Structure and commutativity of rings with constraints involving a commutative subset

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Hiroaki KOMATSU, Hisao TOMINAGA and Adil YAQUB (Received November 27, 1987, Revised January 26, 1988)

Throughout, R will represent a ring with center C, N the set of nilpotent elements in R, N^* the subset of N consisting of all x with $x^2=0$. Given a positive integer n, we set $E_n = \{x \in R | x^n = x\}$; in particular, $E = E_2$. For $x, y \in R$, define extended commutators $[x, y]_k$ as follows: let $[x, y]_1$ be the usual commutator [x, y] = xy - yx, and proceed inductively $[x, y]_k = [[x, y]_{k-1}, y]$.

A ring *R* is called *nearly commutative* if *R* has no factorsubrings isomorphic to $M_{\sigma}(K) = \{ \begin{pmatrix} \alpha & \beta \\ 0 & \sigma(\alpha) \end{pmatrix} | \alpha, \beta \in K \}$, where *K* is a finite field and σ is a non-trivial automorphism of *K*. Needless to say, every commutative ring is nearly commutative; every subring and every homomorphic image of a nearly commutative ring are nearly commutative. Following [2], *R* is called *s*-unital if for each *x* in *R*, $x \in Rx \cap xR$. As stated in [2], if *R* is an *s*-unital ring then for any finite subset *F* of *R* there exists an element *e* in *R* such that ex = xe = x for all $x \in F$. Such an element *e* will be called a *pseudo-identity* of *F*.

Now, let A be a non-empty subset of R, and l a positive integer. We consider the following conditions:

- (I'-A) For each $x \in R$, either $x \in C$ or there exists a polynomial f(t)in $\mathbf{Z}[t]$ such that $x - x^2 f(x) \in A$.
- (II'-A) If $x, y \in R$ and $x-y \in A$, then either $x^m = y^m$ with some positive integer m or both x and y belong to the centralizer $C_R(A)$ of A in R.
- (II-A)_l If $x, y \in R$ and $x-y \in A$, then either $x^{l}=y^{l}$ or x and y both belong to $C_{R}(A)$.
- (ii-A)' For each $x \in R$ and $a \in A$, there exists a positive integer *m*, depending on *x* and *a*, such that $[a, x^m] = 0$.
- $(\text{ii-}A)'_{l}$ [a, x^{l}]=0 for all $x \in R$ and $a \in A$.
- (ii-A)* For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that $[a, x^m]_k = 0$.

- (ii-A)^{*}_(l) For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that (m, l) = 1 and $[a, x^m]_k = 0$.
- $(jj-A)^*$ For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that $[(x+a)^m, x^m]_k = 0$.
- $(jj-A)_l^*$ For each $x \in R$ and $a \in A$, there exists a positive integer k, depending on x and a, such that $[(x+a)^l, x^l]_k = 0$.
- (III-A)* For each $x \in R$ and $a \in A$, there exist positive integers k, m and n, each depending on x and a, such that (m, n) = 1 and $[a, x^m]_k = [a, x^n]_k = 0$.
- (III-A)* For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that $[a, x^m]_k = 0$ and x = x' + x'' with some $x' \in E_m$ and $x'' \in N$.
- $(JJJ-A)^*$ For each $x \in R$ and $a \in A$, there exist positive integers k, m and n, each depending on x and a, such that (m, n) = 1 and $[(x+a)^m, x^m]_k = [(x+a)^n, x^n]_k = 0.$
- $(A)'_{l}$ If $a, b \in A$ and l[a, b] = 0, then [a, b] = 0.

$$(A)_l^*$$
 If $x \in R$, $a \in A$ and $l[a, x] = 0$, then $[a, x] = 0$.

Our present objective is to prove the following commutativity theorem, which improves several early results obtained in [3, 4, 5 and 6]. (Note that the conditions $(ii-A)'_{l}$ and $(III-A)^*$ are denoted as $(ii-A)^*_{l}$ and (III^*-A) in [6] and [3], respectively.)

