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\S 1. Introduction.

This paper concerns a path integral formula for the solution of the
Cauchy problem for a hyperbolic system. Let us begin by considering an
N\cross N hyperbolic system of the first order

(1. 1) \frac{\partial}{\partial t}\Psi(t, x)=[\sum_{l=1}^{d}P_{t}\frac{\partial}{\partial x_{t}}+iQ+V(x)]\Psi(t, x)0<t<T, x\in R^{d},

where 0<T\leqq\infty , and V(x) is a complex-valued bounded Borel measur-
able function and the P_{l} , 1\leqq t\leqq d , and Q are constant hermitian N\cross N-

matrices. For the case that the P_{l} ’s are simultaneously diagonalizable, T
Ichinose made an elegant approach to the problem to obtain a path inte-
gral formula by constructing countably additive measures [3]. The Dirac
equation in two space-time dimensions is applied to this case. As for the
Dirac equation in four space-time dimensions, the P_{l} ’s are not simultane-
ously diagonalizable. In this paper, we do not assume that the P_{l} ’s are
simultaneously diagonalizable. In this general case, note that the Cauchy
problem for (1. 1) is not L^{\infty} well-posed but only L^{2} well-posed.

Concerning the Feynman-Kac formula for the Schr\"odinger group, I.
Kluvanek has shown a complete space of integrable functions by using a
seminorm[4]. In this paper, for hyperbolic systems we shall define the
space \mathfrak{G} of integrable functions with respect to \mu_{t} which is an extension of
tensor product spaces, where \mu_{t} is an \mathfrak{L}(L^{2}(R^{d},\cdot C^{N})) -valued generalized
vector measure on the space \overline{X}_{t} of Lipschitz continuous paths X:[0, t]arrow
R^{d} . However, \mu_{t} is not countably additive. We shall show the construc-
tion of the integral of C^{N} -valued functions on \tilde{X}_{t} with respect to \mu_{t} ,
where the integral of G(X)g(X(0)) [ G\in \mathfrak{G} and g\in L^{2}(R^{d} : C^{N}) ] is a
limit of those of C^{N} -valued simple functions. By this integral, we shall
establish the path integral formula

\Psi(t, \cdot)=\int d\mu_{t}(X)\exp\{\int_{0}^{t}V(X(s))ds\}g(X(0)) ,
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for the solution \Psi(t, x) of the Cauchy problem for the hyperbolic system
(1. 1) with initial datum \Psi(0, \cdot)=g , which includes the Dirac equation in
four space-time dimensions. In \S 2, we shall explain some well-known
results about hyperbolic systems for later use. \S 3 is devoted to the study
of the tensor product space B_{fin} (X_{t} : \otimes_{\pi}) and a bounded linear operator
T_{t} of B_{fin}(X_{t} ; \otimes_{\pi}) into \mathfrak{L}(L^{2}(R^{d} : C^{N})) , which is constructed by the fun-
damental solution of the Cauchy problem for (1. 1) with V=0. We also

study the set of functions expressed as \Phi(X)=\exp\{\int_{0}^{t}V(X(s))ds\} ,

where V is a complex-valued bounded Borel measurable function on R^{d} .
In \S 4, we obtain main theorems (Theorems 2 and 3).

\S 2. The hyperbolic system of the first order.

Let 0<T\leqq\infty and consider the Cauchy problem for the hyperbolic sys-
tem of the first order

(2. 1) \{

[ \partial_{t}-\sum^{d}{}_{l=1l}P\partial_{l}]\Psi(t, x)=iQ\Psi(t, x)0<t<T, x\in R^{d}

\Psi(0, x)=g(x) ,

where t and x=(x_{1}, \cdots. x_{d}) are regarded as time and space variables
respectively and the symbols \partial_{t}=\partial/\partial t and \partial_{l}=\partial/\partial x_{l}(1\leqq l\leqq d) are used,
\Psi(t, x) is a C^{N} -valued function and the P_{\iota}(1\leqq l\leqq d) and Q are constant
hermitian N\cross N-matrices.

\frac{1}{i}\sum_{l=1}^{d}P_{l}\partial_{l}+Q is, considered as an operator in L^{2}(R^{d} : c^{N}) , essentially

selfadjoint on C0\infty(R^{d} : C^{N}) . Let H_{0} be its selfadjoint extension and
\{U_{t}^{0}\}_{t\in R} be the C_{0} -group of unitary operators on L^{2}(R^{d} ; C^{N}) with the
infinitesimal generator iH_{0} . Then

U_{t}^{0}g=\Psi(t, \cdot) for g\in L^{2}(R^{d} ; C^{N}) ,

where \Psi(t, \cdot) is the solution of (2. 1) with initial datum \Psi(0, \cdot)=g .
For the solution \Psi of (2. 1) with initial datum g\in C_{0}^{\infty}(R^{d} ; C^{N}) , we

have the following equation

\Psi(t, x)=(U_{t}^{0}g)(x)=\int_{R^{d}}K(t ; x, y)g(y)dy0<t<T, x\in R^{d}

by using the fundamental solution K (t ; x, y) of the Cauchy problem (2.
1). It is also known that there is a finite propagation speed v\geqq 0 such
that K (t;x, y) vanishes outside the backward conoid \Gamma^{(t,x)} , where

\Gamma^{(t,x)}=\{(s, y)\in R\cross R^{d} ; 0\leqq s\leqq t, v\cdot(t-s)\geqq|x-y|\}
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and |x-y| is the Euclidean norm of x-y in R^{d} .
For t\in[0, T) fixed, let X_{t}=\Pi_{[0,t]}R^{d} be the product of the uncounta-

bly many R^{d} .

\S 3. Tensor product spaces.

