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Introduction

There are essentially two approaches to the classical theory of integra-
tion on locally compact spaces; one is represented by Halmos [5] (see also
[3] $)$ , the other by Bourbaki [1]. One way to illuminate their mutual rela-
tionship is to employ the theorem of Riesz-Markov [3], to the effect that
every Radon measure on a compact space $X$ possesses a unique regular Borel
extension, and to imbed the space $B(X)$ of bounded Borel functions into the
bidual of $C(X)$ . While the Riesz-Markov Theorem itself is a deep, not
readily proved result, it does not immediately reveal the finer aspects of the
connections between continuous, Baire, and Borel functions or between the
corresponding types of measures.

The purpose of this treatise is to make these connections and relations as
transparent as possible. The approach is Bourbaki’s approach turned up-
side down, as it were, at least in the beginning: it is (or so the author
believes) utterly functional analytic, the key notion being that of a Riesz
space. The present first part is concerned essentially with imbedding the
Riesz spaces of bounded Baire and Borel functions into $C(X)’$ . this latter
space provided, in addition to its norm topology, with the topology $o(C$

$(X)’$ . $M(X))$ (see below) under which it is a complete Lebesgue space in
the sense of Fremlin [4]. The simultaneous discussion of all Radon, Baire,
and Borel measures on $X$ is facilitated by restriction to compact spaces $X$

and to Riesz spaces of bounded functions on $X$. Extension, where appropri-
ate, to unbounded functions and measures is usually easy. Notation and
terminology is standard or follows [6], [7].

A. The General Setting

A. 1 Notation. Let $X$ denote a compact space. By $C(X)$ , $M(X)$ ,
$\overline{C}(X)$ we will understand, respectively, the Banach space of real continu-
ous functions on $X$, its dual Banach space, and its bidual. These three
spaces are Banach lattices under their natural orderings. Moreover, on
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$\overline{C}(X)$ we will consider the topology $q-\sim=0(\overline{C}(X), M(X))$ , $i$ . $e.$ , the topol-
ogy of uniform convergence on the order intervals of $M(X)$ .

This topology has many desirable properties: It is order continuous,
that is, each order convergent filter $\mathfrak{T}$-converges (to its order limit) ( $Q^{\vee}\sim$ is a
Lebesgue topology [4] $)$ , consistent with the duality $\langle \overline{C}(X), M(X)\rangle$ , and its
bounded subsets are identical with the norm bounded subsets of $\overline{C}(X)$ .
Moreover, $\overline{C}(X)$ is Dedekind complete, $\mathfrak{T}$-complete, and contains $C(X)$

as a $c_{Y,\sim}$,-dense Riesz subspace. (The $\mathfrak{T}$-completeness follows from Grothen-
dieck’s theorem $[6, IV. 6. 2]$ in conjunction with the fact that order intervals
in $M(X)$ are weakly compact, which is easy to see independently of mea-
sure theoretic arguments $[7, II. 5. 10]$ .) $\mathfrak{T}$ is occasionally called the weak
Riesz topology of $\overline{C}(X)$ with respect to $M(X)$ .

For reasons explained in the introduction, the sets and Riesz spaces of
real functions on $X$ considered in this paper will consist of bounded functions
only. In particular, $L$ will denote the set (convex cone) of bounded, lower
semi-continuous functions $f\geqq 0$ on $X$ , and $M$ will denote the set (convex
cone) of all bounded functions $h\geqq 0$ on $X$. Generally, $R$ will denote a Riesz
space (with respect to the pointwise ordering) of bounded, real valued
functions on $X$ containing the constant-0ne function 1; $R$ is a normed Riesz
space under the supremum norm.

A. 2 The Mapping $\varphi^{*}$ . As is well known, the evaluation map
$\varphi:C(X)arrow\overline{C}(X)$ is an isometric Riesz isomorphism (for the norm topol-
ogies).

2. 1 DEFINITION. We defifine the mappings $\overline{\varphi}:Larrow\overline{C}(X)_{+}$ and $\varphi^{*}:$ $Marrow$

$\overline{C}(X)_{+}$ , respectively, as follows :
(1) $\overline{\varphi}(g)=\sup\{\varphi(f) : 0\leqq f\leqq g, f\in C(X)\}$

(2) $\varphi^{*}(h)=\inf\{\overline{\varphi}(g) : 0\leqq h\leqq g, g\in L\}$ .

Note that for each $g\in L$ (notation A. 1), $\overline{\varphi}(g)$ is the %-limit of the directed
$(\leqq)$ set $\varphi(A)$ in $\overline{C}(X)$ where $A=\{f\in C(X) : 0\leqq f\leqq g\}$ ; similarly for
$\varphi^{*}(h)$ .

2. 2 PROPOSITION. The mapping $\overline{\varphi}$ is positive homogeneous and additive
on $L$ ; moreover, it preserves fifinite suprema and infifima.

PROOF. Clearly, $\overline{\varphi}$ is positive homogeneous. To see that $\overline{\varphi}$ is additive,
let $g_{1}$ , $g_{2}\in L$ and let $a$, $b$, $c$ be arbitrary continuous functions $\geqq 0$ satisfying
$a\leqq g_{1}$ , $b\leqq g_{2}$ , $c\leqq g_{1}+g_{2}$ . If $a\uparrow g_{1}$ , $b\uparrow g_{2}$ pointwise on $X$ and if $c$ is fixed,
then $(a+b)\wedge c\uparrow c$ : hence, by Dini’s theorem, the latter convergence is
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uniform. It follows that $\varphi(c)\leqq\sup\varphi(a+b)=\sup\varphi(a)+\sup\varphi(b)=\overline{\varphi}(g_{1})+$

$\overline{\varphi}(g_{2})$ ; hence, we obtain
$\overline{\varphi}(g_{1}+g_{2})\leqq\overline{\varphi}(g_{1})+\overline{\varphi}(g_{2})$ .

On the other hand, since $\varphi(a)+\varphi(b)\leqq\overline{\varphi}(g_{1}+g_{2})$ for all $a\leqq g_{1}$ , $b\leqq g_{2}$ , it
follows that $\overline{\varphi}(g_{1})+\overline{\varphi}(g_{2})\leqq\overline{\varphi}(g_{1}+g_{2})$ .

