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Let T=\{z\in C:|z|=1\} be the circle group, and let \lambda be the Lebesgue
measure on T normalized so that \lambda(T)=1 . Thus the Fourier coefficients
of f\in L^{1}( T) are defined by

\hat{f}(n)=\int_{T}z^{-n}f(z)d\lambda(z) \forall n\in Z .

The Hardy class H^{1}( T) consists of all f\in L^{1}( T) such that \hat{f}(n)=0 for
all n\langle 0 . The classical inequality of Hardy states that

(1) \sum_{n=1}^{\infty}\frac{1}{n}|\hat{f}(n)|\leq C_{1}||f||_{1} \forall f\in H^{1}(T) ,

where C_{1} is a positive constant \leq\pi ; see, e . g. , K. Hoffman [2; p. 70] or A.
Zygmund [5; p. 286]. On the other hand, Paley’s Gap Theorem [3]
asserts that given a sequence (n_{k})_{1}^{\infty} of natural numbers with inf { n_{k+1}/n_{k} :
k\geq 1\}\rangle 1 , there exists a finite constant C_{2} such that

(2) \sum_{k=1}^{\infty}|\hat{f}(n_{k})|^{2}\leq C_{2}^{2}||f||_{1}^{2} \forall f\in H^{1}(T) .

For a generalization of (2) to connected compact abelian groups, we refer
to W. Rudin [4; p. 213]. In the present paper, we shall give some gener-
alizations of these well known results both in the classical setting and the
abstract setting.

Let \alpha be a Borel measurable function on T such that|\alpha|=1 almost
everywhere. Given f\in\dot{L}^{1}(T) , let \alpha^{*}f denote the complex measure on T

defined by

(3) \int hd(\alpha^{*}f)=\int(h\circ\alpha)fd\lambda

for all bounded Borel functions h on Tr In other words, \alpha^{*}f is the image
measure of f\lambda by \alpha . Let H_{0}^{1}(T)=\{f\in H^{1}( T) : \hat{f}(0)=0\} . Finally recall
that an inner function is an element \alpha of H^{1}( T) such that |\alpha|=1 almost
everywhere.

THEOREM 1. Let \alpha , \beta be two functions in H^{1}( T) such that |\alpha|=1\geq

|\beta|a . e . and \hat{\alpha}(0)\hat{\beta}(0)=0 . Then
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\sum_{n=1}^{\infty}\frac{1}{n}||(\alpha^{*}\beta^{n})*f||_{1}\leq C_{1}||f||_{1} \forall f\in H_{0}^{1}(T) ,

where C_{1} is any finite constant satisfying(l).

THEOREM 2. Let \alpha , \beta\in H^{1}( T) be as in Theorem 1, and let (n_{k})_{1}^{\infty}

be a sequence of natural numbers that satisfies (2) for some C_{2}<\infty .
Then

\sum_{k=1}^{\infty}||(\alpha^{*}\beta^{n_{k}})*f||_{1}^{2}\leq C_{2}^{2}||f||_{1}^{2} \forall f\in H_{0}^{1}(T) .

Example 5 (iii) given below includes a precise calculation of the mea-
sure \alpha^{*}g for M\"obius transformations \alpha and g\in L^{1} ( T) . In order to prove
the above two results, let G be a locally compact (Hausdorff) space, and
let M(G) be the Banach space of all bounded regular Borel measures on
G. Given a bounded Borel function f on G and \mu\in M(G) , we shall often

write \langle f, \mu\rangle for \int fd\mu . For a linear subspace \mathscr{A} of C_{0}(G) , define

\mathscr{A}^{\perp}=\{\mu\in M(G) : \langle\phi, \mu\rangle=0 \forall\phi\in \mathscr{A}\} .

For 1\langle p<\infty , let p^{r}=p/(p-1) .