Let B(R^{d}) be the space of complex-valued bounded Borel measurable
functions on R^{d} . For a finite partition \Delta_{n} : 0=h<t_{1}<\cdots<t_{n}=t of the
interval [0, t] , let B (X_{t} ; \otimes_{\pi}, \Delta_{n}) denote the space of the complex-valued
functions \Psi on X_{t} for which there exist functions f_{j,k}\in B(R^{d})(j=0,1, \cdots

n and k=1 , \cdots m) such that

(3. 1) \Psi(X)=(\Sigma_{k=1}^{m}f_{0,k}\otimes\cdots\otimes f_{n,k})(X)

=\Sigma_{k=1}^{m}\Pi_{j=0}^{n}f_{j,k}(X(t_{j}))

equipped with \pi norm
For \Psi=\Sigma_{k=1}^{m}f_{0,k}\otimes\cdots\otimes f_{n,k} , its \pi-norm is defined as follows: || \Psi||_{\pi}=\inf

\sum_{k=1}^{m}\prod_{j=0}^{n}|\psi_{j,k}||_{\infty} , where the infimum is taken over all representations of \Psi .
If \Delta_{m} is a refinement of \Delta_{n} , every \Psi\in B(X_{t} ; \otimes_{\pi}, \Delta_{n}) belongs to B(X_{t} ;
\otimes_{\pi} , \Delta_{m}) and the \pi norm of \Psi considered as an element of B(X_{t} ; \otimes_{\pi}, \Delta_{n})

\overline{1}S the same as that of B(X_{t} ; \otimes_{\pi}, \Delta_{m}) .
Let B_{fin} (X_{t} ; \otimes_{\pi}) denote the space of functions \Psi on X_{t} for which

there exists a finite partition \Delta_{n} of [0, t] such that \Psi\in B(X_{t} ; \otimes_{\pi}, \Delta_{n}) ,

equipped with \pi norm Let T_{t}(\Delta_{n}) be a linear operator of B(X_{t} ; \otimes_{\pi}, \Delta_{n})

into the space \mathfrak{L}(L^{2}(R^{d} ; C^{N})) of bounded linear operators on L^{2}(R^{d} ; C^{N})

defined by

(3.2) [ T_{t}(\Delta_{n})(f_{0}\otimes\cdots\cdots\otimes f_{n})]g

\equiv f_{n}U_{\Delta t_{n}}^{0}f_{n-1}U_{\Delta t_{n-1}}^{0}\cdots U_{\Delta h}^{0}f_{1}U_{\Delta t_{1}}^{0}(f_{0}g)

=f_{n}\Pi_{j=n-1}^{1}(U_{\Delta t_{f}+1}^{0}f_{j})U_{\Delta t_{1}}^{0}(f_{0}g)

for f_{0}\otimes\cdots\cdots\otimes f_{n}\in B(X_{t} : \otimes_{\pi}, \Delta_{n}) and g\in L^{2}(R^{d} ; C^{N}) , where \Delta t_{j}=t_{j}-t_{j-1}

(j=1, \cdots n) .

PROPOSITION 1. For a finite partition \Delta_{n}-. 0=k<t_{1}<\cdots<t_{n}=t of [0,
t] , T_{t}(\Delta_{n}) is a bounded linear operator of B(X_{t} ; \otimes_{\pi}, \Delta_{n}) into \mathfrak{L}(L^{2}(R^{d} ;
C^{N})) such that

||T_{t}(\Delta_{n})\Psi||\leqq||\Psi||_{\pi}

holds for \Psi\in B(X_{t} ; \otimes_{\pi}, \Delta_{n}) .

PROOF. For \Psi\in B(X_{t} ; \otimes_{\pi}, \Delta_{n}) , there is a representation \Psi=\Sigma_{k=1}^{m}f_{0.k}

\otimes\cdot\cdot-\otimes f_{n,k} . Since U_{s}^{0} is a unitary operator, we get ||[T_{t}(\Delta_{n})(\Sigma_{k=1}^{m}f_{0,k}

\otimes\cdots\otimes f_{n,k})]g||_{2}\leqq\Sigma_{k=1}^{m}|\psi_{n,k}||_{\infty}\cdots|\psi_{0,k}||_{\infty}||g||_{2} . The above relation holds for any
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representation \Sigma_{k=1}^{l}f_{0,k}\otimes\cdots\otimes f_{n,k} of \Psi , and so \overline{1}t holds
||(T_{t}(\Delta_{n})\Psi)g||_{2}\leqq||\Psi||_{\pi}||g||_{2} ,

which implies the desired result. \square

LEMMA. Let \Sigma_{k=1}^{r_{1}}f_{0.k}\otimes\cdots\otimes f_{n,k} belong to B(X_{t} : \otimes_{\pi}, \Delta_{n}) and \Sigma_{l=1}^{r_{2}}

g_{0,l}\otimes\cdots\otimes g_{m,l} belong to B(X_{t} ; {?}_{\pi}, \Delta_{m}) .
If (\Sigma_{k=1}^{r_{1}}f_{0,k}\otimes\cdots\otimes f_{n,k})(X)=(\Sigma_{l=1}^{r_{2}}g_{0,l}\otimes\cdot\cdot-\otimes g_{m,l})(X) holds for any X

\in X_{t} , then we have T_{t}(\Delta n)(\Sigma_{k=1}^{r_{1}}fo,k\otimes\cdots\otimes f_{n,k})=T_{t}(\Delta m)(\Sigma_{l=1}^{rz}

g_{0.l}\otimes\cdots\otimes g_{m,l}) .

PROOF. Let \Delta_{r} be a common refinement of \Delta_{n} and \Delta_{m} . Then both
\Sigma_{k=1}^{r_{1}}f_{0.k}\otimes\cdot--\otimes f_{n,k} and \Sigma_{l=1}^{r_{2}}g_{0,l}\otimes\cdots\otimes g_{m,l} can be considered as elements of
B (X_{t} ; \otimes_{\pi}, \Delta_{r}) by inserting the constant function 1. By the semigroup
property of U_{s}^{0} and the property of tensor product space, we can obtain
the desired result. \square

Now we define an operator T_{t} of B_{fin}(X_{t} ; \otimes_{\pi}) into \mathfrak{L}(L^{2}(R^{d} ; C^{N})) by

T_{t}(\Psi)\equiv T_{t}(\Delta_{n})(\Psi) for \Psi\in B(X_{t} : \otimes_{\pi}, \Delta_{n}) .

Then it is well-defined by Lemma.
Let \tilde{X}_{t} be the subset of those X in X_{t} for which |X(s)-x(s’)|\leqq

v|s-s’| holds for any 0\leqq s, s’\leqq t, where v is the positive, finite propaga-
tion speed of the solution of (2. 1) and |X(s)-X(s’)| is the Euclidean
norm of X(s)-X(s’) in R^{d} . Then we have

THEOREM 1. i ) T_{t} is a bounded linear operator of B_{fin}(X_{t} ; \otimes_{\pi})

into \mathfrak{L}(L^{2}(R^{d} ; C^{N})) such that
||T_{t}\Psi||\leqq||\Psi||_{\pi}

holds for \Psi\in B_{fin}(X_{t} ; \otimes_{\pi}) .
ii) Suppose that \Phi is an element of B_{fin}(X_{t} ; \otimes_{\pi}) such that \Phi_{1\tilde{X}_{t}}=0 .