THEOREM 1. The following conditions are equivalent:

1) R is commutative.

2) R is nearly commutative and there exists a commutative subset A of R for which R satisfies (I'-A) and (II'-A).

3) There exists a commutative subset A of R for which R satisfies (I'-A), (II'-A) and $(III-A)^*$.

4) There exists a commutative subset A of R for which R satisfies (I'-A), (II'-A) and $(III-A)^*$.

5) There exists a commutative subset A of R for which R satisfies (I'-A), (II'-A) and $(JJJ-A)^*$.

6) There exists a commutative subset A of R and a positive integer n for which R satisfies (I'-A), (II'-A), $(jj-A)_n^*$ and $(A)_{n!}^*$.

7) There exists a commutative subset A of N for which R satisfies (I'-A) and $(III-A)^*$.

8) There exists a commutative subset A of N for which R satisfies (I'-A) and $(III-A)^*$.

9) There exists a commutative subset A of N for which R satisfies (I'-A) and $(JJJ-A)^*$.

10) There exists a commutative subset A of N and a positive integer n for which R satisfies (I'-A), $(jj-A)_n^*$ and $(A)_{n!}^*$.

In preparation for proving our theorem, we state the following lemmas.

LEMMA 1. (1) If R satisfies (I'-C), then R is commutative.

(2) If R satisfies (I'-A), then $N \subseteq A^+ + C$ and $N^* \subseteq A \cup C$, where A^+ is the additive subsemigroup of R generated by A.

(3) Suppose R satisfies (I'-A). If R satisfies one of the conditions (II'-A), (ii-A)* and (jj-A)*, then R is normal, that is, $E \subseteq C$.

(4) If A is commutative and R satisfies (I'-A), then N is a commutative nil ideal containing the commutator ideal of R and is contained in $C_R(A)$, and therefore N[A, R] = [A, R]N = 0 and $[A, R] \subseteq A \cup C$.

(5) Let R be a subdirectly irreducible ring. If A is a commutative subset of R (resp. N) for which R satisfies (I'-A) and (II'-A) (resp. (I'-A) and (ii-A)* (or (jj-A)*)), and x is an element in $R \setminus C_R(A)$, then x is invertible and $\langle x \rangle$ is a finite local ring.

(6) If A is a commutative subset of R (resp. N) for which R satisfies (I'-A), (II'-A) and $(jj-A)_n^*$ (resp. (I'-A) and $(jj-A)_n^*$), then R satisfies $(ii-A)'_n$.

(7) If A is a commutative subset of R (resp. N) for which R satisfies (I'-A), (II'-A) and $(JJJ-A)^*$ (resp. (I'-A) and $(JJJ-A)^*$), then R satisfies $(III-A)^*$.

PROOF. (1) This is a well-known theorem of Herstein (see [1]).

(2) See [4, Lemma 1 (2)].

(3) See, e.g., the proofs of [4, Lemma 1 (4)] and [3, Lemma (4)].

(4) See [4, Lemma 1 (5)].

(5) By (3), R is normal. Choose $a \in A$ such that $[a, x] \neq 0$. By (I'-A) and (II'-A) (resp. (I'-A) and $A \subseteq N$), $x^m = x^{2m}f(x)$ with some $f(t) \in \mathbb{Z}[t]$ and $m \ge 1$. Since N is contained in $C_R(A)$ by (4), x is not in N, and so $x^m f(x)$ is a non-zero central idempotent. Hence we see that $x^m f(x)=1$ and $x^{-1} \in \langle x \rangle$. Replacing x by x^{-1} , we get $x \in \langle x^{-1} \rangle$, and so g(x)=0 with some monic polynomial g(t) in $\mathbb{Z}[t]$. This implies that the additive group of $\langle x \rangle$ is finitely generated. Since a cannot commute with both 2x and 3x, there exists an integer h > 1 such that $[a, hx] \neq 0$. Then, by the above observation, we get $h^{-1} = (hx)^{-1}x \in \langle hx \rangle x \subseteq \langle x \rangle$. Noting that the additive group of $\langle x \rangle$ is Noetherian, we can easily see that $h^{-s}(\mathbb{Z} \cdot 1) = h^{-(s+1)}(\mathbb{Z} \cdot 1)$ with some positive integer s. Hence $h\mathbb{Z} \cdot 1 = \mathbb{Z} \cdot 1$, which implies that $\langle x \rangle$ is a finite local ring.

