Note on separable extensions of noncommutative rings

Kozo SUGANO (Received March 29, 1988)

Introduction.

This paper is a continuation of the author's previous paper [3]. Let A be a ring and B a subring of A such that $A=B\oplus M$ as B-B-module, and assume that A is a separable extension of B. In [3] the author considered two cases of separable extensions of this type, that is, the case where $M^2 \subset B$ and the case where $M^2 \subset M$, and investigated the former case mainly. In this paper we will treat the latter case, and will show that, in the case where $A=B\oplus M$ such that M in an ideal of A and left B-faithful, A is a separable extension of B, if and only if M is generated by a central idempotent f of A and a separable extension of Bf (Theorem 1). In the process of the proof of this theorem we will consider the case where $A=R\oplus S$ with S a ring and R a subring of S, and the multiplication is defined by (r, x)(s, y)=(rs, xs+ry+xy) for any $x, y \in S$ and $r, s \in R$. And we will show the equivalence of the following three conditions:

- (a) A is a separable extension of R
- (b) A is a separable extension of $R \oplus R$
- (c) S is a separable extension of R (Theorem 2).

1. Throughout this paper every ring will have the identity, and all subrings of a ring will contain the identity of the ring. As for the definition and the fundamental properties of the separable extension of a noncommutative ring, see [2]. The author requires the readers to have already known them. In particular, we will use freely Propositions 2.4 and 2.5 [2]. Moreover we require the following fact : If A_i is a separable extension of B_i for r=1, 2, then $A=A_1\oplus A_2$ is a separable extension of $B=B_1\oplus B_2$. This is obvious by $A\otimes_B A=A_1\otimes_{B_1}A_1\oplus A_2\otimes_{B_2}A_2$.

The following lemma has been shown in [3] and [4].

LEMMA 1. Let A be a ring and B a subring of A such that $A=B\oplus M$ as B-B-module with $M^2 \subset M$. If A is a separable extension of B, then M is generated by a central idempotent of A. Consequently, M is a ring with the identity. PROOF. By the assumption M is an ideal of A, and there exists a ring homomorphism ψ of A to B such that $\psi(b)=b$ for each $b\in B$. Then by Proposition 1 [3] there exists a central idempotent e of A such that $\psi(e)=1$ and $xe=\psi(x)e$ for each $x\in A$. And we have $M=\operatorname{Ker}\psi=A(1-e)$.

Let A, B, M, ψ and e be as in Lemma 1, and put f=1-e. Then the map ρ of B to M defined by $\rho(b)=bf$ for each $b \in B$ is a ring homomorphism which gives M the same B-B-module structure as the one given originally. Let $\alpha = \operatorname{Ker} \rho$. Then α is an ideal of A, and $A/\alpha = B/\alpha \oplus M$ with $M^2 \subset M$. Then B/α is regarded as a subring of M. Later we will see that M is a separable extension of B/α . More generally we will have.

THEOREM 1. Let A be a ring and B a subring of A such that $A = B \oplus M$ as B-B-module. Assume furthermore that M is an ideal of A and left (or right) B-faithful. Then A is a separable extension of B, if and only if M is generated by a central idempotent f of A, i. e., M = Af, and is a separable extension of Bf.

The proof of the above theorem will be given later. The above observation naturally leads us to consider the case where R is a subring of a ring S, and $A=R\oplus S$ as R-R-module whose multiplication is defined by (r, x)(s, y)=(rs, xs+ry+xy) for any $r, s \in R$ and $x, y \in S$. It is easily seen that A is an associative ring whose identity is (1, 0). We will denote this ring by R#S. Still more denote (0, x) by \bar{x} and (r, 0) by r for each $x \in S$ and $r \in$ R, respectively, and put $R=\{(r, 0)|r \in R\}$ and $\bar{S}=\{(0, x)|x \in S\}$. Then Ris a subring of A, and \bar{S} is an ideal of A. Let e=(1, -1) and f=(0, 1). Then we have $e^2=e$, $f^2=f$, ef=0, and for any $r \in R$ and $x \in S$,

$$(r, x)e = e(r, x) = (r, -r) = re$$

 $(r, x)f = f(r, x) = (0, r+x) = (0, r+x)f$

Thus we have Ae = Re and $Af = \overline{S}f = \overline{S}$, and see that e and f are orthogonal central idempotents of A with e+f=1. Note that f is the identity of \overline{S} . Now let ψ be the map of R to Re defined by $\psi(r)=(r, -r)=re$ for each $r \in R$. Since e is a central idempotent of A, ψ is a ring isomorphism, i. e., $R \cong Re = Ae$. Let furthermore B = R # R. Of course B is a subring of A containing e and f. Hence we have Ae = Be = Re and $Bf = Rf = \overline{R}$.

