On Hardy's Inequality and Paley's Gap Theorem

Sadahiro Saeki and Hiroshi Yamaguchi
Dedicated to Professor Shozo Koshi on his sixtieth birthday (Received April 10, 1989)

Let $\boldsymbol{T}=\{z \in \boldsymbol{C}:|z|=1\}$ be the circle group, and let λ be the Lebesgue measure on \boldsymbol{T} normalized so that $\lambda(\boldsymbol{T})=1$. Thus the Fourier coefficients of $f \in L^{1}(\boldsymbol{T})$ are defined by

$$
\hat{f}(n)=\int_{T} z^{-n} f(z) d \lambda(z) \quad \forall n \in \boldsymbol{Z} .
$$

The Hardy class $H^{1}(\boldsymbol{T})$ consists of all $f \in L^{1}(\boldsymbol{T})$ such that $\hat{f}(n)=0$ for all $n<0$. The classical inequality of Hardy states that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}|\hat{f}(n)| \leq C_{1}\|f\|_{1} \quad \forall f \in H^{1}(\boldsymbol{T}), \tag{1}
\end{equation*}
$$

where C_{1} is a positive constant $\leq \pi$; see, e. g., K. Hoffman [2; p. 70] or A. Zygmund [5; p. 286]. On the other hand, Paley's Gap Theorem [3] asserts that given a sequence $\left(n_{k}\right)_{1}^{\infty}$ of natural numbers with $\inf \left\{n_{k+1} / n_{k}\right.$: $k \geq 1\}>1$, there exists a finite constant C_{2} such that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\hat{f}\left(n_{k}\right)\right|^{2} \leq C_{2}^{2}\|f\|_{1}^{2} \quad \forall f \in H^{1}(\boldsymbol{T}) . \tag{2}
\end{equation*}
$$

For a generalization of (2) to connected compact abelian groups, we refer to W. Rudin [4; p. 213]. In the present paper, we shall give some generalizations of these well known results both in the classical setting and the abstract setting.

Let α be a Borel measurable function on \boldsymbol{T} such that $|\alpha|=1$ almost everywhere. Given $f \in L^{\dot{1}}(\boldsymbol{T})$, let $\alpha^{*} f$ denote the complex measure on \boldsymbol{T} defined by

$$
\begin{equation*}
\int h d\left(\alpha^{*} f\right)=\int(h \circ \alpha) f d \lambda \tag{3}
\end{equation*}
$$

for all bounded Borel functions h on \boldsymbol{T}. In other words, $\alpha^{*} f$ is the image measure of $f \lambda$ by α. Let $H_{0}^{1}(\boldsymbol{T})=\left\{f \in H^{1}(\boldsymbol{T}): \hat{f}(0)=0\right\}$. Finally recall that an inner function is an element α of $H^{1}(\boldsymbol{T})$ such that $|\alpha|=1$ almost everywhere.

Theorem 1. Let α, β be two functions in $H^{1}(\boldsymbol{T})$ such that $|\alpha|=12$ $|\beta|$ a. e. and $\hat{\alpha}(0) \hat{\beta}(0)=0$. Then

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left\|\left(\alpha^{*} \beta^{n}\right) * f\right\|_{1} \leq C_{1}\|f\|_{1} \quad \forall f \in H_{0}^{1}(\boldsymbol{T}),
$$

where C_{1} is any finite constant satisfying(1).
Theorem 2. Let $\alpha, \beta \in H^{1}(\boldsymbol{T})$ be as in Theorem 1, and let $\left(n_{k}\right)_{1}^{\infty}$ be a sequence of natural numbers that satisfies (2) for some $C_{2}<\infty$. Then

$$
\sum_{k=1}^{\infty}\left\|\left(\alpha^{*} \beta^{n_{k}}\right) * f\right\|_{1}^{2} \leq C_{2}^{2}\|f\|_{1}^{2} \quad \forall f \in H_{0}^{1}(\boldsymbol{T}) .
$$

Example 5 (iii) given below includes a precise calculation of the measure $\alpha^{*} g$ for Möbius transformations α and $g \in L^{1}(\boldsymbol{T})$. In order to prove the above two results, let G be a locally compact (Hausdorff) space, and let $M(G)$ be the Banach space of all bounded regular Borel measures on G. Given a bounded Borel function f on G and $\mu \in M(G)$, we shall often write $\langle f, \mu\rangle$ for $\int f d \mu$. For a linear subspace \mathscr{A} of $C_{0}(G)$, define

$$
\mathscr{A}^{\perp}=\{\mu \in M(G):\langle\phi, \mu\rangle=0 \quad \forall \phi \in \mathscr{A}\} .
$$