Lemma 3. Let \mathscr{A} be a linear subspace of C_{0}(G) , let (\gamma_{k})_{1}^{\infty} be a

sequence in C_{0}(G) , let 1\leq p<\infty , and let (a_{k})_{0}^{\infty} be a sequence of real
positive numbers. Then the following conditions are equivalent:

(a) For each \mu\in \mathscr{A}^{\perp},\sum_{k=1}^{\infty}a_{k}|\langle\gamma_{k}, \mu\rangle|^{p}\leq a_{0}^{p}||\mu||^{p}

(b) Whenever c_{1} , - c_{n} are finitely many complex numbers such

that sup \{|c_{k}|:1\leq k\leq n\}\leq 1 if p=1 or \sum_{k=1}^{n}a_{k}|c_{k}|^{p\prime}\leq 1 if p>1 , Then

\inf\{||\sum_{k=1}^{n}a_{k}c_{k}\gamma_{k}+\phi||_{\infty} : \phi\in \mathscr{A}\}\leq a_{0} .

PROOF: That (a) implies (b) follows from the Hahn-Banach TheO-
rem combined with the Riesz Representation Theorem. The converse is
an easy exercise.

PROOF OF THEOREM 1: Choose and fix any \alpha , \beta\in H^{1}( T) such that
|\alpha|=1\geq|\beta| almost everywhere and \hat{\alpha}(0)\hat{\beta}(0)=0 . Then

(4) (\alpha^{*}\overline{\beta}^{k})*f=0 \forall k\in N and f\in H_{0}^{1}( T) .

In fact, n\in N implies \alpha^{n}\beta\in H_{0}^{1}( T) , so

( \alpha^{*}\overline{\beta})^{\wedge}(n)=\int\overline{z}^{n}d(\alpha^{*}\overline{\beta})=\int\overline{\alpha}^{n}\overline{\beta}d\lambda
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=( \int\alpha^{n}\beta d\lambda)^{-}=0 .

Therefore (\alpha^{*}\overline{\beta})*f=0 for each f\in H_{0}^{1}( T) . Applying this result to \beta^{k} ,
we obtain (4).

Now let a_{k}=1/k for k\geq 1 , and let c_{1} , . . Cn be finitely many complex
numbers with sup \{|c_{k}| : 1\leq k\leq n\}\leq 1 . Notice that { \mu\in M ( T) : \hat{\mu}(n)=0

\forall n\in N\}=\{\overline{f}\lambda:f\in H^{1}( T)\} by the F. and M. Riesz Theorem. There-
fore Lemma 3 (with p=1) combined with (1) yields complex numbers
b_{1} , \ldots

b_{m} such that

(5) | \sum_{k=1}^{n}a_{k}c_{k}z^{k}+\sum_{j=1}^{m}b_{j}\overline{z}^{j}|<C \forall z\in T .

where C is any preassigned finite constant >C_{1} . Define g\in L^{\infty}(T) by set-
ting

(6) g= \sum_{k=1}^{n}a_{k}c_{k}\beta^{k}+\sum_{j=1}^{m}b_{j}\overline{\beta}^{j} .

Notice that (5) holds for all z\in C with |z|\leq 1 by the maximum modulus
principle for harmonic functions. Since |\beta|\leq 1(a, e.) , it follows from (6)
that |g|\leq C . Therefore f\in H_{0}^{1}( T) implies

| \sum_{k=1}^{n}a_{k}c_{k}(\alpha^{*}\beta^{k})*f|=|\sum_{k=1}^{n}a_{k}c_{k}(\alpha^{*}\beta^{k})*f+\sum_{k=1}^{m}b_{k}(\alpha^{*}\overline{\beta}^{k})*f| by (4)

=|(\alpha^{*}g)*f| by (6)
\leq(\alpha^{*}|g|)*|f|\leq C(\alpha^{*}1)*|f| .

Since this holds for all c_{1} , , c_{n}\in C with sup \{|c_{k}| : 1\leq k\leq n\}\leq 1 , it fol-
lows that

(7) \sum_{k=1}^{n}a_{k}|(\alpha^{*}\beta^{k})*f|\leq C(\alpha^{*}1)*|f| \forall f\in H_{0}^{1}(T) .