We now show that $\overline{\varphi}(g_{1}\vee g_{2})=\overline{\varphi}(g_{1})\vee\overline{\varphi}(g_{2})$ . Since $\overline{\varphi}$ is obviously
isotone, we at once obtain $\overline{\varphi}(g_{1})\vee\overline{\varphi}(g_{2})\leqq\overline{\varphi}(g_{1}\vee g_{2})$ . Now let $a\leqq g_{1}$ ,
$b\leqq g_{2}$ , $c\leqq g_{1}\vee g_{2}$ be in $C(X)^{+}$ Then for fixed $c$ we have, as before,
$(a\vee b)\wedge c\uparrow c$ uniformly on $X$ whence $\overline{\varphi}(g_{1})\vee\overline{\varphi}(g_{2})\geqq\varphi(c)$ : this implies
$\overline{\varphi}(g_{1})\vee\overline{\varphi}(g_{2})\geqq\overline{\varphi}(g_{1}\vee g_{2})$ . Because $\overline{\varphi}(g_{1})\vee\overline{\varphi}(g_{2})\leqq\overline{\varphi}(g_{1}\vee g_{2})$ trivially, it fol-
lows that $\overline{\varphi}$ preserves finite suprema. We omit the similar proof that $\overline{\varphi}$

preserves finite infima as well.

2. 3 PROPOSITION. The linear hull $R=L-L$ of $L$ is a Riesz space: the
linear extension $\tilde{\varphi}$ of $\overline{\varphi}$ to $R$ is a Riesz isomorphism and an isometry (for the
norm topologies on $R$ and $\overline{C}(X)$ , respectively).

PROOF. First, because of the identity $|f-g|=f\vee g-f\wedge g$ and because
$L$ is a sublattice of $R^{X}$ . it follows that $R$ is a Riesz space. Second, by the
properties of $\overline{\varphi}$ established in 2. 2, the definition $\tilde{\varphi}(f-g)$ $:=\overline{\varphi}(f)-\overline{\varphi}(g)$

yields a linear map. Now the above identity and the lattice preserving
properties of $\overline{\varphi}$ imply that

$\tilde{\varphi}(\psi-g|)=\overline{\varphi}(f\vee g)-\overline{\varphi}(f\wedge g)=\overline{\varphi}(f)\vee\overline{\varphi}(g)-\overline{\varphi}(f)\wedge\overline{\varphi}(g)$

$=|\overline{\varphi}(f)-\overline{\varphi}(g)|=|\tilde{\varphi}(f-g)|$ ,

so $\tilde{\varphi}$ is a Riesz homomorphism. Thus to see that $\tilde{\varphi}$ is injective, it suffices to
show that $0\leqq g\leqq f$, $g$, $f\in L$, and $\tilde{\varphi}(f-g)=0$ force $f=g$ . If not, there exists
$t_{0}\in X$ such that $g(t_{0})<f(t_{0})$ , while $\overline{\varphi}(f)=\overline{\varphi}(g)$ . Considering the evalua-
tion functional $\delta_{0}\in M(X)$ , defined by $\delta_{0}(f)=f(t_{0})$ for $f\in C(X)$ , we
observe that $\delta_{0}$ has a unique $\mathfrak{T}$-continuous extension to $\overline{C}(X)$ (A. 1). Since
$\overline{\varphi}(f)=\lim_{A}\varphi(a)$ and $\overline{\varphi}(g)=\lim_{B}\varphi(b)$ for $\mathfrak{T}$ , where $A=\{0\leqq a\leqq f, a\in C(X)\}$

and $B=\{0\leqq b\leqq g, b\in C(X)\}$ , it follows that $\lim_{A}a(t_{0})=\lim_{B}b(t_{0})$ , contrary
to our assumption.

It remains to show that $\tilde{\varphi}$ is an isometry for the norm topologies. If we
denote by 1 the constant-0ne function on $X$ and by $e$ the unit of $\overline{C}(X)$ , we
have $\varphi(1)=e$ . Now let $0\leqq h\in R$ . If $0\leqq h\leqq\lambda 1$ then $0\leqq\tilde{\varphi}(h)\leqq\lambda e$ , because $\tilde{\varphi}$

is positive; thus $||h||\leqq\lambda$ implies $||\tilde{\varphi}(h)||\leqq\lambda$ . This means that $||\tilde{\varphi}(h)||\leqq||h||$ .
Conversely, if $0\leqq\tilde{\varphi}(h)\leqq\lambda e$ , then $\tilde{\varphi}(h\wedge\lambda 1)=\tilde{\varphi}(h)\wedge\lambda e=\tilde{\varphi}(h),\tilde{\varphi}$ being a
Riesz homomorphism. But $\tilde{\varphi}$ is $\dot{1}njective$ so $h\wedge\lambda 1=h$ whence $0\leqq h\leqq\lambda 1$ :
thus $||h||\leqq||\tilde{\varphi}(h)||$ . Since the norms on $R$ and $\overline{C}(X)$ are lattice norms, it
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follows that $\tilde{\varphi}$ is an isometry.
We now turn to the mapping $\varphi^{*}$ (Def. 2. 1) which extends $\varphi$ to all

bounded real functions $h\geqq 0$ on $X$. It turns out that $\varphi^{*}$ is a convex map $M$

$arrow\overline{C}(X)$ which preserves finite suprema.

2. 4 THEOREM. Let $h$, $k\in M$ and let $0\leqq\alpha$, $\beta\in R$. Then $\varphi^{*}(\alpha h)=\alpha\varphi^{*}(h)$ ,
$\varphi^{*}(\alpha h+\beta k)\leqq\alpha\varphi^{*}(h)+\beta\varphi^{*}(k)$ , and $\varphi^{*}(h\vee k)=\varphi^{*}(h)\vee\varphi^{*}(k)$ . Moreover,
if $(f_{n})$ is an increasing, uniformly bounded sequence in $M$ and if
$\lim_{n}f_{n}(t)=:f(t)$ for all $t\in X$, then $\varphi^{*}(f)=\lim_{n}\varphi^{*}(f_{n})$ in ( $C-(X)$ , q-\sim ).
Finally, if $\varphi^{*}(h)=0$ then $h=0$ .