Then T_{t}(\Phi)=0 .

PROOF. i ) Proposition 1 and Lemma show this fact,
ii) It is obtained by (3. 2) and the fact that K(t;x, y) vanishes out-

side the backward conoid \Gamma^{(t,x)} . \square

PROPOSITION 2. Let G=g_{0}\otimes\cdot\cdot-\otimes g_{m} be an element of B(X_{t} ; \otimes_{\pi}, \Delta_{m})

with \Delta_{m},\cdot 0=h<t_{1}<\cdots<t_{m}=t and put N_{G}=\{F=f_{0}\otimes\cdots\otimes f_{m}\in B(X_{t} ; \otimes_{\pi}, \Delta_{m}) ;
\psi_{j}|\leqq g_{j} for j=0, \cdots m }.

Suppose \{F_{n}=f_{0,n}\otimes\cdots\otimes f_{m,n}\} is a sequence of elements of N_{G} such that

f_{j,0}(x)= \lim_{narrow\infty}f_{j,n}(x)
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exists for every x\in R^{d} and every j=0, \cdots . m.
If we put F_{0}=f_{0,0}\otimes\cdots\otimes f_{m,0} , then we have

s- \lim_{narrow\infty}(T_{t}(F_{n}))h=(T_{t}(F_{0}))h

for any h\in L^{2}(R^{d} : C^{N}) .

PROOF. Since F_{0} belongs to B(X_{t} ; \otimes_{\pi}, \Delta_{m}) , T_{t}(F_{0}) is defined. Put
h_{0,n}=(f_{0,n}-f_{0.0})h and h_{j,n}=(f_{j,n}-f_{j,0})\Pi_{l=j-1}^{0}( U_{\Delta t_{\iota+1}}^{0}f_{l,0})h for j=1 , \cdots , m and n
\in N. Put \Phi_{0}=2g_{0}h and \Phi_{j}=2g_{j}\Pi_{l=j+1}^{0}( U_{\Delta t_{l-1}}^{0}f_{l,0})h for j=1 , \cdots m . Then
|\Phi_{j}|^{2}(j=0, \cdots m) is an integrable function on R^{d} with |h_{j,n}|\leqq|\Phi_{j}| for n\in N

and \lim_{narrow\infty}h_{j,n}(x)=0 almost everywhere. So by the Lebesgue dominated con-
vergence theorem, \lim_{narrow\infty}||h_{j.n}||_{2}=0(j=0, \cdots. m) . Then we get

||(T_{t}(F_{n}))h-(T_{t}(F_{0}))h||_{2}

=||(T_{t}y_{0,n}\otimes\cdots\otimes f_{m,n}))h-(T_{t}(f_{0,0}\otimes\cdots\otimes f_{m.0}))h||_{2}

\leqq\Sigma_{j=0}^{m}||[T_{t}y_{0,n}\otimes\cdots\otimes f_{j-1,n}(f_{j,n}-f_{j,0})f_{j+1,0}\otimes\cdots\otimes f_{m,0})]h||_{2}

\leqq\Sigma_{j=0}^{m}\Pi_{l=j+1}^{m}|\psi_{l,n}||_{\infty}||h_{j.n}||_{2}

\leqq\Sigma_{j=0}^{m}\Pi_{l=j+1}^{m}||g_{l}||_{\infty}||h_{j,n}||_{2}

which converges to zero as narrow\infty . \square

Let B(\tilde{X}_{t} ; \otimes_{\pi}, \Delta_{n}) [resp. B_{fin}(\tilde{X}_{t} ;\otimes_{\pi}) ] be the space of functions F
on \tilde{X}_{t} such that there exists \tilde{F}\in B(X_{t} ; \otimes_{\pi}, \Delta_{n}) [resp. B_{fin}(X_{t} ;\otimes_{\pi}) ] satis-
fying F(X)=\tilde{F}(X) for X\in\tilde{X}_{t} . For F\in B_{fin}(\tilde{X}_{t} ; \otimes_{\pi}) , define T_{t} by

(3.3) T_{t}F\equiv T_{t}\tilde{F}, where \tilde{F}\in B_{fin}(X_{t} ; \otimes_{\pi}) is an extension of F. The
above definition is well-defined by Theorem 1 ii ).

REMARK 1. T_{t} can also be considered as an operator of B_{fin}(\overline{X}_{t} ;
\otimes_{\pi}) into \mathfrak{L}(L^{2}(R^{d} : C^{N})) .

Hereafter we shall consider \tilde{X}_{t} instead of X_{t} . Let S be the set of
those functions \Phi on \tilde{X}_{t} for which there exists V\in B(R^{d}) satisfying

\Phi(X)=\exp\{\int_{0}^{t}V(X(s))ds\} for any X\in\tilde{X}_{t} ,

which is well-defined for X\in\overline{X}_{t} and V\in B(R^{d}) , since V(X(\cdot)) is a
measurable function on [0, t] .

For n\in N, let \tilde{\Delta}_{n} ; 0=h<t_{1}<\cdots<t_{n}=t be the partition of [0, t] such

that t_{j}= \frac{j}{n}t for j=1,2 , \cdots n . For \Phi\in S, i.e. \Phi(X)=\exp\{\int_{0}^{t}V(X(s))ds\} ,

define the function \Phi_{(n)} on \tilde{X}_{t} by
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(3.4) \Phi_{(n)}(X)\equiv\exp\{\Sigma_{j=1}^{n}V(X(t_{j}))\frac{t}{n}\} for X\in\tilde{X}_{t} .

Then \Phi_{(n)}\in B(\overline{X}_{t} ; \otimes_{\pi},\overline{\Delta}_{n}) . As for T_{t}(\Phi_{(n)}) , we have

PROPOSITION 3. For \Phi\in S, there exists s- \lim_{narrow\infty}(T_{t}(\Phi_{(n)}))g in L^{2}(R^{d} :
C^{N}) for any g\in L^{2}(R^{d} ; C^{N}) .

