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Convolution semigroups of local type
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§1. Introduction

Hypergroups are locally compact spaces with a group-like structure on
which the bounded measures admit a convolution similar to that on a locally
compact group. Important examples of hypergroups are double coset
spaces, conjugacy spaces and duals of compact groups and also orbit spaces
of certain locally compact groups. Moreover, the sets Z:, R+ of non-
negative integers and reals respectively, the unit interval / and the unit disk
D are also hypergroups with special operations different from the usual
semigroup operations. In fact, a hypergroup K can be viewed as a
probabilistic structure in the sense that to each pair x, vy of points in K there
exists a probability measure ex*ey on K with compact support such that
(x, y)—supp (ex*ey) is a continuous mapping from K X K into the space of
compact subsets of K. The convolution * between Dirac measures extends
to all bounded measures on K and.transplants the algebraic-topological
analysis from the sparcely structured basic space K to the generalized
measure algebra of K.

In this paper we continue studying convolution semigroups of measures
on K in terms of their generators. Our discussion is based on previous work
on the subject as f. e. the contributions [4], [5], [6] of W. R. Bloom and
the author, and the article of R. Lasser.

For the full axiomatic of a hypergroup we refer to the paper of R.
I. Jewett. It is essentially Jewett's terminology that we adopt. To review
some notation will prove useful. By K we denote a commutative hypergroup
with involution .~ and neutral element e. Occasionally we need to deal with
the pointed hypergroup K*: =K\{e}. For every x&K the symbol B.(K)
stands for the system of open neighborhoods of x(in K). Itis known that K
has a Haar measure wx and a Plancherel measure z on the dual space K" of
K. For a complex-valued function f on K the function f~ is defined by
f~x): =f&x™) for all x€K. The translate by x&K of an admissible
function f on K is given by
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T (y): :ff(z)ex*ey(dz)

which can be written as fx(y) or f(x*y) for all y€K. Given a bounded
nonnegative measure x and a function f on K we shall agree on the notation

wif @ = [frdu= £ Gy Dutay

whenever x€K. The symbols z and ;- for the Fourier transform of a
bounded measure and its inverse transform of K" and K respectively are
chosen in accordance with [12].

It is the purpose of our contribution to initiate the analysis of local
convolution semigroups on a hypergroup K and the corresponding diffusion
processes with K as their state space. Much of the basic theory can be
developed as in the group case ; the appropriate reference is the book by
C. Berg and G. Forst. There are, however, significant limitations of the
translation procedure. Some of these points will be prepared in Section 2.
In Section 3 we study the generators of convolution semigroups of measures
on various function spaces and give a first characterization of locality
((Theorem 3. 3). A construction due to C. Berg of the Lévy measure of
a convolution semigroup is extended to hypergroups in Section 4.
4.1 is slightly more general than the corresponding result of R. Lasser in
[14]. In Section 5 we prove a characterization of local convolution semi-
groups in terms of their Lévy measures and, under additional assumptions,
also in terms of their Lévy-Khintchine representations (Theorem 5.3).
Some applications to transient convolution semigroups follow. The paper
ends with a discussion of examples, in which local convolution semigroups
are exhibited.

§ 2. Preparations.

Given a locally compact space K we will write ¥ (K) for the space of
continuous functions on K. The inclusion % (K)C#°(K)C#%°(K) con-
tains the subspaces of functions in ¢ (K) that are of compact support,
vanish at infinity or are just bounded respectively. Analoguously there is the
inclusion #'(K)C.#V(K)C#°(K) between the spaces of probability mea-
sures, (nonnegative) contraction measures and arbitrary bounded measures
on K, respectively. & (K) will be furnished with the compact-open topol-
ogy T, €°(K) with the topology induced by the uniform morm In
#°(K) we shall consider the norm topology and also the weak topology 7w
according to our particular demands. In the space #.(K) of all non-
negative (not necessarily bounded Radon) measures on K we are given the
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vague topology .97.

From now on we assume that K is a commutative hypergroup. For any
pE[1, ] the spaces L?(K, wk) are defined as in the group case. There is
also the space %.(K) of bounded uniformly continuous functions on K.
Here, a function f on K is said to be uniformly continuous if for given £ >o
and any %< K there exists a UERB«,(K) such that |fx,—fil|<e for all xE U.

