Structure and commutativity of rings with constraints involving a commutative subset

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Hiroaki Komatsu, Hisao Tominaga and Adil Yaqub
(Received November 27, 1987, Revised January 26, 1988)

Throughout, R will represent a ring with center C, N the set of nilpotent elements in R, N^{*} the subset of N consisting of all x with $x^{2}=0$. Given a positive integer n, we set $E_{n}=\left\{x \in R \mid x^{n}=x\right\}$; in particular, $E=E_{2}$. For $x, y \in R$, define extended commutators $[x, y]_{k}$ as follows:let $[x, y]_{1}$ be the usual commutator $[x, y]=x y-y x$, and proceed inductively $[x, y]_{k}=$ $\left[[x, y]_{k-1}, y\right]$.

A ring R is called nearly commutative if R has no factorsubrings isomorphic to $M_{\sigma}(K)=\left\{\left.\left(\begin{array}{cc}\alpha & \beta \\ 0 & \sigma(\alpha)\end{array}\right) \right\rvert\, \alpha, \beta \in K\right\}$, where K is a finite field and σ is a non-trivial automorphism of K. Needless to say, every commutative ring is nearly commutative; every subring and every homomorphic image of a nearly commutative ring are nearly commutative. Following [2], R is called s-unital if for each x in $R, x \in R x \cap x R$. As stated in [2], if R is an s-unital ring then for any finite subset F of R there exists an element e in R such that $e x=x e=x$ for all $x \in F$. Such an element e will be called a pseudo-identity of F.

Now, let A be a non-empty subset of R, and l a positive integer. We consider the following conditions:
($\left.I^{\prime}-A\right) \quad$ For each $x \in R$, either $x \in C$ or there exists a polynomial $f(t)$ in $\boldsymbol{Z}[t]$ such that $x-x^{2} f(x) \in A$.
(II' $-A$) If $x, y \in R$ and $x-y \in A$, then either $x^{m}=y^{m}$ with some positive integer m or both x and y belong to the centralizer $C_{R}(A)$ of A in R.
(II- $A)_{l}$ If $x, y \in R$ and $x-y \in A$, then either $x^{l}=y^{l}$ or x and y both belong to $C_{R}(A)$.
(ii- $A)^{\prime} \quad$ For each $x \in R$ and $a \in A$, there exists a positive integer m, depending on x and a, such that $\left[a, x^{m}\right]=0$.
(ii-A) ${ }_{\iota}^{\prime} \quad\left[a, x^{\imath}\right]=0$ for all $x \in R$ and $a \in A$.
(ii- A)* For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that $\left[a, x^{m}\right]_{k}=0$.
(ii- $A)_{(l)}^{*} \quad$ For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that (m, l) $=1$ and $\left[a, x^{m}\right]_{k}=0$.
(jj-A)* For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that $\left[(x+a)^{m}, x^{m}\right]_{k}=0$.
$(\mathrm{jj}-A)_{l}^{*} \quad$ For each $x \in R$ and $a \in A$, there exists a positive integer k, depending on x and a, such that $\left[(x+a)^{l}, x^{l}\right]_{k}=0$.
(III-A)* For each $x \in R$ and $a \in A$, there exist positive integers k, m and n, each depending on x and a, such that $(m, n)=1$ and $\left[a, x^{m}\right]_{k}=\left[\mathrm{a}, \mathrm{x}^{n}\right]_{k}=0$.
(III-A)* For each $x \in R$ and $a \in A$, there exist positive integers k and m, each depending on x and a, such that $\left[a, x^{m}\right]_{k}=0$ and $x=x^{\prime}+x^{\prime \prime}$ with some $x^{\prime} \in E_{m}$ and $x^{\prime \prime} \in N$.
(JJJ- A)* For each $x \in R$ and $a \in A$, there exist positive integers k, m and n, each depending on x and a, such that $(m, n)=1$ and $\left[(x+a)^{m}, x^{m}\right]_{k}=\left[(\mathrm{x}+\mathrm{a})^{n}, \mathrm{x}^{n}\right]_{k}=0$.
$(A)_{l}^{\prime} \quad$ If $a, b \in A$ and $l[a, b]=0$, then $[a, b]=0$.
$(A)_{l}^{*} \quad$ If $x \in R, a \in A$ and $l[a, x]=0$, then $[a, x]=0$.
Our present objective is to prove the following commutativity theorem, which improves several early results obtained in [3, 4, 5 and 6]. (Note that the conditions (ii- $A)_{\iota}^{\prime}$ and (III- A)* are denoted as (ii- $\left.A\right)_{\iota}^{*}$ and (III*- A) in [6] and [3], respectively.)

