On Hardy's Inequality and Paley's Gap Theorem

Sadahiro SAEKI and Hiroshi YAMAGUCHI Dedicated to Professor Shozo Koshi on his sixtieth birthday (Received April 10, 1989)

Let $T = \{z \in C : |z| = 1\}$ be the circle group, and let λ be the Lebesgue measure on T normalized so that $\lambda(T) = 1$. Thus the Fourier coefficients of $f \in L^1(T)$ are defined by

$$\hat{f}(n) = \int_{T} z^{-n} f(z) d\lambda(z) \qquad \forall n \in \mathbb{Z}.$$

The Hardy class $H^1(\mathbf{T})$ consists of all $f \in L^1(\mathbf{T})$ such that $\hat{f}(n) = 0$ for all n < 0. The classical inequality of Hardy states that

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n} |\hat{f}(n)| \leq C_1 ||f||_1 \qquad \forall f \in H^1(\boldsymbol{T}),$$

where C_1 is a positive constant $\leq \pi$; see, e.g., K. Hoffman [2; p. 70] or A. Zygmund [5; p. 286]. On the other hand, Paley's Gap Theorem [3] asserts that given a sequence $(n_k)_1^{\infty}$ of natural numbers with inf $\{n_{k+1}/n_k: k \geq 1\}$)1, there exists a finite constant C_2 such that

(2)
$$\sum_{k=1}^{\infty} |\hat{f}(n_k)|^2 \le C_2^2 ||f||_1^2 \quad \forall f \in H^1(T).$$

For a generalization of (2) to connected compact abelian groups, we refer to W. Rudin [4; p. 213]. In the present paper, we shall give some generalizations of these well known results both in the classical setting and the abstract setting.

Let α be a Borel measurable function on T such that $|\alpha|=1$ almost everywhere. Given $f \in L^{1}(T)$, let $\alpha^{*}f$ denote the complex measure on Tdefined by

(3)
$$\int hd(\alpha^*f) = \int (h \circ \alpha) f d\lambda$$

for all bounded Borel functions h on T. In other words, $\alpha^* f$ is the image measure of $f\lambda$ by α . Let $H_0^1(T) = \{f \in H^1(T) : \hat{f}(0) = 0\}$. Finally recall that an inner function is an element α of $H^1(T)$ such that $|\alpha| = 1$ almost everywhere.

THEOREM 1. Let α , β be two functions in $H^1(\mathbf{T})$ such that $|\alpha|=1 \ge |\beta| a. e.$ and $\hat{\alpha}(0)\hat{\beta}(0)=0$. Then

$$\sum_{n=1}^{\infty} \frac{1}{n} \| (\alpha^* \beta^n) * f \|_1 \le C_1 \| f \|_1 \qquad \forall f \in H_0^1(\mathbf{T}),$$

where C_1 is any finite constant satisfying (1).

THEOREM 2. Let $\alpha, \beta \in H^1(\mathbf{T})$ be as in Theorem 1, and let $(n_k)_1^{\infty}$ be a sequence of natural numbers that satisfies (2) for some $C_2 < \infty$. Then

$$\sum_{k=1}^{\infty} \| (\alpha^* \beta^{n_k}) * f \|_1^2 \le C_2^2 \| f \|_1^2 \qquad \forall f \in H_0^1(T).$$

Example 5 (iii) given below includes a precise calculation of the measure a^*g for Möbius transformations a and $g \in L^1(\mathbf{T})$. In order to prove the above two results, let G be a locally compact (Hausdorff) space, and let M(G) be the Banach space of all bounded regular Borel measures on G. Given a bounded Borel function f on G and $\mu \in M(G)$, we shall often write $\langle f, \mu \rangle$ for $\int f d\mu$. For a linear subspace \mathscr{A} of $C_0(G)$, define

$$\mathscr{A}^{\perp} = \{ \mu \in M(G) : \langle \phi, \mu \rangle = 0 \quad \forall \phi \in \mathscr{A} \}.$$

For $1 \le p \le \infty$, let p' = p/(p-1).

LEMMA 3. Let \mathscr{A} be a linear subspace of $C_0(G)$, let $(\gamma_k)_1^{\infty}$ be a sequence in $C_0(G)$, let $1 \le p < \infty$, and let $(a_k)_0^{\infty}$ be a sequence of real positive numbers. Then the following conditions are equivalent:

(a) For each $\mu \in \mathscr{A}^{\perp}$, $\sum_{k=1}^{\infty} a_k |\langle \gamma_k, \mu \rangle|^p \leq a_0^p ||\mu||^p$.

