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Throughout, R will represent a ring with center C, N the set of
nilpotent elements in R, N^{*} the subset of N consisting of all x with x^{2}=0 .
Given a positive integer n , we set E_{n}=\{x\in R|x^{n}=x\} ; in particular, E=E_{2} .
For x, y\in R , define extended commutators [x, y]_{k} as follows: let [x, y]_{1}

be the usual commutator [x, y]=xy-yx, and proceed inductively [x, y]_{k}=

[[x, y]_{k-1} , y] .
A ring R is called nearly commutative if R has no factorsubrings

isomorphic to M_{\sigma}(K)=\{(\begin{array}{ll}\alpha \beta 0 \sigma(\alpha)\end{array})|\alpha, \beta\in K\} , where K is a finite field and \sigma

is a non-trivial automorphism of K. Needless to say, every commutative
ring is nearly commutative: every subring and every homomorphic image
of a nearly commutative ring are nearly commutative. Following [2], R
is called s-unital if for each x in R, x\in Rx\cap xR . As stated in [2], if R is
an s-unital ring then for any finite subset F of R there exists an element e
in R such that ex=xe=x for all x\in F. Such an element e will be called a
pseudO-identity of F.

Now, let A be a non-empty subset of R, and l a positive integer. We
consider the following conditions:

(I’- A) For each x\in R , either x\in C or there exists a polynomial f(t)
in Z[ t] such that x-x^{2}f(x)\in A .

(II’- A) If x, y\in R and x-y\in A , then either x^{m}=y^{m} with some positive
integer m or both x and y belong to the centralizer C_{R}(A) of A
in R.

(II- A)_{l} If x, y\in R and x-y\in A , then either x^{l}=y^{t} or x and y both
belong to C_{R}(A) .

(ii-A)’ For each x\in R and a\in A , there exists a positive integer m , de-
pending on x and a, such that [a, x^{m}]=0 .

(ii- A)_{l}’ [a, x^{t}]=0 for all x\in R and a\in A .
(ii -A)* For each x\in R and a\in A , there exist positive integers k and m ,

each depending on x and a, such that [a, x^{m}]_{k}=0 .
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(ii- A)_{(t)}^{*} For each x\in R and a\in A , there exist positive integers k and m ,
each depending on x and a, such that (m, l)=1 and [a, x^{m}]_{k}=0 .

(jj-A) * For each x\in R and a\in A , there exist positive integers k and m ,
each depending on x and a, such that [(x+a)^{m}, x^{m}]_{k}=0 .

0^{\cdot}j- A)_{t}^{*} For each x\in R and a\in A , there exists a positive integer k , de-
pending on x and a , such that [(x+a)^{l}, x^{t}]_{k}=0 .

(III-A) * For each x\in R and a\in A , there exist positive integers k, m and
n , each depending on x and a, such that (m, n)=1 and
[a, x^{m}]_{k}=[a, x^{n}]_{k}=0 .

(III-A) \# For each x\in R and a\in A , there exist positive integers k and m ,
each depending on x and a, such that [a, x^{m}]_{k}=0 and x=x’+x’
with some x’\in E_{m} and x’\in N.

(JJJ-A) * For each x\in R and a\in A , there exist positive integers k, m and
n , each depending on x and a , such that ( m, n)=1 and
[(x+a)^{m}, x^{m}]_{k}=[(x+a)^{n}, x^{n}]_{k}=0 .

(A)_{\acute{t}} If a, b\in A and l[a, b]=0, then [a, b]=0.
(A) l* If x\in R, a\in A and l[a, x]=0 , then [a, x]=0 .

Our present objective is to prove the following commutativity the0-
rem, whichh improves several early results obtained in [3, 4, 5 and 6].
(Note that the conditions (ii- A)_{\acute{l}} and (III-A)* are denoted as (ii- A)_{l}^{*} and
(III*-A) in [6] and [3], respectively.)

THEOREM 1. The following conditions are equivalent:
1) R is commutative.
2) R is nearly commutative and there exists a commutative subset A

of R for which R satisfifies (I’- A) and (II’- A) .
3) There exists a commutative subset A of R for which R satisfifies

(I’- A) , (II’- A) and (III-A) *.
4) There exists a commutative subset A of R for which R satisfifies

(I’- A) , (II’- A) and (III-A) \# .
5) There exists a commutative subset A of R for which R satisfifies

(I’- A) , (II’- A) and (JJJ-A) *.
6) There exists a commutative subset A of R and a positive integer n

for which R satisfifies (I’- A) , (II’- A) , (jj- A)_{n}^{*} and (A)_{n^{1}}^{*} .
7) There exists a commutative subset A of N for which R satisfifies

(I’- A) and (III-A )^{*}r

8) There exists a commutative subset A of N for which R satisfifies
(I’- A) and (III-A) \#

9) There exists a commutative subset A of N for which R satisfifies
(I’- A) and (JJJ-A) *.
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10) There exists a commutative subset A of N and a positive integer
n for which R satisfifies (I’- A) , \circ\cdot j- A)_{n}^{*} and (A)_{n^{1}}^{*} .