THEOREM 1. The following conditions are equivalent :

1) R is commutative.
2) R is nearly commutative and there exists a commutative subset A of R for which R satisfies ($\mathrm{I}^{\prime}-A$) and ($\mathrm{II}^{\prime}-A$).
3) There exists a commutative subset A of R for which R satisfies ($\mathrm{I}^{\prime}-A$), ($\mathrm{II}^{\prime}-A$) and (III- A)*.
4) There exists a commutative subset A of R for which R satisfies ($\mathrm{I}^{\prime}-A$), (II' A) and (III- $\left.A\right)^{*}$.
5) There exists a commutative subset A of R for which R satisfies ($\mathrm{I}^{\prime}-A$), $\left(\mathrm{II}^{\prime}-A\right)$ and ($\left.\mathrm{JJJ}-A\right)^{*}$.
6) There exists a commutative subset A of R and a positive integer n for which R satisfies $\left(\mathrm{I}^{\prime}-A\right),\left(\mathrm{II}^{\prime}-A\right),(\mathrm{jj}-A)_{n}^{*}$ and $(A)_{n!}^{*}$.
7) There exists a commutative subset A of N for which R satisfies ($\mathrm{I}^{\prime}-A$) and (III- A)*.
8) There exists a commutative subset A of N for which R satisfies ($\mathrm{I}^{\prime}-A$) and (III- A).
9) There exists a commutative subset A of N for which R satisfies ($\mathrm{I}^{\prime}-A$) and (JJJ- A)*.
10) There exists a commutative subset A of N and a positive integer n for which R satisfies $\left(\mathrm{I}^{\prime}-A\right),(\mathrm{jj}-A)_{n}^{*}$ and $(A)_{n!}^{*}$.

In preparation for proving our theorem, we state the following lemmas.

Lemma 1. (1) If R satisfies ($\mathrm{I}^{\prime}-C$), then R is commutative.
(2) If R satisfies ($I^{\prime}-A$), then $N \subseteq A^{+}+C$ and $N^{*} \subseteq A \cup C$, where A^{+} is the additive subsemigroup of R generated by A.
(3) Suppose R satisfies (I' A). If R satisfies one of the conditions ($\mathrm{II}^{\prime}-A$), $(\mathrm{ii}-A)^{*}$ and $(\mathrm{jj}-A)^{*}$, then R is normal, that is, $E \subseteq C$.
(4) If A is commutative and R satisfies ($\mathrm{I}^{\prime}-A$), then N is a commutative nil ideal containing the commutator ideal of R and is contained in $C_{R}(A)$, and therefore $N[A, R]=[A, R] N=0$ and $[A, R] \subseteq A \cup C$.
(5) Let R be a subdirectly irreducible ring. If A is a commutative subset of R (resp. N) for which R satisfies ($\mathrm{I}^{\prime}-A$) and (II'-A) (resp. (I^{\prime} A) and (ii-A)* $\left.\left(\operatorname{or}(\mathrm{jj}-A)^{*}\right)\right)$, and x is an element in $R \backslash C_{R}(A)$, then x is invertible and $\langle x\rangle$ is a finite local ring.
(6) If A is a commutative subset of R (resp. N) for which R satisfies $\left(\mathrm{I}^{\prime}-A\right),\left(\mathrm{II}^{\prime}-A\right)$ and $(\mathrm{jj}-A)_{n}^{*}\left(r e s p .\left(\mathrm{I}^{\prime}-A\right)\right.$ and $\left.(\mathrm{jj}-A)_{n}^{*}\right)$, then R satisfies (ii- $A)_{n}^{\prime}$.
(7) If A is a commutative subset of R (rest. N) for which R satisfies $\left(\mathrm{I}^{\prime}-A\right),\left(\mathrm{II}^{\prime}-A\right)$ and $(\mathrm{JJJ}-A)^{*}\left(\right.$ resp. $\left(\mathrm{I}^{\prime}-A\right)$ and $\left.(\mathrm{JJJ}-A)^{*}\right)$, then R satisfies (III-A)*.

