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Note on separable extensions of noncommutative rings
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Introduction.

This paper is a continuation of the author’s previous paper [3]. Let A
be a ring and B a subring of A such that A=B\oplus M as B-B-module, and
assume that A is a separable extension of B. In [3] the author considered
two cases of separable extensions of this type, that is, the case where M^{2}\subset

B and the case where M^{2}\subset M , and investigated the former case mainly. In
this paper we will treat the latter case, and will show that, in the case where
A=B\oplus M such that M in an ideal of A and left B-faithful, A is a separable
extension of B, if and only if M is generated by a central idempotent f of A
and a separable extension of Bf (Theorem 1). In the process of the proof of
this theorem we will consider the case where A=R\oplus S with S a ring and R
a subring of S , and the multiplication is defined by (r, x)(s, y)=(rs, xs+ry
+xy) for any x , y\in S and r , s\in R . And we will show the equivalence of
the following three conditions:

(a) A is a separable extension of R
(b) A is a separable extension of R\oplus R

(c) S is a separable extension of R (Theorem 2).

1. Throughout this paper every ring will have the identity, and all
subrings of a ring will contain the identity of the ring. As for the definition
and the fundamental properties of the separable extension of a noncom-
mutative ring, see [2]. The author requires the readers to have already
known them. In particular, we will use freely Propositions 2.4 and 2.5 [2].

Moreover we require the following fact: If A_{i} is a separable extension of B_{i}

for r=1,2, then A=A_{1}\oplus A_{2} is a separable extension of B=B_{1}\oplus B_{2} . This
is obvious by A\otimes_{B}A=A_{1}\otimes_{B_{1}}A_{1}\oplus A_{2}\otimes_{B_{2}}A_{2} .

The following lemma has been shown in [3] and [4].

LEMMA 1. Let A be a ring and B a subring of A such that A=B\oplus M

as B-B-module with M^{2}\subset M. If A is a separable extension of B, then M is
generated by a central idempotent of A. Consequently, M is a ring with the
identity.
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PROOF. By the assumption M is an ideal of A, and there exists a ring
homomorphism \psi of A to B such that \psi(b)=b for each b\in B . Then by
Proposition 1 [3] there exists a central idempotent e of A such that \psi(e)=1

and xe=\psi(x)e for each x\in A . And we have M=Ker\psi=A(1-e) .
Let A, B, M, \psi and e be as in Lemma 1, and put f=1-e . Then the

map \rho of B to M defined by \rho(b)=bf for each b\in B is a ring homomor-
phism which gives M the same B-B-module structure as the one given
originally. Let \mathfrak{a}=Ker\rho . Then Q is an ideal of A, and A/0=B/IJ\oplus M with
M^{2}\subset M . Then B/(l is regarded as a subring of M. Later we will see that
M is a separable extension of B/Q. More generally we will have.

THEOREM 1. Let A be a ring and B a subring of A such that A=
B\oplus M as B-B-module. Assume furthermore that M is an ideal of A and left
{or right) B-faithful. Then A is a separable extension of B, if and only if M
is generated by a central idempotent f of A, i. e. , M=Af, and is a separable
extension of Bf.

The proof of the above theorem will be given later. The above observa-
tion naturally leads us to consider the case where R is a subring of a ring S,
and A=R\oplus S as R-R-module whose multiplication is defined by (r, x)(s, y)
=(rs, xs+ry+xy) for any r , s\in R and x, y\in S . It is easily seen that A is
an associative ring whose identity is (1, 0) . We will denote this ring by
R\# S . Still more denote (0, x) by \overline{x} and (r, 0) by r for each x\in S and r\in
R, respectively, and put R=\{(r, O)|r\in R\} and \overline{S}=\{(0, x)|x\in S\} . Then R
is a subring of A, and \overline{S} is an ideal of A. Let e=(1, -1) and f=(0,1) .
Then we have e^{2}=e , f^{2}=f , ef=0, and for any r\in R and x\in S ,

(r, x)e=e(r, x)=(r, - r)=re
(r, x)f=f(r, x)=(0, r+x)=(0, r+x)f

Thus we have Ae=Re and Af=\overline{S}f=\overline{S}, and see that e and f are orth-
ogonal central idempotents of A with e+f=1 . Note that f is the identity of

\overline{S} . Now let \psi be the map of R to Re defined by \psi(r)=(r, - r)=re for
each r\in R . Since e is a central idempotent of A, \psi is a ring isomorphism,
i . e. , R\cong Re=Ae . Let furthermore B=R\# R . Of course B is a subring of
A containing e and f. Hence we have Ae=Be=Re and Bf=Rf=\overline{R} .

