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§ 1. Introduction.

This paper concerns a path integral formula for the solution of the
Cauchy problem for a hyperbolic system. Let us begin by considering an
N X N hyperbolic system of the first order
D 4V 0 =[Tt PL+iQ+ VW x) 0<t<T, xR,
where 0<7T =<oo, and V (x) is a complex-valued bounded Borel measur-
able function and the P, 1</<d, and Q are constant hermitian N X N-
matrices. For the case that the P’s are simultaneously diagonalizable, T.
Ichinose made an elegant approach to the problem to obtain a path inte-
gral formula by constructing countably additive measures [3]. The Dirac
equation in two space-time dimensions is applied to this case. As for the
Dirac equation in four space-time dimensions, the P’s are not simultane-
ously diagonalizable. In this paper, we do not assume that the P’s are
simultaneously diagonalizable. In this general case, note that the Cauchy
problem for (1.1) is not L well-posed but only L2 well-posed.

Concerning the Feynman-Kac formula for the Schriodinger group, 1.
Kluvanek has shown a complete space of integrable functions by using a
seminorm[4]. In this paper, for hyperbolic systems we shall define the
space ® of integrable functions with respect to y, which is an extension of
tensor product spaces, where g, is an Q(L2(R%; C™))-valued generalized
vector measure on the space X, of Lipschitz continuous paths X : [0, t]—
R¢. However, g, is not countably additive. We shall show the construc-
tion of the integral of C"-valued functions on X, with respect to s,
where the integral of G(X)g(X(0)) [Ge® and geEL*(RY; C")] is a
limit of those of C"-valued simple functions. By this integral, we shall
establish the path integral formula

W )= [duX) expl [ VX () ds) g(X(0)),
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for the solution ¥ (¢ x) of the Cauchy problem for the hyperbolic system
(1.1) with initial datum ¥ (0, ) =g, which includes the Dirac equation in
four space-time dimensions. In §2, we shall explain some well-known
results about hyperbolic systems for later use. §3 is devoted to the study
of the tensor product space By,(X,:®, and a bounded linear operator
T of Brin(X,; ®,) into Q(L2(R%; C")), which is constructed by the fun-
damental solution of the Cauchy problem for (1.1) with V=0. We also

study the set of functions expressed as ®(X)=exp{ '/0. tV(X (s)) ds},

where V is a complex-valued bounded Borel measurable function on R“.
In § 4, we obtain main theorems (Theorems 2 and 3).

§ 2. The hyperbolic system of the first order.

Let 0< T =co and consider the Cauchy problem for the hyperbolic sys-
tem of the first order

2.1 {[at_ POV x)=1Q¥ (L x) 0<t<T, x&€R?
' w0, x)=g),
where ¢ and x=(x, -, x,) are regarded as time and space variables

respectively and the symbols 9,=9/d¢ and 9,=3d/0x, (1<[/=<d) are used,
W (t, x) is a C¥-valued function and the P, (1£/<d) and @ are constant
hermitian N X N-matrices.

%2‘{=1P181+Q is, considered as an operator in L2(R?; CV), essentially

selfadjoint on C 5(R%; C"). Let H, be its selfadjoint extension and
{U%cr be the Cy-group of unitary operators on L2(R¢; CV) with the
infinitesimal generator i¢H,. Then

tg=Y({, ) for gL*(R*; CY),

where ¥ (¢, +) is the solution of (2.1) with initial datum ¥ (0, <) =g.
For the solution ¥ of (2.1) with initial datum geC%(R?; CY), we
have the following equation

V(L0 =(Ut )0 = [ K(t;%99() dy 0<t<T, xR

by using the fundamental solution K (¢;x, v) of the Cauchy problem (2.
1). It is also known that there is a finite propagation speed v=0 such
that K (¢;x, y) vanishes outside the backward conoid I'*®, where

DN ={(s, y ) ERXR¥;0<s<t, ve(t—s)=|x—yl}
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and |x—y| is the Euclidean norm of x—y in R%
For te[0, T) fixed, let X,=Tl.qR® be the product of the uncounta-
bly many R“.

§ 3. Tensor product spaces.