Proof. (1) This is a well-known theorem of Herstein (see [1]).
(2) See [4, Lemma 1 (2)].
(3) See, e.g., the proofs of [4, Lemma 1 (4)] and [3, Lemma (4)].
(4) See [4, Lemma 1 (5)].
(5) By (3), R is normal. Choose $a \in A$ such that $[a, x] \neq 0$. By ($\mathrm{I}^{\prime}-A$) and ($\mathrm{I}^{\prime}-A$) (resp. ($\mathrm{I}^{\prime}-A$) and $A \subseteq N$), $x^{m}=x^{2 m} f(x)$ with some $f(t)$ $\in \boldsymbol{Z}[t]$ and $m \geq 1$. Since N is contained in $C_{R}(A)$ by (4), x is not in N, and so $x^{m} f(x)$ is a non-zero central idempotent. Hence we see that $x^{m} f(x)=1$ and $x^{-1} \in\langle x\rangle$. Replacing x by x^{-1}, we get $x \in\left\langle x^{-1}\right\rangle$, and so $g(x)=0$ with some monic polynomial $g(t)$ in $\boldsymbol{Z}[t]$. This implies that the additive group of $\langle x\rangle$ is finitely generated. Since a cannot commute with both $2 x$ and $3 x$, there exists an integer $h>1$ such that $[a, h x] \neq 0$. Then, by the above observation, we get $h^{-1}=(h x)^{-1} x \in\langle h x\rangle x \subseteq\langle x\rangle$. Noting that the additive group of $\langle x\rangle$ is Noetherian, we can easily see that $h^{-s}(\boldsymbol{Z} \cdot 1)$ $=h^{-(s+1)}(\boldsymbol{Z} \cdot 1)$ with some positive integer s. Hence $h \boldsymbol{Z} \cdot \boldsymbol{1}=\boldsymbol{Z} \cdot 1$, which implies that $\langle x\rangle$ is a finite local ring.
(6) Let $x \in R$ and $a \in A$. By (4), $[A, R]^{2}=0$ and $[A, R] \subseteq A \cup C$. Hence, by $(\mathrm{jj}-A)_{n}^{*}$, there exists a positive integer k such that

$$
\left[a, x^{n}\right]_{k+1}=\left[\sum_{i=0}^{n-1} x^{i}[a, x] x^{n-1-i}, x^{n}\right]_{k}=\left[(x+[a, x])^{n}, x^{n}\right]_{k}=0 .
$$

Now, in order to see that $\left[a, x^{n}\right]=0$, we may assume that R is subdirectly irreducible. Suppose, to the contrary, that $\left[a, x^{n}\right] \neq 0$. Then, by (5), $\langle\bar{x}\rangle=\mathrm{GF}(q)$ with some $q>1$, where $\bar{x}=x+N$. Since both $q x$ and $x^{n q}-x^{n}$ are in N and $\left[a, x^{n}\right]_{k-1} \in A \cup C$ (by (4)), $\left[\left[\left[a, x^{n}\right]_{k-1}, x^{n}\right], x^{n}\right]=\left[a, x^{n}\right]_{k+1}=$ 0 together with (4) implies that

$$
\left[a, x^{n}\right]_{k}=\left[\left[a, x^{n}\right]_{k-1}, x^{n}\right]=\left[\left[a, x^{n}\right]_{k-1}, x^{n q}\right]=q x^{n(q-1)}\left[a, x^{n}\right]_{k}=0 .
$$

Repeating the same procedure, we obtain eventually a contradiction $\left[a, x^{n}\right]=0$.
(7) By making use of the same argument as in the proof of (6), we can easily see that for each $x \in R$ and $a \in A$, there exist positive integers m, n such that $(m, n)=1$ and $\left[a, x^{m}\right]=\left[a, x^{n}\right]=0$; in particular, R satisfies (III- A)*.