PROOF. We recall Def. 2. 1. It is clear that $\varphi^{*}(\alpha h)=\alpha\varphi^{*}(h)$ for all
$h\in M$ and $\alpha\geqq 0$ . Further, if $f$, $g\in L$ satisfy $f\geqq h$, $g\geqq k$ then $f+g\in L$ and
$f+g\geqq h+k$ . Hence $\overline{\varphi}(f)+\overline{\varphi}(g)=\overline{\varphi}(f+g)\geqq\varphi^{*}(h+k)$ : since this holds for
all pairs $f,$ $g\in L$ satisfying $f\geqq h$, $g\geqq k$, we obtain $\varphi^{*}(h)+\varphi^{*}(k)\geqq\varphi^{*}(h+k)$ .

We now show that for all $h$, $k\in M$, we have $\varphi^{*}(h\vee k)=\varphi^{*}(h)\vee\varphi^{*}(k)$ .
Clearly, $\varphi^{*}(h)\vee\varphi^{*}(k)\leqq\varphi^{*}(h\vee k)$ , since $\varphi^{*}$ is isotone. On the other
hand, if $f$, $g$ are arbitrary functions in $L$ satisfying $f\geqq h$, $g\geqq k$ then
$f\vee g\geqq h\vee k$ and, by 2. 2, $\overline{\varphi}\sigma\vee g$) $=\overline{\varphi}(f)\vee\overline{\varphi}(g)\geqq\varphi^{*}(h\vee k)$ . Thus we obtain
$\varphi^{*}(h)\vee\varphi^{*}(k)\geqq\varphi^{*}(h\vee k)$ by continuity of the lattice operations in
$(\overline{C}(X), \mathfrak{T})$ .

The next assertion is easily obtained from [1, Chap. $IV$ . \S 1, Thm. 3]
but we include its proof for completeness. Suppose then that $\varphi_{n}$) is an
increasing uniformly bounded sequence in $M$ with pointwise limit $f$. Let $U$

denote any closed, convex, circled, solid $c_{\zeta,\sim}$,-neighborhood of 0 in $\overline{C}(X)$ . By
Def. 2. 1, for each $n\in N$ there exists $g_{n}\in L$, $g_{n}\geqq f_{n}$, such that $\overline{\varphi}(g_{n})\in$

$\varphi^{*}(f_{n})+2^{-(n+1)}U$. Then if $\overline{g}_{n}$ $:= \sup\{g_{\nu} : 1\leqq\nu\leqq n\}$ , $(\overline{g}_{n})$ is an increasing
sequence with pointwise limit $g\in L$ . Since $\overline{\varphi}(g_{n})=\sup\{\overline{\varphi}(g_{\nu}):1\leqq\nu\leqq n\}$ by
2. 2, from a standard formula $([7], II. 1. 4(6))$ we obtain

$0 \leqq\overline{\varphi}(\overline{g}_{n})-\varphi^{*}(f_{n})\leqq\sum_{\nu=1}^{n}[\overline{\varphi}(g_{\nu})-\varphi^{*}(f_{\nu})]\in\frac{1}{2}U$.

Through an application of Dini’s theorem, from Def. 2. 1 it follows
that $\overline{\varphi}(g)=\sup_{n}\overline{\varphi}(g_{n})=\mathfrak{T}-\lim_{n}\overline{\varphi}(\overline{g}_{n})$ ; thus there exists $n_{0}\in N$ such that
$\overline{\varphi}(g)\in\overline{\varphi}(\overline{g}_{n})+\frac{1}{2}U$ for all $n\geqq n_{0}$ . This implies

$0\leqq\overline{\varphi}(g)-\varphi^{*}(f_{m})\in U$ $(m\geqq n_{0})$

and hence $\overline{\varphi}(g)-\varphi^{*}\sigma)\in U$ , since $U$ is solid and $\overline{\varphi}(g)\geqq\varphi^{*}(f)\geqq\varphi^{*}(f_{m})$ .
But since $U$ is closed, we also have $0 \leqq\overline{\varphi}(g)-\sup_{n}\varphi^{*}\varphi_{n})\in U$ and this shows
that $\varphi^{*}(f)=\sup_{n}\varphi^{*}(f_{n})$ .
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Finally, if $\varphi^{*}(h)=0$ , by 2. 1 (2) we have $\lim_{B}\overline{\varphi}(g)=0$ for the directed
$(\geqq)$ set $B=\{g\in L:g\geqq h\}$ . Denoting by $\delta_{t}(t\in X)$ the $\mathfrak{T}$-continuous exten-
sion of the evaluation functional $farrow f(t)\sigma\in c(X))$ , we obtain $\langle\overline{\varphi}(g)$ ,
$\delta_{t}\rangle=g(t)$ for each $g\in L$ (Def. 2. 1). Thus $\lim_{B}g(t)=0$ for each $t\in X$

which shows that $h=0$ .

2. 5 REMARK. In general, it is not true that $\varphi^{*}(h\wedge k)=\varphi^{*}(k)\wedge\varphi^{*}(k)$

for arbitrary functions $h$, $k\in M$ ; but it is easy to see that the latter equality
holds whenever $\varphi^{*}(h+k)=\varphi^{*}(h)+\varphi^{*}(k)$ . Thus if $R$ is a Riesz space of
bounded real functions on $X$ such that $\varphi^{*}$ is additive on $R_{+}$ then $\varphi^{*}$ defines,
by linear extension, a Riesz homomorphism of $R$ into $\overline{C}(X)$ . It will be the
purpose of the following section to study this phenomenon.

A. 3 An Extension Theorem. The space $R$ of Prop. 2. 3 and $C(X)$

itself furnish instances of Riesz subspaces of $R^{X}$ on which the map $\varphi^{*}$ . by
linear extension, defines a Riesz isomorphism (even an isometry) into
$\overline{C}(X)$ . (Note that on the positive cone of $R$ as well as on $C(X)_{+}$ , $\varphi^{*}$ is
additive; for $R$ , this is shown in B. 2. 1 below.) It will be shown that such a
space $R$ , if it contains 1, can be imbedded in a (generally) larger space $R^{*}$

of the same type.

3. 1 DEFINITION. Let $R$ be a Riesz space, containing 1, of bounded
real functions on X. We defifine $\overline{R}_{+}$ to be the set of all bounded functions $f\geqq$

$0$ on $X$ which are pointwise limits of an increasing sequence in $R_{+}$ . Further,
we defifine $P^{*}$ to be the set of all functions $f\geqq 0$ on $X$ which are pointwise
limits of a decreasing sequence in $\overline{R}_{+}$ .