Let B(R% be the space of complex-valued bounded Borel measurable
functions on R¢ For a finite partition A,: 0=4(<{<---<t,=t of the
interval [0, ¢], let B(X;;®., A,) denote the space of the complex-valued
functions ¥ on X, for which there exist functions f; , € B(R%) (=0,1, -,
n and £=1, ---, m) such that «

(3.D \I’<X>:<ZZI=LfO,k®"'®ﬁz,k) <X)
- 2?:1H$?=a7§',k<x (E))

equipped with 7-norm.

For ¥=7_.f0x®*®fn s, its 7-norm is defined as follows: |¥|,=inf
S I %0lf;kle, Where the infimum is taken over all representations of .
If A, is a refinement of A,, every Y€ B(X,; ®:, A,) belongs to B(X,;
R, Ap) and the r-norm of ¥ considered as an element of B(X;; ®x, A,)
is the same as that of B(X,; Qx, An).

Let B;»(X,; ®.) denote the space of functions ¥ on X, for which
there exists a finite partition A, of [0, #] such that Y& B(X;; &, Ay,
equipped with 7-norm. Let T,(A,) be a linear operator of B(X,; @z, An)
into the space Q(L*(R*; CY)) of bounded linear operators on L*(R%; C")
defined by

3.2) [T.(A0 (e® R ]g
=/ (/)kt,,f;l—l OAtn_l"' (/)mflU?xtl(ﬁ)g)
:an}'=n—1<Ugt,+,f;'> UOAt,(ﬁ)Q)

for ﬁ)@ """ ®ﬂEB<Xt s ®71-, An> and gEL2<Rd, CN>, Where Atj:tj_‘tj_l
G=1 -, n.

PROPOSITION 1.  For a finite partition A, : 0=4H<h<---<t,=t of [0,
t], T:(A,) is a bounded linear operator of B(X:; @, Ayn) into Q(LL*(R?;
CY)) such that

| T, (AP <[,
holds for YEB(X,; Qx, An).

ProoOF. For YeB(X,; X, A,), there is a representation ¥=37_,1 ,
®-Rfnx. Since UY is a unitary operator, we get |[7:(A,) (XF-ifox
R+ Qfn) 19l < 27 . klleo o,k llgll.  The above relation holds for any
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representation 2);i-1f0..&:--®fn.. of ¥, and so it holds
ICT:ADT) gl <[ lll 9112,

which implies the desired result. ]

LEMMA. Let 2051 f 0x®:Qf nr belong to B(X,; Rz, A, and 372,
90,1&Qgm,. belong to B(X,, @ru An).

If (S 0x® - ®f n,0) (X) = (212160, QQgm,) (XD holds for any X
€ X, then we have T ,(A)(ZiLif 0@ QF nx) =T (A ) (272,
Qo,z®"'®gm,l>-

PROOF. Let A, be a common refinement of A, and A,. Then both
2S00 Qf . and 272, g0, Q+--Qgm,, can be considered as elements of
B(X.; &=z, A;) by inserting the constant function 1. By the semigroup
property of U% and the property of tensor product space, we can obtain
the desired result. ]

Now we define an operator T, of Bs,(X,;®.) into Q(L*(R%*;C")) by
T.(¥)=T.(An) (¥) for YEB(X, ; R, Ay).

Then it is well-defined by Lemmal.

Let X, be the subset of those X in X, for which | X (s)—x(s)|<
v|s—s’| holds for any 0<s, s'<# where v is the positive, finite propaga-
tion speed of the solution of (2.1) and |X(s)—X(s")| is the Euclidean
norm of X (s)— X (s") in R®. Then we have

THEOREM 1. i) T, is a bounded linear operator of Brn(X:; ®z)
into QUL2(R?; C™)) such that

| e <%

holds for YEB,in( X, ; Rn).

ii) Suppose that ® is an element of B,(X,:®,) such that ® 5 =0.
Then T,(®)=0.

PROOF. i) [Proposition 1 and show this fact.
ii) It is obtained by (3.2) and the fact that K (¢;x, y) vanishes out-
side the backward conoid ', 0

PROPOSITION 2. Let G=g® - QRgn be an element of B(X,; Ru, An)
with Ay ; 0=6<4t,<--<ty,=t and put No={F =f,Q QMmEB(X,: Rz, An) ;
fil=g; for j=0, -, m}.

