)

=A_{i}f^{-}(e)

valid for all f\in \mathscr{C}^{b}(K) , f^{-}\in D_{i} such that supp f\subset K^{\cross}(i=0, u) .
2) In order to see the equivalences ( i)\Leftrightarrow(ii)\Leftrightarrow(v) we deduce the

subsequent chain of equalities valid for all f, g\mathscr{K}(K) , f\in \mathfrak{Q} such that supp
(f^{-}*\overline{g})\subset K^{\cross} and observe that by the proof of Theorem 3. 1 the set

\mathcal{N}.\cdot= { *\overline{g}:f, g\in \mathscr{K}(K) , f\in D supp (f^{-}*\overline{g})\subset K^{\cross} }

is total in \mathscr{K}(K^{\cross}) :

\eta\sigma^{-}*\overline{g})=\lim_{tarrow 0}\frac{1}{t}\int f^{-}*\overline{g}d\mu_{t}

= \lim_{tarrow 0}\langle\frac{1}{t}(\mu_{t^{*}}f-f), g\rangle

=\langle A_{2}f, g\rangle

=-\langle\psi f,\hat{g}\rangle

=- \lim_{\lambdaarrow\infty}\langle\frac{\lambda\psi}{\lambda+\psi}f,\hat{g}\rangle

=- \lim_{\lambdaarrow\infty}(\lambda\langle;,\hat{g}\rangle-\lambda^{2}\langle\hat{\Leftrightarrow}, _{\hat{g}\rangle}\lambda+\psi)

=- \lim_{\lambdaarrow\infty}(\lambda f^{-}*\overline{g}(e)-\lambda^{2}\rho_{\lambda}(f^{-}*\overline{g}))

[by Plancherel’s theoren]
=- \lim_{\lambdaarrow\infty}\lambda^{2}\rho_{\lambda}(f^{-}*\overline{g}) .

4. 5 DISCUSSION. We are now going to look at convolution semigroups in
\mathscr{M}^{(1)}(K) whose L\’evy measures \eta admit special properties.

(1) If (A_{i}, D_{i})(i=0, u, 2) are bounded operators, then \eta is bounded
and also the negative definite function \psi corresponding to (_{\mu t})_{t\geq 0} is \overline{bounded.}

The boundedness of \psi implies that (_{\mu t})_{t\geq 0} is in fact a Poisson semigroup of
the form

\mu_{t}=e^{-m}\exp(t\mu)

for \mu\in \mathscr{M}_{+}^{b}(K) , m\geqq||\mu||(t>0) , and

\psi=m-\hat{\mu} .

With an extended definition of negative-definiteness (in the strict sense) a
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proof of this result has been given recently in [15]. An immediate conse-
quence is the fact that on discrete hypergroups K (with compact dual
hypergroup K^{\wedge} ) any convolution semigroup is a Poisson semigroup.

We note that the L\’evy measure of a Poisson semigroup (with defining
measure \mu\in \mathscr{M}_{+}^{b}(K))\overline{1}S just {\rm Res}_{K^{x}}\mu .

If the convolution semigroup (_{\mu t})_{t\geq 0} with bounded L\’evy measure \mu

consists of measures in \mathscr{M}^{1}(K) , then \psi(1)=0 , whence m=||_{\mu}|| .
(2) Let \eta be symmetric. In this case the negative definite function \psi

corresponding to (_{\mu t})_{t\geqq 0} admits a L\^evy-Khintchine representation provided
K satisfies Lasser’s property (F). More precisely, in [14] the following
structural result has been pr,oved-. There exist a number c\geqq 0 , a homomor-
phism t:K^{\wedge}arrow R and a nonnegative quadratic form q:K^{\wedge}arrow R such that for
all \chi\in K^{\wedge}

\psi(_{\mathcal{X}})=c+it(_{\mathcal{X}})+q(\chi)+\int_{K^{x}}(1-Re_{\mathcal{X}}(x))_{\mu}(dx) .