3. 2 Note. It is obvious that the sets $\overline{R}_{+}$ and $P^{*}$ are convex cones in
$R^{X}$ which are stable under the formation of finite suprema and infima. Thus
the sets $R’=\overline{R}_{+}-\overline{R}_{+}$ and $R^{*}=P^{*}-P^{*}$ are Riesz subspaces of $R^{X}$ ; however,
the positive cones of $R’$ and of $R^{*}$ are, in general, strictly larger than $\overline{R}_{+}$ and
$P^{*}$ , respectively.

3. 3 LEMMA. Suppose $R$ to be as in 3. 1, and suppose $\varphi^{*}to$ be additive
on $R_{+}$ . Let $(f_{n})$ be an increasing sequence in $R_{+}$ with $f= \sup,f_{n}\in\overline{R}_{+}$ ,

and let $(g_{n})$ be a decreasing sequence in $\overline{R}_{+}$ with $g= \inf_{n}h_{n}\in P^{*}$ . Then
$\varphi^{*}(f)=\sup_{n}\varphi^{*}(f_{n})$ and $\varphi^{*}(h)=\inf_{n}\varphi^{*}(g_{n})$ in $\overline{C}(X)$ . In particular, $\varphi^{*}$ is
additive on $P^{*}$ .

PROOF. The validity of the relation $\varphi^{*}(f)=\sup_{n}\varphi^{*}(f_{n})(=\lim_{n}\varphi^{*}(f_{n})$

for $\mathfrak{T}$) is clear from 2. 4. This implies, in particular, the additivity of $\varphi^{*}$ on
$\overline{R}_{+}$ . To show that $\varphi^{*}(g)=\inf_{n}\varphi^{*}(g_{n})$ we can suppose that $0\leqq g_{n}\leqq 1$ for all
$n$ , since $\varphi^{*}$ is positive homogeneous. We have, for each fixed $n$,
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(1) $\varphi^{*}(1)=\varphi^{*}(g_{n})+\varphi^{*}(1-g_{n})$ .

In fact, let $(h_{k})$ be an increasing sequence in $R_{+}$ such that $g_{n}= \sup_{k}h_{k}$ .
By hypothesis, $\varphi^{*}(1)=\varphi^{*}(h_{k})+\varphi^{*}(1-h_{k})$ . For $karrow\infty$ , the first member

$\mathfrak{T}$-converges to $\varphi^{*}(g_{n})$ by 2. 4, whence $\varphi^{*}(1)=\varphi^{*}(g_{n})+\inf_{k}\varphi^{*}(1-h_{k})$ . By
subadditivity of $\varphi^{*}$ , $\varphi^{*}(1)\leqq\varphi^{*}(g_{n})+\varphi^{*}(1-g_{n})$ . Thus

$\inf_{k}\varphi^{*}(1-h_{k})\leqq\varphi^{*}(1-g_{n})$ .

But here equality must hold, since $1-h_{k}\geqq 1-g_{n}$ for all $k$ , and since $\varphi^{*}$ is
isotone. This proves (1).

Now we apply the same argument to (1) for $narrow\infty$ . This time $\varphi^{*}(1-$

$g)= \sup_{n}\varphi^{*}(1-g_{n})$ by 2. 4, and using the subadditivity of $\varphi^{*}again$ we obtain
$\inf_{n}\varphi^{*}(g_{n})\leqq\varphi^{*}(g)$ . $S_{\dot{1}}nceg_{n}\geqq g$ for all $n$ , equality must hold.

It is now immediately clear that $\varphi^{*}is$ additive on $\overline{R}_{+}$ and hence on $P^{*}$ .

3. 4 PROPOSITION. Let $R$ be a Riesz space, containing 1, of bounded
real functions on X. If $\varphi^{*}$ is additive on $R_{+}$ , then $\varphi^{*}$ is additive on $R_{+}^{*}$

(where $R^{*}$ is the Riesz subspace $P^{*}-P^{*}$ of $R^{X}$, $Def$ $3$ . 1).

PROOF. We shall prove first that $\varphi^{*}$ is additive on the positive cone of
the Riesz space $R’=\overline{R}_{+}-\overline{R}_{+}$ (cf. Note 3. 2). Since every $h\in R_{+}’$ is of the
form $h=f-g$ where $f$, $g\in\overline{R}_{+}$ and $g\leqq f$ , it suffices (as a simple calculation
shows) to show that $\varphi^{*}\sigma-g$) $=\varphi^{*}(f)-\varphi^{*}(g)$ , since $\varphi^{*}$ is additive on $\overline{R}_{+}$ by
3. 3. Thus let $f$, $g\in\overline{R}_{+}$ and $g\leqq f$ ; there exist sequences $f_{n}\uparrow f$, $g_{n}\uparrow g$

pointwise where $f_{n}$, $g_{n}\in R_{+}$ . By considering the sequences $f_{\acute{n}}=f_{n}\vee g_{n}$ , $g_{\acute{n}}=$

$f_{n}\wedge g_{n}$ if necessary, we can suppose that $g_{n}\leqq f_{n}$ for all $n$ . Now $\varphi^{*}(f_{n}-g_{n})=$

$\varphi^{*}(f_{n})-\varphi^{*}(g_{n})$ by hypothesis; Thm. 2. 4 implies that $\varphi^{*}\sigma-g_{n}$) $=\varphi^{*}(f)-$

$\varphi^{*}(g_{n})$ for all $n$ . Now $(f-g_{n})$ is a decreasing sequence in $\overline{R}_{+}$ , so by 3. 3
we have $\varphi^{*}(f-g)=\lim_{n}\varphi^{*}(f-g_{n})$ : $\varphi^{*}(g)=\lim_{n}\varphi^{*}(g_{n})$ by 2. 4. This
proves that $\varphi^{*}(f-g)=\varphi^{*}(f)-\varphi^{*}(g)$ .