2.1 THEOREM. ([6], 2.7). % (K)C #.(K)
Now let (u:):z0 denote a continuous convolution semigroup of measures
in .#" where continuity is understood in the sense of .7, u-ltinol u:=¢e.. For

any of the Banach spaces E=%°K), #.(K) and L*(K, wx) (ue)ezo
induces a strongly continuous contraction semigroup (P.).zo of operators on
E defined by

© Pf :=u+f
for all f€E, t=0. Clearly, (Py):¢xois translation invariant in the sense that

(a) PECE and
(b) T*P.=P.T*

hold for all x€K (#=0). One easily verifies that if (u:):z0 is a convolution
semigroup in #'(K), then (P,):z0 is Markovian in the sense of the property

(M) sup {Pf: fEE, 0f<1}=1 for all #=0.

If, moreover, (u:)¢z0 is symmetric and E=L*(K, wx) then (P.):z0 is
selfadjoint which means that 7 is a selfadjoint operator for every t=0. The
converse of these statements is contained in the following

2.2 THEOREM. ([10], 1.7 of Chapitre III). There is a one-to-one corre-
spondence between continuous convolution semigroups (ue)izo in# V(K) and
translation invariant, strongly continuous semigroups (P:):zo of positive con-
traction operators on E which is given by (C). For this correspondence we
have that

(1) (udezo is in 4 (K) iff (Poizo is Markovian,
and in the case of E=L*(K, wx) that

Cii)  Cuedezo is symmetric iff (P.):ixo is selfadjoint.

2.3 REMARK. The Markovian property (M) of (P):zo on E=L*(K, wx)
can generally not be replaced by the property

M) |P|=1 for all +=0.

In fact, if we wish to preserve the statements of the theorem with (M)
being replaced by (M’) we have to make the additional (Godement)
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assumption that the unit character 1 of K belongs to the support of the
Plancherel measure 7.

Let (p1)i>0 denote the resolvent family associated with (u¢):z0 given by

p() = [ (e
for all f€# °(K). There always exists the extended real number
lim ps ()= [ et

for all fE#°(K). If this limit is finite for all f €% (K) then

x:=9, v—lAiEIOl Pi
defines the potential kernel » of (u¢):z0 as a measure in #.(K). In this case
(ue)ezo0 is called a tramsient convolution semigroup.

2.4 THEOREM. ([6], 5.3). A measure x=.#+(K) is the potential kernel
of a tramsient convolution semigroup in #V(K) iff x admits a fundamental
family (ov)ves of measures in.#'V(K) indexed by a base B of compact open
neighborhoods of e, which has the following properties valid for all VEQB

(a) ov*x=x, ov:x+x.

(b) ov*x=xon( V.

() Jp—limo¥*x=0.

n—-00

§3. Generators.

The generator of a convolution semigroup (u:):zo in #P(K) can be
introduced as the infinitesimal generator (A, D(A)) of the contraction semi-
group (P20 on E which corresponds to (u:):=0 by [Theorem 2.2. More
explicitly we have

Af: lim~ (Pf—1f)
t-0 [
for all
FEDA): (hEE - 1;510%(1%;;—;;) exists).

Let (R i»0 denote the resolvent of (P.)¢=o which admits the representa-
tion
Rif =parf
for all fEE, 1>0. As in the case of an Abelian group K ([3],12.11) one
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shows
(1) R(E)CDCA)  for all 2>0.
(2) A is translation invariant in the sense that
(a) T*D(A)CDC(A) and
(b) T*A=AT~*
hold for all x€K.
(3) For any f€D(A) and g=% (K) the function f*g=D (A), and

A(f+g)=(Af)~g.

For =0, u, 2 the pair (A;, D;) denotes the infinitesimal generator of
the semigroup (P.):=0 considered as a translation invariant, strongly contin-
uous contraction semigroup on #°(K), %.(K) and L*(K, wx), respective-
ly.

From now on we shall assume that the dual K" of K is a hypergroup
(with respect to pointwise multiplication of characters). In this case ==
@K,

The proofs of the following results are carried out in analogy to the
group case treated in [9] or [3], §18. One just has to apply Theorems 2.1
and 2. 4.

3.1 THEOREM. % (K)NDyND» is a dense subspace of % (K), €.(K)
and L*(K, wx).

PROOF. The measure p: is the potential kernel of the convolution
semigroup (e ‘ui):z0 Which is obviously transient. Then by Theorem 2.4
for every compact VEB.(K) there exists a measure ovE.# P (K) satisfying
the inequalities

(a) p*ov=p, p*ovFpr.

