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1. Introduction and preliminaries

Two pairs of functors play an outstanding role in the representation
theory of finite-dimensional tensor algebras: The Coxeter functors C*
and C™ and the functors D77 and T¥D, the importance of which has
been discovered by Auslander and Reiten (see resp. [1]; as usual T»
denotes the Auslander-Bridger transpose and D the duality with respect to
the ground field). Brenner and Butler and, independently, Gabriel [6]
have proved the remarkable fact that there is an equivalence T of a very
simple form such that C* and DT»T resp. C~ and TDTr» are isomor-
phic. The validity of a result of this sort for the larger class of artinian
tensor rings with duality conditions has been conjectured by Auslander,
Platzeck and Reiten when they noticed that these rings possess a
canonical selfduality D. In the present article this conjecture is confirmed.
Actually we intend to show that Gabriel’s proof can be adopted with cer-
tain modifications.

For the convenience of the reader we sum up some definitions and
simple facts concerning tensor rings with duality conditions and their mod-
ules. Since it is more suitable for our purpose we prefer the equivalent
language of modulations of quivers and their representations [5]. How-
ever, first let us agree upon some conventions. For modules M, N over
some ring S we shall write (M, N) instead of Homs(M, N); furthermore
we use the abbreviations M*=(Ms, Ss) resp. *M=(sM, sS) for a right
resp. left S-module M. We shall place maps of left modules to the right
of the argument and maps of right or bimodules to the left; accordingly
the composition of maps is written. In the situation Ms, sNz7, Pr the
canonical isomorphism (M®sNr, Pr)— (Ms, (Nz, Pr)s) is denoted by
f—f.

In this paper we assume that T" is a finite connected quiver without
cycles and multiple arrows. The set of vertices resp. arrows of I' is
denoted by I'o resp. I'; and the domain resp. range of some arrow a by
da resp. ra. Furthermore we assume that for each x€TI', we have a



90 W. Zimmermann

skew field Fx and for each arrow a¢:x——y a bimodule rM(a)r, which
is finite dimensional on either side, and ‘a bimodule isomorphism we :
M(a)*—*M(a). Now let u=au a1 be some path of length £#>1 of T,
starting in x=da and ending in y=7a.. Then we have the bimodule
FM()ry s =M () Qr. M) Q- Qr..M(ar) and inductively we define the
bimodule isomorphism M(u)*— *M (1) as follows. We suppose that pu=
to for paths 6:x— w and 7:u—— vy of smaller length for which ws:
M(o)*—*M(0) and w.: M(t)*——*M(r) are already defined. Then w.
is to be the composition of isomorphisms

M()*=(M(0)QrM(7)r,, Fyr,);’ (M(0)r., M(7)%)

9% (o) M) r ) (M), £ M (0)")

(L 99) M(2), 25 M(0)) " (. MM, 1) ="M (1),
Explicitly (me@®@m:)wu(e): =(mes)ws((m:)w:(3(—0))) for me= M(0),
m:EM(r) and o= M(n)*, where (m:)w.(@(—0)) maps some x-EM(0) to
(me)w:(@(xs)). For the empty path z from x to x we put M(y): =5 Fxr.
and for w,. wé take the canonical isomorphism F¥— *F.

A right representation V is given by right vector spaces V(x)r,, xET,
and linear maps V(a): V(da)Qr.M(@)rre— V(#@)Fre, a=T1.  Inductively
we may define linear maps V() for arbitrary paths x«. Again we assume
that #=ro is decomposed as above and that V(o): V(x)QM(c)— V(u)
and V(7): V() QM(r)— V(y) are already defined. Then we put V(x)
=V(r)(V(6)@M(r)). Similarly a left representation W of T consists of
left vector spaces r, W(X), xE Ty, and homomorphisms W(a) :
FaaM(@)Qpre W(ra)— roa W(da), a=T1. We shall denote the category of
finite dimensional right resp. left representations by mod-I' resp. I'-mod.
Recall that the tensor ring R : =6#-)M (1), where ¢ runs over the set of all

paths of T, is a two-sided artinian ring and that mod-I" resp. I''mod is
equivalent to the category of finitely generated right resp. left modules
over R. It may happen that some skew field G acts from the left on a
right representation V, i.e. each V{(x) is a bimodule ¢V (x)r. and each
V(a) a bimodule map. In this case we can define the tensor product
L&V of V with a right vector space L by (LQV)(x): =LQV(x) and
(L®V)a): LQV(a). Similarly tensor products of left representations
with left vector spaces may be defined.