(6) Let $x \in R$ and $a \in A$. By (4), $[A, R]^2 = 0$ and $[A, R] \subseteq A \cup C$. Hence, by $(jj \cdot A)_n^*$, there exists a positive integer k such that

$$[a, x^{n}]_{k+1} = [\sum_{i=0}^{n-1} x^{i} [a, x] x^{n-1-i}, x^{n}]_{k} = [(x+[a, x])^{n}, x^{n}]_{k} = 0.$$

Now, in order to see that $[a, x^n] = 0$, we may assume that R is subdirectly irreducible. Suppose, to the contrary, that $[a, x^n] \neq 0$. Then, by (5), $\langle \overline{x} \rangle = GF(q)$ with some q > 1, where $\overline{x} = x + N$. Since both qx and $x^{nq} - x^n$ are in N and $[a, x^n]_{k-1} \in A \cup C$ (by (4)), $[[[a, x^n]_{k-1}, x^n], x^n] = [a, x^n]_{k+1} = 0$ together with (4) implies that

$$[a, x^{n}]_{k} = [[a, x^{n}]_{k-1}, x^{n}] = [[a, x^{n}]_{k-1}, x^{nq}] = qx^{n(q-1)}[a, x^{n}]_{k} = 0.$$

Repeating the same procedure, we obtain eventually a contradiction $[a, x^n] = 0$.

(7) By making use of the same argument as in the proof of (6), we can easily see that for each $x \in R$ and $a \in A$, there exist positive integers m, n such that (m, n)=1 and $[a, x^m]=[a, x^n]=0$; in particular, R satisfies (III-A)*.

LEMMA 2. Let R be a non-commutative, subdirectly irreducible ring. Let A be a commutative subset of R (resp. N) for which R satisfies (I'-A) and (II'-A) (resp. (I'-A) and (ii-A)*). If $R = \langle a, x \rangle$ with some $x \in R$ and $a \in A$, then there exists a finite field K with a non-trivial automorphism σ such that $M_{\sigma}(K)$ is homomorphic to a subring of R which meets A.

Let $u = [a, x] (\neq 0)$. Then x is invertible and $\langle x \rangle$ is a finite PROOF. local ring with radical $M = \langle x \rangle \cap N$ nilpotent (Lemma 1 (5)). According to Lemma 1 (4), N is a commutative nil ideal containing the commutator ideal of R with [A, N] = 0, $M \subseteq C$, $\{(u)\}^2 = 0$, and $M \cdot (u) = 0$. Obviously, *M* is an ideal of $S = \langle x, u \rangle = \langle x \rangle + \langle x \rangle u \langle x \rangle$. Let $K = \langle x \rangle / M \simeq GF(q)$, where $q = p^e$ (p a prime and e > 0). Then $\overline{S} = S/M = K \oplus K \overline{u} K$. We claim that $[\overline{u}, \overline{x}] \neq 0$. Actually, if $[\overline{u}, \overline{x}] = 0$, then $[u, x] \in M \subseteq C$. Since both qx and $x^q - x$ are in $M(\subseteq C)$, we see that $[u, x] = [u, x^q] = qx^{q-1}[u, x]$ $\in M \cdot (u) = 0$, and so $u = [a, x] = [a, x^q] = qx^{q-1}[a, x] \in M \cdot (u) = 0$. This is a contradiction. Now, as is well-known, $K \bigotimes_{GF(p)} K$ is the direct sum of e fields isomorphic to K. This enables us to see that $K\overline{u}K = (K \bigotimes_{GF(p)} K)\overline{u}$ $=K\overline{u_1}\oplus\cdots\oplus K\overline{u_{e'}}$, where $K\overline{u_i}=\overline{u_i}K$ $(1 \le i \le e' \le e)$. Since $[\overline{u}, \overline{x_i}] \ne 0$, we may assume that $[\overline{u_1}, \overline{x}] \neq 0$, and therefore $u_1 \in A$ (Lemma 1 (2)). Then there exists a non-trivial automorphism σ of K such that the subring K $\oplus K\overline{u_1}$ of \overline{S} is isomorphic to $M_{\sigma}(K)$.