(b) P1*0v = On [: V.

After appropriate norming by numbers ay>0 the measures

nv. =av(p1—p1*0'v)

are in.#'(K) and have supp uvC V. Now we take a function f€ % (K)
and an £ >0. We want to show that for every U€8B.(K) there is a function
g€ %+ (K)NDyN D, satisfying supp ¢ (suppf)*U such that

) If—gl<e

holds. From [Theorem 2. 1l we infer that for given f there exists a compact
VeB.(K), VCU such that

lfe-—fll<e
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for all x&€ V. The function

g=pv*f
=pm*(avf) ‘”p1*0'v*((lzf>

belongs to % (K) and satisfies (*). Since the measure ov is bounded, ov*
(ayf ) EZ°(K)NL*(K, wk) and hence

9€pm*(Z (KD NL*(K, wx)) CDyN Ds.

3.2 COROLLARY. Let U and V be relatively compact open subsets of K
such that UCV. There exists a function f< Dy D satisfying

0=f=1,
f=1on U and
f=0on () V.

PROOF. For the given sets U and V there is a relatively compact
W eB.(K) such that

(WxHN(W=* [ v)=g.
But then there is a function g€ %, (K) satisfying

0=g=1,
g=1on W=U, and
g=0on W= [ V.

It follows from the proof of the theorem that we can find a function h&€ % .
(K) N DyN Dy such that supp #C W and / hdwxk=1. From (3) we infer that
f:=g*h€DyN D, and by construction f has the required properties.

3.3 THEOREM. The following statements are equivalent :
(i) supp (Aof)Csuppf  for all fED.
supp (Aof)Csuppf  for all fED,.
supp (A2f)Csuppf  for all fED,.

PROOF.  The implication (ii)==(1i) is clear. Since the remaining
implications (i )==(iii) and (iii)==(ii) are shown similarly, we
restrict ourselves to the proof of (i )=—=(iii).

Let f€D,. In view of [Theorem 3.1 it suffices to show that <A4,f, g>=0
for all g€ % (K) satisfying

{g‘EDoﬂDz and
supp gMNsupp f =4.
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For such functions we get
Aof, =lim - Cuf 1,
=lim -+ f (et =g
=<f, (Aog™)~>=0,

the latter equality following from supp (Aeg~)~ Csupp ¢g which is available
by hypothesis.

3.4 COROLLARY. Let Ao satisfy (i) of the theorem. Suppose that for
fE€Z°(K) the limit
. 1
g: :fco—ltlgol—t(/u*f—f)

exists (E% (K)). Then supp gCsupp f.
The proof runs as in the group case.

From we recall that there is a one-to-one correspondence between
(continuous) convolution semigroups (u:):z0 in #'(K), (strongly) nega-
tive definite functions ¢ on K*, and resolvent families (p1)i>0 in #£2(K)
given by

fgr=exp(—ty)
on K"(¢=0) and

P =£ e usdt

on °(K) (1>0), respectively. In it was shown that the domain I» of
the generator A, can be described as the set

D={f€L*(K, wx): ApEL* (K", wx)},
and that

(A" =~Fy
whenever f€D,. We shall apply this fact in the following section.
§ 4. Lévy measures.

Let (u¢)ezo be a convolution semigroup in.#V(K) with corresponding
negative definite function ¢ on K”*. The following result is a slight exten-
sion of Proposition 3.3 of [14]. See also for the group case.
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4.1 THEOREM.  There exists a measure n< #+.(K*) satisfying

lim-1 f Fdue= f fdn

t-0 I
for every fEZ°(K) such that supp f CK*.
PROOF. Let
7 ={uEA(K") : u is symmetric and suppy is compact}.

Then for given ¢€.% and all >0 we obtain
1 v A 1

[ A=) pe]"=7[1—exp(—ty) ]+ (c—ev.

It can be easily shown that
.l v A

‘%o—ltl{rol[—t(l—cr)wt] =yY*roc—1y,
and hence y*o— ¢ is a (strongly) positive definite function on K” in the
sense of [4]. This means that there exists a measure ne€A4 3(K) satisfying

770‘ = 1/!* o— 1//

Applying the (continuity) Theorem 6.5 of or Satz 2.1.5 of we
obtain

.1 v
fw—ltlgl—t(l‘“(ﬂ ‘Mt = 7.