For $1<p<\infty$, let $p^{\prime}=p /(p-1)$.
Lemma 3. Let \mathscr{A} be a linear subspace of $C_{0}(G)$, let $\left(\gamma_{k}\right)_{1}^{\infty}$ be a sequence in $C_{0}(G)$, let $1 \leq p<\infty$, and let $\left(a_{k}\right)_{0}^{\infty}$ be a sequence of real positive numbers. Then the following conditions are equivalent:
(a) For each $\mu \in \mathscr{A}^{\perp}, \sum_{k=1}^{\infty} a_{k}\left|\left\langle\gamma_{k}, \mu\right\rangle\right|^{p} \leq a_{0}^{b}\|\mu\|^{p}$.
(b) Whenever c_{1}, \ldots, c_{n} are finitely many complex numbers such that $\sup \left\{\left|c_{k}\right|: 1 \leq k \leq n\right\} \leq 1$ if $p=1$ or $\left.\sum_{k=1}^{n} a_{k}\left|c_{k}\right|\right|^{p^{\prime}} \leq 1$ if $p>1$, then

$$
\inf \left\{\left\|\sum_{k=1}^{n} a_{k} c_{k} \gamma_{k}+\phi\right\|_{\infty}: \phi \in \mathscr{A}\right\} \leq a_{0} .
$$

Proof: That (a) implies (b) follows from the Hahn-Banach Theorem combined with the Riesz Representation Theorem. The converse is an easy exercise.

Proof of Theorem 1: Choose and fix any $\alpha, \beta \in H^{1}(\boldsymbol{T})$ such that $|\alpha|=1 \geq|\beta|$ almost everywhere and $\hat{\alpha}(0) \hat{\beta}(0)=0$. Then

$$
\begin{equation*}
\left(\alpha^{*} \bar{\beta}^{k}\right) * f=0 \quad \forall k \in \boldsymbol{N} \text { and } f \in H_{0}^{1}(\boldsymbol{T}) . \tag{4}
\end{equation*}
$$

In fact, $n \in \boldsymbol{N}$ implies $\alpha^{n} \beta \in H_{0}^{1}(\boldsymbol{T})$, so

$$
\left(\alpha^{*} \bar{\beta}\right)^{\wedge}(n)=\int \bar{z}^{n} d\left(\alpha^{*} \bar{\beta}\right)=\int \bar{\alpha}^{n} \bar{\beta} d \lambda
$$

$$
=\left(\int \alpha^{n} \beta d \lambda\right)^{-}=0
$$

Therefore $\left(\alpha^{*} \bar{\beta}\right) * f=0$ for each $f \in H_{0}^{1}(\boldsymbol{T})$. Applying this result to β^{k}, we obtain (4).

Now let $a_{k}=1 / k$ for $k \geq 1$, and let c_{1}, \ldots, c_{n} be finitely many complex numbers with $\sup \left\{\left|c_{k}\right|: 1 \leq k \leq n\right\} \leq 1$. Notice that $\{\mu \in M(\boldsymbol{T}): \hat{\mu}(n)=0$ $\forall n \in \boldsymbol{N}\}=\left\{\bar{f} \lambda: f \in H^{1}(\boldsymbol{T})\right\}$ by the F . and M. Riesz Theorem. Therefore Lemma 3 (with $p=1$) combined with (1) yields complex numbers b_{1}, \ldots, b_{m} such that

$$
\begin{equation*}
\left|\sum_{k=1}^{n} a_{k} c_{k} z^{k}+\sum_{j=1}^{m} b_{j} \bar{z}^{j}\right|<C \quad \forall z \in \boldsymbol{T} \tag{5}
\end{equation*}
$$

where C is any preassigned finite constant $>C_{1}$. Define $g \in L^{\infty}(\boldsymbol{T})$ by setting

$$
\begin{equation*}
g=\sum_{k=1}^{n} a_{k} c_{k} \beta^{k}+\sum_{j=1}^{m} b_{j} \bar{\beta}^{j} \tag{6}
\end{equation*}
$$