PROOF. \Phi\in S can be expressed as \Phi(X)=c.\exp\{\int_{0}^{t}V(X(s))ds\} with

c\in R and Re V(x)\leqq 0 for any x\in R^{d} . Put H=H_{0}+ \frac{1}{i}V. Then Trotter’s

product formula shows that T_{t}(\Phi_{(n)})g=c\cdot(e^{\frac{t}{n}V}U_{t/n}^{0})^{n}g converges to c\cdot e^{iHt}

g as narrow\infty , since \{ U_{s}^{0}\}_{s\in R} and \{e^{V(\cdot)s}\}_{s\in R} are contraction semigroups on
L^{2}(R^{d} : C^{N}) . \square

By Proposition 3, we can extend T_{t} to an operator of S into \mathfrak{L}(L^{2}(R^{d} :
C^{N})) by

(3.5) (T_{t}\Phi)g\equiv s -
\lim_{narrow\infty} [^{T_{t}(\Phi_{(n)})]g} for \Phi\in S

and for g\in L^{2}(R^{d} ; C^{N})- As for elements of S, we have

PROPOSI T ION4. i) For V_{1}\wedge V_{2}\in B ( R^{d}) , put \Phi(X)=

\exp\{\int_{0}^{t}V_{1}(X(s))ds\} and \Psi(X)=\exp\{\int_{0}^{t}V_{2}(X(s)) dsI- If V_{1}(x)=V_{2}(x)

holds almost everywhere, then we have ( T_{t}\Phi)g=(T_{t}\Psi)g for any
g\in L^{2}(R^{d-},C^{N}) .

ii) Let \Psi(X)=\exp\{\int_{0}^{t}V(X(s))ds\} be an element of S with

\sup\{{\rm Re} V(x) : x\in R^{d}\}\leqq 0 . Put
N_{\Psi}\backslash = {\Phi(X)=\exp\{\int_{0}^{t}U(X(s))ds\}\in S;|U|\leqq|V| , Re U(x)\leqq 0 for x\in R^{d}} -

Suppose {\Phi_{n}(X)=\exp\{\int_{0}^{t}V_{n}(X(s))ds)\} is a sequence of elements of
N_{\Psi} such that

V_{0}(x)= \lim_{narrow\infty}V_{n}(x)

exists for every x\in R^{d} .

Then by putting \Phi_{0}(X)=\exp\{\int_{0}^{t}V_{0}(X(s))ds\}

we have

\Phi_{0}\in S and s- \lim_{narrow\infty}(T_{t}(\Phi_{n}))g=(T_{t}(\Phi_{0}))g



Generalized vector measures and path integrals for hyperbolic systems 503

for any g\in L^{2}(R^{d} : C^{N}) .

PROOF. i ) By the equation T_{t}( \Phi(n\rangle)g=(e\frac{t}{n}V_{1}U_{t/n}^{0})^{n}g, we have

T_{t}(\Phi_{(n)})g=T_{t}(\Psi_{(n)})g for any n\in N, since \exp\frac{1}{n}V_{1}(x)=\exp\frac{1}{n}V_{2}(x) holds

almost everywhere. So we have the desired result.

ii) Put H_{n}=H_{0}+ \frac{1}{i}V_{n} for n\in N and H_{00}=H_{0}+ \frac{1}{i}V_{0} . Then by the

proof of Proposition 3. ( T_{t}\Phi_{0})g=e^{iHoot}g and ( T_{t}\Phi_{n})g=e^{iHnt}g hold for n\in

N. Since we have ||e^{iHnt}||\leqq 1 and (\mathcal{A}-H_{n})^{-1}harrow(\lambda-H_{00})^{-1}h as narrow\infty for
every h\in L^{2}(R^{d} ; C^{N}) and \lambda with Re \lambda>0 , e^{iHnt}garrow e^{iHoot}g holds for t\geqq 0[5

Theorem 4.2], which proves the proposition. \square

\S 4. Generalized vector measures and path integrals.

Let B_{fin}(\overline{X}_{t} ; \wedge\otimes_{\pi}) be the completion of B_{fin}(\tilde{X}_{tj}\otimes_{\pi}) . Then by TheO-
rem 1, T_{t} can be extended to a continuous 1\overline{1}near operator from the
Banach space B_{fin}(\overline{X}_{t} ; \wedge\otimes_{\pi}) of complex functions on \tilde{X}_{t} into \mathfrak{L}(L^{2}(R^{d} ;
C^{N})) . We shall associate with T_{t} an \mathfrak{L}(L^{2}(R^{d} ; C^{N})) -valued finitely addi-
tive vector measure \mu_{t} on \overline{X}_{t} and determine integrable functions with
respect to \mu_{t} .

We shall consider a field generated by subsets of \overline{X}_{t} . Let \mathfrak{B} be the set
of Borel subsets of R^{d} . For a part\overline{l}tion\Delta_{n} ; 0=k<t_{1}<\cdots<t_{n}=t of [0, t]
and B_{j}\in \mathfrak{B}(j=0,1, \cdots. n) , put J(B_{0}, B_{1,-} \cdots B_{n} ; \Delta_{n})\equiv\{X\in\tilde{X}_{t} ; X(t_{j})\in B_{j}

(j=0,1, \cdots. n)\}- Let s^{\propto} be the set {J(B_{0}, B_{1}, \cdot\cdot-. B_{n} ; \Delta_{n}):\Delta_{n} is a partition
of [0, t] , B_{j}\in \mathfrak{B}\} and \mathfrak{F} be the field generated by s^{\propto} . Let \mathfrak{S} be the space of
\mathfrak{F}-measurable fifin\overline{l}tely-valued numerical functions on \overline{X}_{t} . Then \mathfrak{S} is a sub-
space of B_{fin}(\tilde{X}_{t} ; \otimes_{\pi}) .

We shall define the space of integrable functions with respect to \mu_{t} ,

which includes S. For \Phi\in S , we have defined the function \Phi_{(n)} . To
\approx

define the corresponding function for a function on X_{t} , we shall introduce
\simeq

a subset X_{t} of X_{t} defined as follows.
For n\in N. let \tilde{\Delta}_{n} : 0=h<t_{1}<\cdot-\cdot<t_{n}=t be the partit\overline{l}on of [0, t] such

that t_{j}= \frac{j}{n}t for j=1,2 , \cdots n. For X\in X_{t} , define X^{\overline{\Delta}_{n}}\in X_{t} by

X_{\tilde{\Delta}_{n}}(s)\equiv X(t_{j}) for t_{j-1}<s\leqq t_{j}(j=1, \cdots. n)

and X_{\overline{\Delta}_{n}}(’\underline{0})\equiv X(0) .
Let \overline{X}_{t} be the subset of those X in X_{t} for wh\overline{l}che\dot{l}ther X\in\overline{X}_{t}o-r there

exist \tilde{X}\in\overline{X}_{t} and n\in N such that \tilde{X}_{\tilde{\Delta}_{n}}=X. For a function F on \tilde{X}_{t} , define
the function F_{(\overline{n})} on \overline{X}_{t} by
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(4. 1) F_{(\overline{n})}(X)\equiv F(X_{\overline{\Delta}_{n}}) for X\in\overline{X}_{t} .