In preparation for proving our theorem, we state the following lem-
mas .

LEMMA 1. (1) If R satisfifies (I’- C) , then R is commutative.
(2) If R satisfifies (I’- A) , then N\subseteq A^{+}+C and N^{*}\subseteq A\cup C, where A^{+}

is the additive subsemigroup of R generated by A .
(3) Suppose R satisfifies (I’- A) . If R satisfifies one of the conditions

(II’- A) , (ii-A) * and (jj-A) * then R is normal, that is, E\subseteq C.
(4) If A is commutative and R satisfies (I’- A) , then N is a com-

mutative nil ideal containing the commutator ideal of R and is contained
in C_{R}(A) , and therefore N[A, R]=[A, R]N=0 and [A, R]\subseteq A\cup C.

(5) Let R be a subdirectly irreducible ring. If A is a commutative
subset of R (resp. N ) for which R satisfies (I’- A) and (II’- A) (resp. (I’-
A) and (ii-A) * (or (jj-A) *) ) , and x is an element in R\backslash C_{R}(A) , then x
is invertible and \langle x\rangle is a fifinite local ring.

(6) If A is a commutative subset of R (resp. N ) for which R
satisfifies (I’- A) , (II’- A) and (jj-A) n* (resp. (I’- A) and (jj-A) n* ), then R
satisfifies (ii-A) \acute{n} .

(7) If A is a commutative subset of R (resp. N ) for which R
satisfifies (I’- A) , (II’- A) and (JJJ-A) * (resp. (I’- A) and (JJJ-A)), then R
satisfifies (III-A) *.

PROOF. (1) This is a well-known theorem of Herstein (see [1]).
(2) See [4, Lemma 1 (2)].
(3) See, e.g., the proofs of [4, Lemma 1 (4)] and [3, Lemma (4)].
(4) See [4, Lemma 1 (5)].
(5) By (3), R is normal. Choose a\in A such that [a, x]\neq 0 . By

(I’- A) and (II’- A) (resp. (I’- A) and A\subseteq N ), x^{m}=x^{2m}f(x) with some f(t)
\in Z[t] and m\geq 1 . Since N is contained in C_{R}(A) by (4), x is not in N ,
and so x^{m}f(x) is a non-zero central idempotent. Hence we see that
x^{m}f(x)=1 and x^{-1}\in\langle x\rangle . Replacing x by x^{-1} , we get x\in\langle x^{-1}\rangle , and so
g(x)=0 with some monic polynomial g(t) in Z[t] . This implies that the
additive group of \langle x\rangle is finitely generated. Since a cannot commute with
both 2x and 3x , there exists an integer h>1 such that [a, hx]\neq 0 . Then,
by the above observation, we get h^{-1}=(hx)^{-1}x\in\langle hx\rangle x\subseteq\langle x\rangle . Noting that
the additive group of \langle x\rangle is Noetherian, we can easily see that h^{-s}(Z\cdot 1)

=h^{-(s+1)}(Z\cdot 1) with some positive integer s. Hence hZ\cdot 1=Z\cdot 1 , which
implies that \langle x\rangle is a finite local ring.
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(6) Let x\in R and a\in A . By (4), [A, R]^{2}=0 and [A, R]\subseteq A\cup C.
Hence, by Q^{\cdot}j- A)_{n}^{*} , there exists a positive integer k such that

[a, x^{n}]_{k+1}=[\Sigma_{i=0}n-1x[ia, x]x^{n-1-i}, x^{n}]_{k}=[(x+[a, x])^{n}, x^{n}]_{k}=0 .

Now, in order to see that [a, x^{n}]=0 , we may assume that R is subdirectly
irreducible. Suppose, to the contrary, that [a, x^{n}]\neq 0 . Then, by (5),
\langle\overline{x}\rangle=GF(q) with some q>1 , where \overline{x}=x+N. Since both qx and x^{nq}-x^{n}

are in N and [a, x^{n}]_{k-1}\in A\cup C (by (4)), [[[a, x^{n}]_{k-1}, x^{n}] , x^{n}]=[a, x^{n}]_{k+1}=

0 together with (4) implies that

[a, x^{n}]_{k}=[[a, x^{n}]_{k-1} , x^{n}]=[[a, x^{n}]_{k-1} , x^{nq}]=qx^{n(q-1)}[a, x^{n}]_{k}=0 .

