Convolution semigroups of local type on a commutative hypergroup

H. HEYER (Received February 16, 1989)

§1. Introduction

Hypergroups are locally compact spaces with a group-like structure on which the bounded measures admit a convolution similar to that on a locally compact group. Important examples of hypergroups are double coset spaces, conjugacy spaces and duals of compact groups and also orbit spaces of certain locally compact groups. Moreover, the sets Z_+ , R_+ of nonnegative integers and reals respectively, the unit interval I and the unit disk D are also hypergroups with special operations different from the usual semigroup operations. In fact, a hypergroup K can be viewed as a probabilistic structure in the sense that to each pair x, y of points in K there exists a probability measure $\epsilon_x^* \epsilon_y$ on K with compact support such that $(x, y) \rightarrow \text{supp } (\epsilon_x^* \epsilon_y)$ is a continuous mapping from $K \times K$ into the space of compact subsets of K. The convolution * between Dirac measures extends to all bounded measures on K and transplants the algebraic-topological analysis from the spacely structured basic space K to the generalized measure algebra of K.

In this paper we continue studying convolution semigroups of measures on K in terms of their generators. Our discussion is based on previous work on the subject as f. e. the contributions [4], [5], [6] of W. R. Bloom and the author, and the article [14] of R. Lasser.

For the full axiomatic of a hypergroup we refer to the paper [12] of R. I. Jewett. It is essentially Jewett's terminology that we adopt. To review some notation will prove useful. By K we denote a commutative hypergroup with involution .⁻ and neutral element e. Occasionally we need to deal with the pointed hypergroup $K^* := K \setminus \{e\}$. For every $x \in K$ the symbol $\mathfrak{V}_x(K)$ stands for the system of open neighborhoods of x(in K). It is known that Khas a Haar measure ω_K and a Plancherel measure π on the dual space K^{\wedge} of K. For a complex-valued function f on K the function f^- is defined by $f^-(x) := f(x^-)$ for all $x \in K$. The *translate* by $x \in K$ of an admissible function f on K is given by H. Heyer

$$T^{x}f(y):=\int f(z)\boldsymbol{\varepsilon}_{x}*\boldsymbol{\varepsilon}_{y}(dz)$$

which can be written as $f_x(y)$ or f(x*y) for all $y \in K$. Given a bounded nonnegative measure μ and a function f on K we shall agree on the notation

$$\mu * f(x) := \int f_x^- d\mu = \int f(x * y^-) \mu(dy)$$

whenever $x \in K$. The symbols $\hat{\mu}$ and $\hat{\mu}$ for the Fourier transform of a bounded measure and its inverse transform of K^{\wedge} and K respectively are chosen in accordance with [12].

It is the purpose of our contribution to initiate the analysis of local convolution semigroups on a hypergroup K and the corresponding diffusion processes with K as their state space. Much of the basic theory can be developed as in the group case; the appropriate reference is the book [3] by C. Berg and G. Forst. There are, however, significant limitations of the translation procedure. Some of these points will be prepared in Section 2. In Section 3 we study the generators of convolution semigroups of measures on various function spaces and give a first characterization of locality (Theorem 3.3). A construction due to C. Berg [2] of the Lévy measure of a convolution semigroup is extended to hypergroups in Section 4. Theorem 4.1 is slightly more general than the corresponding result of R. Lasser in [14]. In Section 5 we prove a characterization of local convolution semigroups in terms of their Lévy measures and, under additional assumptions, also in terms of their Lévy-Khintchine representations (Theorem 5.3). Some applications to transient convolution semigroups follow. The paper ends with a discussion of examples, in which local convolution semigroups are exhibited.

§ 2. Preparations.

Given a locally compact space K we will write $\mathscr{C}(K)$ for the space of continuous functions on K. The inclusion $\mathscr{K}(K) \subset \mathscr{C}^0(K) \subset \mathscr{C}^b(K)$ contains the subspaces of functions in $\mathscr{C}(K)$ that are of compact support, vanish at infinity or are just bounded respectively. Analoguously there is the inclusion $\mathscr{M}^1(K) \subset \mathscr{M}^{(1)}(K) \subset \mathscr{M}^b(K)$ between the spaces of probability measures, (nonnegative) contraction measures and arbitrary bounded measures on K, respectively. $\mathscr{C}(K)$ will be furnished with the compact-open topology \mathscr{T}_{co} , $\mathscr{C}^b(K)$ with the topology induced by the uniform morm $\|\cdot\|$. In $\mathscr{M}^b(K)$ we shall consider the norm topology and also the weak topology \mathscr{T}_w according to our particular demands. In the space $\mathscr{M}_+(K)$ of all nonnegative (not necessarily bounded Radon) measures on K we are given the

322

vague topology \mathcal{T}_v .

From now on we assume that K is a commutative hypergroup. For any $p \in [1, \infty]$ the spaces $L^p(K, \omega_K)$ are defined as in the group case. There is also the space $\mathscr{C}_u(K)$ of bounded uniformly continuous functions on K. Here, a function f on K is said to be *uniformly continuous* if for given $\varepsilon > 0$ and any $x_0 \in K$ there exists a $U \in \mathfrak{V}_{x_0}(K)$ such that $||f_{x_0} - f_x|| < \varepsilon$ for all $x \in U$.