Now we will get our main theorem, by which Theorem 1 can be obtained immediately.

THEOREM 2. Let R, S, A and B be as above. Then the following three conditions are equivalent :

(a) A is a separable extension of R

- (b) A is a separable extension of B
- (c) S is a separable extension of R

PROOF Suppose A is separable over B. Since $A = Ae \oplus Af$ and $B = Be \oplus Bf$ with Ae = Be(=Re), Af(=A/Re) is a separable extension of Bf(=B/Re). But $Af = \overline{S} \cong S$ and $Bf = \overline{R} \cong R$. Hence S is a separable extension of R. Conversely suppose that S is a separable extension of R. Then Af is a separable extension of Bf, since $Af = \overline{S}$ and $Bf = \overline{R}$. But we have Ae = Be. Then $A = Ae \oplus Af$ is a separable extension of $B = Be \oplus Bf$. Thus (b) and (c) are equivalent. (a) \longmapsto (b) is due to Proposition 2.5 [2], while (b) \longmapsto (a) is an immediate consequence of Proposition 2.5 [2] and the next proposition

PROPOSITION 1. R # R is a separable extension of R

PROOF. Put B = R # R. We will find an element $\Sigma \alpha_i \otimes \beta_i$ of $B \otimes_R B$ such that $\Sigma \alpha_i \beta_i = (1, 0)$ and $\Sigma \alpha \alpha_i \otimes \beta_i = \Sigma \alpha_i \otimes \beta_i \alpha$ for all $\alpha \in B$. Put $\Sigma \alpha_i \otimes \beta_i = 1 \otimes 1 - 1 \otimes f - f \otimes 1 + 2f \otimes f$, where 1 = (1, 0) and f = (0, 1). It is obvious that $\Sigma \alpha_i \beta_i = 1$. Moreover for each $r, y \in R$, we have

$$\begin{split} \Sigma(r, y) \alpha_i \otimes \beta_i &= (r, y) \otimes (1, 0) - (r, y) \otimes (0, 1) - (0, r+y) \otimes (1, 0) \\ &+ 2(0, r+y) \otimes (0, 1) \\ &= (r, -r) \otimes (1, 0) + (-r, 2r+y) \otimes (0, 1), \text{ and} \\ \Sigma \alpha_i \otimes \beta_i(r, y) &= (1, 0) \otimes (r, y) - (1, 0) \otimes (0, r+y) \\ &- (0, 1) \otimes (r, y) + (0, 2) \otimes (0, r+y) \\ &= (1, -1) \otimes (r, y) - (1, -2) \otimes (0, r+y) \\ &= (1, -1) \otimes (r, 0) (1, 0) + (1, -1) \otimes (y, 0) (0, 1) \\ &- (1, -2) \otimes (r+y, 0) (0, 1) \\ &= (1, -1) (r, 0) \otimes (1, 0) + (1, -1) (y, 0) \otimes (0, 1) \\ &- (1, -2) (r+y, 0) \otimes (0, 1) \\ &= (r, -r) \otimes (1, 0) + (-r, 2r+y) \otimes (0, 1) = (r, y) \Sigma \alpha_i \otimes \beta_i \end{split}$$

Thus B is a separable extension of R.

2. Now let A be a ring and B a subring of A. Throughout this section assume that there exist a ring homomorphism ψ of A to B and a central idempotent e of A such that $\psi(e)=1$, $\psi(b)=b$ and $\psi(x)e=xe$ hold for any $b\in B$ and $x\in A$, respectively. Such ψ and e exist, if A and B satisfy the condition of Lemma 1, but Theorem 2 shows that there exist such ψ and e even if A is not a separable extension of B. Denote $M=\operatorname{Ker}\psi$. Then M= $A(1-e)=\{x-\psi(x)|x\in A\}, A=B\oplus M$ as B-B-module, and $B\cong Be=Ae$, where the former isomorphism is given by $b\longrightarrow be$, for each $b\in B$. Moreover the converse of the above statements are true, that is, the following conditions are equivalent

(a) There exist ψ and e which satisfy the above conditions

(b) There exists a central idempotent e such that Ae = Be and $B \cong Be$, via $b \longrightarrow be$, for each $b \in B$

(c) $A=B\oplus M$, where M is an ideal of A generated by a central idempotent of A.

The proof of the above equivalence is very easy, so we will omit it.