Repeating the same procedure, we obtain eventually a contradiction
[a, x^{n}]=0 .

(7) By making use of the same argument as in the proof of (6), we
can easily see that for each x\in R and a\in A , there exist positive integers
m, n such that (m, n)=1 and [a, x^{m}]=[a, x^{n}]=0 ; in particular, R
satisfies (III-A) *.

Lemma 2. Let R be a non-commutative, subdirectly irreducible ring.
Let A & a commutative subset of R (resp. N) for which R satisfifies (I’- A)

and (II’- A) (resp. (I’- A) and (ii-A) *). If R=\langle a, x\rangle with some x\in R

and a\in A , then there exists a fifinite fifield K with a non-trivial automor-
phism \sigma such that M_{\sigma}(K) is homomorphic to a subring of R which meets
A .

PROOF. Let u=[a, x](\neq 0) . Then x is invertible and \langle x\rangle is a finite
local ring with radical M=\langle x\rangle\cap N nilpotent (Lemma 1 (5)). According
to Lemma 1 (4), N is a commutative nil ideal containing the commutator
ideal of R with [A, N]=0, M\subseteq C, \{(u)\}^{2}=0 , and M\cdot(u)=0 . Obviously,
M is an ideal of S=\langle x, u\rangle=\langle x\rangle+\langle x\rangle u\langle x\rangle . Let K=\langle x\rangle/M\simeq GF(q) ,
where q=p^{e} (p a prime and e>0). Then \overline{S}=S/M=K\oplus K\overline{u}K. We
claim that [ \overline{u},\overline{x}]\neq 0 . Actually, if [ \overline{u.},\overline{x}]=0 , then [u, x]\in M\subseteq C. Since
both qx and x^{q}-x are in M(\subseteq C) , we see that [u, x]=[u, x^{q}]=qx^{q-1}[u, x]

\in M\cdot(u)=0 , and so u=[a, x]=[a, x^{q}]=qx^{q-1}[a, x]\in M\cdot(u)=0 . This is a
contradiction. Now, as is well-known, K\otimes_{GF(p)}K is the direct sum of e

fields isomorphic to K. This enables us to see that K\overline{u}K=(K\otimes_{GF(p)}K)\overline{u}

=K\overline{u}_{1}\oplus\cdots\oplus K\overline{u}_{e^{r}} , where K\overline{u}_{i}=\overline{u}_{i}K(1\leq i\leq e’\leq e) . Since [ \overline{u},\overline{x}]\neq 0 , we
may assume that [ \overline{u}_{1},\overline{x}]\neq 0 , and therefore u_{1}\in A (Lemma 1 (2)). Then
there exists a non-trivial automorphism \sigma of K such that the subring K
\oplus K\overline{u}_{1} of \overline{S} is isomorphic to M_{\sigma}(K) .
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LEMMA 3. Let R=M_{\sigma}(K) , where K is a fifinite fifield with a non-
trivial automorphism \sigma. Let A be a subset of R for which R satisfifies
(I’- A) . Then R satisfifies neither (III-A) * nor (III-A) \# .

PROOF. Choose \gamma\in K with \sigma(\gamma)\neq\gamma , and put x=(\begin{array}{ll}\gamma 00 \sigma(\gamma)\end{array}) , a=(\begin{array}{l}0100\end{array}) .

Since [a, x]\neq 0 and a^{2}=0 , a belongs to A , by Lemma 1 (2). First, sup-
pose that R satisfies (III-A) *. Then there exist positive integers m, n
and k such that (m, n)=1 and [a, x^{m}]_{k}=0=[a, x^{n}]_{k} . Then one can easily
see that [a, x^{m}]=0=[a, x^{n}] . Since (m, n)=1 and x is invertible, this
forces a contradiction [a, x]=0. Next, suppose that R satisfies (Ill-Ay. \# .
Then we can easily see that there exists a positive integer m such that [a,
x^{m}]=0 and x^{m}=x , which forces again a contradiction [a, x]=0.

We are now ready to complete the proof of Theorem 1.

PROOF OF THEOREM1. Obviously, 1) implies 2)–10).
2)\Rightarrow 1) . According to Lemma 1 (1), it suffices to show that A\subseteq C.

Suppose, to the contrary, that [a, x]\neq 0 for some x\in R and a\in A .
Choose an ideal I of \langle a, x\rangle which is maximal with respect to excluding
[a, x] . Then S^{*}=\langle a, x\rangle/I is a subdirectly irreducible ring whose heart is
([a^{*}, x^{*}]) , where x^{*}=x+I. Obviously, S^{*} is nearly commutative and
satisfies (I’- B^{*}) and (II’- B^{*}) , where B=A\cap\langle a, x\rangle . But this contradicts
Lemma 2.