2.1 THEOREM. ([6], 2.7). $\mathscr{K}(K) \subset \mathscr{C}_{u}(K)$

Now let $(\mu_t)_{t\geq 0}$ denote a continuous convolution semigroup of measures in $\mathscr{M}^{(1)}$ where continuity is understood in the sense of \mathscr{T}_v - $\lim_{t\to 0} \mu_t = \varepsilon_e$. For any of the Banach spaces $E = \mathscr{C}^0(K)$, $\mathscr{C}_u(K)$ and $L^2(K, \omega_K) (\mu_t)_{t\geq 0}$ induces a strongly continuous contraction semigroup $(P_t)_{t\geq 0}$ of operators on E defined by

(C)
$$P_t f := \mu_t * f$$

for all $f \in E$, $t \ge 0$. Clearly, $(P_t)_{t \ge 0}$ is translation invariant in the sense that

(a)
$$P_t E \subset E$$
 and
(b) $T^x P_t = P_t T^x$

hold for all $x \in K$ $(t \ge 0)$. One easily verifies that if $(\mu_t)_{t\ge 0}$ is a convolution semigroup in $\mathscr{M}^1(K)$, then $(P_t)_{t\ge 0}$ is *Markovian* in the sense of the property

(M) sup $\{P_t f : f \in E, 0 \leq f \leq 1\} = 1$ for all $t \geq 0$.

If, moreover, $(\mu_t)_{t\geq 0}$ is symmetric and $E = L^2(K, \omega_K)$ then $(P_t)_{t\geq 0}$ is selfadjoint which means that P_t is a selfadjoint operator for every $t\geq 0$. The converse of these statements is contained in the following

2.2 THEOREM. ([10], 1.7 of Chapitre III). There is a one-to-one correspondence between continuous convolution semigroups $(\mu_t)_{t\geq 0}$ in $\mathscr{M}^{(1)}(K)$ and translation invariant, strongly continuous semigroups $(P_t)_{t\geq 0}$ of positive contraction operators on E which is given by (C). For this correspondence we have that

(i) $(\mu_t)_{t\geq 0}$ is in $\mathscr{M}^1(K)$ iff $(P_t)_{t\geq 0}$ is Markovian, and in the case of $E = L^2(K, \omega_K)$ that

(ii) $(\mu_t)_{t\geq 0}$ is symmetric iff $(P_t)_{t\geq 0}$ is selfadjoint.

2.3 REMARK. The Markovian property (M) of $(P_t)_{t\geq 0}$ on $E = L^2(K, \omega_K)$ can generally not be replaced by the property

 $(M') ||P_t|| = 1 \quad \text{for all } t \ge 0.$

In fact, if we wish to preserve the statements of the theorem with (M) being replaced by (M') we have to make the additional (Godement)

assumption that the unit character 1 of K belongs to the support of the Plancherel measure π .

Let $(\rho_{\lambda})_{\lambda>0}$ denote the resolvent family associated with $(\mu_t)_{t\geq 0}$ given by

$$\rho_{\lambda}(f):=\int_0^\infty e^{-\lambda t}\mu_t(f)\,dt$$

for all $f \in \mathscr{C}^{b}(K)$. There always exists the extended real number

$$\lim_{\lambda\to 0}\rho_{\lambda}(f)=\int_0^{\infty}\mu_t(f)\,dt$$

for all $f \in \mathscr{C}^{b}(K)$. If this limit is finite for all $f \in \mathscr{K}(K)$ then

$$\boldsymbol{\kappa}:=\mathscr{T}_{\boldsymbol{v}}-\lim_{\boldsymbol{\lambda}\to\boldsymbol{0}}\rho_{\boldsymbol{\lambda}}$$

defines the *potential kernel* κ of $(\mu_t)_{t\geq 0}$ as a measure in $\mathcal{M}_+(K)$. In this case $(\mu_t)_{t\geq 0}$ is called a *transient* convolution semigroup.

2.4 THEOREM. ([6], 5.3). A measure $\kappa \in \mathscr{M}_+(K)$ is the potential kernel of a transient convolution semigroup in $\mathscr{M}^{(1)}(K)$ iff κ admits a fundamental family $(\sigma_V)_{V \in \mathfrak{V}}$ of measures in $\mathscr{M}^{(1)}(K)$ indexed by a base \mathfrak{V} of compact open neighborhoods of e, which has the following properties valid for all $V \in \mathfrak{V}$:

(a) $\sigma_V * \varkappa \leq \varkappa, \ \sigma_V * \varkappa \neq \varkappa.$

(b)
$$\sigma_V * \kappa = \kappa$$
 on $\bigcup V$.

(c)
$$\mathcal{T}_v - \lim_{n \to \infty} \sigma_{V^*}^n \varkappa = 0.$$

§ 3. Generators.

The generator of a convolution semigroup $(\mu_t)_{t\geq 0}$ in $\mathscr{M}^{(1)}(K)$ can be introduced as the infinitesimal generator (A, D(A)) of the contraction semigroup $(P_t)_{t\geq 0}$ on E which corresponds to $(\mu_t)_{t\geq 0}$ by Theorem 2.2. More explicitly we have

$$Af: \lim_{t\to 0} \frac{1}{t}(P_t f - f)$$

for all

$$f \in D(A)$$
: { $h \in E$: $\lim_{t \to 0} \frac{1}{t} (P_t h - h)$ exists}.

Let $(R_{\lambda})_{\lambda>0}$ denote the resolvent of $(P_t)_{t\geq 0}$ which admits the representation

$$R_{\lambda}f = \rho_{\lambda}*f$$

for all $f \in E$, $\lambda > 0$. As in the case of an Abelian group K ([3], 12. 11) one

shows

- (1) $R_{\lambda}(E) \subset D(A)$ for all $\lambda > 0$.
- (2) A is *translation invariant* in the sense that
 - (a) $T^{x}D(A) \subset D(A)$ and (b) $T^{x}A = AT^{x}$

hold for all $x \in K$.