Since V(X(\cdot)) is a measurable function on [0, t] for V\in B(R^{d}) and X
\in\overline{\overline{X}}_{t} , a function \Phi\in S [ \Phi(X)=\exp\{\int_{=}0Vt(X(s))ds\} with V\in B(R^{d}) ]

can be considered as a function \overline{\tilde{\Phi}} on X_{t} satisfying

\overline{\tilde{\Phi}}(X)=\exp\{\int_{0}^{t}V(X(s))ds\} for X\in\overline{\overline{X}}_{t} .

Let \overline{S} be the space of \underline{s}uch functions \overline{\tilde{\Phi}} on X_{t}\simeq . For \Phi\in S , we have \Phi_{(n}=\perp

\Phi_{(\overline{n})}^{\simeq} , where \Phi_{(n)} and \tilde{\Phi}_{(\overline{n})} are defined by (3. 4) and (4-1). Let B_{fin}(\overline{X}_{t} :
\otimes_{\pi})\wedge be the space of functions on \overline{\overline{X}}_{t} which are restrictions of elements of
B_{fin}

(X_{t} _{;} _{\otimes_{\pi}}^{\wedge}) to X_{t}\approx .
Let \overline{\mathfrak{G}} be the set of those functions \Psi on \overline{X}_{t}- such that

\Psi_{(\overline{n})}\in B_{fin}(\tilde{X}_{t} ; \otimes_{\pi}) for any n\in N , and
s- \lim_{narrow\infty}T_{t}(\Psi_{(\overline{n})})g exists for any g\in L^{2}(R^{d} : C^{N}) .

REMARK 2. T_{t} can also be considered as an operator of B_{\underline{f}in}(\overline{X}_{t}- :
\otimes_{\pi})\wedge into \mathfrak{L}(L^{2}(R^{d-},C^{N})) such that T_{t}F=T_{t}(F|_{\tilde{X}_{t}}) for F\in B_{fin}(\overline{X}_{t} ; ^{\wedge}\otimes_{\pi}) ,
by (3. 3) and Remark 1. T_{t} can also be considered as an operator of \overline{S}

into \mathfrak{L}(L^{2}(R^{d} ; C^{N})) .

DEFINITION 1. For J=J (B_{0}, B_{1}, \cdot\cdot-. B_{n} ; \Delta_{n})\in_{d}^{\alpha} , we shall define an
operator \mu_{t}(J)\in \mathfrak{L}(L^{2}(R^{d} ; C^{N})) by

(4.2) (\mu_{t}(J))g\equiv(T_{t}(X_{J}))g for g\in L^{2}(R^{d} : C^{N}) ,

where X_{J}\equiv X_{Bo}\otimes X_{B_{1}}\otimes\cdots\otimes X_{B_{n}} is the character\overline{l}stic function of the set J.
Then \mu_{t} is an \mathfrak{L}(L^{2}(R^{d} : C^{N})) -valued finitely additive vector measure

\mu_{t} on \mathfrak{F} . We shall construct the integral of a C^{N} -valued function on \overline{X}_{t}

with respect to \mu_{t} . Put s^{\alpha_{0}}=\{J(B_{0}, B_{1,-} \cdots B_{n},\cdot\Delta_{n})\in s^{\propto};B_{0} is relatively
compact}. We shall say that \Theta is a C^{N} -valued \theta^{\propto}0-simple function on \overline{X}_{t} if
there exist k\in N,\overline{a}_{j}\in C^{N} and J_{j}\in_{\theta 0}\propto satisfying

\Theta=\sum_{j=1}^{k}\overline{a}_{j}X_{ff} .

Consider \overline{a}X_{m}\in L^{2}(R^{d} ; C^{N}) such that

\overline{a}X_{m}(x)=\{\begin{array}{l}\overline{a}for||x||\leqq m\overline{0}for||x||>m\end{array}

where \overline{a}\in C^{N} and \overline{0} is th zero element of C^{N} .
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PROPOSITION 5_{-} For a C^{N}-valued \theta^{\propto}0 -simple function \Theta=\overline{a}X_{J} on \overline{X}_{t}

with J=J (B_{0}, B_{1}, \cdots. B_{n} : \Delta_{n})\in_{So}^{\alpha} and \overline{a}\in C^{N} . we have

s- \lim_{marrow\infty}\mu_{t}(J)(\overline{a}X_{m})=\mu_{t}(J)(\overline{a}X_{B_{0}}) in L^{2}(R^{d} : c^{N}) .

PROOF. Since B_{0} is relatively compact, \overline{a}X_{B_{0}}\in L^{2}(R^{d} ; C^{N}) . By the
relation \mu_{t}(J) ( \overline{a}X_{m})=\mu_{t}(J) ( \overline{a}X_{m}X_{B_{0}}) , we have

s- \lim_{marrow\infty}\mu_{t}(J)(\overline{a}X_{m})=\mu_{t}(J)(\overline{a}X_{Bo}) . \square

DEFINITION 2. We shall define the integral of a C^{N} -valued \mathfrak{J}_{0}-simple

function \Theta=\sum_{j=1}^{k}\overline{a}_{j}X_{Jj} on \overline{X}_{t} with respect to \mu_{t} by

(4.3) l_{-}^{d\mu_{t}(X)\Theta(X)\equiv s-\lim_{marrow\infty j}\sum_{=1}^{k}\mu_{t}(J_{j})(\overline{a}_{j}X_{m})},\cdot

By Proposition 5, (4. 3) is well-defined. It is equal to \sum_{j=1}^{k}\mu_{t}CI_{j}) a-jX_{B^{0_{j}}} ,

where J_{j}=J (B_{0}^{j}, B_{1r}^{j}\ldots B_{n}^{j} ; \Delta_{n}) ,, and belongs to L^{2}(R^{d} ; C^{N}) . We have

PROPOSITION 6. Suppose G\in \mathfrak{S} and g\in L^{2}(R^{d},\cdot C^{N}) is a simple func-
tion, i.e. G= \sum_{j=1}^{k}b_{j}X_{Jj} with b_{j}\in C and g= \sum_{i=1}^{l}aiX-C_{i} with \overline{a}_{i}\in C^{N} and rela-

tively compact C_{i}\in \mathfrak{B} . Then we have

(4.4) l_{\sim},d \mu_{t}(X)G(X)g(X(0))=\sum_{j=1}^{k}b_{j}\cdot\mu_{t}(J_{j})g=(T_{t}G)g .