Notice that (5) holds for all $z \in C$ with $|z| \leq 1$ by the maximum modulus principle for harmonic functions. Since $|\beta| \leq 1$ (a, e.), it follows from (6) that $|g| \leq C$. Therefore $f \in H_{0}^{1}(\boldsymbol{T})$ implies

$$
\begin{align*}
\left|\sum_{k=1}^{n} a_{k} c_{k}\left(\alpha^{*} \beta^{k}\right) * f\right| & =\left|\sum_{k=1}^{n} a_{k} c_{k}\left(\alpha^{*} \beta^{k}\right) * f+\sum_{k=1}^{m} b_{k}\left(\alpha^{*} \bar{\beta}^{k}\right) * f\right| \tag{4}\\
& =\left|\left(\alpha^{*} g\right) * f\right| \quad \text { by (6) } \\
& \leq\left(\alpha^{*}|g|\right) *|f| \leq C\left(\alpha^{*} 1\right) *|f| .
\end{align*}
$$

Since this holds for all $c_{1}, \ldots, c_{n} \in C$ with $\sup \left\{\left|c_{k}\right|: 1 \leq k \leq n\right\} \leq 1$, it follows that

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k}\left|\left(\alpha^{*} \beta^{k}\right) * f\right| \leq C\left(\alpha^{*} 1\right) *|f| \quad \forall f \in H_{0}^{1}(\boldsymbol{T}) \tag{7}
\end{equation*}
$$

Upon integrating both sides of (7) over \boldsymbol{T} and noting that $\alpha^{*} 1$ is a probability measure, we obtain $\sum_{k=1}^{n} a_{k}\left\|\left(\alpha^{*} \beta^{k}\right) * f\right\|_{1} \leq C\|f\|_{1}$ for each $f \in H_{0}^{1}(\boldsymbol{T})$. Since $n \in \boldsymbol{N}$ and $C>C_{1}$ were arbitrary, this completes the proof of Theorem 1.

The proof of Theorem 2 is quite similar to the above proof. We leave the details to the reader.

REMARK 4: Suppose that $\hat{\beta}(0)=0$. Then (4) holds for all $f \in$ $H^{1}(\boldsymbol{T})$. Consequently $H_{0}^{1}(\boldsymbol{T})$ in Theorems 1 and 2 may be replaced by $H^{1}(\boldsymbol{T})$ in this case.

Examples 5. (i) Let α be a nonconstant inner function on \boldsymbol{T} with $c=\hat{\alpha}(0)$, so that $|c|<1$. Let P_{c} denote the Poisson kernel at c :

$$
\begin{equation*}
P_{c}(z)=\operatorname{Re} \frac{1+c z}{1-c z}=1+2 \operatorname{Re} \sum_{k=1}^{\infty} c^{k} z^{k} \quad \forall z \in \boldsymbol{T} . \tag{8}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\int(h \circ \alpha) d \lambda=\int h P_{c}^{*} d \lambda \quad \forall h \in L^{1}(\boldsymbol{T}), \tag{9}
\end{equation*}
$$

where $\mathrm{P}_{c}^{*}(z)=P_{c}\left(z^{-1}\right)$ for $z \in \boldsymbol{T}$ (cf. R. B. Burckel [1; p. 134]). Consequntly $\alpha^{*} 1=P_{c}^{*} \bar{\lambda}$

To prove this, first suppose that h is a trigonometric polynomial on $\boldsymbol{T}: h(z)=\sum_{k=-n^{n}} a_{k} z^{k}$. Then

$$
\begin{aligned}
\int(h \circ \alpha) d \lambda & =\sum_{k=-n}^{n} a_{k} \int \alpha^{k} d \lambda \\
& =a_{0}+\sum_{k=1}^{n}\left(a_{k} c^{k}+a_{-k} \bar{c}^{k}\right)=\int h P_{c}^{\ddagger} d \lambda .
\end{aligned}
$$