(3) For any $f \in D(A)$ and $g \in \mathscr{H}(K)$ the function $f * g \in D(A)$, and

$$A(f*g) = (Af)*g.$$

For i=0, u, 2 the pair (A_i, D_i) denotes the infinitesimal generator of the semigroup $(P_t)_{t\geq 0}$ considered as a translation invariant, strongly continuous contraction semigroup on $\mathscr{C}^0(K)$, $\mathscr{C}_u(K)$ and $L^2(K, \omega_K)$, respectively.

From now on we shall assume that the dual K^{\wedge} of K is a hypergroup (with respect to pointwise multiplication of characters). In this case $\pi = \omega_{K^{\wedge}}$.

The proofs of the following results are carried out in analogy to the group case treated in [9] or [3], § 18. One just has to apply Theorems 2.1 and 2.4.

3.1 THEOREM. $\mathscr{K}(K) \cap D_0 \cap D_2$ is a dense subspace of $\mathscr{K}(K)$, $\mathscr{C}_u(K)$ and $L^2(K, \omega_K)$.

PROOF. The measure ρ_1 is the potential kernel of the convolution semigroup $(e^{-t}\mu_i)_{t\geq 0}$ which is obviously transient. Then by Theorem 2.4 for every compact $V \in \mathfrak{B}_e(K)$ there exists a measure $\sigma_V \in \mathscr{M}^{(1)}(K)$ satisfying the inequalities

(a) $\rho_1 * \sigma_V \leq \rho_1, \ \rho_1 * \sigma_V \neq \rho_1.$

(b) $\rho_1 * \sigma_V = \rho_1$ on **(***V*.

After appropriate norming by numbers $a_V > 0$ the measures

 $\eta_V := a_V(\rho_1 - \rho_1 * \sigma_V)$

are in $\mathscr{M}^{1}(K)$ and have supp $\mu_{V} \subset V$. Now we take a function $f \in \mathscr{K}_{+}(K)$ and an $\varepsilon > 0$. We want to show that for every $U \in \mathfrak{B}_{e}(K)$ there is a function $g \in \mathscr{K}_{+}(K) \cap D_{0} \cap D_{2}$ satisfying supp $g \subset (\text{supp} f) * U$ such that

$$(*) ||f-g|| < \varepsilon$$

holds. From Theorem 2.1 we infer that for given f there exists a compact $V \in \mathfrak{B}_{e}(K)$, $V \subset U$ such that

$$\|f_{x-}-f\| < \varepsilon$$

for all $x \in V$. The function

$$g = \mu_V * f$$

= $\rho_1 * (a_V f) - \rho_1 * \sigma_V * (a_V f)$

belongs to $\mathscr{K}(K)$ and satisfies (*). Since the measure σ_V is bounded, $\sigma_{V^*}(a_V f) \in \mathscr{C}^0(K) \cap L^2(K, \omega_K)$ and hence

 $g \in \rho_1 * (\mathscr{C}^0(K) \cap L^2(K, \omega_K)) \subset D_0 \cap D_2.$

3.2 COROLLARY. Let U and V be relatively compact open subsets of K such that $\overline{U} \subset V$. There exists a function $f \in D_0 \cap D_2$ satisfying

$$\begin{cases} 0 \le f \le 1, \\ f = 1 \text{ on } U, \text{ and} \\ f = 0 \text{ on } \mathbf{G} V. \end{cases}$$

PROOF. For the given sets U and V there is a relatively compact $W \in \mathfrak{B}_{e}(K)$ such that

 $(\overline{W}*\overline{U})\cap(\overline{W}*\mathbf{G} V)=\mathbf{0}.$

But then there is a function $g \in \mathscr{H}_+(K)$ satisfying

$$\begin{cases} 0 \le g \le 1, \\ g = 1 \text{ on } W * U, \text{ and} \\ g = 0 \text{ on } W * G V. \end{cases}$$

It follows from the proof of the theorem that we can find a function $h \in \mathscr{K}_+$ $(K) \cap D_0 \cap D_2$ such that supp $h \subset W$ and $\int h d\omega_K = 1$. From (3) we infer that $f := g * h \in D_0 \cap D_2$, and by construction f has the required properties.

3.3 THEOREM. The following statements are equivalent :

(i) $\sup (A_0 f) \subset \sup f$ for all $f \in D_0$.

- (ii) $\operatorname{supp}(A_u f) \subset \operatorname{supp} f$ for all $f \in D_u$.
- (iii) supp $(A_2 f) \subset$ supp f for all $f \in D_2$.

PROOF. The implication $(ii) \Longrightarrow (i)$ is clear. Since the remaining implications $(i) \Longrightarrow (iii)$ and $(iii) \Longrightarrow (ii)$ are shown similarly, we restrict ourselves to the proof of $(i) \Longrightarrow (iii)$.

Let $f \in D_2$. In view of Theorem 3.1 it suffices to show that $\langle A_2 f, g \rangle = 0$ for all $g \in \mathscr{K}(K)$ satisfying

 $\begin{cases} g^- \in D_0 \cap D_2 & \text{and} \\ \text{supp } g \cap \text{supp } f = \emptyset. \end{cases}$

For such functions we get

$$\langle A_2 f, g \rangle = \lim_{t \to 0} \frac{1}{t} \langle \mu_t * f - f, g \rangle$$

$$= \lim_{t \to 0} \frac{1}{t} \langle f, (\mu_t * g^- - g^-)^- \rangle$$

$$= \langle f, (A_0 g^-)^- \rangle = 0,$$

the latter equality following from supp $(A_0g^-)^- \subset$ supp g which is available by hypothesis.

3.4 COROLLARY. Let A_0 satisfy (i) of the theorem. Suppose that for $f \in \mathscr{C}^b(K)$ the limit

$$g:=\mathcal{T}_{co}-\lim_{t\to 0}\frac{1}{t}(\mu_t*f-f)$$

exists ($\in \mathscr{C}(K)$). *Then* supp $g \subset$ supp f. The proof runs as in the group case.