Second, we have to prove the same relation for $f$, $g\in P^{*}$ and $g\leqq f$.
Again there exist sequences $(f_{n})$ , $(g_{n})$ in $\overline{R}_{+}$ such that $f_{n}\downarrow f$, $g_{n}\downarrow g$ and $g_{n}\leqq$

$f_{n}$ for all $n$ . Thus by the first part of the proof, $\varphi^{*}(f_{m}-g_{n})=\varphi^{*}\varphi_{m})-\varphi^{*}(g_{n})$

whenever $m\leqq n$ . By 2. 4 and 3. 3, this leads to $\varphi^{*}\varphi_{m}$ ) $=\varphi^{*}(f_{m}-g)+\varphi^{*}(g)$ .
Now $\lim_{m}\varphi^{*}(f_{m})=\varphi^{*}(f)$ by 3. 3, and so we have

$\varphi^{*}(f)=\lim_{m}\varphi^{*}(f_{m}-g)+\varphi^{*}(g)$ .

But again, $\varphi^{*}\sigma$ ) $\leqq\varphi^{*}(f-g)+\varphi^{*}(g)$ since $\varphi^{*}$ is subadditive, which
implies $\lim_{m}\varphi^{*}(f_{m}-g)=\varphi^{*}(f-g)$ because $\varphi^{*}$ is isotone. Thus, finally,
$\varphi^{*}\sigma-g)=\varphi^{*}\sigma)-\varphi^{*}(g)$ .
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3. 5 THEOREM. Let $R$ be a Riesz space, containing 1, of bounded real
functions on $X$ such that the map $\varphi^{*}$ is additive on $R_{+}$ . Then $\varphi^{*}$ is additive
on the positive functions of the Riesz space $R^{*}=P^{*}-P^{*}$ $(Def 3. 1)$ and, by
linear extension, defifines an isometric Riesz isomorphism $\tilde{\varphi}:R^{*}arrow\overline{C}(X)$ .
Moreover, for every monotone sequence $(f_{n})$ in $R^{*}$ with pointwise limit
$f\in R^{*}$ . one has $\overline{\varphi}(f)=\lim_{n}\tilde{\varphi}(f_{n})$ in $( \overline{C}(X), \mathfrak{T})$ .

PROOF. Since $\varphi^{*}is$ additive on $R_{+}^{*}$ by 3. 4, its linear extension $\tilde{\varphi}$ is well
defined by $\tilde{\varphi}(f-g)$ $:=\varphi^{*}(f)-\varphi^{*}(g)(f, g\in R_{+}^{*})$ . Moreover, by 2. 4 we have
$\varphi^{*}(f\vee g)=\varphi^{*}(f)\vee\varphi^{*}(g)$ and hence, $\tilde{\varphi}$ is a Riesz homomorphism. To show
that $\tilde{\varphi}$ is injective it suffiffiffices, therefore, to see that $\varphi^{*}(f)=0\sigma\in R_{+}^{*})$

implies $f=0$ : this is the last assertion of 2. 4. The proof that $\tilde{\varphi}$ is an
isometry (for the $\sup$-norm on $R^{*}$ and the standard norm on $\overline{C}(X)=C(X)’$

respectively) is exactly the same as in 2. 3. Finally, for increasing
sequences the final assertion follows from 2. 4. For decreasing sequences
$(g_{n})$ (where, without restriction of generality, we can assume that
$0\leqq g_{n}\leqq 1)$ , Thm. 2. 4 applies to the sequence $(1-g_{n})$ ; but $\varphi^{*}(1-g_{n})=$

$\varphi^{*}(1)-\varphi^{*}(g_{n})$ by additivity of $\varphi^{*}$ .

3. 6 Note. It should be observed that the point functionals $\delta_{t}$ (or
rather, their $q\sim^{-cont\dot{1}nuous}$

. extensions to $\overline{C}(X))$ separate the range space
$\tilde{\varphi}(R^{*})$ .

B. Baire and Borel Functions

B. 1 Baire Classes. Let $\omega_{1}$ denote the smallest uncountable ordinal.
The Baire classes $\tilde{B}_{a}(\alpha<\omega_{1})$ are traditionally defined as follows: Let $\overline{B}_{0}$

$:=$

$C(X)$ and, for each ordinal $\beta<\omega_{1}$ , let $\tilde{B}_{\beta}$ denote the set of all functions
$f\in R^{X}$ which are pointwise $1\dot{1}mits$ of uniformly bounded sequences in $\bigcup_{a<\beta}\tilde{B}_{a}$ .
$\tilde{B}(X)$

$:= \bigcup_{a<\omega_{1}}\tilde{B}_{a}$ , which is obviously a Riesz subspace of $R^{X}$ . is then called

the space of bounded Baire functions on $X$ .

1. 1 Note. The boundedness condition is not essential for the previous
construction; if the Baire class $C_{a}(\alpha<\omega_{1})$ is defined by $C_{0}=C(X)$ and $C_{\beta}$

the set of all pointwise limits of sequences in $\bigcup_{a<\beta}C_{a}$ , then $f\in C_{a}$ iff $|f|\wedge n1$

$\in\overline{B}_{a}$ for each $n\in N$. However, for our purposes it will be essential to
restrict attention to bounded functions.

1. 2 PROPOSITION. Each $\overline{B}_{a}(\alpha<\omega_{1})$ is a Banach lattice under the $\sup-$

norm

PROOF. It is clear from the definition that each $\overline{B}_{a}$ is a Riesz subspace
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of $R^{X}$ . containing 1 and consisting of bounded functions only. To show that
$\overline{B}_{a}(1\leqq\alpha<\omega_{1})$ is closed under uniform convergence, it suffices to prove that

$f\in\overline{B}_{a}$ whenever $f= \sum_{n=1}^{\infty}g_{n}$ , where $g_{n}\in\tilde{B}_{a}$ for all $n$ and where $||g_{n}||<2^{-(n+1)}$ .
By hypothesis, for each $n$ there exists a sequence $(f_{nk})_{k\in N}$ such that $f_{nk} \in\bigcup_{\beta<a}$

$\overline{B}_{\beta}$ and $\lim_{k}f_{nk}(t)=\sum_{\nu=1}^{n}g_{\nu}(t)$ , all $t\in X$. Clearly, we can assume that
$||f_{\nu,k}-f_{\nu-1,k}||\leqq||g_{\nu}||(\nu\geqq 2)$ . Now let $\epsilon>0$ be given, $t\in X$ fixed. There

exists $n_{0}$ such that $|f(t)- \sum_{\nu=1}^{n}g_{\nu}(t)|\leqq\epsilon$ for $n\geqq n_{0}$ . For each $n$ , there exists
$k_{n}\geqq n$ such that for $k\geqq k_{n}$ ,

$|f_{r_{hk}}(t)- \sum_{\nu=1}^{n}g_{\nu}(t)|\leqq\epsilon$

Finally, for all $k\geqq k_{n}$ we have $||f_{kk}-f_{nk}||<2^{-n}$ . It follows that
$|f_{kk}(t)-f(t)|<2\epsilon+2^{-n}$ , whence the sequence $(f_{kk})$ converges pointwise to $f$.