Now let f€#°(K) with supp fCK*. By Lemma 3.1 of there exists
a measure 0€.% such that gé% on supp f. Consequently the funtion f5
defined by

f(x)
Jo(2) :{ 1—o(x)

0 if x&supp f
is an element of #°(K), and we obtain

if xEsupp f

.1 . 1 v
1t1££1—tffdyt=1}££1 /fdd[7<1_0'>'/lt]

- ffo‘d?]o‘.

In particular,
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.1
T 1}{1(’)1 tRest,ut
exists as a measure 7€ ,(K”*), and

a- (\)/‘> i/ :ReSKxﬂd

holds for all c€.%. Finally for f€% °(K) with suppf €K™ and ¢ chosen as
above we have

.1
ltl_I:I(}_t/fdﬂt:ffdd”d'
:/fad(ReSKx776>

:f<1_g'>fddﬂ
=n(0.

4.2 DEFINITION. The measure 7€ #,(K*) constructed in the preceding
theorem is said to be the Lévy measure of the convolution semigroup (u:) ¢zo.

4.3 REMARK. The Lévy measure n of (u:)¢z0 is uniquely determined by
the equality

- (;') °n :ReSKxﬂd
valid for all ¢€.% and coincides with the Lévy measure introduced in [14].

4.4 THEOREM. Let (ut)ezo be a convolution semigroup in #V(K) with
corresponding resolvent family (pi)iso and mnegative definite function .
Then for any measure n< #.(K*), in particular for the Lévy measure n of
(ue)tzo0, the following statements ave equivalent :

(i) 77=fv—lti£101itRestm.
(i) #g= fv—lliIERestlsz.
(i) # (f)=Ao (&)
for all fex (K) with f~ €Dy, suppf CK™.
(v) 7 (fH=As (&)
for all f€ .(K) with f~€D,, suppf CK™*.

(v) g5 (Fxg)=<Asf, @
for all f g% (K), f€D; with supp(f *g) CK*.

PROOF. 1) The equivalences (i) C(iii)e=(iv) follow from the
equalities
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7=l | s
= ltig)l /fd [Lt(,ut —&e) ]
ﬂg%(,m e)*f(e)
=Af (e

valid for all f€¥ °(K), f~€D; such that supp fCK*(i=0, u).

2) In order to see the equivalences (i )e=(ii)=(v) we deduce the
subsequent chain of equalities valid for all £, g % (K), f€ D such that supp
(f7*g) CK™ and observe that by the proof of [Theorem 3. 1 the set

=g f9e«x (K), fED supp (f *g)CK*}

is total in & (K™) :

7 (F+§) :ltiggit/f-*gdw

=lim <it<yt*f —£), o>

=<Asf, @
=—{yf, &
LAY 2
lim G750 9>
T ~_ 12, J A
= 1A1_{B(/l<ﬁg> l<l+¢,g>)

=—limf"*g(e)=2’m(f7*g))
[by Plancherel’s theoren]
= —l/lig}/lzp,l(f_*é).

4.5 DISCUSSION. We are now going to look at convolution semigroups in
#V(K) whose Lévy measures 7 admit special properties.

(LD If (A, D=0, u,2) are bounded operators, then 7 is bounded
and also the negative definite function v corresponding to (u:):z0 is bounded.
The boundedness of ¥ implies that (u:):zo is in fact a Poisson semigroup of
the form

ue=e "exp(tu)
for u€#2(K), m=|u|(t>0), and
vY=m—4a.

With an extended definition of negative-definiteness (in the strict sense) a
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proof of this result has been given recently in [15]. An immediate conse-
quence is the fact that on discrete hypergroups K (with compact dual
hypergroup K") any convolution semigroup is a Poisson semigroup.

We note that the Lévy measure of a Poisson semigroup (with defining
measure uE45(K)) is just Resk~u.

If the convolution semigroup (u:):z0 with bounded Lévy measure u
consists of measures in #'(K), then ¥(1)=0, whence m =|g].

(2) Let » be symmetric. In this case the negative definite function
corresponding to (u:)¢=0 admits a Lévy-Khintchine representation provided
K satisfies Lasser’s property (F). More precisely, in the following
structural result has been proved : There exist a number ¢=0, a homomor-

phism /: K"— R and a nonnegative quadratic form ¢: K”"— R such that for
all ye K"

YO =c+ilGO+aGO+ [ (- Rex ) (d).

The data ¢, [/ and q are in fact uniquely determined by (u:):z0 in terms of
c=v¢ @), [=Imy, and

er(y) | eprer-(y)
n® + 2n ]

o) =1im|

are valid for all y€K".
In the next section we shall discuss in more detail the case that »
vanishes on K",

§5. Locality.