The data c, t and q are in fact uniquely determined by (\mu_{t})_{t\geq 0} in terms of
c=\psi(1) , t={\rm Im}\psi , and

q( \chi)=\lim_{narrow\infty}[\frac{\epsilon_{\chi}^{n}(\psi)}{n^{2}}+\frac{\epsilon_{\chi}^{n_{*}}\epsilon_{X^{-}}^{n}(\psi)}{2n}]

are valid for all \chi\in K^{\wedge} .
In the next section we shall discuss in more detail the case that \eta

vanishes on K^{\wedge} .

\S 5. Locality.

As before we are given a convolution semigroup (_{\mu t})_{t\geq 0} in \mathscr{M}^{(1)}(K) with
generators (A_{i}, D_{i})(\iota^{-}=, u, 2) , L\’evy measure \eta and corresponding negative
definite funtion \psi admitting at least under the assumption (2) of Section 3,
a L\’evy-Khintchine representation with data (c, t, q, \eta) .

5. 1 DEFINITION. (_{\mu t})_{t\geqq 0} is said to be of local type if for all f\in fl

supp (A_{0}f)\subset suppf .

5. 2 REMARK. We know from Theorem 3. 3 that in the definition of local-
ity (A_{0},1\lambda) can be replaced by (A_{i}, D_{i}) with i=u or 2.

5. 3 THEOREM. The following statements are equivalent:
(i) (\mu_{t})_{t\geqq 0} is of local type.

(ii) \lim_{tarrow 0}\frac{1}{t}\mu_{t} ( G W)=0
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for all W\in \mathfrak{V}_{e}(K) .
(iii) \eta\equiv 0 .
If in addition, K satisfies Property (F) and \eta is symmetric, then we

have also equivalence to
(iv) There exist a triplet (c, t, q) consisting of a number c\geqq 0 , a

homomorphism q:K^{\wedge}arrow R, and a nonnegative quadratic form q:K^{\wedge}arrow R

such that

\psi=c+it+q .

The \underline{proof} follows the lines of [3] with the necessary references to those
arguments which are nonrout\overline{l}ne for hypergroups.

1) ( i)\supset(ii) . For a given W\in \mathfrak{V}_{e}(K) we choose relatively com-
pact U, V\in \mathfrak{V}_{e}(K) such that \overline{U}\subset V\subset W^{-} By Corollary 3. 2 there exists a
function u\in n such that

\{

0\leqq h\leqq 1 ,
h_{0}=1 on U, and
h_{0}=0 on GV.

whence a function h:=1-h_{0}

\{_{1\leqq h^{-}}^{o}e\bigoplus_{GW}^{\leqq}supphh\leqq 1

,

and

Clearly

\lim_{tarrow 0}\frac{1}{t}(_{\mu_{t}}*1-1)=\lim_{tarrow 0}\frac{1}{t} (exp (-t\psi(1))-1 )

=-\psi(1) .

From this we deduce that

\mathscr{T}_{CO}-\lim_{tarrow 0}\frac{1}{t}(\mu_{t}*(1-h_{0})-(1-h_{0}))

=-\psi(1)-A_{0}h_{0} .

and so by Corollary 3. 4 that

\lim_{tarrow 0}\frac{1}{t}(\mu_{t^{*}}h(e)-h(e))=0 .

The desired assertion now follows from

0 \leqq\varliminf_{tarrow 0}\frac{1}{t}\mu_{t}(GW)
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\leqq\varlimsup_{tarrow 0}\frac{1}{t}\mu_{t}^{(G}W)

\leqq\varlimsup_{tarrow 0}\int h^{-}d(\frac{1}{t}\mu_{t})

= \lim_{tarrow 0}\frac{1}{t}(_{\mu t^{*h(e)-h(e))=0}} .

2) ( ii)\supset(iii) . For f\in \mathscr{K}_{+}(K) with suppf\subset K^{\cross} we choose a W\in

\mathfrak{V}_{e}(K) such that supp(f)\cap W=\emptyset . Then Theorem 4. 1 yields

0 \leqq\int fd\eta

= \lim_{tarrow 0}\int fd(\frac{1}{t}\mu_{t})

\leqq|r||\lim_{tarrow 0}\frac{1}{t}\mu_{t}^{(G}W)=0

which shows that \eta=0 .
3) (iii)\supset(i) . Let g\in fi . We want to show that

supp (A_{0}g)\subset suppg

holds. In fact, let g=0 on a neighborhood V\in \mathfrak{V}_{e}(K) . Since I\lambda\subset D_{u} , (iv)

of Theorem 4. 4 is applicable and thus

A_{0}g(e)= \int g^{-}d\eta=0 .