From [4] we recall that there is a one-to-one correspondence between (continuous) convolution semigroups $(\mu_t)_{t\geq 0}$ in $\mathscr{M}^1(K)$, (strongly) negative definite functions ψ on K^{\wedge} , and resolvent families $(\rho_{\lambda})_{\lambda>0}$ in $\mathscr{M}^b_+(K)$ given by

$$\hat{\mu}_t = \exp(-t\psi)$$

on $K^{\wedge}(t \ge 0)$ and

$$\rho_{\lambda} = \int_0^\infty e^{-\lambda t} \mu_t dt$$

on $\mathscr{C}^{b}(K)$ $(\lambda > 0)$, respectively. In [5] it was shown that the domain D_2 of the generator A_2 can be described as the set

$$D_2 = \{ f \in L^2(K, \omega_K) : \hat{f} \psi \in L^2(K^{\wedge}, \omega_{K^{\wedge}}) \},$$

and that

$$(A_2 f)^{\wedge} = -\hat{f} \psi$$

whenever $f \in D_2$. We shall apply this fact in the following section.

§ 4. Lévy measures.

Let $(\mu_t)_{t\geq 0}$ be a convolution semigroup in $\mathscr{M}^{(1)}(K)$ with corresponding negative definite function ψ on K^{\wedge} . The following result is a slight extension of Proposition 3.3 of [14]. See also [2] for the group case.

4.1 THEOREM. There exists a measure $\eta \in \mathscr{M}_+(K^{\times})$ satisfying

$$\lim_{t\to 0}\frac{1}{t}\int fd\mu_t = \int fd\eta$$

for every $f \in \mathscr{C}^{b}(K)$ such that $\operatorname{supp} f \subset K^{\times}$.

PROOF. Let

 $\mathscr{G} := \{ \mu \in \mathscr{M}^1(K^{\wedge}) : \mu \text{ is symmetric and supp} \mu \text{ is compact} \}.$

Then for given $\sigma \in \mathscr{S}$ and all t > 0 we obtain

$$\left[\frac{1}{t}(1-\overset{\vee}{\sigma})\boldsymbol{\cdot}\boldsymbol{\mu}_{t}\right]^{\wedge}=\frac{1}{t}\left[1-\exp(-t\boldsymbol{\psi})\right]\boldsymbol{*}(\boldsymbol{\sigma}-\boldsymbol{\varepsilon}_{1}).$$

It can be easily shown that

$$\mathcal{T}_{co} - \lim_{t \to 0} \left[\frac{1}{t} (1 - \overset{\vee}{\sigma}) \cdot \mu_t \right]^{\wedge} = \psi * \sigma - \psi,$$

and hence $\psi * \sigma - \psi$ is a (strongly) positive definite function on K^{\wedge} in the sense of [4]. This means that there exists a measure $\eta_{\sigma} \in \mathscr{M}_{+}^{b}(K)$ satisfying

$$\hat{\eta}_{\sigma} = \psi * \sigma - \psi.$$

Applying the (continuity) Theorem 6.5 of [4] or Satz 2.1.5 of [15] we obtain

$$\mathscr{T}_{w} - \lim_{t \to 0} \frac{1}{t} (1 - \overset{\vee}{\sigma}) \cdot \mu_{t} = \eta_{\sigma}.$$

Now let $f \in \mathscr{C}^{b}(K)$ with supp $f \subset K^{\times}$. By Lemma 3.1 of [14] there exists a measure $\sigma \in \mathscr{S}$ such that $\overset{\vee}{\sigma} \leq \frac{1}{2}$ on supp f. Consequently the function f_{σ} defined by

$$f_{\sigma}(x) := \begin{cases} \frac{f(x)}{1 - \overset{\vee}{\sigma}(x)} & \text{if } x \in \text{supp } f \\ 0 & \text{if } x \in \text{supp } f \end{cases}$$

is an element of $\mathscr{C}^{b}(K)$, and we obtain

$$\lim_{t\to 0} \frac{1}{t} \int f d\mu_t = \lim_{t\to 0} \int f_{\sigma} d\left[\frac{1}{t}(1-\overset{\vee}{\sigma}) \cdot \mu_t\right]$$
$$= \int f_{\sigma} d\eta_{\sigma}.$$

In particular,

$$\mathcal{T}_v - \lim_{t \to 0} \frac{1}{t} \operatorname{Res}_{K^{\times}} \mu_t$$

exists as a measure $\eta \in \mathcal{M}_+(K^{\times})$, and

$$(1 - \overset{\vee}{\sigma}) \cdot \eta = \operatorname{Res}_{K \times} \eta_{\sigma}$$

holds for all $\sigma \in \mathscr{G}$. Finally for $f \in \mathscr{C}^{b}(K)$ with $\operatorname{supp} f \in K^{\times}$ and σ chosen as above we have

$$\lim_{t \to 0} \frac{1}{t} \int f d\mu_t = \int f_{\sigma} d\eta_{\sigma}.$$

= $\int f_{\sigma} d (\operatorname{Res}_{K^{\times}} \eta_{\sigma})$
= $\int (1 - \check{\sigma}) f_{\sigma} d\eta$
= $\eta(f).$

4.2 DEFINITION. The measure $\eta \in \mathscr{M}_+(K^{\times})$ constructed in the preceding theorem is said to be the *Lévy measure* of the convolution semigroup $(\mu_t)_{t\geq 0}$.

4.3 REMARK. The Lévy measure η of $(\mu_t)_{t\geq 0}$ is uniquely determined by the equality

$$(1 - \overset{\vee}{\sigma}) \cdot \eta = \operatorname{Res}_{K^{\times}} \eta_{\sigma}$$

valid for all $\sigma \in \mathscr{S}$ and coincides with the Lévy measure introduced in [14].