Thus (9) holds for all trigonometric polynomials h and hence for all $h \in$ $C(\boldsymbol{T})$. Therefore it is an easy exercise to show that (9) holds for all $[0, \infty]$-valued Borel functions h and hence for all $h \in L^{1}(\boldsymbol{T})$.
(ii) Let α, c be as in Part (i), and let $\beta \in H^{1}(\boldsymbol{T})$ be such that $|\beta| \leq 1$ a. e. and $c \hat{\beta}(0)=0$. Then our proof of Theorem 1 combined with (9) shows that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k}\left|\left(\alpha^{*} \beta^{k}\right) * f\right| \leq C_{1} P_{c}^{\sharp} *|f| \quad \forall f \in H_{0}^{1}(\boldsymbol{T}) \tag{10}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\left(\alpha^{*} \beta^{n k}\right) * f\right|^{2} \leq C_{2}^{2}\left(P_{c}^{*} *|f|\right)^{2} \quad \forall f \in H_{0}^{1}(\boldsymbol{T}) \tag{11}
\end{equation*}
$$

under the hypotheses of Theorem 2. In case $\hat{\beta}(0)=0$, both (10) and (11) hold for all $f \in H^{1}(\boldsymbol{T})$.
(iii) Now we consider a special case. Fix any $c \in \boldsymbol{C}$ with $|c|<1$, and let $\alpha=\alpha_{c}$ denote the Möbius transformation defined by

$$
\alpha(z)=\frac{c-z}{1-\bar{c} z} \quad \forall z \in \boldsymbol{T} .
$$

Thus α is an inner function with $\hat{\alpha}(0)=c$ and $\alpha \circ \alpha$ is nothing but the identity mapping on \boldsymbol{T}.

If $g \in L^{1}(\boldsymbol{T})$, then we have $\alpha^{*} g=(g \circ \alpha) P_{c}^{*} \lambda$; in fact, $h \in C(\boldsymbol{T})$ implies

$$
\begin{aligned}
\int h d\left(\alpha^{*} g\right) & =\int(h \circ \alpha) g d \lambda \\
& =\int(h \circ \alpha)(g \circ \alpha \circ \alpha) d \lambda=\int h(g \circ \alpha) P_{c}^{\#} d \lambda
\end{aligned}
$$

by (9). Therefore (10) and (11) become respectively

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k}\left|\left((\beta \circ \alpha)^{k} P_{c}^{\#}\right) * f\right| \leq C_{1} P_{c}^{\#} *|f| \quad \forall f \in H_{0}^{1}(\boldsymbol{T}) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\left((\beta \circ \alpha)^{n k} P_{c}^{\sharp}\right) * f\right|^{2} \leq C_{2}^{2}\left(P_{c}^{\sharp} *|f|\right)^{2} \quad \forall f \in \mathrm{H}_{0}^{1}(\boldsymbol{T}) . \tag{11}
\end{equation*}
$$

Now let G, X, Y be three locally compact spaces, and let $u: G \times X \rightarrow$ Y be a Borel measurable mapping. Given $\nu \in M(G)$ and $\mu \in M(X)$, let $\nu{ }_{u} \mu$ denote the complex Borel measure on Y defined by

$$
\begin{equation*}
\int_{Y} h d\left(\nu^{*} u \mu\right)=\iint h(u(t, x)) d \nu(t) d \mu(x) \tag{12}
\end{equation*}
$$

for all bounded Borel functions h on Y. It is readily seen that if u is continuous, then $\nu^{*}{ }_{u} \mu$ is a regular measure.

To give an example, let $\alpha: \boldsymbol{C} \rightarrow \boldsymbol{C}$ be a Borel function. Define $u: \boldsymbol{C}^{2}$ $\rightarrow \boldsymbol{C}$ by setting $u(z, w)=\alpha(z) w$ for $z, w \in \boldsymbol{C}$. Regard \boldsymbol{C} as a topological semigroup with respect to the usual multiplication of complex numbers. If $\nu, \mu \in M(\boldsymbol{C})$ and h is a bounded Borel function on \boldsymbol{C}, then

$$
\begin{aligned}
\int h d\left(\nu^{*} u\right) & =\iint h(\alpha(z) w) d \nu(z) d \mu(w) \\
& =\iint h(z w) d\left(\alpha^{*} \nu\right)(z) d \mu(w) \\
& =\int h d\left[\left(\alpha^{*} \nu\right) * \mu\right],
\end{aligned}
$$

where $\left(\alpha^{*} \nu\right) * \mu$ denotes the convolution product of $\alpha^{*} \nu$ and μ on the topological semigroup \boldsymbol{C}. Consequently we have $\nu *{ }_{u} \mu=\left(\alpha^{*} \nu\right) * \mu$.