As before we are given a convolution semigroup (u:)¢zoin#V(K) with
generators (A; D;) (i=, u,2), Lévy measure » and corresponding negative
definite funtion ¢ admitting at least under the assumption (2) of Section 3,
a Lévy-Khintchine representation with data (¢, [, ¢, 7).

5.1 DEFINITION.  (u¢)¢=0 is said to be of local type if for all f€ Dy
supp (Aof) Csupp f.

5.2 REMARK. We know from [Theorem 3. 3 that in the definition of local-
ity (Ao, Do) can be replaced by (A, D:;) with i=u or 2.

5.3 THEOREM. The following statements are equivalent :
(i) Cuedezo s of local type.

(i) limue § W)=0
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for all WeB.(K).
(iii)  #=0.
If, in addition, K satisfies Property (F) and 7n is symmetric, then we
have also equivalence to
(iv)  There exist a triplet (c, I, @) comsisting of a number ¢=0, a
homomorphism q: K"—>R, and a nonnegative quadratic form q: KR
such that

v=c+il+gq.

The proof follows the lines of with the necessary references to those
arguments which are nonroutine for hypergroups.

D (i)==C(ii). For a given WEB.(K) we choose relatively com-
pact U, VEB.(K) such that UCVCW". By Corollary 3. 2 there exists a
function < Dy such that

[Oéhoél,

=1 on U, and
hh=0on [} V.

whence a function #: =1— Iy

0=hsl,
eEsupp 2 and
lewsh.

Clearly
lim—+ Guer 1= D =lim - Cexp(— (1))~ 1)
=—¢ Q).

From this we deduce that
Feo=limt Guer (1= o) — 1 o))
- 10 () —Aoho.
and so by [Corollary 3. 4 that

lim-L Gue k(o) —h(e)) =0.
The desired assertion now follows from

0<lim-L 4 ( W)
w0 |



Convolution semigroups of local type on a commutative hypergroup 333

§11_I:](.’)1Lt}lt<c W)
1
=i [ a(u)

=lim- (e (&) — h(e) =0,

2) (ii)==(ii). For f€ %, (K) with suppf CK* we choose a W&
B.(K) such that supp(f) N W =0. Then [Theorem 4.1 yields

ogffdﬂ

~ti [ (5 xe)

<l ltim e (6 W) =0

which shows that #=0.
3) @{ii)==(i). Let g&I». We want to show that

supp (Aog) Csupp ¢

holds. In fact, let g=0 on a neighborhood VEB.(K). Since LCD,,
of [Theorem 4. 4 is applicable and thus

Aog(e) :fg_dﬂ =0.

Moreover, if g=0 on some VEB:(K), then gxE Dy and gx=0 on some V'E
B.(K), and consequently

Aog(x) =T*(Aog) (e) =As(T*g) (e) = Ao(gx) (&) =0.

4) (iii)e=(iv) is immediate from (2) of Section 4.

The following applications of [[heorem 5. 3 are proved similarly to the
group case (See [3], 18.28 and 18.30). Let (u:):z0 be a transient convolu-
tion semigroup in.# V(K ) with potential kernel ¥ < #,(K).

5.4 Let (ov)ves denote a fundamental family associated with » in the

sense of [[heorem 2.4. Then
Aof =lim ay(ov—&e) *f
Ve

for all f€ Dy, and

7= .9»—lim ayReskxov.
Ves
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Here the av>0 are chosen such that ay(x —ov*x)EA(K) for VESQ.

5.5  (ue)ezo is of local type iff there exists a fundamental family (ov)veq
associated with x» such that supp ovC V for all VER.

5.6 EXAMPLES.
All of the hypergroups appearing in the following examples admit a
hypergroup dual and satisfy property (F).

5.6.1 Abelian locally compact groups, in particular the Euclidean groups
R¢ for d=1.

Convolution semigroups of local type on the Euclidean groups are the
Brownian semigroup on R which for 4 =3 is transient and admits a funda-
mental family associated with the Newton kernel ([3],17.16), and the heat
semigroup on R*"' which is transient for all d=1. In contrast to these
examples the symmetric stable semigroup of order a<]0, 2[on R? is not of
local type; its Lévy measure can be computed to be non-zero ([3], 18.23).