(b) Whenever c_1, \ldots, c_n are finitely many complex numbers such that $\sup \{|c_k| : 1 \le k \le n\} \le 1$ if p=1 or $\sum_{k=1}^n a_k |c_k|^{p'} \le 1$ if p>1, then $\inf \{ \left\| \sum_{k=1}^n a_k c_k \gamma_k + \phi \right\|_{\infty} : \phi \in \mathscr{A} \} \le a_0. \}$

PROOF: That (a) implies (b) follows from the Hahn-Banach Theorem combined with the Riesz Representation Theorem. The converse is an easy exercise.

PROOF OF THEOREM 1: Choose and fix any α , $\beta \in H^1(\mathbf{T})$ such that $|\alpha|=1\geq |\beta|$ almost everywhere and $\hat{\alpha}(0)\hat{\beta}(0)=0$. Then

(4)
$$(a^* \overline{\beta}^k) * f = 0 \quad \forall k \in \mathbb{N} \text{ and } f \in H_0^1(\mathbb{T}).$$

In fact, $n \in N$ implies $a^n \beta \in H_0^1(\mathbf{T})$, so

$$(\alpha^*\overline{\beta})^{\wedge}(n) = \int \bar{z}^n d(\alpha^*\overline{\beta}) = \int \bar{\alpha}^n \overline{\beta} d\lambda$$

$$= \left(\int \alpha^n \beta d\lambda\right)^- = 0.$$

Therefore $(a^*\overline{\beta})*f=0$ for each $f \in H_0^1(T)$. Applying this result to β^k , we obtain (4).

Now let $a_k = 1/k$ for $k \ge 1$, and let c_1, \ldots, c_n be finitely many complex numbers with sup $\{|c_k|: 1 \le k \le n\} \le 1$. Notice that $\{\mu \in M(\mathbf{T}): \hat{\mu}(n) = 0 \\ \forall n \in \mathbf{N}\} = \{\overline{f}\lambda: f \in H^1(\mathbf{T})\}$ by the F. and M. Riesz Theorem. Therefore Lemma 3 (with p=1) combined with (1) yields complex numbers b_1, \ldots, b_m such that

(5)
$$\left|\sum_{k=1}^{n} a_{k} c_{k} z^{k} + \sum_{j=1}^{m} b_{j} \bar{z}^{j}\right| < C \quad \forall z \in T,$$

where *C* is any preassigned finite constant $> C_1$. Define $g \in L^{\infty}(T)$ by setting

(6)
$$g = \sum_{k=1}^{n} a_{k} c_{k} \beta^{k} + \sum_{j=1}^{m} b_{j} \overline{\beta}^{j}$$

Notice that (5) holds for all $z \in C$ with $|z| \le 1$ by the maximum modulus principle for harmonic functions. Since $|\beta| \le 1$ (*a*, *e*.), it follows from (6) that $|g| \le C$. Therefore $f \in H_0^1(\mathbf{T})$ implies

$$\begin{vmatrix} \sum_{k=1}^{n} a_{k} c_{k} (\alpha^{*} \beta^{k}) * f \end{vmatrix} = \begin{vmatrix} \sum_{k=1}^{n} a_{k} c_{k} (\alpha^{*} \beta^{k}) * f + \sum_{k=1}^{m} b_{k} (\alpha^{*} \overline{\beta}^{k}) * f \end{vmatrix} \quad \text{by (4)}$$
$$= |(\alpha^{*} g) * f| \quad \text{by (6)}$$
$$\leq (\alpha^{*} |g|) * |f| \leq C(\alpha^{*} 1) * |f|.$$

Since this holds for all $c_1, \ldots, c_n \in C$ with $\sup \{|c_k|: 1 \le k \le n\} \le 1$, it follows that

(7)
$$\sum_{k=1}^{n} a_{k} |(\alpha^{*}\beta^{k})*f| \leq C(\alpha^{*}1)*|f| \quad \forall f \in H_{0}^{1}(\boldsymbol{T}).$$

Upon integrating both sides of (7) over T and noting that a^{*1} is a probability measure, we obtain $\sum_{k=1}^{n} a_k \|(a^*\beta^k)*f\|_1 \le C \|f\|_1$ for each $f \in H_0^1(T)$. Since $n \in N$ and $C > C_1$ were arbitrary, this completes the proof of Theorem 1.

The proof of Theorem 2 is quite similar to the above proof. We leave the details to the reader.