PROOF. \Theta(X)=G(X)g(X(0))\overline{1}S a C^{N} -valued S^{\propto}o-simple function on
\overline{X}_{t} , since we have X_{J}(X)\overline{a}X_{C}(X(0))=\overline{a}X_{J\circ C}(X) , where J\circ C=I(R, B_{1} ,
\ldots.B_{n} ; \Delta_{n} ) \circ C\equiv J(B_{0}\cap C, B_{1}, \cdots. B_{n} ; \Delta_{n}) . By the relation \mu_{t}(J\circ C)

(\overline{a}X_{C})=\mu_{t}(J) ( \overline{a}X_{C}) , (4. 2) and (4. 3), we have

l_{\sim}td \mu_{t}(X)G(X)g(X(0))=\sum_{j=1}^{k}\sum_{i=1}^{l}b_{j}\cdot\mu_{t}(J_{j}) ( _{\overline{a}_{i}X_{c_{i}})}

= \sum_{j=1}^{k}b_{j}\cdot\mu_{t}(J_{j})g=(T_{t}G)g . \square

As for convergence of the integral of \{G_{n}\Phi_{m}\} with respect to \mu_{t} for G_{n}

\in \mathfrak{S} and a simple function \Phi_{m}\in L^{2}(R^{d} ; C^{N}) , we have the following

PROPOSITION 7. Let \{G_{n}\} be a sequence in \mathfrak{S} such that \lim_{n,marrow\infty}||G_{n}-

G_{m}||_{\pi}=0 and \{\Phi_{n}\} be a sequence of simple functions in L^{2}(R^{d},\cdot C^{N}) such
that |\Phi_{n}|\leqq|g|w\iota^{-}thg\in L^{2}(R^{d} ; c^{N}) and \lim_{narrow\infty}\Phi_{n}(x) exists almost everywhere.

Then there exists a subsequence \{\Phi_{j(n)}\} of \{\Phi_{n}\} such that
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s- \lim_{narrow\infty}l_{\sim}td\mu_{t}(X)G_{n}(X)\Phi_{j(n)}(X(0)) exists.
Moreover, for any subsequence \{\Phi_{k(n)}\} of \{\Phi_{n}\} ,

l_{-}td\mu_{t}(X)G_{n}(X)\Phi_{k(n)}(X(0)) converges to the same element as narrow\infty if ils
limit exists.

PROOF. Put h(x)= \lim_{narrow\infty}\Phi_{n}(x) a.e . Then for any n\in N , we have

s- \lim_{jarrow\infty}(T_{t}G_{n})\Phi_{j}=(T_{t}G_{n})h by the Lebesgue dominated convergence theorem.
Let \{\Phi_{j(n)}\} be a subsequence of \{\Phi_{n}\} such that ||(T_{t}G_{n})\Phi_{j(n)}-(T_{t}G_{n})h||\leqq 1/n

for any n\in N. By Theorem 1 we have ||T_{t}(G_{n})\Phi_{j}-T_{t}(G_{m})\Phi_{j}||\leqq G_{n}-G_{m}||_{\pi} .
||\Phi_{j}||\leqq||G_{n}-G_{m}||_{\pi}\cdot||g|| for any j\in N. So by the relation (4. 4), there exists
s- \lim_{narrow\infty}l_{\sim}pd\mu_{t}(X)G_{n}(X)\Phi_{j(n)}(X(0)) .

By the relation \lim_{n,marrow\infty}||G_{n}-G_{m}||_{\pi}=0 , there exists F\in B_{fin} (\overline{\tilde{X}}_{t} ; ^{\wedge}\otimes_{\pi}) such
that \lim_{narrow\infty}||G_{n}-F||_{\pi}=0 . Then for any subsequence \{\Phi k(n)\} of \{\Phi n\} ,

s- \lim_{narrow\infty}l_{\wedge}td\mu_{t}(X)G_{n}(X)\Phi_{k(n)}(X(0)) is equal to ( T_{t}F)g if its limit exists. \square

As a consequence, we have

COROLLARY. For F\in B_{fin}(X_{t}^{\simeq} ; ^{\wedge}\otimes_{\pi}) and g\in L^{2}(R^{d} : c^{N}) , there exist
a sequence \{G_{n}\} in \mathfrak{S} and a sequence \{\Phi_{n}\} of simple functions in L^{2}(R^{d} :
C^{N}) satisfying

i) \lim_{narrow\infty}||G_{n}-F|_{\tilde{X}_{t}}||_{\pi}=0

ii) g(x)= \lim\Phi_{n}(x)a.e .

iii) s- \lim_{narrow\infty}l_{\sim}td\mu_{t}(X)G_{n}(X)\Phi_{n}(X(0)) exists.

Moreover, s- \lim_{narrow\infty}l_{\sim}td\mu_{t}(X)G_{n}(X)\Phi n(X(0)) is the same for any sequences
\{G_{n}\} and \{\Phi_{n}\} satisfying i iii ).

DEFINITION 3. i ) For F\in B_{fin}(X_{t}^{\approx} ; ^{\wedge}\otimes_{\pi}) and g\in L^{2}(R^{d-},C^{N}) , there
exist a sequence \{G_{n}\} in \mathfrak{S} and a sequence \{\Phi n\} of simple functions in
L^{2}(R^{d} ; C^{N}) satisfying the condition i iii ) in Corollary to Proposition 7.
So we shall define the integral of the function F(X)g(X(0)) on \tilde{X}_{t} with
respect to \mu_{t} by

(4.5) l_{t}-d \mu_{t}(X)F(X)g(X(0))\equiv s-\lim_{narrow\infty}l_{\sim}td\mu_{t}(X)G_{n}(X)\Phi_{n}(X(0)) .

ii) For \Psi\in\overline{\mathfrak{G}}, its integral is defined by
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(4.6) \chi_{\sim}\ell d\mu(X)\Psi(X)g(X(0))\equiv s-\lim_{narrow\infty}l_{\sim}td\mu_{t}(X)\Psi_{(\tilde{n})}(X)g(X(0))

for any g\in L^{2}(R^{d} ; C^{N}) .
The above definitions are well-defined by the defintion of \tilde{\mathfrak{G}} and Corol-

lary to Proposition 7.

DEFINITION 4. Let \mathfrak{G} be the linear span of B_{fin}(X_{t}^{\approx} ; ^{\wedge}\otimes_{\pi}) and \tilde{\mathfrak{G}}. We
shall call the members of \mathfrak{G} to be integrable functions with respect to \mu_{t} .