Lemma 2. Let R be a non-commutative, subdirectly irreducible ring. Let A be a commutative subset of R (resp. N) for which R satisfies (I'-A) and ($\mathrm{II}^{\prime}-A$) (resp. ($\mathrm{I}^{\prime}-A$) and (ii- $\left.A\right)^{*}$). If $R=\langle a, x\rangle$ with some $x \in R$ and $a \in A$, then there exists a finite field K with a non-trivial automor. phism σ such that $M_{\sigma}(K)$ is homomorphic to a subring of R which meets A.

Proof. Let $u=[a, x](\neq 0)$. Then x is invertible and $\langle x\rangle$ is a finite local ring with radical $M=\langle x\rangle \cap N$ nilpotent (Lemma 1 (5)). According to Lemma 1 (4), N is a commutative nil ideal containing the commutator ideal of R with $[A, N]=0, M \subseteq C,\{(u)\}^{2}=0$, and $M \cdot(u)=0$. Obviously, M is an ideal of $S=\langle x, u\rangle=\langle x\rangle+\langle x\rangle u\langle x\rangle$. Let $K=\langle x\rangle / M \simeq \operatorname{GF}(q)$, where $q=p^{e}(p$ a prime and $e>0)$. Then $\bar{S}=S / M=K \oplus K \bar{u} K$. We claim that $[\bar{u}, \bar{x}] \neq 0$. Actually, if $[\bar{u}, \bar{x}]=0$, then $[u, x] \in M \subseteq C$. Since both $q x$ and $x^{q}-x$ are in $M(\subseteq C)$, we see that $[u, x]=\left[u, x^{q}\right]=q x^{q-1}[u, x]$ $\in M \cdot(u)=0$, and so $u=[a, x]=\left[a, x^{q}\right]=q x^{q-1}[a, x] \in M \cdot(u)=0$. This is a contradiction. Now, as is well-known, $K \otimes_{\mathrm{GF}(p)} K$ is the direct sum of e fields isomorphic to K. This enables us to see that $K \bar{u} K=\left(K \otimes_{\operatorname{GF}(p)} K\right) \bar{u}$ $=K \bar{u}_{1} \oplus \cdots \oplus K \bar{u}_{e^{\prime}}$, where $K \bar{u}_{i}=\bar{u}_{i} K \quad\left(1 \leq i \leq e^{\prime} \leq e\right)$. Since $[\bar{u}, \bar{x}] \neq 0$, we may assume that $\left[\bar{u}_{1}, \bar{x}\right] \neq 0$, and therefore $u_{1} \in A$ (Lemma 1 (2)). Then there exists a non-trivial automorphism σ of K such that the subring K $\oplus K \bar{u}_{1}$ of \bar{S} is isomorphic to $M_{\sigma}(K)$.

Lemma 3. Let $R=M_{\sigma}(K)$, where K is a finite field with a nontrivial automorphism σ. Let A be a subset of R for which R satisfies (I'- A). Then R satisfies neither (III- $A)^{*}$ nor (III- $\left.A\right)^{*}$.