THEOREM 6 (NOTATION AS BEFORE). Suppose that one of the conditions in Lemma 3 obtains, $\nu \in M(G)$ and $\mu \in M(X)$. If $(\phi \nu) *_{u} \mu=0$ for all $\phi \in \mathscr{A}$, then

$$
\sum_{k=1}^{\infty} a_{k}\left\|\left(\gamma_{k} \nu\right) *_{u} \mu\right\|^{p} \leq a_{0}^{p}\|\nu\|^{p}\|\mu\|^{p} .
$$

Proof: Given $t \in G$, let μ_{t} denote complex Borel measure on Y defined by

$$
\begin{equation*}
\left\langle h, \mu_{t}\right\rangle=\int_{Y} h d \mu_{t}=\int_{X} h(u(t, x)) d \mu(x) \tag{13}
\end{equation*}
$$

for all bounded Borel functions h on Y. Then we have

$$
\begin{equation*}
\left\|\mu_{t}\right\| \leq\|\mu\| \quad \forall t \in G \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\int\left\langle h, \mu_{t}\right\rangle \phi(t) d \nu(t)=\int h d\left(\phi \nu^{*} u \mu\right) \tag{15}
\end{equation*}
$$

for all h as above and all $\phi \in L^{1}(\nu)$. Thus the assumption that $(\phi \nu) *{ }_{u} \mu=$ 0 for all $\phi \in \mathscr{A}$ can be expressed as

$$
\begin{equation*}
\int\left\langle h, \mu_{t}\right\rangle \phi(t) d \nu(t)=0 \quad \forall \phi \in \mathscr{A} \tag{16}
\end{equation*}
$$

whenever h is a bounded Borel function on Y.
Now choose and fix any finite constant $C>a_{0}$ and any natural number n. Suppose $z=\left(z_{k}\right)_{1}^{n} \in C^{n}$ and $\sup \left\{\left|z_{k}\right|: 1 \leq k \leq n\right\} \leq 1$ (if $p=1$) or $\sum_{k=1}^{n} a_{k}\left|z_{k}\right|^{p^{\prime}} \leq 1$ (if $p>1$). Then condition (b) of Lemma 3 yields $\phi \in \mathscr{A}$ such that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} a_{k} z_{k} \gamma_{k}+\phi\right\|_{\infty}<C . \tag{17}
\end{equation*}
$$

Notice that this inequality is valid for all z^{\prime} in a sufficiently small neighborhood of z in \boldsymbol{C}^{n}. Therefore we can find finitely many simple Borel functions g_{1}, \ldots, g_{m} on C^{n} and $\phi_{1}, \ldots, \phi_{m} \in \mathscr{A}$ such that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} a_{k} z_{k} \gamma_{k}+\sum_{j=1}^{m} g_{i}(z) \phi_{j}\right\|_{\infty}<C . \tag{18}
\end{equation*}
$$

for all $z \in C^{n}$ as above.
In order to confirm the desired inequality, let h_{1}, \ldots, h_{n} be any bounded Borel functions on Y such that $\sup \left\{\left\|h_{k}\right\|_{\infty}: 1 \leq k \leq n\right\} \leq 1$ (if $p=1$) or $\sum_{k=1}^{n} a_{k}\left\|h_{k}\right\|_{\infty}^{p^{\prime}} \leq 1$ (if $p>1$). Define

$$
H_{i}(y)=g_{i}\left(h_{1}(y), \ldots, h_{n}(y)\right) \quad \forall y \in Y \text { and } j=1,2, \ldots, m
$$

Then each H_{j} is a simple Borel function on Y and (18) ensures that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} a_{k} \gamma_{k}(t) h_{k}+\sum_{k=1}^{m} \phi_{j}(t) H_{i}\right\|_{\infty} \leq C \quad \forall t \in G . \tag{19}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\mid \sum_{k=1}^{n} a_{k} \int_{Y}\left(h_{k} d\left[\left(\gamma_{k} \nu\right) *_{u} \mu\right] \mid\right. & =\left|\sum_{k=1}^{n} a_{k} \int_{G}\left\langle h_{k}, \mu_{t}\right\rangle \gamma_{k}(t) d \nu(t)\right| \quad \text { by (15) } \\
& =\left|\int_{G}\left\langle\sum_{k=1}^{n} a_{k} \gamma_{k}(t) h_{k}+\sum_{j=1}^{m} \phi_{j}(t) H_{j}, \mu_{t}\right\rangle d \nu(t)\right| \\
& \leq C\|\mu\| \cdot\|\nu\| \quad \text { by (19) and (14). }
\end{aligned}
$$

Since this holds for all h_{1}, \ldots, h_{n} as above, we obtain $\sum_{k=1}^{n} a_{k}\left\|\left(\gamma_{k} \nu\right) *_{u} \mu\right\|^{D}$ $\leq C^{p}\|\nu\|^{p} \cdot\|\mu\|^{p}$. As $n \in N$ and $C>a_{0}$ are arbitrary, this completes the proof.