REMARK 3. For \Phi\in S i.e. \Phi(X)=\exp\{\int_{0}^{t}V(X(s))ds\} , \lim_{narrow\infty}\Phi_{tn)}(X)

=\Phi(X) does not necessarily hold for X\in\tilde{X}_{t} if V(x) is not Riemann inte-
grable, but \Phi^{\approx} belongs to \mathfrak{G} .

Though \mu_{t} is not countably additive, we have constructed the integral
of C^{N} -valued functions on \tilde{X}_{t} with respect to \mu_{t} and \overline{I}t has the property of
some kind of a dominated convergence theorem as shown in the following
proposition 8_{-} So we shall call \mu_{t} a generalized vector measure on \tilde{X}_{t} .
By a generalized measure we mean a measure which is not necessarily
countably additive but has some more property than a merely finitely addi-
tive measure. [1]

THEOREM 2. There exist a\mathfrak{L}(L^{2}(R^{d-},C^{N})) -valued generalized vector
measure \mu_{t} on \mathfrak{F} which represents T_{t} in the sense that

i) (\mu_{t}(J))g=(T_{t}(X_{J}))g

for J =J (B_{0}, B_{1}, \cdots-B_{n} ; \Delta n)\in \mathfrak{J} and g\in L^{12}(R^{d} ; C^{N}) , where X_{J}=X_{Bo}

\otimes X_{B_{1}}\otimes\cdots\otimes X_{B_{n}} is the characteristic function of the set J.
ii) For F\in \mathfrak{G} ( =the space of integrable functions), and g\in L^{2}(R^{d} :

C^{N}) , there is a sequence \{\Theta_{n}\} of C^{N}-valued \mathfrak{J}_{0} -simple functions on \tilde{X}_{t} such
that

\chi_{\sim}td\mu_{t}(X)F(X)g(X(0))=s-\lim_{narrow\infty}l_{\sim}td\mu_{t}(X)\Theta_{n}(X) .

iii) Every \Psi\in B_{fin}(X_{t}^{\approx} ; ^{\wedge}\otimes_{\pi})\cup\tilde{S} is an integrable function with respect
to \mu_{t} and

(T_{t}\Psi)g=l_{\sim}td\mu_{t}(X)\Psi(X)g(X(0)) holds

for any g\in L^{2}(R^{d} ; C^{N}) .
iv) For J=f(B_{0}, B_{1}, \cdots B_{n} ; \Delta n)\in \mathfrak{J} , m(B_{0}\cross\cdots\cross B_{n})=0 implies

\mu_{t}\zeta\Gamma)=0 , where m is the Lebesgue measure.

PROOF. i ) follows from the definition of \mu_{t} .
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ii) For F\in B_{fin}(X_{t}^{\approx} ; ^{\wedge}\otimes_{\pi}) , put \tilde{F}=F|_{\overline{X}_{t}} . Let g\in L^{2}(R^{d} ; c^{N})- Then
by (4. 5), there exist a sequence \{G_{n}\} in \mathfrak{S} such that \lim_{n\sim\infty}||G_{n}-\overline{F}||_{\pi}=0 and a
sequence \{\Phi_{n}\} of simple functions in L^{2}(R^{d} ; C^{N}) satisfying

\chi_{\sim}td\mu_{t}(X)F(X)g(X(0))\equiv s-\lim_{narrow\infty}l_{\sim}pd\mu_{t}(X)G_{n}(X)\Phi_{n}(X(0)) .

Put \Theta_{n}(X)=G_{n}(X)\Phi_{n}(X(0)) for any X\in\tilde{X}_{t} . Then \{\Theta_{n}\} is a desired
sequence of C^{N} -valued \mathfrak{J}_{0}-simple functions on \tilde{X}_{t} .

For \Phi\in\overline{\mathfrak{G}}, \Phi_{(\overline{n})} belongs to B_{fin}(\tilde{X}_{t} ; \otimes_{\pi}) . So the above statement
shows that there exists a C^{N} -valued S^{\propto}o- S\overline{1}mp1e function \Theta_{n} on \tilde{X}_{t} such that

||l_{t}^{d\mu_{t}(X)\Phi_{(\overline{n})}(X)g(X(0))-l_{t}^{d\mu_{t}(X)\Theta_{n}(X)||\leqq\frac{1}{n}}}\sim-\cdot

By using th definition (4. 6), we have

l_{\sim}td \mu_{t}(X)\Theta(X)g(X(0))=s-\lim_{narrow\infty}l_{\sim}td\mu_{t}(X)\Theta_{n}(X) .

\overline{1}ii) follows from (3. 3), (3. 5), (4. 2), (4. 5), (4. 6) and Remarks 1
and 2.

iv) For J=f(B_{0}, B_{1}, \cdots. B_{n} : \Delta n)\in_{\theta}^{\alpha} , m(B_{0}\cross\cdots\cross B_{n})=0 implies
(T_{t}(\Delta_{n})(X_{Bo}\otimes X_{B_{1}}\otimes\cdots\otimes X_{Bn}))g=0 for any g\in L^{2}(R^{d} ; C^{N}) by the definition
of T_{t} . So \mu_{t}(J)=0 . \square

The generalized measure \mu_{t} defined above is not countably additive,
but Propositions 2 and 4 show that it has the property of some kind of a
dominated convergence theorem as shown in the following.

PROPOSITION 8. Let G=g_{0}\otimes\cdots\otimes g_{m} be an element of B(\overline{X}_{t} ; \otimes_{\pi}, \Delta_{m})

with \Delta_{m} ; 0=k<t_{1}<\cdots<t_{m}=t and put N_{G}=\{F=f_{0}\otimes\cdots\otimes f_{m}\in B(\overline{X}_{t} ; C\cross_{\pi} ,
\Delta_{m}) : \psi_{j}|\leqq g_{j} for j=0, \cdots . m }.

Suppose \{F_{n}=f_{0,n}\otimes\cdots\otimes f_{m,n}\} is a sequence of elements of N_{G} such that

f_{j,0}(x)=1\overline{1}mf_{j,n}(x)narrow\infty

exists for every x\in R^{d} and every j=0, \cdots . m_{-}

If we put F_{0}=f_{0,0}\otimes\cdots\otimes f_{m,0} , then we have

s- \lim_{narrow\infty}l_{\sim}td\mu_{t}(X)F_{n}(X)h(X(0))=l_{\sim}td\mu_{t}(X)F_{0}(X)h(X(0))

for any h\in L^{2}(R^{d} : C^{N}) .