Suppose {Fo,=f,,Q---Qfnn} i a sequence of elements of N, such that

fio(x)= lnig}fj,n(xD
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exists for every x& R® and every j=0, ---, m.
If we put Fo=1,Q - Qfno, then we have

S-Li_{l;(Tt<Fn>>h: (Tt<FO>>h

for any heL?(R*; C™).

PROOF. Since F;, belongs to B(X;; ®g, An), T,(Fy) is defined. Put
bon=fon—Fo) b and by n=(f;n—f;,0[1%5-1(Us, fro) b for j=1,---, m and »
EN. Put ®,=2gh and ®,=2g,I1%-;., (U, fro)h for j=1,---, m. Then
|®,;/2(j=0, ---, m) is an integrable function on R? with |k, ,|<|®,| for nEN
and Lifghj,n (x)=0 almost everywhere. So by the Lebesgue dominated con-

vergence theorem, lim|\%;,.[:=0 (G=0, -, m). Then we get

ICT(FD)) h— (T (Fo)) k|,

:"<Tt (0,1 Q@ m,n) ) h— (T (fo0,0Q R m,0)) 1|2

= 2;'":0" [ Tt (ﬁ),n@' : '®f;’——l,n (j;',n “fj,o).ﬁ'n,c@' : '®fm,0) ] h”z
< oIl i1l o nlloll 25,

§2?=0H7=j+1”gl”w” hj,nuz

which converges to zero as n—»co. O]

Let B(X,; ®z, An)[resp. Byn(X:; ®:)] be the space of functions F
on X, such that there exists FEB(X,; ®x, An)[resp. Bsin(X:; ®x)] satis-
fying F(X)=F(X) for X€X,. For FEB,(X.; ®.), define T, by

(3.3) T.F=T,F, where FEB;,(X,:®,) is an extension of F. The
above definition is well-defined by ii).

REMARK 1. T, can also be considered as an operator of Bji,(X.;
®x) into QULA(R®; CM)).

Hereafter we shall consider X, instead of X,. Let S be the set of
those functions ® on X, for which there exists VEB(R%) satisfying

@(X):exp{/(;tV(X(s)) ds} for any X€ X,

which is well-defined for XX, and VeB(RY), since V(X (+)) is a
measurable function on [0, ¢].
For nEN, let A, ;0=4<t<--<t,=t be the partition of [0, ¢] such

that t;=-L ¢ for j=1,2, -, n. For ®€S, ie. @(X):exp{fV(X@) ds),
define the function ®,, on X, by
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(3.4) Q(n)(X)Eexp{Z‘f:lV(X(tj))—;} for XeX..

Then ®mEB(X,; Qx, A,). As for T,(®,), we have

PROPOSITION 3.  For ® & S, there exists s-im(T:(® »))g in L*(R?;
CY) for any geL*(R%; C").

PROOF. ®&S can be expressed as ®(X) :c.exp{/otV(X (s)) ds} with

ceR and Re V(x)<0 for any x& R Put H:H()Jr%V. Then Trotter’s

product formula shows that Tt(CIJ(,,))g:c-(e“rtzV %n)"g converges to cee!
g as n—oo, since {UY,cr and {e"S},cp are contraction semigroups on
L*(R*;CY). ]

By Proposition 3, we can extend 7, to an operator of S into Q(L*(R?;
C")) by

(3.5) (Tt®>g_=_S'Li_l:n[Tt<®(n)>]g for d=S

and for g L*(R%; CY). As for elements of S, we have

PROPOSITION 4. i) For V., V,eB(R*), put ®(X)=
expl [ Vi(X(s)ds} and WO =exp{ [ Va(X(D)ds). If Vi) = Vo)
holds almost everywhere, then we have (T,®)g=(T,V)g for any
gEL*(R*; CY).

i) Let \I’(X):exp{’/o‘tV(X(s))dS} be an element of S with

sup{Re V (x) : xR} =<0. Put

N\,,:{@(X):exp{ltU(X(s))ds}ES; \U|<| V|, Re UG) =0 for xER%.