PRoof. Choose $\gamma \in K$ with $\sigma(\gamma) \neq \gamma$, and put $x=\left(\begin{array}{cc}\gamma & 0 \\ 0 & \sigma(\gamma)\end{array}\right), a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Since $[a, x] \neq 0$ and $a^{2}=0, a$ belongs to A, by Lemma 1 (2). First, suppose that R satisfies (III- $A)^{*}$. Then there exist positive integers m, n and k such that (m, n) $=1$ and $\left[a, x^{m}\right]_{k}=0=\left[a, x^{n}\right]_{k}$. Then one can easily see that $\left[a, x^{m}\right]=0=\left[a, x^{n}\right]$. Since $(m, n)=1$ and x is invertible, this forces a contradiction $[a, x]=0$. Next, suppose that R satisfies (III- $A)^{*}$. Then we can easily see that there exists a positive integer m such that [a, $\left.x^{m}\right]=0$ and $x^{m}=x$, which forces again a contradiction $[a, x]=0$.

We are now ready to complete the proof of Theorem 1 .
Proof of Theorem 1. Obviously, 1) implies 2)-10).
$2) \Rightarrow 1$). According to Lemma 1 (1), it suffices to show that $A \subseteq C$. Suppose, to the contrary, that $[a, x] \neq 0$ for some $x \in R$ and $a \in A$. Choose an ideal I of $\langle a, x\rangle$ which is maximal with respect to excluding [$a, x]$. Then $S^{*}=\langle a, x\rangle / I$ is a subdirectly irreducible ring whose heart is ($\left[a^{*}, x^{*}\right]$), where $x^{*}=x+I$. Obviously, S^{*} is nearly commutative and satisfies ($\mathrm{I}^{\prime}-B^{*}$) and ($\mathrm{II}^{\prime}-B^{*}$), where $B=A \cap\langle a, x\rangle$. But this contradicts Lemma 2.
3) (resp. 7)) $\Rightarrow 1$). Again, suppose that $[a, x] \neq 0$ for some $x \in R$ and $a \in A$, and consider the same S^{*} as in the proof of 2$) \Rightarrow 1$). Then, by Lemma 2, there exists a finite field K with a non-trivial automorphism σ such that $M_{\sigma}(K)$ is homomorphic to a subring of S^{*} which meets B^{*}. Obviously, $M_{\sigma}(K)$ satisfies (I' U) and (III- U)* for some subset U. But this contradicts Lemma 3. We have thus seen that $A \subseteq C$. Hence R is commutative, by Lemma 1 (1).
4) (resp. 8)) $\Rightarrow 1$). The proof is quite similar to the above.
5) $($ resp. 9)) $\Rightarrow 3)($ resp. 7)). By Lemma 1 (7).
6) (resp. 10)) $\Rightarrow 1$). Let σ be a homomorphism of R onto a subdirectly irreducible ring R^{\prime}. Then R^{\prime} satisfies ($\mathrm{I}^{\prime} \cdot \sigma(A)$) and (jj- $\left.\sigma(A)\right)_{n}^{*}$. We claim that for each $x^{\prime} \in R^{\prime}$ and $a^{\prime} \in \sigma(A)$

$$
\sum_{j=1}^{n-1} i^{i}\binom{n}{j}\left[a^{\prime}, x^{\prime j}\right]=0(i=1,2, \ldots, n-1) .
$$

Actually, in case R^{\prime} is commutative, there is nothing to prove. If R^{\prime} is not commutative then R^{\prime} has an identity element. 1^{\prime} and satisfies (ii- $\left.\sigma(A)\right)_{n}^{\prime}$ (Lemma 1 (1), (5) and (6)), and therefore

$$
\sum_{j=1}^{n-1} i^{j}\binom{n}{j}\left[a^{\prime}, x^{\prime j}\right]=\left[a^{\prime},\left(1^{\prime}+i x^{\prime}\right)^{n}\right]-\left[a^{\prime},\left(i x^{\prime}\right)^{n}\right]=0 .
$$

We have thus seen that for each $x \in R$ and $a \in A$

$$
i n[a, x]+i^{2}\binom{n}{2}\left[a, x^{2}\right]+\ldots+i^{n-1} n\left[a, x^{n-1}\right]=0(i=1,2, \ldots, n-1),
$$

and the usual Vandermonde determinant argument shows, in view of $(A)_{n}^{*}$, that $[a, x]=0$. Hence $A \subseteq C$, and R is commutative by Lemma 1 (1).