Moreover, if g=0 on some V\in \mathfrak{V}_{x}(K) , then g_{x}\in R and g_{\chi}=0 on some V’\in

\mathfrak{V}_{e}(K) , and consequently

A_{0}g(x)=T^{x}(A_{0}g)(e)=A_{0}(T^{x}g)(e)=A_{0}(g_{x})(e)=0 .

4) (iii)\Leftrightarrow(iv) is immediate from (2) of Section 4.
The following \underline{appl\overline{l}cations} of Theorem 5. 3 are proved similarly to the

group case (See [3], 18. 28 and 18. 30). Let (_{\mu t})_{t\geq 0} be a transient convolu-
tion semigroup in \mathscr{M}^{(1)}(K) with potential kernel \kappa\in|\mathscr{M}_{+}(K) .

5. 4 Let (\sigma_{V})_{V\in \mathfrak{V}} denote a fundamental family associated with \kappa in the
sense of Theorem 2. 4. Then

A_{0}f= \lim_{V\in \mathfrak{V}}a_{V}(\sigma_{V}-\epsilon_{e})*f

for all f\in l\lambda , and

\eta=\mathscr{T}_{v}-\lim_{V\in \mathfrak{V}}a_{V}{\rm Res}_{K^{x}}\sigma_{V} .
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Here the a_{V}>0 are chosen such that a_{V}(\kappa-\sigma_{V}*\kappa)\in \mathscr{M}^{1}(K) for V\in \mathfrak{V} .
5. 5 (_{\mu t})_{t\geq 0} is of local type iff there exists a fundamental family (\sigma_{V})_{V\in \mathfrak{V}}

associated with \kappa such that supp \sigma_{V}\subset V for all V\in \mathfrak{V} .

5. 6 EXAMPLES.
All of the hypergroups appearing in the following examples admit a

hypergroup dual and satisfy property (F).

5. 6. 1 Abelian locally compact groups, in particular the Euclidean groups
R^{d} for d\geqq 1 .

Convolution semigroups of local type on the Euclidean groups are the
Brownian sem\overline{l}group on R^{d} which for d\geqq 3 is transient and admits a funda-
mental family associated with the Newton kernel ([3], 17. 16), and the heat
semigroup on R^{d+1}wh_{\overline{1}}ch is transient for all d\geqq 1 . In contrast to these
examples the symmetric stable sem\overline{l}group of order \alpha\in ] 0, 2 [on R^{d} is not of
local type; its L\’evy measure can be computed to be non-zero ([3], 18. 23).

5. 6. 2 Orbit \underline{hypergroups}G_{B} of locally compact groups G\in[FIA]_{B}^{-} and
(relatively compact) subgroups B of Aut(G) such that 53lnt(G) .

We note that this class of hypergroups comprises the orbit hypergroups
of compact groups as well as the conjugacy hypergroups (for B=Int(G) ) of
locally compact groups G\in[FC]^{-}\cap[SIN] .

Orbit hypergroups have been discussed in [11]. For the conjugacy
hypergroups of compact groups see [12], 8. 4B.

Inth\backslash e special case G:=R^{d} and B:=SO(d) for d\geqq 1 we have G_{B}\cong G_{B}^{\wedge}

\cong R_{+} . Convolution semigroups on G_{B} admit L\’evy-Khintchine representa-
tions which in a more general framework are established in [7]. In [7]
also quadratic forms are computed. Convolution semigroups of local type
on G_{B} appear in [13].

5. 6. 3 \underline{Bessel}-Kingman hypergroups(R_{+,a}*) with defining Bessel convolu-
tion *a where \alpha\geqq-\frac{1}{2}, have been treated \overline{1}n[8] . For \alpha:=\frac{d}{2}-1(d\geqq 1)

these hypergroups reduce to those of the special case above. Convolution
sem\overline{l}groups of local type on (R_{+,a}*) appear already in [13].