Suppose {®,(X)=exp{ /(; tVn(X (s))ds)} is a sequence of elements of
Ny such that

exists for every xE R°.
Then by putting ©o(X) :exp{fOtVo(X (s))ds}
we have

=S and s-1im(T,(@,))g=(T:(®y))g

)
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for any geL*(R%; C").

PROOF. i) By the equation T,(® »)g=(e7" U?Y,)"g, we have
T,( @) g=T,(¥,)g for any nEN, since exp%Vl(x):exp%Vz(x) holds
almost everywhere. So we have the desired result.

ii) Put Hn:H(,wL%Vn for n&eN and H(m:Ho+~ll.—%. Then by the

proof of Proposition 3. (7,®,)g=¢e**°g and (T,®,)g=-e*"'g hold for ne
N. Since we have |e#|<1 and (A—H,) 'h—(A—Hy)'h as n—oo for
every heL*(R*; C") and A with Re 1>0, e*g—eotg holds for =0 [5
Theorem 4.2], which proves the proposition. O

§4. Generalized vector measures and path integrals.

Let Byin(X,; X.) be the completion of Bin(X:; ®,). Then by Theo-
rem 1, 7, can be extended to a continuous linear operator from the
Banach space Bsin(X:;®.) of complex functions on X, into Q(L*(R¢:
CY)). We shall associate with 7, an Q(L?(R%; C¥))-valued finitely addi-
tive vector measure u, on X, and determine integrable functions with
respect to y;.

We shall consider a field generated by subsets of X;. Let 8 be the set
of Borel subsets of R¢. For a partition A, ;0=4(<t,<---<t,=t of [0, ]
and B,e8(=0,1,-,n), put J(By, B, -, By;A)={XEX,; X(t)EB,
(G=0,1,---,m)}. Let ¥ be the set {/ (B, By, -, B,; A,) ; A, is a partition
of [0,¢], B,=®B} and § be the field generated by §. Let & be the space of
%-measurable finitely-valued numerical functions on X,. Then & is a sub-
space of Bin(X;; ®x).

We shall define the space of integrable functions with respect to u,
which includes S. For ®&S, we have defined the function ®.. To
define the corresponding function for a function on X., we shall introduce
a subset X, of X, defined as follows.

For neN. let A,:0=4L<#{,<--<t,=t be the partition of [0, ¢] such

that tj:% t for j=1,2, -, n. For X€X,, define X*= X, by

X5 ()=X(t) for t,<s<t G=1,+,n)

and X (0)=X(0).

Let X, be the subset of those X in X, for which either X € X, or there
exist X€ X, and #€ N such that Xz =X. For a function F on X,, define
the function F;, on X, by
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4.1) F,;(X)=F(X;3) for XeX,.

Since V(X (+)) is a measurable function on [0, ] for VEB(R% and X
X, a function ®=S [@(X):exp{AtV(X(s)) ds} with VeEeB(RY]

can be considered as a function ® on X, satisfying
=~ t =
@(X):exp{/o V(X(s) ds) for XEX,.

Let S be the space of such functions @ on )Z For ®=S, we have <I>(,Q—
<I><n), where ® ,, and CIDW are defined by (3.4) and (4.1). Let B/n(X:;
®,) be the space_of functions on Xt which are restrictions of elements of
B/n(X.; Q0 to X N

Let ® be the set of those functions ¥ on X, such that

Y, €EBsn(X:; ®.) for any nEN, and
s-lim T, (¥ ;) g exists for any g L?*(R*; C™).

n-oo

REMARK 2. T, can also be considered as an operator of Bfm(Xt,
®.) into QULAR?; CY)) such that T.F= T,(F|z) for FEBm(X:; X,
by (3.3) and Remark 1. 7, can also be considered as an operator of S
into Q(LA2(R?; C")).

DerFINITION 1. For J=J(B, B, -, B,; A,)ES, we shall define an
operator u,(J)EQ(L*(R*; CY)) by

4.2)  (uU)g=(T.(X,))g for gL*(R*; C"),

where X;=X;3,8X5,®---QX3, is the characteristic function of the set J.