Next we recall the definition of the indecomposable projective and in-
jective representations. For each vertex x the indecomposable projective
right representation Py is given by Px(s): = 6#3 M(y), ¢ running over the
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set of paths from x to s, and for an arrow a@:s— ¢ by the map P«a):
P(s)Q@M(a)— Px(t), PA(m)@ms) : =(m,Qm.). Let f:x— y be an
arrow of . Then we may form M(8)®r,P, and it is quickly checked
that Ps: M(B)® Py — Px with Ps(s)(msQ(m,)) : =(msQm,) for
msEM(B) and (m.)E Py(s) defines a morphism. The indecomposable in-
jective right representations Ix, €T, are defined by I(s): = C? M(p)*

S—x

and ]x(a/) : IX(S)®M(Q)_) Ix(t), with Ix(a)(go,l®ma)((mp)) o=
Z,9uma®m,) for euEM(p)*, meEM(e) and (m,)€ & M(p), in short

Ix(a)(%@ma):pz#qo#(ma@*p). For each arrow 8:x——y we have the

morphism Is: M(B)®r, Iy — I« given by Li(m:Qv,)((m,)) : =
p;ﬁﬂ(m/;)wﬁ(wp(m#®—ﬂ)) for myEM(B), some path p:s—y, Y= M(0)*

and (m.)€E Gﬂ-) M(p), in shorter notation I;(s)(m:®¢,)=

X

pgﬁ(mﬂ)w,g(;;p(— ©)). In an analogous way the indecomposable projective
and injective left representations »P and »/ are introduced.
Auslander, Reiten and Platzeck have noticed that there exists a

D
duality mod-T ?I‘-mod. It works as follows. If we start with a left

representation W then DW is defined by DW(x): =*W(x) and for an
arrow a:x——y the linear map DW(a): DW(x)QM(a)— DW(y) is the
composition
*
W)@e M) EBMED) s 1), W() @M ()
—’V_)(FxM(a)®Fy W(y), FxM(a))_l} (Fy W(y), Fy(FxM(a/); FxM(a)))
— (e W(y), R, F3)=*W(y);

the last map is induced by the bimodule homomorphism (r.M(e), /.M (a))
k
—F, f— g‘,lwzl(wx,j)((mx,,-)f), where (mx,j, ¥x,;h1<j<+ is a dual basis of

r-M(@). Explicitly (w)(DW(a)(¥Q®m.a)) : =wz'((—a@w) W(a)o¢¥)m.) for
yE*W(x), meEM(a) and wE W(y). Similarly the dual DV of a right
representation V is given by DV(x): =V(x)* x&€ Ty, and DV(a):
M(a)®DV(y)— DV(x) is determined by the formula
(me@Y)DV(2))(v) : =(ma)wa(¢e V(a)(v®—)). 1t is easy to see that the
duality D is weakly symmetric, i.e. D(Px/J(Px))=xP/J(xP) where J(P)
resp. J(xP) denotes the unique maximal subrepresentation of P resp. xP.

At last we define a left representation V* for each right representa-
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tion V as follows. Let Vix):=(V, Px) be the set of morphisms from V
to P, and for an arrow a:x—y let Vi(a): M(a)Q@ Vi(y)— Vi(x) be
given by (m.®h)Vi(a): =m.®h for m.=M(a) and h<E V'(y), where
(ma@n)(s)(v) : =mQh(s)(v) for s€Ty, vE V(s). In addition, for a mor-
phism f: U— V the morphism f‘: V*—— U" is simply given by compo-
sition, i.e. (h)fi(x):=hof. It is obvious that the functor ViH— V* is

right exact. Furthermore, note that in case V1 !, Vo V 0 is a pro-
jective resolution of V such that the kernel of f is contained in the radical
of Vi, then the cokernel of f*: Vi— Vi’ is the Auslander-Bridger trans-
pose T» V of V.

LEMMA 1: For each xET and each finite dimensional vight Fix—
vector space L we have a functorial isomorphism

j:jL,x . L®Fxlx—) D((L®Px)t)
where
](S) : L®Fx]x(8)—’ *(L®Px, Ps)

is given by the formula
(1)i(s)1Q¢u) : =(h(x)(IR1))wu(@w)
for IEL, some path 1:s—x, eu=EM()* and he(LQPs, Ps).

PROOF: We confine ourselves to show that ; is a morphism. We
have to realize that for each arrow a:s——¢ the diagram

7(s)QM(a)

L®Ix(3)®M(d) *(L®Px, Ps)®M(a/)
L®IL(a) j Y
L®[x(t) : > *(L®Px, Pt)
()

commutes with y=D(LQPx)")(a). We take /€L, a path pg:s— x,
e EM()* me=M(a), g=(LQPy, P,) and put g({x)(/®1): =(xs)EPi(x)=
EXM(G)- Then

()RR @u®ma))=(g)r(j(s) (R 0u)Rm.)
=z ((—a® g)(LOPx) (a)°j(s)({Qpw))(ma)
=ws' ((—2®9)°7(s)(IQpu))(ma)
= w7 ((—a@®g(x)(IQ1)) wu(@u))(ma)
=da2=‘.pw21((—af®xa)wu(¢y))(ma).
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"On the other hand

(@G ()IRL() (@ p.Qma))=(9)j(t IR L a) p.Qma)))
= dgﬁ(g)j(l‘)(l@?’#(ma@_ o))

= 60=ug(X) (@D wol pu(ma®— 7))
= dzﬂ(xa)wa(co#(ma@ —0)).