5. 6. 4 \underline{Jacobihy\grave{p}ergroups}(Z_{+,(a,\beta)}*) with \alpha\geqq\beta\geqq-\frac{1}{2}. On these hyper-

groups whose dual hypergroups can be identified with I\cdot. =[-1,1] any
convolution semigroup (_{\mu t})_{t\geq 0} is a Poisson semigroup whose negative
definite funct\overline{l}on has the form
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\psi=\sum_{n\geqq 1}(1-R_{n}^{(a,\beta)})\eta(\{n\}) ,

where \eta is the L\^evy measure of (_{\mu t})_{t\geqq 0} . Here (R_{n}^{a,\beta})_{n\geq 1} denotes the
sequence of normed Jacobi polynomials on I which defines the convolution
*(a,\beta) in Z_{+} . Clearly, there is no convolution semigroup of local type on
(Z_{+,(a,\beta)}*) . (See [14]).

5. 6. 5 \underline{DualJacobi}hypergroups (I_{(a,\beta)}^{ *},) with \alpha\geqq\beta\geq-\frac{1}{2} . The hyper-

group duals of these hypergroups can be identified with Z_{+} . Homomor-
phisms vanish, quadratic forms q are computed for all n\in Z_{+} as

q(n)=a \frac{n(n+\alpha+\beta+1)}{\alpha+\beta+2}

with a\geqq 0 . Given a convolution semigroup (\mu_{t})_{t\geq 0} on (I_{(a.\beta)}^{ *},) its corre-
sponding negative definite function \psi is of the form

\psi(n)=c+q(n)+\int_{Ix}(1-R_{n}^{(a,\beta)})d\eta

valid for all n\in Z_{+} , where c\geqq 0 and \eta is the L\’evy measure of (_{\mu t})_{t\geq 0} .
Convolution semigroups of local type on (I_{(a,\beta)}^{ *},) are characterized by
negative definite functions of the form \psi=c+q . (See [14]).

The special case (I_{(a,\beta)}^{ *},) with \alpha=\frac{d-3}{2} covers the double coset hyper-

groups SO (d)//SO(d-1) corresponding to the (spherical) Gelfand pair
(SO(d), SO(d-l)), d\geqq 3 . More generally we add to our list of examples

5. 6. 6 the compact double coset hypergroups K :=G//H arising from
symmetric Riemannia\overline{npairs(G,H)}of compact type. In this case K^{\wedge} is a
countably discrete hypergroup. Every H-biinvariant negative definite func-
t\overline{l}on on G is a negative definite function on K , but not every H-biinvariant
function on G which is negative definite on the hypergroup K , is negative
definite on G. ([7], Th\’eor\‘eme 6. 4). Since K in general is not hermitian,
the L\’evy-Khintchine formula of (2) of Section 4 only applies to convolution
semigroups with symmetric L\’evy measure. It generalizes the representation
of H-invariant negative definite functions on G corresponding to symmetric
H-invariant convolution semigroups on G. The representation given in [7]
can be applied to characterize local convolution semigroups on K .

5. 6. 7 \underline{Two}-variable Jacob_{\overline{1}} hypergroup(D^{ *},\alpha) with \alpha>0- Its dual
hypergroup can be identified with Z_{+}^{2} . In [1] it has been shown that conv0-
lution semigroups on (D^{ *},\alpha) with symmetric L\’evy measure \eta can be char-
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acterized in terms of their negative definite functions \psi given by

\psi(m, n)=c+a(m-n)^{2}+b(m+n+\frac{2mn}{\alpha+1})

\cross\int_{D^{x}}(1-\tilde{R}_{m,n}^{a}(x, y))_{\eta}(d(x, y))

for all (m, n)\in Z_{+}^{2} , where c, a, b\geqq 0 and (\tilde{R}_{m,n}^{a})_{(m,n)\in Z_{+}^{2}} denotes the sequence
of symmetrized tw0-variable Jacobi polynom\overline{l}als\tilde{R}_{m,n}^{a} defined by