Then p, is an Q(L*(R%; C"))-valued finitely additive vector measure
u: on & We shall construct the integral of a C"-valued function on X,
with respect to u;,. Put $0={/ (B, B, -, B,; A,)ES; By is relatively
compact}. We shall say that ® is a C"-valued S-simple function on X, if
there exist k€N, ;= C" and J;,€%, satisfying

kR _
; a;
Consider ¢X,€L*(R%; C") such that

— _(a for |x|<m
aXm(x)—{G for ||lx||>m ’

where g= C" and 0 is th zero element of C*.
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PROPOSITION 5.  For a CV-valued 3o-simple function ®=g X, on X,
with ] =J (By, By, -+, By ; A ESy and a< CV, we have

slimpe () (@Xn) = () (aXs) in LR C).

Proor. Since B, is relatively compact, ¢Xz,L*(R%; C"). By the
relation 1, (J) (aXn) = (J) (aXnXs,), We have

slimyee () (aXn) = () (@K, 0

DEFINITION 2. We shall define the integral of a C"-valued Jo-simple

k _ ~
function ®=3} «,X;, on X, with respect to y; by

Jj=1

4.3 [duO8X) =5 lim P m U (@Xn).

—ooj=1

By Proposition 5, (4.3) is well-defined. It is equal to jZ:}l/zt ) a; Xso,,
where J,=J (B{§, Bi, -+, Bj;A,), and belongs to L*(R*; C"). We have

PROPOSITION 6.  Suppose GES and g L*(R®; CV) is a simple func-
tion, 1i.e. ng‘,lij,, with b, C and g:ga : X¢, with a,€CY and rela-
twely compact C;&B. Then we have

40 [duOCGX ) =2 b uUDg= (TG,

Proor. OX)=G(X)g(X(0)) is a C¥-valued Jy-simple function on
X., since we have X;(X)aXc(X(0))=aX;.c(X), where J-C=] (B, B,
ttt, Bn ; An>° C E]<Bom C; Bl, Tty Bn ; An> By the relation ﬂt(] © C)
(aX)=p:J)(aXce), (4.2) and (4.3), we have

[ OGO 9(X )= 531U (aXe)
=3 b mUDg=(TG)g 0

As for convergence of the integral of {G,®»} with respect to u, for G,
€& and a simple function ®,=L2(R%; C"), we have the following

PROPOSITION 7. Let {G,} be a sequence in & such that lim | G,—

n,m-—oo

Gnlz=0 and {®,} be a sequence of simple functions in L*(R®; C") such
that |®,|<|g| with g L*(R*; CV) and 1im®,(x) exists almost everywhere.

n-oo

Then therve exists a subsequence {®;n} of {®.} such that
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s-lrlifn | A (X)) Gp(X)®j) (X (0)) exists.
Moreover, for any subsequence {®.n} of {®,},
£dﬂt(X>Gn<X>®k(n)<X<0>> converges to the same element as n—co if its

limit exists.

ProOOF. Put 4(x)=1im®,(x) a.e. Then for any #EN, we have

s-1im(T:.G)®,= (TG h by the Lebesgue dominated convergence theorem.

Let {®;)} be a subsequence of {®,} such that |(T.G,)®;mn— (T.G) k|<1/n
for any nEN. By we have | T,(G)®,— T,(Gn)®;| < Gy — G|
|@,| |G — Gl =+ |gll for any jEN. So by the relation (4.4), there exists

s-lim | dpe (X)) G (XD @y (X (0)).
By the relation lim |Gy— Galz=0, there exists FE B, (X, : ®,,) such
that lim | G.—F |,=0. Then for any subsequence {® x(n} of {® .},

S-Lim | dpte (X)) Gu( X)) Py (X (0)) is equal to (T,F)g if its limit exists. [

As a consequence, we have

COROLLARY. For FEBﬁ,,()Z;@n) and gELZCRd;CN), theve exist
a sequence {G,} in © and a sequence {®,} of simple functions in L*(R?;
C") satisfying

1) lim|Ga— Flgle=0

i) g =Ilim®,(x) a.e.

i) 1im [ due (X G (O@(X (0)) exists.

Moreover, s-lim | d p:(X) G, (X)® (X (0)) is the same for any sequences

n—o00 f

(G} and {®,} satisfving i)~iii).