LEMMA 3. Let $R = M_{\sigma}(K)$, where K is a finite field with a nontrivial automorphism σ . Let A be a subset of R for which R satisfies (I'-A). Then R satisfies neither (III-A)* nor (III-A)*.

PROOF. Choose $\gamma \in K$ with $\sigma(\gamma) \neq \gamma$, and put $x = \begin{pmatrix} \gamma & 0 \\ 0 & \sigma(\gamma) \end{pmatrix}$, $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Since $[a, x] \neq 0$ and $a^2 = 0$, a belongs to A, by Lemma 1 (2). First, suppose that R satisfies (III-A)*. Then there exist positive integers m, n and k such that (m, n) = 1 and $[a, x^m]_k = 0 = [a, x^n]_k$. Then one can easily see that $[a, x^m] = 0 = [a, x^n]$. Since (m, n) = 1 and x is invertible, this forces a contradiction [a, x] = 0. Next, suppose that R satisfies (III-A)*. Then we can easily see that there exists a positive integer m such that $[a, x^m] = 0$ and $x^m = x$, which forces again a contradiction [a, x] = 0.

We are now ready to complete the proof of Theorem 1.

PROOF OF THEOREM 1. Obviously, 1) implies 2)-10).

2) \Rightarrow 1). According to Lemma 1 (1), it suffices to show that $A \subseteq C$. Suppose, to the contrary, that $[a, x] \neq 0$ for some $x \in R$ and $a \in A$. Choose an ideal I of $\langle a, x \rangle$ which is maximal with respect to excluding [a, x]. Then $S^* = \langle a, x \rangle / I$ is a subdirectly irreducible ring whose heart is $([a^*, x^*])$, where $x^* = x + I$. Obviously, S^* is nearly commutative and satisfies $(I' - B^*)$ and $(II' - B^*)$, where $B = A \cap \langle a, x \rangle$. But this contradicts Lemma 2.

3) (resp. 7)) \Rightarrow 1). Again, suppose that $[a, x] \neq 0$ for some $x \in R$ and $a \in A$, and consider the same S^* as in the proof of 2) \Rightarrow 1). Then, by Lemma 2, there exists a finite field K with a non-trivial automorphism σ such that $M_{\sigma}(K)$ is homomorphic to a subring of S^* which meets B^* . Obviously, $M_{\sigma}(K)$ satisfies (I'-U) and $(III-U)^*$ for some subset U. But this contradicts Lemma 3. We have thus seen that $A \subseteq C$. Hence R is commutative, by Lemma 1 (1).

4) (resp. 8)) \Rightarrow 1). The proof is quite similar to the above.

5) (resp. 9)) \Rightarrow 3) (resp. 7)). By Lemma 1 (7).