REMARK 4: Suppose that $\hat{\beta}(0)=0$. Then (4) holds for all $f \in H^1(\mathbf{T})$. Consequently $H_0^1(\mathbf{T})$ in Theorems 1 and 2 may be replaced by $H^1(\mathbf{T})$ in this case.

EXAMPLES 5. (i) Let α be a nonconstant inner function on T with $c = \hat{a}(0)$, so that |c| < 1. Let P_c denote the Poisson kernel at c:

(8)
$$P_c(z) = Re \frac{1+cz}{1-cz} = 1 + 2Re \sum_{k=1}^{\infty} c^k z^k \qquad \forall z \in \mathbf{T}.$$

Then we have

(9)
$$\int (h \circ \alpha) d\lambda = \int h P_c^* d\lambda \qquad \forall h \in L^1(\mathbf{T}),$$

where $P_c^*(z) = P_c(z^{-1})$ for $z \in T$ (cf. R. B. Burckel [1; p. 134]). Consequently $\alpha^* 1 = P_c^* \overline{\lambda}$

To prove this, first suppose that h is a trigonometric polynomial on $T: h(z) = \sum_{k=-n}^{n} a_k z^k$. Then

$$\int (h \circ \alpha) d\lambda = \sum_{k=-n}^{n} a_k \int \alpha^k d\lambda$$
$$= a_0 + \sum_{k=1}^{n} (a_k c^k + a_{-k} \bar{c}^k) = \int h P_c^* d\lambda.$$

Thus (9) holds for all trigonometric polynomials h and hence for all $h \in C(\mathbf{T})$. Therefore it is an easy exercise to show that (9) holds for all $[0, \infty]$ -valued Borel functions h and hence for all $h \in L^1(\mathbf{T})$.

(ii) Let α , c be as in Part (i), and let $\beta \in H^1(\mathbf{T})$ be such that $|\beta| \le 1$ a.e. and $c\hat{\beta}(0)=0$. Then our proof of Theorem 1 combined with (9) shows that

(10)
$$\sum_{k=1}^{\infty} \frac{1}{k} |(\boldsymbol{\alpha}^* \boldsymbol{\beta}^k) * f| \leq C_1 P_c^* * |f| \qquad \forall f \in H_0^1(\boldsymbol{T}).$$

Similarly we have

(11)
$$\sum_{k=1}^{\infty} |(\alpha^* \beta^{nk}) * f|^2 \le C_2^2 (P_c^* * |f|)^2 \quad \forall f \in H_0^1(\mathbf{T})$$

under the hypotheses of Theorem 2. In case $\hat{\beta}(0)=0$, both (10) and (11) hold for all $f \in H^1(\mathbf{T})$.

(iii) Now we consider a special case. Fix any $c \in C$ with |c| < 1, and let $a = a_c$ denote the Möbius transformation defined by

$$\alpha(z) = \frac{c-z}{1-\bar{c}z} \qquad \forall z \in T.$$

Thus α is an inner function with $\hat{\alpha}(0) = c$ and $\alpha \circ \alpha$ is nothing but the identity mapping on T.

If $g \in L^1(\mathbf{T})$, then we have $\alpha^* g = (g \circ \alpha) P_c^* \lambda$; in fact, $h \in C(\mathbf{T})$ implies

$$\int hd(\alpha^*g) = \int (h \circ \alpha) g d\lambda$$
$$= \int (h \circ \alpha) (g \circ \alpha \circ \alpha) d\lambda = \int h(g \circ \alpha) P_c^* d\lambda$$

by (9). Therefore (10) and (11) become respectively

$$(10)' \qquad \sum_{k=1}^{\infty} \frac{1}{k} | ((\beta \circ \alpha)^k P_c^*) * f| \le C_1 P_c^* * |f| \qquad \forall f \in H_0^1(\boldsymbol{T}),$$

and

(11)'
$$\sum_{k=1}^{\infty} |((\beta \circ \alpha)^{nk} P_c^*) * f|^2 \le C_2^2 (P_c^* * |f|)^2 \quad \forall f \in H_0^1(\mathbf{T}).$$

Now let G, X, Y be three locally compact spaces, and let $u: G \times X \rightarrow Y$ be a Borel measurable mapping. Given $\nu \in M(G)$ and $\mu \in M(X)$, let $\nu *_{u}\mu$ denote the complex Borel measure on Y defined by

(12)
$$\int_{Y} h d(\nu *_{u} \mu) = \iint h(u(t, x)) d\nu(t) d\mu(x)$$

for all bounded Borel functions h on Y. It is readily seen that if u is continuous, then $\nu *_{u}\mu$ is a regular measure.