DEFINITION 3. i) For FEB(X,; ®,) and g=L*(R*; C), there
exist a sequence {G,} in & and a sequence {® ,} of simple functions in
L*(R*; C") satisfying the condition i)~iii) in Corollary to Proposition 7.
So we shall define the integral of the function F(X)g(X(0)) on X, with
respect to yu; by

45 [aunXOFXgXO)=slim [du(X)Gu(X)B(X 0.

ii) For Y@, its integral is defined by
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e [duCOVCOGX O =slim [du (X)X g(X )

for any g L?(R?; CM).
The above definitions are well-defined by the defintion of & and Corol-
lary to [Proposition 7.

DEFINITION 4. Let & be the linear span of By, ()‘Z &%, and §. We
shall call the members of & to be integrable functions with respect to .

REMARK 3. For @S ie. ®(X)=exp{[ V(X(s)) ds}, Lim®em(X)
0 n-oo

=®(X) does not necessarily hold for X e X, if V(x) is not Riemann inte-
grable, but @ belongs to @.

Though 4, is not countably additive, we have constructed the integral
of C¥-valued functions on X, with respect to u: and it has the property of
some kind of a dominated convergence theorem as shown in the following
proposition 8. So we shall call y, a generalized vector wmeasure on X,.
By a generalized measure we mean a measure which is not necessarily
countably additive but has some more property than a merely finitely addi-

tive measure.

THEOREM 2.  There exist a Q(L*(R?; C))-valued generalized vector
measure p; on F which represents T, in the sense that

i) </1t(]>>g:(Tt<Xj>>g
for J=J(Bo, By, -, Bs; A)ES and g€ L*(R*.C"), where X ;=X s,
XX, Q- QX3, is the characteristic function of the set J.

ii) For FE®(=the space of integrable functions), and g L*(R?®;
CY), there is a sequence {8®,} of C™-valued J,-simple functions on X, such
that

famCOFCOgX @) =5lim [ du(X)0,(X.

iii) FEvery \IIEBfm(}Z @)U S is an integrable function with respect
to p. and

(TW)g= [ du(XOW(X)g(X (0)) holds

for any g L*(R®; CM).
iv) For J=]J(Bo, By, ", By; A DEY, m(BoX--XB,)=0 implies
w:(J) =0, where m is the Lebesgue measure.

PrROOF. i) follows from the definition of ..
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ii) For FEBﬁn()z;@),,), put F=Fl|;z. Let geL*(R*;C"). Then
by (4.5), there exist a sequence {G,} in & such that lim|G,— F|,=0 and a

sequence {®,} of simple functions in L2(R?¢; C") satisfying
[ OF 0O X @) =s5lim [ du(X)GuXO@(X O).

Put 0,(X)=G,(X)®,(X(0)) for any X&X,. Then {®,) is a desired
sequence of C¥-valued S,-simple functions on X,.

For ®=@, @; belongs to Bi.(X,;®.). So the above statement
shows that there exists a C¥-valued Sp-simple function ®, on X; such that

| duee (X5, (X9 (X 0= [ dpee (X8, XN L
By using th definition (4.6), we have
[ X080 g(X @) =5lim [ due(X)8,0X0.

iii) follows from (3.3), (3.5), (4.2), (4.5), (4.6) and Remarks 1
and 2.

iv) For J=J(By, B, ,B,;A )EY, m(ByX---XB,)=0 implies
(T, (A,) Xp,RX5,Q-QX5,))g=0 for any g=L?(R?; C") by the definition
of T;. So p.(J)=0. []

The generalized measure y; defined above is not countably additive,
but Propositions 2 and 4 show that it has the property of some kind of a
dominated convergence theorem as shown in the following.

PROPOSITION 8. Let G=go®--Qgn be an element of B(X.; Rz, An)
With A 0=t<h<--<ty=t and put Ne={F=£R - Qf.=B(X.; Dnx,
An) il g; for j=0, -, m}.

Suppose {Fp=1on@---Qfn.n} s a sequence of elements of N; such that

fio(x)=1limf; .(x)

n—oo

exists for every x& R? and every j=0, -+, m.
If we put Fo=foQ: - Qfno, then we have

s-im- | due (XD Fa (XD R(X(0)) :’édﬂtCX)FO(X)h(X(O))

for any heL*(R%; C™).