Corollary 1. Let R be an s-unital ring. Then the following conditions are equivalent:

1) R is commutative.
2) There exists a subset A of R and a positive integer n for which R satisfies $\left(\mathrm{I}^{\prime}-A\right),(\mathrm{II}-A)_{n},(\mathrm{ii}-A)_{(n)}^{*}$ and $(A)_{n}^{\prime}$.
3) There exists a subset A of N and a positive integer n for which R satisfies $\left(\mathrm{I}^{\prime}-A\right)$, $(\mathrm{ii}-A)_{n}^{\prime},(\mathrm{ii}-A)_{(n)}^{*}$ and $(A)_{n}^{\prime}$.

Proof. Obviously, 1) implies 2) and 3).
2) $($ resp. 3) $) \Rightarrow 1$). By [4, Lemma 1 (3)], (II- $A)_{n}$ implies (ii- $\left.A\right)_{n}^{\prime}$. Hence, in view of Theorem 1, it suffices to show that if R satisfies ($\mathrm{I}^{\prime}-A$), (II- $A)_{n}$ (resp. (ii- $\left.A\right)_{n}^{\prime}$) and $(A)_{n}^{\prime}$ then A is commutative. Suppose now that there exist $a, b \in A$ such that $[a, b] \neq 0$. Then, by (II- $A)_{n}$ (resp. A $\subseteq N), a$ is nilpotent. Let $k(>1)$ be the least positive integer such that [$\left.a^{i}, b\right]=0$ for all $i \geq k$, and let e be a pseudo-identity of $\{a, b\}$. Then $n\left[a^{k-1}, b\right]=\left[\left(e+a^{k-1}\right)^{n}, b\right]=0$, by (ii-A) ${ }_{n}^{\prime}$. According to ($\mathrm{I}^{\prime}-A$), there exists $f(t) \in \boldsymbol{Z}[t]$ such that

$$
a^{k-1}-a^{2(k-1)} f\left(a^{k-1}\right) \in A .
$$

Then $n\left[a^{k-1}-a^{2(k-1)} f\left(a^{k-1}\right), b\right]=0$, which together with $(A)_{n}^{\prime}$ implies that

$$
\left[a^{k-1}, b\right]=\left[a^{k-1}-a^{2(k-1)} f\left(a^{k-1}\right), b\right]=0 .
$$

But this contradicts the minimality of k. Hence A has to be commutative.
Remark 1. Let $R=\left\{\left.\left[\begin{array}{ccc}a & b & c \\ 0 & a^{2} & 0 \\ 0 & 0 & a\end{array}\right] \right\rvert\, a, b, c \in \mathrm{GF}(4)\right\}$. Obviously, N is commutative and R satisfies $\left(\mathrm{I}^{\prime} \cdot N\right),(\mathrm{jj}-N)_{3}^{*}$ and $(N)_{3}^{*}$. But R is not commutative. This shows that, in the statement 10) in Theorem 1, $(A)_{n!}^{*}$ cannot be replaced by $(A)_{n}^{*}$.

References

[1] I. N. Herstein : The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871.
[2] Y. Hirano, M. Hongan and H. Tominaga: Commutativity theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65-72.
[3] H. Tominaga: A commutativity theorem for rings with constraints involving a commutative subset, Math. Japonica 33 (1988), 809-811.
[4] H. Tominaga and A. Yaqub: Some commutativity properties for rings, Math. J. Okayama Univ. 25 (1983), 81-86.
[5] H. Tominaga and A. Yaqub: Some commutativity properties for rings. II, Math. J. Okayama Univ. 25 (1983), 173-179.
[6] H. TOMINAGA and A. YAQUB: Commutativity theorems for rings with a commutative subset or a nil subset, Math. J. Okayama Univ. 26 (1984), 119-124.

Okayama University
Okayama University
University of California