Now we will get our main theorem, by which Theorem 1 can be obtained
immediately.

THEOREM 2. Let R, S, A and B be as above. Then the following three
conditions are equivalent :

(a) A is a separable extension of R
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(b) A is a separable extension of B
(c) S is a separable extension of R

PROOF Suppose A is separable over B. Since A=Ae\oplus Af and B=
Be\oplus Bf with Ae=Be(=Re) , Af(=A/Re) is a separable extension of
Bf(=B/Re) . But Af=\overline{S}\cong S and Bf=\overline{R}\cong R . Hence S is a separable

extension of R . Conversely suppose that S is a separable extension of R .

Then Af is a separable extension of Bf, since Af=\overline{S} and Bf=\overline{R} . But we
have Ae=Be . Then A=Ae\oplus Af is a separable extension of B=Be\oplus Bf .

Thus ( b) and ( c) are equivalent. ( a)\mapsto(b) is due to Proposition
2.5 [2], while ( b)\mapsto(a) is an immediate consequence of Proposition 2. 5
[2] \cdot and the next proposition

PROPOSITION 1. R\# R is a separable extension of R

PROOF. Put B=R\# R . We will find an element \Sigma\alpha_{i}\otimes\beta_{i} of B\otimes_{R}B

such that \Sigma\alpha_{i}\beta_{i}=(1,0) and \Sigma\alpha\alpha_{i}\otimes\beta_{i}=\Sigma\alpha_{i}\otimes\beta_{i}\alpha for all \alpha\in B . Put \Sigma\alpha_{i}\otimes\beta_{i}

=1\otimes 1-1\otimes f-f\otimes 1+2f\otimes f , where 1=(1,0) and f=(0,1) . It is obvious
that \Sigma\alpha_{i}\beta_{i}=1 . Moreover for each r , y\in R , we have

\Sigma(r, y)\alpha_{i}\otimes\beta_{i}=(r, y)\otimes(1,0)-(r, y)\otimes(0,1)-(0, r+y)\otimes(1,0)

+2(0, r+y)\otimes(0,1)

=(r, - r)\otimes(1, O)+(-r, 2r+y)\otimes(0,1) , and
\Sigma\alpha_{i}\otimes\beta_{i}(r, y)=(1,0)\otimes(r, y)-(1,0)\otimes(0, r+y)

-(0,1)\otimes(r, y)+(0,2)\otimes(0, r+y)

=(1, -1)\otimes(r, y)-(1, -2)\otimes(0, r+y)

=(1, -1)\otimes(r, 0)(1,0)+(1, -1)\otimes(y, 0)(0,1)

-(1, -2)\otimes(r+y, 0)(0,1)

=(1, -1)(r, 0)\otimes(1,0)+(1, -1)(y, 0)\otimes(0,1)

-(1, -2)(r+y, 0)\otimes(0,1)
=(r, -r)\otimes(1,0)+(-r, 2r+y)\otimes(0,1)=(r, y)\Sigma\alpha_{i}\otimes\beta_{i}

Thus B is a separable extension of R.

2. Now let A be a ring and B a subring of A. Throughout this section
assume that there exist a ring homomorphism \psi of A to B and a central
idempotent e of A such that \psi(e)=1 , \psi(b)=b and \psi(x)e=xe hold for any
b\in B and x\in A , respectively. Such \psi and e exist, if A and B satisfy the
condition of Lemma 1, but Theorem 2 shows that there exist such \psi and e

even if A is not a separable extension of B . Denote M=Ker\psi . Then M=
A(1-e)=\{x-\psi(x)|x\in A\} , A=B\oplus M as JS-B-module, and B\cong Be=Ae ,

where the former isomorphism is given by b–be, for each b\in B . Note
over the converse of the above statements are true, that is, the following
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conditions are equivalent
(a) There exist \psi and e which satisfy the above conditions
(b) There exists a central idempotent e such that Ae=Be and B\cong

Be, via barrow be , for each b\in B

(c) A=B\oplus M , where M is an ideal of A generated by a central
idempotent of A.