9.6.2  Orbit hypergroups Gs of locally compact groups GE[FIA]z and
(relatively compact) subgroups B of Aut(G) such that BDInt(G).

We note that this class of hypergroups comprises the orbit hypergroups
of compact groups as well as the conjugacy hypergroups (for B=Int(3)) of
locally compact groups GE[FC] N[SIN].

Orbit hypergroups have been discussed in [11]. For the conjugacy
hypergroups of compact groups see [12], 8. 4B.

In’the special case G: =R® and B : =SO(d) for d=1 we have Gz=G}
=R,. Convolution semigroups on Gz admit Lévy-Khintchine representa-
tions which in a more general framework are established in [7]. In
also quadratic forms are computed. Convolution semigroups of local type

on Gp appear in [13].
5.6.3  Bessel-Kingman hypergroups (R:, *,) with defining Bessel convolu-

tion *, where a%——%—, have been treated in [8]. For a: 2%1—1 (d=1)

these hypergroups reduce to those of the special case above. Convolution
semigroups of local type on (R:, *s) appear already in [13].

5.6.4  Jacobi hypergroups (Z, *.5) with a;ﬂg—%. On these hyper-

groups whose dual hypergroups can be identified with 7:=[—1,1] any
convolution semigroup (u:):z0 is a Poisson semigroup whose negative
definite function has the form
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=2 A=REM (),

where # is the Lévy measure of (u:):z0. Here (R%*)nz1 denotes the
sequence of normed Jacobi polynomials on / which defines the convolution
*was in Z,. Clearly, there is no convolution semigroup of local type on

(Z+, *(a,8). (See [14]).

5.6.5 Dual Jacobi hypergroups (I, *w.5) with ag,@Z—%. The hyper-

group duals of these hypergroups can be identified with Z,. Homomor-
phisms vanish, quadratic forms ¢ are-computed for all #EZ. as

nnt+a+pg+1)
a+pB+2

gn)=a

with ¢=0. Given a convolution semigroup (u:):zo on (I, *w.p) its corre-
sponding negative definite function ¥ is of the form

P =c+q(nm)+ /, (1— R dy

valid for all nEZ,, where ¢=20 and 7 is the Lévy measure of (u:):zo.
Convolution semigroups of local type on (I, *u.,s) are characterized by
negative definite functions of the form ¥=c+q. (See [14]).

The special case (I, *(a,5) With a= d2 3 covers the double coset hyper-

groups SO(d) 7/ SO(d—1) corresponding to the (spherical) Gelfand pair
(SO(d), SO(d—1)), d=3. More generally we add to our list of examples

5.6.6 the compact double coset hypergroups K : =G/ H arising from
symmetric Riemannian pairs (G, H) of compact type. In this case K" is a
countably discrete hypergroup. Every H -biinvariant negative definite func-
tion on G is a negative definite function on K, but not every H -biinvariant
function on G which is negative definite on the hypergroup K, is negative
definite on G. ([7], Théoréme 6.4). Since K in general is not hermitian,
the Lévy-Khintchine formula of (2) of Section 4 only applies to convolution
semigroups with symmetric Lévy measure. It generalizes the representation
of H-invariant negative definite functions on G corresponding to symmetric
H -invariant convolution semigroups on G. The representation given in
can be applied to characterize local convolution semigroups on K.

5.6.7 Two-variable Jacobi hypergroup (D, *a) with a>0. Its dual
hypergroup can be identified with Z%. In it has been shown that convo-
lution semigroups on (D, *a) with symmetric Lévy measure # can be char-
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acterized in terms of their negative definite functions v given by

2mn>
a+1

X [ (=R )9 (A 3))

v (m, n)=c+a(m—n)z+b<m+n+

for all (m, n)EZ%, where ¢, @, 520 and (R%,,) mmez2 denotes the sequence
of symmetrized two-variable Jacobi polynomials R%,. defined by
K)(’:,)n(x, y> . :R%A,lnm—nl)<2(x2_+_y2>__1> 2 (lm—.n!><_1>jxlm—nl—2jy2j
jsi—”‘;"' 2]
for all (x, y)ED. It turns out that a convolution semigroup on (D, *.)

with corresponding negative definite function ¢(20) is of local type iff ¥ is
of the form ¢y =c+gq, where

qg(m, n) : :a(m~n)2+b<m+n+ Zmn)

a+1

for all (m, n)EZ?% defines a quadratic form on Z2. For an interpretation of
the two summands in the representation of ¢ see [16].
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