We now show that the mapping $\varphi^{*}$ (Def. A. 2. 1) is additive on $\tilde{B}(X)_{+}:$

for the proof, we recall the definition of the Riesz space $R^{*}$ (Def. A. 3. 1 and
Note A. 3. 2).

1. 3 THEOREM. The mapping $\varphi^{*}$ is additive on $\tilde{B}(X)_{+}$ and, by linear
extension, defifines an isometric Riesz isomorphism of the Banach lattice $\tilde{B}(X)$

onto a Dedekind $\sigma$-complete Riesz subspace of $\overline{C}(X)$ which transforms bound-
ed, pointwise convergent sequences into $\mathfrak{T}$ -convergenl sequences.

PROOF. Clearly, $\tilde{B}(X)$ is complete under the $\sup$-norm. To see that
$\varphi^{*}$ is additive on $\overline{B}_{+}$ , we let $R_{0}:=C(X)$ and define the transfinite sequence
$R_{a}$ of Riesz subspaces of $R^{X}$ by $R_{a}$

$:=( \bigcup_{\beta<a}R_{\beta})^{*}$ (Note A. 3. 2) for every

ordinal $\alpha$ , $1\leqq\alpha<\omega_{1}$ .

It is easily verified from the definitions of $\tilde{B}_{a}$ and of $R^{*}$ that $\tilde{B}_{a}\subset R_{a}$ for
each ordinal $\alpha<\omega_{1}$ . On the other hand, $R_{a}\subset\overline{B}_{a+1}$ for each limit ordinal $\alpha<$

$\omega_{1}$ . Thus we have $\tilde{B}(X)=\bigcup_{a<\omega_{1}}\overline{B}_{a}=\bigcup_{a<\omega_{1}}R_{a}$ . It now follows from Thm. A.

3. 5 by transfinite induction that $\varphi^{*}$ is additive on $\tilde{B}(X)_{+}$ and that the linear
extension $\tilde{\varphi}$ of $\varphi^{*}$ maps bounded, pointwise convergent sequences onto
$\mathfrak{T}$-convergent sequences in $\overline{C}(X)$ . In fact, if $(f_{n})$ is bounded and $f_{n}arrow f$

pointwise on $X$ then $(f_{n})$ order converges in $\tilde{B}(X)$ ; thus $(\tilde{\varphi}(f_{n}))$ order
converges and hence $\mathfrak{T}$ converges in $\overline{C}(X)$ . In particular, $\tilde{\varphi}(\tilde{B}(X))$ is
Dedekind $\sigma$-complete $hs$ a Riesz subspace of $\overline{C}(X)$ . Of course, we also
have $\tilde{B}(X)=\tilde{B}(X)^{*}$ (Note A. 3. 2.).
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1. 4 COROLLARY. Under the linear extension of $\varphi^{*},\overline{B}(X)$ can be
identifified with a Banach sublattice of $\overline{C}(X)$ . Under this identifification, we
obtain $\langle f, \delta_{t}\rangle=f(t)(f\in\tilde{B}(X), t\in X)$ where $\delta_{t}$ denotes the $\mathfrak{T}$ -continuous
extension of $farrow f(t)\sigma\in C(X))$ .

PROOF. The first assertion is immediate from 1. 3. Now since
$R_{0}=C(X)$ , the second assertion holds for all $f\in R_{1}$ , in view of A. 3. 5. The
rest follows by transfinite induction over all ordinals $\alpha<\omega_{1}$ .

1. 5 REMARK. An alternative to using transfinite induction for establi-
shing the properties of $\overline{B}(X)$ is given by an application of Zorn’s Lemma.
In fact, consider the class $\mathscr{B}$ of all Riesz spaces of bounded functions on $X$

that contain $C(X)$ as a Riesz subspace and on whose positive cone $\varphi^{*}$ is
additive. Then $\mathscr{B}$ is inductively ordered under inclusion ( $R\subset S$ meaning
that $R$ is a Riesz subspace of $S$). Thus $\mathscr{B}$ contains a maximal element $\hat{R},\cdot$

from Thm. A. 3. 5 it follows that $\hat{R}=\hat{R}^{*}$ . Clearly $\tilde{B}(X)\subset\hat{R}$ and $\hat{R}$ enjoys
the same properties as those stated for $\tilde{B}(X)$ in 1. 3, 1. 4 above. It is likely
but not obvious that necessarily $\hat{R}=B(X)$ (Def. 2. 4 below).

B. 2 Borel Classes. Borel functions on a topological space are usually
defined through measurability properties (see [3], [5] and B. 3 below) but
we prefer a definition (Def. 2. 4) that closely parallels the definition of Baire
functions given in the previous section B. 1.

We recall that $L$ denotes the set (convex cone) of all bounded, lower
semi-continuous $functions\geqq 0$ on $X$ (A. 1). It was shown in A. 2. 3 that $R=$

$L-L$ is a Riesz subspace of $R^{X}$ and that by linear extension, the map $\overline{\varphi}$ (Def.

A. 2. 1) defines an isometric Riesz isomorphism $Rarrow\overline{C}(X)$ . We supplement
this by the following lemma.

2. 1 LEMMA. The mapping $\varphi^{*}$ is additive on $R_{+}=\{f\in R:f\geqq 0\}$ .

PROOF. Since $\varphi^{*}\sigma$) $=\overline{\varphi}\sigma$ ) for all $f\in L$ and since $\overline{\varphi}$ is additive on
$L$ by A. 2. 2, it suffices to show that $\varphi^{*}(g_{1}-g_{2})=\varphi^{*}(g_{1})-\varphi^{*}(g_{2})$ whenever
$g_{1}$ , $g_{2}\in L$ and $g_{2}\leqq g_{1}$ . If $h:=g_{1}-g_{2}$ then $h= \inf_{B}(g_{1}-f)$ where $B:=$

($f\in C(X)$ : $0\leqq f\leqq g_{2}$}. Now $g_{1}-f\in L$ for each $f\in B$ , and $\varphi^{*}(g_{1}-f)=$

$\overline{\varphi}(g_{1}-f)=\overline{\varphi}(g_{1})-\overline{\varphi}\sigma)$ ; thus by Def. A. 2. 1 inf $B$
$\varphi^{*}(g_{1}-f)=\overline{\varphi}(g_{1})-$

$\sup_{B}\overline{\varphi}(f)=\overline{\varphi}(g_{1})-\overline{\varphi}(g_{2})=\varphi^{*}(g_{1})-\varphi^{*}(g_{2})$ .