PROPOSITION 9. Let \Psi(X)=\exp\{\int_{0}^{t}V(X(s))ds\} be an element of S
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with sup {Re V(x) : x\in R^{d}} \leqq 0- Put N_{\Psi}= \{\Phi(X)=\exp\{\int_{0}^{t}U(X(s))ds\}\in

S;|U|\leqq|V| , Re U(x)\leqq 0 for x\in R^{d}}.

Suppose \{\Phi_{n}(X)=\exp\{\int_{0}^{t}V_{n}(X(s))ds\}\} is a sequence of elements of
N_{\Psi} such that

V_{0}(x)= \lim_{narrow\infty}V_{n}(x)

exists for every x\in R^{d} .

Then by putting \Phi_{0}(x)=\exp\{\int_{0}^{t}V_{0}(X(s))ds\}

we have

s- \lim_{narrow\infty}l_{\sim}td\mu_{t}(X)\Phi_{n}(X)g(X(0)=t_{\sim}pd\mu_{t}(X)\Phi_{0}(X)g(X(0))

for any g\in L^{2}(R^{d} : C^{N}) .

REMARK 4. Proposition 8 shows that \mu_{t} has the property of some
kind of the dominated convergence theorem, but it is not countably addi-
tive on the \sigma-field generated by the \mathfrak{J}_{\Delta_{m}}=\{I\in \mathfrak{J},\cdot I=\{J (R, B_{1,-} \cdots B_{m} ; \Delta_{m}),\cdot

B_{j}\in \mathfrak{B}\} , m=1,2 , \cdots Let K_{j}\subset R^{d}(j=1,2, \cdots. m) be compact and put K=
K_{m}\cross\cdots\cross K_{0} . If \mu_{t} is restricted to C_{C}^{\infty}(K)\equiv V\in C^{\infty}(R^{d(m+1)}) ; supp f\subset K },
it has a kind of countable additivity as shown in the following. Since
C_{c}^{\infty}(K_{j})(j=0,1, \cdots. m) is a nuclear space [6, p. 530], the \pi - and \epsilon . tensor
product topo\log_{\overline{1}}es coincide: C_{c}^{\infty}(K_{m})\otimes\cdots\otimes C_{c}^{\infty}(K_{0})\pi\wedge=C_{c}^{\infty}(K_{m})\otimes\cdots\otimes C_{c}^{\infty}(K_{0})\epsilon\wedge

=C_{c}^{\infty}(K) . By this fact, for f, g\in L^{2}(R^{d} ; C^{N}) fixed, there exist regular
measures \{\iota/_{t}^{m,a} ; |\alpha|=N(m)\} on K [2, p. 344] such that

\langle f, T_{t}(\Delta_{m})(F)g\rangle=\int_{K}\Sigma_{|a|=N(m)}\partial^{a}F(x)d\nu_{t}^{m,a}(x)

holds for F\in C_{c}^{\infty}(K) . In this case, the countable additive measure \iota\nearrow_{t}^{m,a}

does not act on F but on the partial derivative \partial^{a}F with |\alpha|=N(m) . If
the set \{N(m):m\in N\} is bounded, the countable add_{\overline{1}}tive measure \nu_{t}^{m,a}

may be extended to a finitely additive measure on \mathfrak{F} , but the author is not
sure about its boundedness.

Now we consider the hyperbo lic system of the first order

(4.7) \{

\frac{\partial}{\partial t}\Psi(t, x)=[\Sigma_{l=1}^{d}P_{l}\frac{\partial}{\partial x_{l}}+iQ+V(x)]\Psi(t, x)

0<t<T, x\in R^{d}

\Psi(0, x)=g(x) ,
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where V is a complex-valued bounded Borel measurable function on R^{d} .
By theorem 2, T_{t} may be regarded as a \mathfrak{L}(L^{2}(R^{d} : C^{N})) -valued gener-

alized vector measure \mu_{t} on \overline{X}_{t} and so we have the following theorem.

THEOREM 3. There exists a\mathfrak{L}(L^{2}(R^{d} : C^{N})) -valued generalized vector
measure \mu_{t} on \tilde{X}_{t} such that the solution \Psi(t, \cdot) of the Cauchy problem for
the hyperbolic system (4. 7) with initial datum \Psi(0, \cdot)=g\in L^{2}(R^{d} : C^{N}) is
expressed as follows :

\Psi(t, \cdot)=l_{p}-d\mu_{t}(X)\exp\{\int_{0}^{t}V(X(s))ds\}g(X(0)) .

PROOF. H_{0} is a selfadjoint operator in L^{2}(R^{d},\cdot C^{N}) and V is a
bounded Borel measurable function on R^{d} . So by using Trotter’s product
formula, we have

\Psi(t, \cdot)=s-\lim_{narrow\infty}(e^{\frac{t}{n}V}U_{t/n}^{0})^{n}g . Put

\Phi(X)=\exp\{\int_{0}^{t}V(X(s))ds\} . Then \Phi belongs to S and we have

(T_{t}( \Phi))g=s-\lim_{narrow\infty}(T_{t}(\Phi_{(n)}))g=s-\lim_{narrow\infty}(e^{\frac{t}{n}V}U_{t/n}^{0})^{n}g .

So by using Theorem 2, we obtain the desired result. \square

REMARK 5. The special case of (4. 7) is the Dirac equation in four
space-time dimensions, which describes the motion of a spin 1/2 particle
with non-zero rest mass under the influence of an electrostatic potent\overline{l}al

V :

(4.8) \{

\partial_{t}\Phi(t, x)=[\Sigma_{k=1}^{3}\alpha_{k}\partial_{k}+i\alpha_{4}+iV(x)]\Phi

\Phi(0, x)=g(x)

where \alpha_{1} , \alpha_{2} , \alpha_{3} and \alpha_{4} are hermitian 4\cross 4 -matrices satisfying the anticom-
mutation relations; \alpha_{j}\alpha_{k}+\alpha_{k}\alpha_{j}=2\delta_{jk}I (j, k=1,2,3, 4) and V\in B(R^{3}) is a
real-valued function. Then Theorem 3 implies that there exists a
\mathfrak{L}(L^{2}(R^{3} ; C^{4})) -valued generalized vector measure \mu_{t} on \overline{X}_{t} such that the
solution \Phi(t, \cdot) of the Cauchy problem for the Dirac equaiton (4. 8) with
initial datum \Phi(0, \cdot)=g\in L^{2}(R^{3} ; C^{4}) is expressed as follows;

\Phi(t, \cdot)=4_{t}d\mu(x)\exp\{i\int_{0}^{t}V(X(s))ds\}g(X(0)) .
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