PROPOSITION 9.  Let \I'(X)zexp{j;tV(X(s))ds} be an element of S
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with sup {Re V(x): x€RV=0. Put Ny={®(X)=exp| A ‘U ()ds)e
S; UV, Re Ux) =0 for x&€ R%}.

Suppose {(I),,(X):exp{ltVn(X(s))ds}} is a sequence of elements of
Ny such that

Vo(x)=1im V,(x)

n—oo
exists for every x& R°.

Then by putting CDO(x):exp{ﬁtVo(X(s))ds}

we have

stim [ du (X)X g(X )= [[d (X)X g(X 0))

for any g L*(R*; CV).

REMARK 4. [Proposition 8 shows that p, has the property of some
kind of the dominated convergence theorem, but it is not countably addi-
tive on the o-field generated by the &, ={/ €% ;/={/ (B, B, -+, Bn; Ap);
B,e®B}, m=1,2,---. Let K;CR®* (j=1,2,---, m) be compact and put K =
Kpx--xXKy. If y, is restricted to C2(K)={f€C>(R*™*"V) ; supp fCK},
it has a kind of countable additivity as shown in the following. Since
C2(K;) (j=0,1,---,m) is a nuclear space [6, p.530], the 7- and ¢- tensor
product topologies coincide: C?(Km)®';:'®C°g(K0) :C?(K,,,)®':®C°3(Ko)
=C%(K). By this fact, for f, g=L?*(R?; C") fixed, there exist regular
measures {v7™%; |¢|=N(m)} on K [2, p.344] such that

& Teaw) (F)9>= [ Saenmd*F @) dyre(x)

holds for FeC%(K). In this case, the countable additive measure p7¢
does not act on F but on the partial derivative §°F with |¢|=N (m). If
the set {N (m); m&e N} is bounded, the countable additive measure p7¢
may be extended to a finitely additive measure on ¥, but the author is not
sure about its boundedness.

Now we consider the hyperbolic system of the first order

Sy, m=[2t, Plaixlwm V1w, 2

4.7 0<t<T, x&R*

V0, x)=gx),
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where V is a complex-valued bounded Borel measurable function on R?.
By theorem 2, T, may be regarded as a Q(L?(R%; C"))-valued gener-
alized vector measure x, on X, and so we have the following theorem.

THEOREM 3.  There exists a QUL (R ; CV))-valued generalized vector
measure p, on X such that the solution ¥ (t, +) of the Cauchy problem for
the hyperbolic system (4.7) with initial datum ¥(0,«)=g=L*(R*; C") s
expressed as follows ;

Yt = [du (XD expl [ VX () ds} g(X O,

PrRoOF. H, is a selfadjoint operator in L?(R?*;CY) and V is a
bounded Borel measurable function on R¢ So by using Trotter’s product
formula, we have

W(t ) =s-lim(ex'U%)". Put

n—oo

o(X) :exp{_[V(X (s)) ds}. Then ® belongs to S and we have

(To(®)g=slm(T,(@u))g=slim(ex' UL)"g.

So by using [Theorem 2, we obtain the desired result. O

REMARK 5. The special case of (4.7) is the Dirac equation in four
space-time dimensions, which describes the motion of a spin 1/2 particle

with non-zero rest mass under the influence of an electrostatic potential
| &

4.8) {atq)(t, x):[2k=1ak3k+ia4+iV(x)]®

@0, x)=gx)

where a1, @, as and @, are hermitian 4 X 4-matrices satisfying the anticom-
mutation relations; a;ax+ ax; =281 G, k=1,2,3,4) and VEB(R? is a
real-valued function. Then implies that there exists a
Q(L2(R®; CY)-valued generalized vector measure y, on X, such that the
solution ®(¢, «) of the Cauchy problem for the Dirac equaiton (4.8) with
initial datum ®(0, «-)=g=L*(R?; C*) is expressed as follows;

ot -)=£du(x) exp{z‘fw){(s)) ds} g(X (0)).
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for introducing her to the concept of Feynman’s path integral and for
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this paper.
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