4.4 THEOREM. Let $(\mu_t)_{t\geq 0}$ be a convolution semigroup in $\mathscr{M}^{(1)}(K)$ with corresponding resolvent family $(\rho_{\lambda})_{\lambda>0}$ and negative definite function ψ . Then for any measure $\eta \in \mathscr{M}_+(K^{\times})$, in particular for the Lévy measure η of $(\mu_t)_{t\geq 0}$, the following statements are equivalent:

(i)
$$\eta = \mathcal{T}_v - \lim_{t \to 0} \frac{1}{t} \operatorname{Res}_{K^{\times}} \eta_t.$$

(ii) $\eta = \mathcal{T}_v - \lim_{\lambda \to \infty} \operatorname{Res}_{K^{\times}} \lambda^2 \rho_{\lambda}.$
(iii) η $(f) = A_0 f^-(e)$
for all $f \in \mathcal{K}(K)$ with $f^- \in D_0$, $\operatorname{supp} f \subset K^{\times}.$
(iv) η $(f) = A_u f^-(e)$
for all $f \in \mathscr{C}_u(K)$ with $f^- \in D_u$, $\operatorname{supp} f \subset K^{\times}.$
(v) η $(f^{-*}q) = \langle A_2 f, q \rangle$

for all f,
$$g \in \mathscr{K}(K)$$
, $f \in D_2$ with $\operatorname{supp}(f^* \overline{g}) \subset K^{\times}$.

PROOF. 1) The equivalences (i) \iff (iii) \iff (iv) follow from the equalities

H. Heyer

$$\eta(f) = \lim_{t \to 0} \frac{1}{t} \int f d\mu_t$$
$$= \lim_{t \to 0} \int f d \left[\frac{1}{t} (\mu_t - \varepsilon_e) \right]$$
$$= \lim_{t \to 0} \frac{1}{t} (\mu_t - \varepsilon_e) * f^-(e)$$
$$= A_i f^-(e)$$

valid for all $f \in \mathscr{C}^{b}(K)$, $f^{-} \in D_{i}$ such that supp $f \subset K^{\times}(i=0, u)$.

2) In order to see the equivalences $(i) \iff (ii) \iff (v)$ we deduce the subsequent chain of equalities valid for all $f, g \mathscr{K}(K), f \in D_2$ such that supp $(f^{-*}\bar{g}) \subset K^{\times}$ and observe that by the proof of Theorem 3.1 the set

$$\mathscr{N} := \{ f^{-*}\bar{g} : f, g \in \mathscr{K}(K), f \in D_2 \text{ supp } (f^{-*}\bar{g}) \subset K^{\times} \}$$

is total in $\mathscr{K}(K^{\times})$:

$$\eta(f^{-*}\bar{g}) = \lim_{t \to 0} \frac{1}{t} \int f^{-*}\bar{g} d\mu_t$$

$$= \lim_{t \to 0} \langle \frac{1}{t} (\mu_t * f - f), g \rangle$$

$$= \langle A_2 f, g \rangle$$

$$= -\langle \psi \hat{f}, \hat{g} \rangle$$

$$= -\lim_{\lambda \to \infty} \langle \frac{\lambda \psi}{\lambda + \psi} \hat{f}, \hat{g} \rangle$$

$$= -\lim_{\lambda \to \infty} (\lambda \langle \hat{f}, \hat{g} \rangle - \lambda^2 \langle \frac{\hat{f}}{\lambda + \psi}, \hat{g} \rangle)$$

$$= -\lim_{\lambda \to \infty} (\lambda f^{-*} \bar{g} (e) - \lambda^2 \rho_\lambda (f^{-*} \bar{g}))$$

[by Plancherel's theoren]

$$= -\lim_{\lambda\to\infty}\lambda^2\rho_\lambda(f^{-}*\bar{g}).$$

4.5 DISCUSSION. We are now going to look at convolution semigroups in $\mathcal{M}^{(1)}(K)$ whose Lévy measures η admit special properties.

(1) If $(A_i, D_i)(i=0, u, 2)$ are bounded operators, then η is <u>bounded</u> and also the negative definite function ψ corresponding to $(\mu_t)_{t\geq 0}$ is bounded. The boundedness of ψ implies that $(\mu_t)_{t\geq 0}$ is in fact a *Poisson semigroup* of the form

$$\mu_t = e^{-m} \exp(t\mu)$$

for $\mu \in \mathscr{M}^b_+(K)$, $m \ge \|\mu\|(t>0)$, and

$$\psi = m - \hat{\mu}.$$

With an extended definition of negative-definiteness (in the strict sense) a

330

proof of this result has been given recently in [15]. An immediate consequence is the fact that on discrete hypergroups K (with compact dual hypergroup K^{\wedge}) any convolution semigroup is a Poisson semigroup.

We note that the Lévy measure of a Poisson semigroup (with defining measure $\mu \in \mathscr{M}^{b}_{+}(K)$) is just $\operatorname{Res}_{K^{\times}}\mu$.

If the convolution semigroup $(\mu_t)_{t\geq 0}$ with bounded Lévy measure μ consists of measures in $\mathscr{M}^1(K)$, then $\psi(1)=0$, whence $m = \|\mu\|$.