To give an example, let $\alpha: C \to C$ be a Borel function. Define $u: C^2 \to C$ by setting $u(z, w) = \alpha(z)w$ for $z, w \in C$. Regard C as a topological semigroup with respect to the usual multiplication of complex numbers. If $\nu, \mu \in M(C)$ and h is a bounded Borel function on C, then

$$\int hd(\nu *_{u}\mu) = \iint h(\alpha(z)w)d\nu(z)d\mu(w)$$
$$= \iint h(zw)d(\alpha^{*}\nu)(z)d\mu(w)$$
$$= \int hd[(\alpha^{*}\nu)*\mu],$$

where $(a^*\nu)*\mu$ denotes the convolution product of $a^*\nu$ and μ on the topological semigroup *C*. Consequently we have $\nu*_{u}\mu = (a^*\nu)*\mu$.

THEOREM 6 (NOTATION AS BEFORE). Suppose that one of the conditions in Lemma 3 obtains, $\nu \in M(G)$ and $\mu \in M(X)$. If $(\phi \nu) *_u \mu = 0$ for all $\phi \in \mathscr{A}$, then

$$\sum_{k=1}^{\infty} a_{k} \| (\gamma_{k} \nu) *_{u} \mu \|^{p} \leq a_{0}^{p} \| \nu \|^{p} \| \mu \|^{p}.$$

PROOF: Given $t \in G$, let μ_t denote complex Borel measure on Y defined by

(13)
$$\langle h, \mu_t \rangle = \int_Y h d\mu_t = \int_X h(u(t, x)) d\mu(x)$$

for all bounded Borel functions h on Y. Then we have

$$(14) \qquad \|\mu_t\| \leq \|\mu\| \qquad \forall t \in G$$

and

(15)
$$\int \langle h, \mu_t \rangle \phi(t) d\nu(t) = \int h d(\phi \nu *_u \mu)$$

for all *h* as above and all $\phi \in L^1(\nu)$. Thus the assumption that $(\phi \nu) *_u \mu = 0$ for all $\phi \in \mathscr{A}$ can be expressed as

(16)
$$\int \langle h, \mu_t \rangle \phi(t) d\nu(t) = 0 \quad \forall \phi \in \mathscr{A}$$

whenever h is a bounded Borel function on Y.

Now choose and fix any finite constant $C > a_0$ and any natural number *n*. Suppose $z = (z_k)_1^n \in C^n$ and $\sup \{|z_k| : 1 \le k \le n\} \le 1$ (if p=1) or $\sum_{k=1}^n a_k |z_k|^{p'} \le 1$ (if p>1). Then condition (b) of Lemma 3 yields $\phi \in \mathscr{A}$ such that

(17)
$$\left\|\sum_{k=1}^{n} a_{k} z_{k} \gamma_{k} + \phi\right\|_{\infty} < C.$$

Notice that this inequality is valid for all z' in a sufficiently small neighborhood of z in \mathbb{C}^n . Therefore we can find finitely many simple Borel functions g_1, \ldots, g_m on \mathbb{C}^n and $\phi_1, \ldots, \phi_m \in \mathscr{A}$ such that

(18)
$$\left\|\sum_{k=1}^{n} a_{k} z_{k} \gamma_{k} + \sum_{j=1}^{m} g_{j}(z) \phi_{j}\right\|_{\infty} < C.$$

for all $z \in C^n$ as above.

In order to confirm the desired inequality, let h_1, \ldots, h_n be any bounded Borel functions on Y such that $\sup \{ \|h_k\|_{\infty} : 1 \le k \le n \} \le 1$ (if p=1) or $\sum_{k=1}^{n} a_k \|h_k\|_{\infty}^{p'} \le 1$ (if p>1). Define

$$H_i(y) = g_i(h_1(y), \ldots, h_n(y))$$
 $\forall y \in Y \text{ and } j=1, 2, \ldots, m.$

Then each H_j is a simple Borel function on Y and (18) ensures that

(19)
$$\left\|\sum_{k=1}^{n} a_k \gamma_k(t) h_k + \sum_{k=1}^{m} \phi_j(t) H_i\right\|_{\infty} \leq C \qquad \forall t \in G.$$

It follows that

$$\begin{aligned} \left| \sum_{k=1}^{n} a_{k} \int_{Y} (h_{k} d[(\gamma_{k} \nu) \ast_{u} \mu] \right| &= \left| \sum_{k=1}^{n} a_{k} \int_{G} \langle h_{k}, \mu_{t} \rangle \gamma_{k}(t) d\nu(t) \right| \qquad \text{by (15)} \\ &= \left| \int_{G} \langle \sum_{k=1}^{n} a_{k} \gamma_{k}(t) h_{k} + \sum_{i=1}^{m} \phi_{j}(t) H_{j}, \mu_{t} \rangle d\nu(t) \right| \end{aligned}$$

$$\leq C \|\mu\| \cdot \|\nu\|$$
 by (19) and (14).