6) (resp. 10)) \Rightarrow 1). Let σ be a homomorphism of R onto a subdirectly irreducible ring R'. Then R' satisfies $(I' \cdot \sigma(A))$ and $(jj \cdot \sigma(A))_n^*$. We claim that for each $x' \in R'$ and $a' \in \sigma(A)$

$$\sum_{j=1}^{n-1} i^{j} \binom{n}{j} [a', x'^{j}] = 0 \quad (i = 1, 2, ..., n-1).$$

Actually, in case R' is commutative, there is nothing to prove. If R' is not commutative then R' has an identity element 1' and satisfies $(ii - \sigma(A))'_n$ (Lemma 1 (1), (5) and (6)), and therefore

$$\sum_{j=1}^{n-1} i^{j} \binom{n}{j} [a', x'^{j}] = [a', (1'+ix')^{n}] - [a', (ix')^{n}] = 0.$$

We have thus seen that for each $x \in R$ and $a \in A$

$$in[a, x] + i^{2} \binom{n}{2} [a, x^{2}] + ... + i^{n-1} n[a, x^{n-1}] = 0 \ (i=1, 2, ..., n-1),$$

and the usual Vandermonde determinant argument shows, in view of $(A)_{n_1}^*$, that [a, x] = 0. Hence $A \subseteq C$, and R is commutative by Lemma 1 (1).

COROLLARY 1. Let R be an s-unital ring. Then the following conditions are equivalent:

1) R is commutative.

2) There exists a subset A of R and a positive integer n for which R satisfies (I'-A), $(II-A)_n$, $(ii-A)_{(n)}^*$ and $(A)'_n$.

3) There exists a subset A of N and a positive integer n for which R satisfies (I'-A), $(ii-A)'_n$, $(ii-A)'_{(n)}$ and $(A)'_n$.

PROOF. Obviously, 1) implies 2) and 3).

2) (resp. 3)) \Rightarrow 1). By [4, Lemma 1 (3)], (II-A)_n implies (ii-A)'_n. Hence, in view of Theorem 1, it suffices to show that if R satisfies (I'-A), (II-A)_n (resp. (ii-A)'_n) and (A)'_n then A is commutative. Suppose now that there exist $a, b \in A$ such that $[a, b] \neq 0$. Then, by (II-A)_n (resp. $A \subseteq N$), a is nilpotent. Let k(>1) be the least positive integer such that $[a^i, b] = 0$ for all $i \ge k$, and let e be a pseudo-identity of $\{a, b\}$. Then $n[a^{k-1}, b] = [(e+a^{k-1})^n, b] = 0$, by (ii-A)'_n. According to (I'-A), there exists $f(t) \in \mathbb{Z}[t]$ such that

 $a^{k-1} - a^{2(k-1)} f(a^{k-1}) \in A.$

Then $n[a^{k-1}-a^{2(k-1)}f(a^{k-1}), b]=0$, which together with $(A)'_n$ implies that

$$[a^{k-1}, b] = [a^{k-1} - a^{2(k-1)}f(a^{k-1}), b] = 0.$$

But this contradicts the minimality of k. Hence A has to be commutative.

REMARK 1. Let
$$R = \left\{ \begin{bmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{bmatrix} \mid a, b, c \in GF(4) \right\}$$
. Obviously, N is

commutative and *R* satisfies (I'-N), $(jj-N)_3^*$ and $(N)_3^*$. But *R* is not commutative. This shows that, in the statement 10) in Theorem 1, $(A)_{n!}^*$ cannot be replaced by $(A)_n^*$.

References

- [1] I. N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871.
- [2] Y. HIRANO, M. HONGAN and H. TOMINAGA: Commutativity theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65-72.
- [3] H. TOMINAGA: A commutativity theorem for rings with constraints involving a commutative subset, Math. Japonica 33 (1988), 809-811.
- [4] H. TOMINAGA and A. YAQUB: Some commutativity properties for rings, Math. J. Okayama Univ. 25 (1983), 81-86.
- [5] H. TOMINAGA and A. YAQUB: Some commutativity properties for rings. II, Math. J. Okayama Univ. 25 (1983), 173-179.
- [6] H. TOMINAGA and A. YAQUB: Commutativity theorems for rings with a commutative subset or a nil subset, Math. J. Okayama Univ. 26 (1984), 119-124.

Okayama University Okayama University University of California