(2) Let η be symmetric. In this case the negative definite function ψ corresponding to $(\mu_t)_{t\geq 0}$ admits a Lévy-Khintchine representation provided K satisfies Lasser's property (F). More precisely, in [14] the following structural result has been proved: There exist a number $c \geq 0$, a homomorphism $l: K^{\wedge} \rightarrow \mathbf{R}$ and a nonnegative quadratic form $q: K^{\wedge} \rightarrow \mathbf{R}$ such that for all $\chi \in K^{\wedge}$

$$\psi(\boldsymbol{\chi}) = c + il(\boldsymbol{\chi}) + q(\boldsymbol{\chi}) + \int_{K^{\star}} (1 - Re\boldsymbol{\chi}(\boldsymbol{\chi})) \boldsymbol{\mu}(d\boldsymbol{\chi}).$$

The data c, l and q are in fact uniquely determined by $(\mu_t)_{t\geq 0}$ in terms of $c = \psi(1)$, $l = \text{Im}\psi$, and

$$q(\boldsymbol{\chi}) = \lim_{n \to \infty} \left[\frac{\boldsymbol{\varepsilon}_{\boldsymbol{\chi}}^{n}(\boldsymbol{\psi})}{n^{2}} + \frac{\boldsymbol{\varepsilon}_{\boldsymbol{\chi}}^{n} \boldsymbol{\varepsilon}_{\boldsymbol{\chi}}^{n-}(\boldsymbol{\psi})}{2n} \right]$$

are valid for all $\chi \in K^{\wedge}$.

In the next section we shall discuss in more detail the case that η vanishes on K^{\wedge} .

§ 5. Locality.

As before we are given a convolution semigroup $(\mu_t)_{t\geq 0}$ in $\mathscr{M}^{(1)}(K)$ with generators (A_i, D_i) (i=, u, 2), Lévy measure η and corresponding negative definite function ψ admitting at least under the assumption (2) of Section 3, a Lévy-Khintchine representation with data (c, l, q, η) .

5.1 DEFINITION. $(\mu_t)_{t\geq 0}$ is said to be of *local type* if for all $f \in D_0$ supp $(A_0 f) \subset$ supp f.

5.2 REMARK. We know from Theorem 3.3 that in the definition of locality (A_0, D_0) can be replaced by (A_i, D_i) with i=u or 2.

5.3 THEOREM. The following statements are equivalent: (i) $(\mu_t)_{t\geq 0}$ is of local type. (ii) $\lim_{t\to 0} \frac{1}{t} \mu_t (\mathbf{G} W) = 0$ for all $W \in \mathfrak{B}_{e}(K)$.

(iii) $\eta \equiv 0.$

If, in addition, K satisfies Property (F) and η is symmetric, then we have also equivalence to

(iv) There exist a triplet (c, l, q) consisting of a number $c \ge 0$, a homomorphism $q: K^{\wedge} \rightarrow \mathbf{R}$, and a nonnegative quadratic form $q: K^{\wedge} \rightarrow \mathbf{R}$ such that

$$\psi = c + il + q.$$

The <u>proof</u> follows the lines of [3] with the necessary references to those arguments which are nonroutine for hypergroups.

1) (i) \Longrightarrow (ii). For a given $W \in \mathfrak{B}_e(K)$ we choose relatively compact $U, V \in \mathfrak{B}_e(K)$ such that $\overline{U} \subset V \subset W^-$. By Corollary 3.2 there exists a function $h_0 \in D_0$ such that

$$\begin{cases} 0 \le h_0 \le 1, \\ h_0 = 1 \text{ on } U, \text{ and} \\ h_0 = 0 \text{ on } \mathbf{G} V. \end{cases}$$

whence a function $h: = 1 - h_0$

$$\begin{cases} 0 \le h \le 1, \\ e \in \text{supp } h \text{ and} \\ 1_{\ell W} \le h^{-}. \end{cases}$$

Clearly

$$\lim_{t \to 0} \frac{1}{t} (\mu_t * 1 - 1) = \lim_{t \to 0} \frac{1}{t} (\exp(-t\psi(1)) - 1)$$
$$= -\psi(1).$$

From this we deduce that

$$\mathcal{T}_{co} - \lim_{t \to 0} \frac{1}{t} (\mu_t * (1 - h_0) - (1 - h_0)) \\= -\psi(1) - A_0 h_0.$$

and so by Corollary 3.4 that

$$\lim_{t\to 0}\frac{1}{t}(\mu_t * h(e) - h(e)) = 0.$$

The desired assertion now follows from

$$0 \leq \underbrace{\lim_{t \to 0} \frac{1}{t}}_{t \to 0} \mu_t(\mathbf{G} \ W)$$

$$\leq \overline{\lim_{t \to 0}} \frac{1}{t} \mu_t (\mathbf{G} W)$$

$$\leq \overline{\lim_{t \to 0}} \int h^- d \left(\frac{1}{t} \mu_t \right)$$

$$= \lim_{t \to 0} \frac{1}{t} (\mu_t * h(e) - h(e)) = 0$$

2) (ii) \Longrightarrow (iii). For $f \in \mathscr{K}_+(K)$ with $\operatorname{supp} f \subset K^{\times}$ we choose a $W \in \mathfrak{B}_e(K)$ such that $\operatorname{supp}(f) \cap W = \emptyset$. Then Theorem 4.1 yields

$$0 \leq \int f d\eta$$

= $\lim_{t \to 0} \int f d\left(\frac{1}{t}\mu_t\right)$
 $\leq \|f\| \lim_{t \to 0} \frac{1}{t}\mu_t (\mathbf{G} W) = 0$

which shows that $\eta = 0$.

3) (iii) \implies (i). Let $g \in D_0$. We want to show that

 $\operatorname{supp}(A_0g) \subset \operatorname{supp} g$

holds. In fact, let g=0 on a neighborhood $V \in \mathfrak{B}_e(K)$. Since $D_0 \subset D_u$, (iv) of Theorem 4.4 is applicable and thus

$$A_0g(e)=\int g^-d\eta=0.$$

Moreover, if g=0 on some $V \in \mathfrak{V}_x(K)$, then $g_x \in D_0$ and $g_x=0$ on some $V' \in \mathfrak{V}_e(K)$, and consequently

$$A_0g(x) = T^x(A_0g)(e) = A_0(T^xg)(e) = A_0(g_x)(e) = 0.$$

4) (iii) \iff (iv) is immediate from (2) of Section 4.