Upon integrating both sides of (7) over T and noting that \alpha^{*}1 is a proba-
bility measure, we obtain \Sigma_{k=1}^{n}a_{k}||(\alpha^{*}\beta^{k})*f||_{1}\leq C||f||_{1} for each f\in H_{0}^{1}( T) .
Since n\in N and C>C_{1} were arbitrary, this completes the proof of TheO-
rem 1.

The proof of Theorem 2 is quite similar to the above proof. We
leave the details to the reader.

REMARK 4: Suppose that \hat{\beta}(0)=0 . Then (4) holds for all f\in
H^{1} ( T) . Consequently H_{0}^{1} ( T) in Theorems 1 and 2 may be replaced by
H^{1} ( T) in this case.
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EXAMPLES 5. (i) Let \alpha be a nonconstant inner function on T with
c=\hat{\alpha}(0) , so that |c|<1 . Let P_{c} denote the Poisson kernel at c :

(8) P_{c}(z)=Re \frac{1+cz}{1-cz}=1+2Re\sum_{k=1}^{\infty}c^{k}z^{k} \forall z\in T .

Then we have

(9) \int(h\circ\alpha)d\lambda=\int hP_{c}^{\#}d\lambda \forall h\in L^{1}( T) ,

where pc\#(z)=P_{c}(z^{-1}) for z\in T (cf. R. B. Burckel [1 ; p. 134]). Conse-
quntly \alpha^{*}1=P_{c}^{\#}\overline{\lambda}

To prove this, first suppose that h is a trigonometric polynomial on
T:h(z)=\Sigma_{k=-n}^{n} akzk. Then

\int(h\circ\alpha)d\lambda=\sum_{k=-n}^{n}a_{k}\int\alpha^{k}d\lambda

=a_{0}+ \sum_{k=1}^{n}(a_{k}c^{k}+a_{-k}\overline{c}^{k})=\int hP_{c}^{\#}d\lambda .

Thus (9) holds for all trigonometric polynomials h and hence for all h\in

C(T) . Therefore it is an easy exercise to show that (9) holds for all
[0, \infty] -valued Borel functions h and hence for all h\in L^{1} ( T) .

(ii) Let \alpha , c be as in Part (i), and let \beta\in H^{1}( T) be such that|\beta|\leq 1

a . e . and c\hat{\beta}(0)=0 . Then our proof of Theorem 1 combined with (9)

shows that

(10) \sum_{k=1}^{\infty}\frac{1}{k}|(\alpha^{*}\beta^{k})*f|\leq C_{1}P_{c}^{\#}*|f| \forall f\in H_{0}^{1}(T) .

Similarly we have

(11) \sum_{k=1}^{\infty}|(\alpha^{*}\beta^{nk})*f|^{2}\leq C_{2}^{2}(P_{c}^{\#}*|f|)^{2} \forall f\in H_{0}^{1}(T)

under the hypotheses of Theorem 2. In case \hat{\beta}(0)=0 , both (10) and (11)

hold for all f\in H^{1}( T) .
(iii) Now we consider a special case. Fix any c\in C with |c|<1 ,

and let \alpha=\alpha_{c} denote the M\"obius transformation defined by

\alpha(z)=\frac{c-z}{1-\overline{c}z} \forall z\in T

Thus \alpha is an inner function with \hat{\alpha}(0)=c and \alpha^{\circ}\alpha is nothing but the iden-
tity mapping on T

If g\in L^{1}( T) , then we have \alpha^{*}g=(g\circ\alpha)P_{c}^{\#}\lambda ; in fact, h\in C(T) implies
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\int hd(\alpha^{*}g)=\int(h\circ\alpha)gd\lambda

= \int(h\circ\alpha)(g\circ\alpha^{o}\alpha)d\lambda=\int h(g\circ\alpha)P_{c}^{\#}d\lambda

by (9). Therefore (10) and (11) become respectively

(10) ’
\sum_{k=1}^{\infty}\frac{1}{k}|((\beta\circ\alpha)^{k}P_{c}^{\#})*f|\leq C_{1}P_{c}^{\#}*|f| \forall f\in H_{0}^{1}(T) ,

and

(11)’ \sum_{k=1}^{\infty}|((\beta\circ\alpha)^{nk}P_{c}^{\#})*f|^{2}\leq C_{2}^{2}(P_{c}^{\#}*|f|)^{2} \forall f\in H_{0}^{1}(T) .