REMARK 7: Theorem 6 has a purely measure-theoretical version. Since this version is somewhat complicated, we shall merely give an example instead of stating it.

Let X be a measurable space, and let μ be a complex measure on $\boldsymbol{R} \times$ \boldsymbol{X}, where \boldsymbol{R} is equipped with its Borel field. Define the "maximal" function M of μ by setting

$$
M(s)=\sup \left|\int_{\boldsymbol{R} \times \boldsymbol{X}} e^{-i s t} h(x) d \mu(t, x)\right| \quad \forall s \in \boldsymbol{R},
$$

where the supremum is taken over all measurable functions h on X with $\|h\|_{\infty} \leq 1$. If $M(s)=0$ for all $s<0$, then

$$
\begin{equation*}
\int_{0}^{\infty} s^{-1} M(s) d s \leq C_{1}\|\mu\|, \tag{20}
\end{equation*}
$$

where C_{1} is any finite constant satisfying (1).
First of all, note that M is a continuous function on \boldsymbol{R}. To prove (20), pick any $\varepsilon>0$ and any finitely many measurable functions h_{1}, \ldots, h_{n} on X such that $\left\|h_{k}\right\|_{\infty} \leq 1$ for each k. Then the proof of Theorem 6 combined with (5) shows that there exist finitely many simple functions H_{1}, \ldots, H_{m} on X such that

$$
\begin{equation*}
\left|\sum_{k=1}^{n} k^{-1} z^{k} h_{k}(x)+\sum_{j=1}^{m} z^{-j} H_{j}(x)\right|<C_{1}+\varepsilon \quad \forall(z, x) \in \boldsymbol{T} \times X . \tag{21}
\end{equation*}
$$

Upon replacing z by $e^{-i \epsilon t}$ in (21) and integrating both sides of the resulting inequality with respect to $d|\mu|$, we get

$$
\left|\sum_{k=1}^{n} k^{-1} \int e^{-i k t} h_{k}(x) d \mu(t, x)\right| \leq\left(C_{1}+\varepsilon\right)\|\mu\|
$$

since $M(s)=0$ for all $s<0$. Therefore $\sum_{k=1}^{n} k^{-1} M(\varepsilon k) \leq\left(C_{1}+\varepsilon\right)\|\mu\|$; hence

$$
\begin{equation*}
\sum_{k=1}^{\infty}(\varepsilon k)^{-1} M(\varepsilon k) \varepsilon \leq\left(C_{1}+\varepsilon\right)\|\mu\| . \tag{22}
\end{equation*}
$$

Since M is continuous, (20) is obtained from (22) by applying Fatou's Lemma.

Finally observe that if X is a locally compact abelian group with dual \hat{X}, if $\mu \in M(\boldsymbol{R} \times \boldsymbol{X})$, and if

$$
\begin{equation*}
\int e^{-i s t} \gamma(x) d \mu(t, x)=0 \quad \forall s<0 \text { and } \gamma \in \hat{X}, \tag{23}
\end{equation*}
$$

then $M(s)=0$ for all $s<0$.
Acknowledgement. This jointwork was done during the second author's visit at Kansas State University (Aprill 1988-March 1989). He would like to express his thanks to Josai University for its financial support and to the Department of Mathematics at Kansas State University for its hospitality.

References

[1] R. B. Burckel, An introduction to classical complex analysis, Vol. 1, Birkhäuser (1979).
[2] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall (1962).
[3] R.A.E.C. Paley, On the lacunary coefficients of a power series, Ann. Math. 34 (1933), 615-616.
[4] W. Rudin, Fourier analysis on groups, Interscience (1962).
[5] A. ZyGmund, Trigonometric series, 2nd ed., Vols. I \&II, Cambridge (1959).
Department of Mathematics Kansas State University Manhattan, Kansas 66506

Department of Mathematics Josai University Sakado, Saitama Japan