The following <u>applications</u> of Theorem 5.3 are proved similarly to the group case (See [3], 18.28 and 18.30). Let $(\mu_t)_{t\geq 0}$ be a transient convolution semigroup in $\mathcal{M}^{(1)}(K)$ with potential kernel $\kappa \in \mathcal{M}_+(K)$.

5.4 Let $(\sigma_v)_{v \in \mathfrak{V}}$ denote a fundamental family associated with \varkappa in the sense of Theorem 2.4. Then

$$A_0 f = \lim_{V \in \mathfrak{V}} a_V (\sigma_V - \varepsilon_e) * f$$

for all $f \in D_0$, and

$$\eta = \mathscr{T}_v - \lim_{V \in \mathfrak{V}} a_V \operatorname{Res}_{K^{\times}} \sigma_V.$$

Here the $a_V > 0$ are chosen such that $a_V(\kappa - \sigma_V * \kappa) \in \mathscr{M}^1(K)$ for $V \in \mathfrak{B}$.

5.5 $(\mu_t)_{t\geq 0}$ is of local type iff there exists a fundamental family $(\sigma_v)_{v\in\mathfrak{V}}$ associated with κ such that supp $\sigma_v \subset V$ for all $V \in \mathfrak{V}$.

5.6 EXAMPLES.

All of the hypergroups appearing in the following examples admit a hypergroup dual and satisfy property (F).

5.6.1 <u>Abelian locally compact groups</u>, in particular the Euclidean groups \mathbf{R}^d for $d \ge 1$.

Convolution semigroups of local type on the Euclidean groups are the Brownian semigroup on \mathbf{R}^d which for $d \ge 3$ is transient and admits a fundamental family associated with the Newton kernel ([3], 17.16), and the heat semigroup on \mathbf{R}^{d+1} which is transient for all $d \ge 1$. In contrast to these examples the symmetric stable semigroup of order $\alpha \in [0, 2[$ on \mathbf{R}^d is not of local type; its Lévy measure can be computed to be non-zero ([3], 18.23).

5.6.2 Orbit <u>hypergroups</u> G_B of locally compact groups $G \in [FIA]_{\overline{B}}$ and (relatively compact) subgroups B of Aut(G) such that $B \supset Int(G)$.

We note that this class of hypergroups comprises the orbit hypergroups of compact groups as well as the conjugacy hypergroups (for B = Int(G)) of locally compact groups $G \in [FC]^- \cap [SIN]$.

Orbit hypergroups have been discussed in [11]. For the conjugacy hypergroups of compact groups see [12], 8.4B.

In the special case $G := \mathbf{R}^d$ and B := SO(d) for $d \ge 1$ we have $G_B \cong G_B^{\wedge} \cong \mathbf{R}_+$. Convolution semigroups on G_B admit Lévy-Khintchine representations which in a more general framework are established in [7]. In [7] also quadratic forms are computed. Convolution semigroups of local type on G_B appear in [13].

5.6.3 <u>Bessel-Kingman hypergroups</u> $(\mathbf{R}_+, *_{\alpha})$ with defining Bessel convolution $*_{\alpha}$ where $\alpha \ge -\frac{1}{2}$, have been treated in [8]. For $\alpha := \frac{d}{2} - 1$ $(d \ge 1)$ these hypergroups reduce to those of the special case above. Convolution semigroups of local type on $(\mathbf{R}_+, *_{\alpha})$ appear already in [13].

5.6.4 Jacobi hypergroups $(\mathbf{Z}_{+}, *_{(\alpha,\beta)})$ with $\alpha \ge \beta \ge -\frac{1}{2}$. On these hypergroups whose dual hypergroups can be identified with I := [-1, 1] any convolution semigroup $(\mu_t)_{t\ge 0}$ is a Poisson semigroup whose negative definite function has the form

$$\psi = \sum_{n \ge 1} (1 - R_n^{(a,\beta)}) \eta(\{n\}),$$

where η is the Lévy measure of $(\mu_t)_{t\geq 0}$. Here $(R_n^{\alpha,\beta})_{n\geq 1}$ denotes the sequence of normed Jacobi polynomials on I which defines the convolution $*_{(\alpha,\beta)}$ in \mathbb{Z}_+ . Clearly, there is no convolution semigroup of local type on $(\mathbb{Z}_+, *_{(\alpha,\beta)})$. (See [14]).

5.6.5 <u>Dual Jacobi hypergroups</u> $(I, *_{(\alpha,\beta)})$ with $\alpha \ge \beta \ge -\frac{1}{2}$. The hypergroup duals of these hypergroups can be identified with Z_+ . Homomorphisms vanish, quadratic forms q are computed for all $n \in Z_+$ as

$$q(n) = a \frac{n(n+\alpha+\beta+1)}{\alpha+\beta+2}$$

with $a \ge 0$. Given a convolution semigroup $(\mu_t)_{t\ge 0}$ on $(I, *_{(\alpha,\beta)})$ its corresponding negative definite function ψ is of the form

$$\psi(n) = c + q(n) + \int_{I_{\star}} (1 - R_n^{(\alpha,\beta)}) d\eta$$

valid for all $n \in \mathbb{Z}_+$, where $c \ge 0$ and η is the Lévy measure of $(\mu_t)_{t\ge 0}$. Convolution semigroups of local type on $(I, *_{(\alpha,\beta)})$ are characterized by negative definite functions of the form $\psi = c + q$. (See [14]).