The proof of the above equivalence is very easy, so we will omit it.
LEMMA 2. Let A, B, \psi, e and M be as above. Assume furthermore

that there exist another ring homomorphism \phi of A to B and a central
idempotent f of A which satisfy the same conditions as \psi and e. Denote N
=Ker\phi . Then we have

(1) \psi(f)=\phi(e)

(2) If \psi(f)=1 (or \phi(e)=1 ), then we have \psi=\phi and e=f
PROOF. (1). Since \psi(f)e=fe and \psi(e)=\phi(f)=1 , we have \psi(f)=

\psi(e)\psi(f)=\psi(ef)=\psi(\phi(e)f)=\phi(e)\psi(f)=\phi(e\psi(f))=\phi(ef)=\phi(e)\phi(f)=\phi(e) .
(2). If \psi(f)=1 , we have also \phi(e)=1 by (1), and f=\phi(e)f=ef=e\psi(f)
=e. Then for each x\in A , we have (\psi(x)-\phi(x))e=\psi(x)e-\phi(x)f=ex-xf
=0. This implies that \psi(x)=\phi(x) , since B\cong Be .

PROPOSITION 2. With the same notation as Lemma 2, the following
conditions are equivalent :

(a) e\in N (or equivalently, f\in M)
(b) ef=0
(c) A=M+N
(d) For any non zero central idempotent c of B, there exists an x\in A

such that \psi(x)c\neq\phi(x)c, that is, \psi and \phi are strongly distinct in the sense of[1]. (See Lemma 1. 2 [1])

PROOF. By (1) Lemma 2, we have e\in N if and only if f\in M . Sup-
pose e\in N . Then ef=\phi(e)f=0 . Conversely if ef=0, then 0=\psi(ef)=
\psi(e\psi(f))=\psi(e)\psi(f)=\psi(f) , and we have f\in M . Thus (a) and (b) are
equivalent. Suppose (a) and (b) are satisfied. Then M=A(1-e)=
Af\oplus A(1-e-f) and N=Ae\oplus A(1-e-f) . Hence we have M+N=
Ae\oplus Af\oplus A(1-e-f)=A . Next suppose that A=M+N. Then we have
1=m+n with m\in M and n\in N, and e=em+en. But Me=A(1-e)e=0.
Hence we have e=en\in N . Finally we will prove the equivalence of (a)
and (d). Assume (a), and let c be any non zero central idempotent of B.
Then we have \psi(ce)c=\psi(c)\psi(e)c=c^{2}=c and \phi(ce)c=\phi(c)\phi(e)c=0 .
Thus \psi(ce)c\neq\phi(ce)c , and we have (d). Assume (d), and suppose \phi(e)\neq 0 .



Note on separable extensions of noncommutative rings 215

Since \phi(e) is a central idempotent of B, there exists an x\in A such that
\phi(x)\phi(e)=\psi(x)\phi(e) . But \phi(x)\phi(e)=\phi(xe)=\phi(\psi(x)e)=\psi(x)\phi(e) , which is
a contradiction. Hence we have \phi(e)=0 , which means (a).

EXAMPLE. Let A=R\#(R\# S) and e=(1, (-1,0)) , f=(0, (1, -1)) .
Then we have e^{2}=e , f^{2}=f and ef=0. Moreover, we see that

(r, (s, x))e=e(r, (s, x))=(r, (-r, 0))=re
(r, (s, x))f=f(r, (s, x))=(0, (r+s, - r-s))=(r+s)f

hold for each r , s\in R and x\in S . Thus e and f are central idempotents of A
such that Ae=Re and Af=Rf. It is obvious that R is isomorphic to both
Re and Rf, via rarrow re and rarrow rf , respectively, for each r\in R . Therefore,
we have two decompositions A=R\oplus M=R\oplus N with M=A(1-e) and N
=A(1-f) , which satisfy the conditions of Proposition 2.
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