Now let G , X, Y be three locally compact spaces, and let u:G\cross X -arrow

Y be a Borel measurable mapping. Given \nu\in M(G) and \mu\in M(X) , let
f)*_{u}\mu denote the complex Borel measure on Y defined by

(12) \int_{Y}hd(\nu*u\mu)=\iint h(u(t, x))d))(t)d\mu(x)

for all bounded Borel functions h on Y It is readily seen that if u is
continuous, then )/*_{u}\mu is a regular measure.

To give an example, let \alpha:Carrow C be a Borel function. Define u:C^{2}

arrow C by setting u(z, w)=\alpha(z)w for z, w\in C . Regard C as a topological
semigroup with respect to the usual multiplication of complex numbers.
If 1/, \mu\in M( C) and h is a bounded Borel function on C , then

\int hd(\nu_{u}*\mu)=\int\int h(\alpha(z)w)d\})(z)d\mu(w)

= \int\int h(zw)d(\alpha^{*}1’)(z)d\mu(w)

= \int hd[(\alpha^{*}\nu)*\mu]

where (\alpha^{*}\nu)*\mu denotes the convolution product of \alpha^{*}\nu and \mu on the
topological semigroup C . Consequently we have \nu*\mu u=(\alpha^{*}\nu)*\mu .

THEOREM 6 (NOTATION AS BEFORE). Suppose that one of the
conditions in Lemma 3 obtains, \nu\in M(G) and \mu\in M(X) . If (\phi\nu)*_{u}\mu=0

for all \phi\in \mathscr{A}, then

\sum_{k=1}^{\infty}a_{k}||(\gamma_{k}\nu)*_{u}\mu||^{p}\leq a_{0}^{p}||\nu||^{p}||\mu||^{p} .

PROOF: Given t\in G , let \mu_{t} denote complex Borel measure on Y
defined by
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(13) \langle h, \mu_{t}\rangle=\int_{Y}hd\mu_{t}=\int_{X}h(u(t, x))d\mu(x)

for all bounded Borel functions h on Y Then we have

(14) ||\mu_{t}||\leq||\mu|| \forall t\in G

and

(15) \int\langle h, \mu_{t}\rangle\phi(t)d\nu(t)=\int hd(\phi\nu_{u}*\mu)

for all h as above and all \phi\in L^{1}(\nu) . Thus the assumption that (\phi\nu)*_{u}\mu=

0 for all \phi\in \mathscr{A} can be expressed as

(16) \int\langle h, \mu_{t}\rangle\phi(t)d\nu(t)=0 \forall\phi\in \mathscr{A}

whenever h is a bounded Borel function on Yr
Now choose and fix any finite constant C>a_{0} and any natural number

n . Suppose z=(z_{k})_{1}^{n}\in C^{n} and sup \{|z_{k}| : 1\leq k\leq n\}\leq 1 (if p=1 ) or
\Sigma_{k=1}^{n}a_{k}|z_{k}|^{p^{\gamma}}\leq 1 (if p>1 ). Then condition (b) of Lemma 3 yields \phi\in \mathscr{A}

such that

(17) || \sum_{k=1}^{n}a_{k}z_{k}\gamma_{k}+\phi||_{\infty}<C .

Notice that this inequality is valid for all z’ in a sufficiently small neigh-
borhood of z in C^{n} . Therefore we can find finitely many simple Borel
functions g_{1} , . - g_{m} on C^{n} and \phi_{1} , \ldots . \phi_{m}\in \mathscr{A} such that

(18) || \sum_{k=1}^{n}a_{k}z_{k}\gamma_{k}+\sum_{j=1}^{m}g_{i}(z)\phi_{j}||_{\infty}<C .

for all z\in C^{n} as above.
In order to confirm the desired inequality, let h_{1} , \ldots . h_{n} be any bounded

ed Borel functions on Y such that \sup\{||h_{k}||_{\infty} : 1\leq k\leq n\}\leq 1 (if p=1) or
\Sigma_{k=1}^{n}a_{k}||h_{k}||_{\infty}^{p^{r}}\leq 1 (if p>1). Define

H_{i}(y)=g_{i}(h_{1}(y), . . h_{n}(y)) \forall y\in Y and j=1,2 , \ldots . m.