LEMMA 2. Let A, B, ψ , e and M be as above. Assume furthermore that there exist another ring homomorphism ϕ of A to B and a central idempotent f of A which satisfy the same conditions as ψ and e. Denote N =Ker ϕ . Then we have

- $(1) \quad \psi(f) = \phi(e)$
- (2) If $\psi(f)=1$ (or $\phi(e)=1$), then we have $\psi=\phi$ and e=f

PROOF. (1). Since $\psi(f)e=fe$ and $\psi(e)=\phi(f)=1$, we have $\psi(f)=\psi(e)\psi(f)=\psi(ef)=\psi(\phi(e)f)=\phi(e)\psi(f)=\phi(e\psi(f))=\phi(ef)=\phi(e)\phi(f)=\phi(e)$. (2). If $\psi(f)=1$, we have also $\phi(e)=1$ by (1), and $f=\phi(e)f=ef=e\psi(f)$ = e. Then for each $x \in A$, we have $(\psi(x)-\phi(x))e=\psi(x)e-\phi(x)f=ex-xf$ = 0. This implies that $\psi(x)=\phi(x)$, since $B\cong Be$.

PROPOSITION 2. With the same notation as Lemma 2, the following conditions are equivalent :

- (a) $e \in N$ (or equivalently, $f \in M$)
- (b) ef = 0
- $(c) \quad A = M + N$

(d) For any non zero central idempotent c of B, there exists an $x \in A$ such that $\psi(x)c \neq \phi(x)c$, that is, ψ and ϕ are strongly distinct in the sense of [1]. (See Lemma 1.2 [1])

PROOF. By (1) Lemma 2, we have $e \in N$ if and only if $f \in M$. Suppose $e \in N$. Then $ef = \phi(e)f = 0$. Conversely if ef = 0, then $0 = \psi(ef) = \psi(e\psi(f)) = \psi(e)\psi(f) = \psi(f)$, and we have $f \in M$. Thus (a) and (b) are equivalent. Suppose (a) and (b) are satisfied. Then $M = A(1-e) = Af \oplus A(1-e-f)$ and $N = Ae \oplus A(1-e-f)$. Hence we have $M+N = Ae \oplus Af \oplus A(1-e-f) = A$. Next suppose that A = M + N. Then we have 1 = m + n with $m \in M$ and $n \in N$, and e = em + en. But Me = A(1-e)e = 0. Hence we have $e = en \in N$. Finally we will prove the equivalence of (a) and (d). Assume (a), and let c be any non zero central idempotent of B. Then we have $\psi(ce)c = \psi(c)\psi(e)c = c^2 = c$ and $\phi(ce)c = \phi(c)\phi(e)c = 0$. Thus $\psi(ce)c \neq \phi(ce)c$, and we have (d). Assume (d), and suppose $\phi(e) \neq 0$.

Since $\phi(e)$ is a central idempotent of *B*, there exists an $x \in A$ such that $\phi(x)\phi(e) = \psi(x)\phi(e)$. But $\phi(x)\phi(e) = \phi(xe) = \phi(\psi(x)e) = \psi(x)\phi(e)$, which is a contradiction. Hence we have $\phi(e) = 0$, which means (a).

EXAMPLE. Let A = R # (R # S) and e = (1, (-1, 0)), f = (0, (1, -1)). Then we have $e^2 = e, f^2 = f$ and ef = 0. Moreover, we see that

$$(r, (s, x))e = e(r, (s, x)) = (r, (-r, 0)) = re$$

 $(r, (s, x))f = f(r, (s, x)) = (0, (r+s, -r-s)) = (r+s)f$

hold for each $r, s \in R$ and $x \in S$. Thus e and f are central idempotents of A such that Ae = Re and Af = Rf. It is obvious that R is isomorphic to both Re and Rf, via $r \rightarrow re$ and $r \rightarrow rf$, respectively, for each $r \in R$. Therefore, we have two decompositions $A = R \oplus M = R \oplus N$ with M = A(1-e) and N = A(1-f), which satisfy the conditions of Proposition 2.

References

- S. CHASE, D. HARRISON and A. ROSENBERG, Galois theory and Galois cohomology of commutative rings, Memoirs A. M. S., No. 52 (1965), 1-18.
- [2] K. HIRATA and K. SUGANO, On semisimple extensions and separable extensions over noncommutative rin₂'s, J. Math. Soc. Japan, 18 (1966), 360-373.
- [3] K. SUGANO, On separable extensions over a local ring, Hokkaido Math. J., 11 (1982), 111-115.
- [4] K. SUGANO, On automorphisms in separable extensions of rings, Proc. 13th Sympo. Ring Theory, Okayama Lecture Notes (1981), 44-55.

Department of Mathematies Hokkaido University