By definition of $\varphi^{*}$ . $\varphi^{*}(h)\leqq\inf_{B}\varphi^{*}(g_{1}-f)=\varphi^{*}(g_{1})-\varphi^{*}(g_{2})$ . But $g_{1}=$

$g_{2}+h$ implies $\varphi^{*}(g_{1})\leqq\varphi^{*}(g_{2})+\varphi^{*}(h)$ by subadditivity of $\varphi^{*}$ A. 2. 4, hence
$\varphi^{*}(h)\geqq\varphi^{*}(g_{1})-\varphi^{*}(g_{2})$ . It follows that $\varphi^{*}(g_{1}-g_{2})=\varphi^{*}(g_{1})-\varphi^{*}(g_{2})$ .

2. 2 PROPOSITION. Let $L_{0}$ denote the convex conical hull of the set of
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characteristic functions { $\chi_{G}$ : $G$ open in $X$ }. Then $R_{0}$ $:=L_{0}-L_{0}$ is a Riesz
subspace of $R^{X}$ . identical to the linear span of $\{\chi_{A} : A\in \mathfrak{A}\}$ where $\mathfrak{A}$ denotes
the fifield of subsets of $X$ generated by all open sets.

PROOF. It is tedious but not difficult to see that $\mathfrak{A}$ is the set of all finite

unions $A= \bigcup_{i=1}^{n}A_{i}$ (for some $n\in N$ dependent on $A$ ) where $A_{i}=F_{i}\cap G_{i}$ for

suitable closed subsets $F_{i}$ and open subsets $G_{i}(i=1, \ldots,n)$ of $X$. If $n=2$

then $\chi_{A}=\chi_{A_{1}}\vee\chi_{Az}$ and $\chi_{A_{1}}+\chi_{A_{2}}=\chi_{A}+\chi_{B}$ where $B=A_{1}\cap A_{2}=F\cap G$ for suitable
closed $F$ and open $G$. But $\chi_{A_{i}}=\chi_{G_{i}}-\chi_{G_{i}}\bigcap_{F_{i}}(F_{i}’=X\backslash F_{i}, i=1,2)$ and it fol-
lows that $\chi_{A}=\Sigma\chi_{G_{i}}+\chi_{G}-(\Sigma\chi_{c_{i}nF_{\acute{i}}}+\chi_{G\cap F’})$ ; for $n>2$ we obtain a similar
representation of $\chi_{A}$ by induction on the number of summands. It is now
clear that the Riesz space of $\mathfrak{A}$-simple functions equals $L_{0}-L_{0}$ .

2. 3 PROPOSITION. Let $B_{0}$ denote the uniform closure of the Riesz
subspace $L_{0}-L_{0}$ of $R^{X}$ (Prop. 2. 2). Then $B_{0}$ is a Banach lattice which
contains $C(X)$ and on whose positive cone the map $\varphi^{*}$ is additive.

PROOF. It is easy to see that each $f\in C(X)$ can be approximated,
uniformly on $X$ , by $\mathfrak{A}$-simple functions; hence $B_{0}$ is a Banach lattice (sup-
norm) containing $C(X)$ . Since $\varphi^{*}$ is additive on the positive cone of $R=$

$L-L$ (Prop. 2. 1), it is clearly additive on $(L_{0}-L_{0})_{+}$ . By A. 3. 5, $\varphi^{*}$ is
additive on the positive cone of $R^{*}:$ $=(L_{0}-L_{0})^{*}$ . But clearly, $B_{0}$ is a Riesz
subspace of $R^{*}$ . and hence the proposition is proved.

If we want to construct the space of bounded Borel functions on $X$ in a
manner analogous to the construction of $\overline{B}(X)$ (Section B. 1), the Banach
lattice $B_{0}$ is a good candidate to start with (see 2. 8 below). Again, we
denote by $\omega_{1}$ the smallest uncountable ordinal.

2. 4 DEFINITION. Let $\alpha$ denote an ordinal, $1\leqq\alpha<\omega_{1}$ . Denoting by
$B_{0}(X)$ the Banach lattice $B_{0}$ defifined above (Prop. 2. 3) we defifine, by
transfifinite induction, $B_{a}(X)$ to be the set of all functions $f\in R^{X}$ that are
pointwise limits of uniformly bounded sequences in $\bigcup_{\beta<a}B_{\beta}(X)$ . $B_{a}(X)$ will

be called the Borel class (over $X$ ) of order $\alpha$, and $B(X):= \bigcup_{a<\omega_{1}}B_{a}(X)$ the

space of bounded Borel functions on $X$.

2. 5 PROPOSITION. Each $B_{a}(X)(\alpha<\omega_{1})$ , as well as $B(X)$ , is $a$

Banach lattice (under the sup-norm).

PROOF. It is at once clear from Def. 2. 4 that each $B_{a}(X)$ , as well as
$B(X)$ , is a Riesz subspace of $R^{X}$ , containing 1. The fact that each $B_{a}(X)$

is norm complete follows verbatim as in the proof of 1. 2 above; for $B(X)$
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it is nearly trivial that it is closed (in $R^{X}$ ) under the topology of uniform
convergence on $X$.

We now obtain the exact analogue of Thm. 1. 3 for the Banach lattice
$B(X)$ of all bounded Borel functions on $X$.

2. 6 THEOREM. The mapping $\varphi^{*}$ is additive on $B(X)_{+}$ and, by linear
extension, defifines an isometric Riesz isomorphism of $B(X)$ onto a Dedekind
$\sigma$-complete Riesz subspace of $\overline{C}(X)$ which transforms bounded, pointwise
convergent sequences into $c_{\zeta,\sim}$,-convergent sequences.