The special case $(I, *_{(\alpha,\beta)})$ with $\alpha = \frac{d-3}{2}$ covers the double coset hypergroups SO(d) / SO(d-1) corresponding to the (spherical) Gelfand pair $(SO(d), SO(d-1)), d \ge 3$. More generally we add to our list of examples

5.6.6 the compact <u>double coset hypergroups</u> $K := G/\!/H$ arising from symmetric Riemannian pairs (G, H) of compact type. In this case K^{\wedge} is a countably discrete hypergroup. Every *H*-biinvariant negative definite function on *G* is a negative definite function on *K*, but not every *H*-biinvariant function on *G* which is negative definite on the hypergroup *K*, is negative definite on *G*. ([7], Théorème 6.4). Since *K* in general is not hermitian, the Lévy-Khintchine formula of (2) of Section 4 only applies to convolution semigroups with symmetric Lévy measure. It generalizes the representation of *H*-invariant negative definite functions on *G* corresponding to symmetric *H*-invariant convolution semigroups on *G*. The representation given in [7] can be applied to characterize local convolution semigroups on *K*.

5.6.7 <u>Two-variable Jacobi hypergroup</u> $(D, *\alpha)$ with $\alpha > 0$. Its dual hypergroup can be identified with Z_{+}^2 . In [1] it has been shown that convolution semigroups on $(D, *\alpha)$ with symmetric Lévy measure η can be char-

H. Heyer

acterized in terms of their negative definite functions ψ given by

$$\psi(m, n) = c + a(m-n)^2 + b\left(m+n+\frac{2mn}{\alpha+1}\right)$$
$$\times \int_{D^{\star}} (1 - \tilde{R}^a_{m,n}(x, y)) \eta(d(x, y))$$

for all $(m, n) \in \mathbb{Z}_{+}^{2}$, where *c*, *a*, $b \ge 0$ and $(\tilde{R}_{m,n}^{a})_{(m,n)\in\mathbb{Z}_{+}^{2}}$ denotes the sequence of symmetrized two-variable Jacobi polynomials $\tilde{R}_{m,n}^{a}$ defined by

$$\tilde{R}_{m,n}^{(\alpha)}(x, y) := \tilde{R}_{m,n}^{(\alpha,|m-n|)}(2(x^2+y^2)-1) \sum_{j \leq \frac{|m-n|}{2}} \binom{|m-n|}{2j} (-1)^j x^{|m-n|-2j} y^{2j}$$

for all $(x, y) \in D$. It turns out that a convolution semigroup on $(D, *_{\alpha})$ with corresponding negative definite function $\psi(\geq 0)$ is of local type iff ψ is of the form $\psi = c + q$, where

$$q(m, n): = a(m-n)^2 + b\left(m+n+\frac{2mn}{\alpha+1}\right)$$

for all $(m, n) \in \mathbb{Z}_+^2$ defines a quadratic form on \mathbb{Z}_+^2 . For an interpretation of the two summands in the representation of q see [16].

References.

- H. ANNABI, K. TRIMÈCHE: Convolution généralisée sur le disque unité. C. R. Acad. Sc. Paris, t. 278 (2 janvier 1974), Série A, 21-24.
- [2] C. BERG: On the relation between Gaussian measures and convolution semigroups of local type. Math. Scand. 37 (1975), 183-192.
- [3] C. BERG, G. FORST: Potential theory on locally compact abelian groups. Ergebnisse der Mathematik 87, Springer-Verlag, Berlin, Heidelberg, New York 1975.
- [4] W. R. BLOOM, H. HEYER Convolution semigroups and resolvent families of measures on hypergroups. Math. Z. 188 (1985), 499-474.
- [5] W. R. BLOOM, H. HEYER: Non-symmetric translation invariant Dirichlet forms on hypergroups. Bull. Austral. Math. Soc. 36 (1987), 61-72.
- [6] W. R. BLOOM, H. HEYER: Characterisation of potential kernels of transient convolution semigroups on a commutative hypergroup. In: Probability Measures on Groups IX, pp. Lecture Notes in Mathematics Vol., Springer 1989.
- [7] J. FARAUT, K. HARZALLAH: Distances hilbertiennes invariantes sur un espace homogène. Ann. L'Inst. Fourier (Grenoble) Vol. XXIV (1974), 171-217.
- [8] U. FINCKH: Beiträge zur Wahrscheinlichkeitstheorie auf einer Kingman-Struktur. Dissertation Tübingen (1986).
- [9] G. FORST: Convolution semigroups of local type. Math. Scand. 34 (1974), 211-218.
- [10] L. GALLARDO, O. GEBUHRER: Marches aléatoires et hypergroupes. Expo. Math. 5 (1987), 41-73.
- [11] L. HARTMANN, R. W. HENRICHS, R. Lasser: Duals of orbit spaces in groups with relatively compact inner antomorphism groups are hypergroups. Mh. Math. 88 (1979), 229-238.

- [12] R. I. JEWETT: Spaces with an abstract convolution of measures. Advances in Math. 18 (1975), 1-101.
- [13] J. F. C. KINGMAN: Random walks with spherical symmetry. Acta Math. 109 (1963), 11-53.
- [14] R. LASSER: Convolution semigroups on hypergroups. Pacific J. Math. Vol. 127, No 2 (1987), 353-371.
- [15] M. VOIT: Positive Charaktere und ihr Beitrag zur Wahrscheinlichkeitstheorie auf kommutativen Hypergruppen. Dissertation München (1987).
- [16] Hm. ZEUNER: On the two-variable Jacobi hypergroup. Oral communication.

Universität Tübingen Mathematisches Institut