\tilde{R}_{m,n}^{(a)}(x, y)
:= \tilde{R}_{m\wedge n}^{(a,|m-n|)}(2(x^{2}+y^{2})-1)j\leqq\frac{\sum_{|m-n|}}{2}(\begin{array}{l}|m-n|2j\end{array})(-1)^{j}x^{|m-n|-2j}y^{2j}

for all (m, y)\in D . It turns out that a convolution semigroup on (D_{a}^{ *},)

with corresponding negative definite function \psi(\geqq 0) is of local type iff \psi is
of the form \psi=c+q , where

q(m, n) :=a(m-n)^{2}+b(m+n+ \frac{2mn}{\alpha+1})

for all (m, n)\in Z_{+}^{2} defines a quadratic form on Z_{+}^{2} . For an interpretation of
the two summands in the representation of q see [16].

References.

[1] H. ANNABI, K. TRIMECHE: Convolution g\^en\’eralis\’ee sur le disque unit\’e. C. R. Acad.
Sc. Paris, t. 278 (2 Janvier 1974), S\’erie A, 21-24.

[2] C. BERG: On the relation between Gaussian measures and convolution semigroups of
local type. Math. Scand. 37 (1975), 183-192.

[3] C. BERG, G. FORST : Potential theory on locally compact abelian groups. Ergebnisse
der Mathematik 87, Springer-Verlag, Berlin, Heidelberg, New York 1975.

[4] W. R. BLOOM, H. HEYER Convolution semigroups and resolvent families of measures
on hypergroups. Math. Z. 188 (1985), 499-474.

[5] W. R. BLOOM, H. HEYER: Non-symmetric translation invariant Dirichlet forms on
hypergroups. Bull. Austral. Math. Soc. 36 (1987), 61-72.

[6] W. R. BLOOM, H. HEYER: Characterisation of potential kernels of transient convolution
semigroups on a commutative hypergroup. In: Probability Measures on Groups
IX, pp. Lecture Notes in Mathematics Vol., Springer 1989.

[7] J. FARAUT, K. HARZALLAH: Distances hilbertiennes invariantes sur un espace
homog\‘ene. Ann. L’Inst. Fourier (Grenoble) Vol. XXIV (1974), 171-217.

[8] U. FINCKH: BeitrSge zur Wahrscheinlichkeitstheorie auf einer Kingman-Struktur. Dis-
relation T\tilde{u}bingen (1986).

[9] G. FORST: Convolution semigroups of local type. Math. Scand. 34 (1974), 211-218.
[10] L. GALLARDO, O. GEBUHRER: Marches alSatoires et hypergroupes. Expo. Math. 5

(1987), 41-73.
[11] L. HARTMANN, R. W. HENRICHS, R. Lasser: Duals of orbit spaces in groups with rela-

tively compact inner antomorphism groups are hypergroups. Mh. Math. 88
(1979), 229-238.



Convolution semigroups of local type on a commutative hypergroup 337

[12] R. I. JEWETT: Spaces with an abstract convolution of measures. Advances in Math. 18
(1975), 1-101.

[13] J. F. C. KINGMAN: Random walks with spherical symmetry. Acta Math. 109 (1963),

11-53.
[14] R. LASSER: Convolution semigroups on hypergroups. Pacific J. Math. Vol. 127, No 2

(1987), 353-371.
[15] M. VOIT: Positive Charaktere und ihr Beitrag zur Wahrscheinlichkeitstheorie auf kom-

mutativen Hypergruppen. Dissertation M\"unchen (1987).

[16] Hm. ZEUNER: On the tw0-variable Jacobi hypergroup. Oral communication.

Universitat T\"ubingen

Mathematisches Institut


	\S 1. Introduction
	\S 2. Preparations.
	2. 1 ...
	2. 2 ...
	2. 4 ...

	\S 3. Generators.
	3. 1 ...
	3. 3 ...

	\S 4. L\'evy measures.
	4. 1 ...
	4. 4 ...

	\S 5. Locality.
	5. 3 ...

	References.