Then each H_{j} is a simple Borel function on Y and (18) ensures that

(19) || \sum_{k=1}^{n}a_{k}\gamma_{k}(t)h_{k}+\sum_{k=1}^{m}\phi_{j}(t)H_{i}||_{\infty}\leq C \forall t\in G .

It follows that
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| \sum_{k=1}^{n}a_{k}\int_{Y}(h_{k}d[(\gamma_{k}\nu)*_{u}\mu]|=|\sum_{k=1}^{n}a_{k}\int_{G}\langle h_{k}, \mu_{t}\rangle\gamma_{k}(t)d\nu(t)| by (15)

=| \int_{G}\langle\sum_{k=1}^{n}a_{k}\gamma_{k}(t)h_{k}+\sum_{j=1}^{m}\phi_{j}(t)H_{j}, \mu_{t}\rangle d\nu(t)|

by (16)
\leq C||\mu||\cdot||\nu|| by (19) and (14).

Since this holds for all h_{1} , . , h_{n} as above, we obtain \Sigma_{k=1}^{n}a_{k}||(\gamma_{k}\nu)*_{u}\mu||^{p}

\leq C^{p}||\nu||^{p}\cdot||\mu||^{p} . As n\in N and C>a_{0} are arbitrary, this completes the
proof.

REMARK 7: Theorem 6 has a purely measure-theoretical version.
Since this version is somewhat complicated, we shall merely give an
example instead of stating it.

Let X be a measurable space, and let \mu be a complex measure on RX
X, where R is equipped with its Borel field. Define the “maximal” func-
tion M of \mu by setting

M(s)= \sup|\int_{R\cross X}e^{-ist}h(x)d\mu(t, x)| \forall s\in R ,

where the supremum is taken over all measurable functions h on X with
||h||_{\infty}\leq 1 . If M(s)=0 for all s<0 , then

(20) \int_{0}^{\infty}s^{-1}M(s)ds\leq C_{1}||\mu|| ,

where C_{1} is any finite constant satisfying (1).
First of all, note that M is a continuous function on R. To prove

(20), pick any \epsilon>0 and any finitely many measurable functions h_{1} , \ldots
h_{n}

on X such that||h_{k}||_{\infty}\leq 1 for each k. Then the proof of Theorem 6 com-
bined with (5) shows that there exist finitely many simple functions
H_{1} , , H_{m} on X such that

(21) | \sum_{k=1}^{n}k^{-1}z^{k}h_{k}(x)+\sum_{j=1}^{m}z^{-j}H_{j}(x)|<C_{1}+\epsilon \forall(z, x)\in T\cross X .

Upon replacing z by e^{-i\epsilon t} in (21) and integrating both sides of the result-
ing inequality with respect to d|\mu| , we get

| \sum_{k=1}^{n}k^{-1}\int e^{-i^{\epsilon}kt}h_{k}(x)d\mu(t, x)|\leq(C_{1}+\epsilon)||\mu||

since M(s)=0 for all s<0 . Therefore \Sigma_{k=1}^{n}k^{-1}M(\epsilon k)\leq(C_{1}+\epsilon)||\mu|| ; hence

(22) \sum_{k=1}^{\infty}(\epsilon k)^{-1}M(\epsilon k)\epsilon\leq(C_{1}+\epsilon)||\mu|| .
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Since M is continuous, (20) is obtained from (22) by applying Fatou’s
Lemma.

Finally observe that if X is a locally compact abelian group with dual
\hat{X} , if \mu\in M(R\cross X) , and if

(23) \int e^{-iSt}\gamma(x)d\mu(t, x)=0 \forall s<0 and \gamma\in\hat{X} ,

then M(s)=0 for all s<0 .
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