3) (resp. 7) )\Rightarrow 1) . Again, suppose that [a, x]\neq 0 for some x\in R and
a\in A , and consider the same S^{*} as in the proof of 2) \Rightarrow 1 ). Then, by
Lemma 2, there exists a finite field K with a non-trivial automorphism \sigma

such that M_{\sigma}(K) is homomorphic to a subring of S^{*} which meets B^{*}e

Obviously, M_{\sigma}(K) satisfies (I^{r_{-}}U) and (III-U)* for some subset U. But
this contradicts Lemma 3. We have thus seen that A\subseteq C. Hence R is
commutative, by Lemma 1 (1).

4) (resp. 8) )\Rightarrow 1) . The proof is quite similar to the above.
5) (resp. 9) )\Rightarrow 3) (resp. 7) ) . By Lemma 1 (7).
6) (resp. 10) )(1) . Let \sigma be a homomorphism of R onto a subdirectly

ly irreducible ring R’ . Then R’ satisfies (I’-\sigma(A)) and \circ\cdot j-\sigma(A))_{n}^{*} . We
claim that for each x’\in R’ and a’\in\sigma(A)

\Sigma_{j=1}^{n-1}i^{j}(\begin{array}{l}nj\end{array}) [a’, x^{\prime j}]=0 (i=1,2, \ldots.n-1) .

Actually, in case R’ is commutative, there is nothing to prove. If R’ is
not commutative then R’ has an identity element 1’ and satisfies (ii-\sigma(A))_{\acute{n}}

(Lemma 1 (1), (5) and (6)), and therefore
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\Sigma_{j=1}^{n-1}i^{j}(\begin{array}{l}nj\end{array}) [a_{2}’x^{\prime j}]--[a’(1’+ix’)^{n}]-[a’. (ix’)^{n}]=0 .

We have thus seen that for each x\in R and a\in A

in [a, x]+i^{2}(\begin{array}{l}n2\end{array}) [a, x^{2}]+\ldots+i^{n-1}n[a, x^{n-1}]=0 (i=1,2, \ldots , n-1) ,

and the usual Vandermonde determinant argument shows, in view of
(A)_{n^{1}}^{*} , that [a, x]=0. Hence A\subseteq C , and R is commutative by Lemma 1
(1).

COROLLARY 1. Let R be an s-unital ring. Then the following condi-
thus are equivalent:

1) R is commutative.
2) There exists a subset A of R and a positive integer n for which R

satisfies (I’- A) , (II-A) n , (ii-A) (n)* and (A) \acute{n} .
3) There exists a subset A of N and a positive integer n for which R

satisfifies (I’- A) , (ii- A)_{\acute{n}} , (ii- A)_{(n)}^{*} and (A)_{\acute{n}} .

PROOF. Obviously, 1) implies 2) and 3).

2) (resp. 3) )\Rightarrow 1) . By [4, Lemma 1 (3)], (II-A) n implies (ii- A)_{\acute{n}} .
Hence, in view of Theorem 1, it suffices to show that if R satisfies (I’- A) ,
(II-A) n (resp. (ii- A)_{\acute{n}}) and (A)_{\acute{n}} then A is commutative. Suppose now
that there exist a, b\in A such that [a, b]\neq 0 . Then, by (II- A)_{n} (resp. A
\subseteq N) , a is nilpotent. Let k(>1) be the least positive integer such that
[a^{i}, b]=0 for all i\geq k , and let e be a pseud0-identity of \{a, b\} . Then
n[a^{k-1}, b]=[(e+a^{k-1})^{n}, b]=0 , by (ii- A)_{\acute{n}} . According to (I’- A) , there
exists f(t)\in Z[ t] such that

a^{k-1}-a^{2(k-1)}f(a^{k-1})\in A .

Then n[a^{k-1}-a^{2(k-1)}f(a^{k-1}), b]=0 , which together with (A)_{\acute{n}} implies that

[a^{k-1}, b]=[a^{k-1}-a^{2(k-1)}f(a^{k-1}), b]=0 .

But this contradicts the minimality of k. Hence A has to be commutative.

REMARK 1. Let R=\{\{\begin{array}{lll}a b c0 a^{2} 00 0 a\end{array}\} |a, b, c\in GF(4)\} . Obviously, N is

commutative and R satisfies (I’- N) , (jj- N)_{3}^{*} and (N)_{3}^{*} . But R is not
commutative. This shows that, in the statement 10) in Theorem 1, (A)_{n^{1}}^{*}

cannot be replaced by (A)_{n}^{*} .
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