Proof. The proof exactly parallels the proof of Thm. 1. 3, except that
we have to construct the transfinite sequence $(R_{a})_{a<\omega_{1}}$ of Riesz spaces $R_{a}$ not
starting with $C(X)$ but with $B_{0}(X)$ (Prop. 2. 3). Recalling Def. A. 3. 1 and
Note A. 3. 2, we let $R_{0}:=B_{0}(X)$ and, for each ordinal $\alpha$ , $1\leqq\alpha<\omega_{1}$ , define
$R_{a}$ to be $( \bigcup_{\beta<a}R_{\beta})^{*}r$ It then follows, again by transfinite induction, that
$B_{a}(X)\subset R_{a}$ for each $\alpha<\omega_{1}$ . Thm. A. 3. 5 implies that $\varphi^{*}$ is additive on
$B(X)_{+}$ , and the remaining steps are identical to those in the proof of Thm.
1. 3.

2. 7 COROLLARY. Under the linear extension of $\varphi_{\mathcal{F}}^{*}B(X)$ can be
identifified with a Banach sublattice of $\overline{C}(X)$ . Under this identifification, we
obtain $\langle f, \delta_{t}\rangle=f(t)(f\in B(X), t\in X)$ where $\delta_{t}$ denotes the $\mathfrak{T}$ -continuous
extension of $farrow f(t)(f\in C(X))$ , and $B(X)$ is sequentially $\mathfrak{T}$ -complete.

2. 8 REMARKS. We would have obtained the same Riesz space $B(X)$ if
in Def. 2. 4, we had replaced $B_{0}$ by its dense Riesz subspace $L_{0}-L_{0}$ (Prop. 2.
2). Starting the definition by transfinite induction with $B_{0}$ rather than $L_{0}-$

$L_{0}$ , however, seems to be more satisfactory not so much because $B_{0}$ is norm
complete but because it contains $C(X)$ .

The essential difference in the transfinite build-up of $\overline{B}(X)$ (Baire

functions) and $B(X)$ (Borel functions) lies exactly in the fact that in
general, there exist open sets $G\subset X$ whose characteristic function $Xc$ is not
the (pointwise) upper envelope of a countable family of continuous func-
tions (see 3. 2 below). Indeed, if each $\mathcal{X}c$ is (for example, if $X$ is metriza-
ble) then $\tilde{B}(X)=B(X)$ . This observation is of some importance for char-
acterizing the regularity of finitely additive Borel measures (see Section $C$

below).

Furthermore, $\dot{1}t$ should be pointed out that in general, the Baire classes
$\tilde{B}_{a}(X)$ (respectively, the Borel classes $B_{a}(X)$ ) are not necessarily pair-
wise distinct. A simple example is furnished by a compact space $X$ which is
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countable with a finite number of non-isolated points. Finally, Remark 1. 5
above applies equally in the present situation, with an obvious minor
modification.

B. 3 Baire and Borel Sets. Let $Y$ be a set. There is a close relation-
ship between rings and fields of subsets of $Y$ and Riesz subspaces of $R^{Y}$

which is, however, rarely mentioned in standard measure theoretic texts
(see, for example, [1] Chap. $II$). Thus if $R$ is a Riesz subspace of $R^{Y}$ , then
the family $\mathfrak{A}\subset 2^{Y}$ of all $A\subset Y$ for which $\chi_{A}\in R$ , is a ring; if, in addition,
$1\in R$ then $\mathfrak{A}$ is a field (algebra).
Conversely, if $\mathfrak{A}$ is a field then the linear span of $\{\chi_{A} : A\in \mathfrak{A}\}$ is a Riesz
subspace $R$ of $R^{Y}$ ; we obviously have $R=R_{+}-R_{+}$ where $R_{+}$ is the convex
conical hull of $\{\chi_{A} : A\in \mathfrak{A}\}$ . However, often a Riesz space $R$ is given as $R=$

$P-P$ , where $P$ is a convex subcone of $R_{+}$ which is stable under either finite
suprema or finite infima (taken in $R^{Y}$); compare A. 2.3, A. 3. 2, A. 3. 5, B. 2.
2.

For later reference, let us agree on this definition. As always, $X$

denotes a compact space.

3. 1 DEFINITION. A subset $A\subset X$ is called a Baire (BoreV) set if for
some ordinal $\alpha<\omega_{1}$ , $\chi_{A}\in\tilde{B}_{a}(X)$ (respectively, $\chi_{A}\in B_{a}(X)$ ). The smallest
ordinal with this property is called the Baire (Borel) order of $A$ .

Since the Riesz spaces $\overline{B}(X)$ and $B(X)$ of bounded Baire (respective-
ly, Borel) functions are Dedekind $\sigma$-complete, by B. 1. 3 and B. 2. 6, it is
clear that the fields $\tilde{\mathfrak{B}}$ and $\mathfrak{B}$ of all Baire (respectively, Borel) sets are
$\sigma$-fields. From the constructions of $\tilde{B}(X)$ and $B(X)$ it is also clear that $\overline{\mathfrak{B}}$

and $\mathfrak{B}$ are the $\sigma$-fields generated by all open $F_{\sigma}$-sets (all open sets), respec-
tively; this is their customary definition.

3. 2 PROPOSITION. The fifields $\tilde{\mathfrak{B}}$ and $\mathfrak{B}$ of all Baire (respectively,
Borel) subsets of $X$ are $\sigma- fifields$ satisfying $\tilde{\mathfrak{B}}\subset \mathfrak{B}$ : for $\tilde{\mathfrak{B}}=\mathfrak{B}$ , it is necessary
and sufficient that each open subset of $X$ be the union of countably many
compact subsets.

PROOF. The first assertion is clear from the preceding. Second, if
$G\subset X$ is open and $f$ is a Baire function such that $S:=\{t:|f(t)|>0\}\subset G$ , then
by transfinite induction on the Baire class of $f$ it follows that $S \subset\bigcup_{1}^{\infty}F_{n}$ for

some sequence $(F_{n})$ of compact subsets of $G$. Hence $\chi_{G}$ is Baire iff $G$ is an
$F_{\sigma}$-set. (Cf. [5], p. 221 Thm. D.)
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In particular, $\tilde{\mathfrak{B}}=\mathfrak{B}$ iff every Borel set of order zero is a Baire set of
order not larger than one, or equivalently, iff $B_{0}(X)\subset\tilde{B}_{1}(X)$ .
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