Since this holds for all h_1, \ldots, h_n as above, we obtain $\sum_{k=1}^n a_k \|(\gamma_k \nu) *_u \mu\|^p \le C^p \|\nu\|^p \cdot \|\mu\|^p$. As $n \in \mathbb{N}$ and $C > a_0$ are arbitrary, this completes the proof.

REMARK 7: Theorem 6 has a purely measure-theoretical version. Since this version is somewhat complicated, we shall merely give an example instead of stating it.

Let X be a measurable space, and let μ be a complex measure on $\mathbf{R} \times \mathbf{X}$, where \mathbf{R} is equipped with its Borel field. Define the "maximal" function M of μ by setting

$$M(s) = \sup \left| \int_{\mathbf{R} \times \mathbf{X}} e^{-ist} h(x) d\mu(t, x) \right| \qquad \forall s \in \mathbf{R},$$

where the supremum is taken over all measurable functions h on X with $||h||_{\infty} \leq 1$. If M(s)=0 for all s<0, then

(20)
$$\int_0^\infty s^{-1} M(s) \, ds \leq C_1 \|\mu\|,$$

where C_1 is any finite constant satisfying (1).

First of all, note that M is a continuous function on \mathbf{R} . To prove (20), pick any $\varepsilon > 0$ and any finitely many measurable functions h_1, \ldots, h_n on X such that $||h_k||_{\infty} \le 1$ for each k. Then the proof of Theorem 6 combined with (5) shows that there exist finitely many simple functions H_1, \ldots, H_m on X such that

(21)
$$\left|\sum_{k=1}^{n} k^{-1} z^{k} h_{k}(x) + \sum_{j=1}^{m} z^{-j} H_{j}(x)\right| < C_{1} + \varepsilon \qquad \forall (z, x) \in \mathbf{T} \times X.$$

Upon replacing z by $e^{-i\epsilon t}$ in (21) and integrating both sides of the resulting inequality with respect to $d|\mu|$, we get

$$\left|\sum_{k=1}^{n} k^{-1} \int e^{-i^{\epsilon}kt} h_k(x) d\mu(t,x)\right| \leq (C_1 + \varepsilon) \|\mu\|$$

since M(s) = 0 for all s < 0. Therefore $\sum_{k=1}^{n} k^{-1} M(\varepsilon k) \le (C_1 + \varepsilon) \|\mu\|$; hence

(22)
$$\sum_{k=1}^{\infty} (\varepsilon k)^{-1} M(\varepsilon k) \varepsilon \leq (C_1 + \varepsilon) \|\mu\|.$$

Since M is continuous, (20) is obtained from (22) by applying Fatou's Lemma.

Finally observe that if X is a locally compact abelian group with dual \hat{X} , if $\mu \in M(\mathbf{R} \times \mathbf{X})$, and if

(23)
$$\int e^{-ist}\gamma(x)d\mu(t,x)=0 \quad \forall s < 0 \text{ and } \gamma \in \hat{X},$$

then M(s) = 0 for all s < 0.

Acknowledgement. This jointwork was done during the second author's visit at Kansas State University (Aprill 1988-March 1989). He would like to express his thanks to Josai University for its financial support and to the Department of Mathematics at Kansas State University for its hospitality.

References

- [1] R. B. BURCKEL, An introduction to classical complex analysis, Vol. 1, Birkhäuser (1979).
- [2] K. HOFFMAN, Banach spaces of analytic functions, Prentice-Hall (1962).
- [3] R. A. E. C. PALEY, On the lacunary coefficients of a power series, Ann. Math. 34 (1933), 615-616.
- [4] W. RUDIN, Fourier analysis on groups, Interscience (1962).
- [5] A. ZYGMUND, Trigonometric series, 2nd ed., Vols. I &II, Cambridge (1959).

Department of Mathematics Kansas State University Manhattan, Kansas 66506

Department of Mathematics Josai University Sakado, Saitama Japan