Since we have
XO‘Cl),u(§0y):a)a((xo‘)w0‘( (5/1(_61’)))
for u=oa, we obtain

wa'((— a®xs) wu( @) (ma) =((x5) W §u(— @))) (M)
:(xo')wcr( (M — 0')),

hence the two sums coincide.

Let V be a right representation and a@:x——y an arrow of I.

it is easy to check that the morphisms

V(X)QP:: V(x)RpM(@)Qr, P— V(x)RQ e Py
and

V(e)QPy: V(x)QrM(a)Qr, P— V(y)®r, Py

induce commutative diagrams

V@U@SL, V8L el
j j
DUV R®M@OR)) s DIV I®P)
and
V)@M(Q)®I, @@L | yosr,
j j
DUV R®M@B )i DUVIRPY),

2. Proof of the main result

93

Then

The first step in the proof of the equivalence C*=DT»T for a certain
equivalence T :mod-I'—TI'-mod consists in a precise description of the
Auslander-Reiten translate DT7V for a right representation V. We
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begin with the construction of a projective resolution of V. For each
vertex x we have a morphism &x: V(x)®r,Ps— V given by

G($)(v®(my)) : = %} V() (vQ@m,) for ve V(x)

and (m.)E P«(s). Bundling up the & we arrive at the morphism ¢=(&):
@ V(x)QPr— V. In order to describe the kernel of &, we define mor-

x€To

phisms

6’ E. @ V(da)@M(a')(@Pra_’ @ V(x)®Px

xET

by fixing their components 0x,q, €xa: V(da)QM(a)RPre— V(x)RPx as
follows : Era,a=— V(Q)@Pra, Ex, «=0 for x=+ ra, ada a=— V(da)®Pa and ax «=0
for x#+da. It is easy to see that {o=~Ce.

PROPOSITION 2:  The sequence

— @ V(@M (@RPr L= @ V(x)® P V0

constitutes a projective resolution of V.
PrROOF: For each s&€T'y we consider the Fs-linear maps

7(s): V(s)— V(s)®Ps(s) and
o(s): V(x)QPu(s)— @ V(da)®M(2)® Pr(s)

defined in the following way. For v V(s) we put 7(s)(v): =v®1; for
we V(x), some path g=ar a1 : x—s and m.€M(a:;) we put

o(sHw@Rmi Q- Qms) :
k
zigl V(ai—l”'a’l)(w®ml®'"®mi—l)®mi®"'®mk-
Simple calculations prove the equations o(s)(d(s)—e(s))=1,
(d(s)—e(s))a(s)+z(s)&(s)=1, and ¢(s)z(s)=1, hence the sequence is exact.
Obviously the first and the second terms are projective.

Applying the functor D((—)?) to the above sequence and taking into
account the remark concluding section 1, we arrive at the exact sequence

0— DTrV— @ V(d) @M@l OV ()DL,

where 7ra,a=V(@)QIre, 7x,e=0 for x+7a, Ouae.e=V(da)®I, and bx,.=0
for x+da.
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Now let T'' denote an isomorphic copy of T, the isomorphism being
denoted by x+——x' on the vertices and by a——a' on the arrows.
Furthermore, let TT denote the quiver consisting of the disjoint union of
I' and T'! together with a new arrow «': y'—x for each arrow a¢:x—y
of . We put M(a"): =M(a) and M(a’): =*M(a). A right representa-
tion W of TT is called bound, if for all x€T% and we W(x!) the equa-
tion

%‘. W(aa' \wQ®er)+ % W(B BN w®eas)=0

holds. In these sums, @ and A run over the sets of arrows of I" ending
and starting in x, respectively, € : =2 Vua,i®Mae,; E*M(a)R@M(a), where
J

(Maa,;, Yaa,;); is some dual basis of r.M(@), and €as: =Zk‘,mrp,k®w,e(¢m,k)e

M(B)R*M(B), where (mrsk, ¥rsr)e is a dual basis of M(8)r, (The ele-
ments €r. and €4 are independent of the choice of the dual bases, further-
more, &' ere=¢€r*& for all EEFw and 7 ess=cus*y for all PEFs.) We
denote by modIT the category of bound right representations of TT and
by o:modIT — mod-T" resp. o : modIT — mod-T" the restriction fun-
ctors.

THEOREM 3: 1) p adwmits a right adjoint functor
o* : mod-T'— modTT .
* — 4 ~
2) The composition of functors C*: mod-T-2— mod IT L mod-1'">

mod-T" 1s isomorphic to DTrT, wherve T : mod-T'— mod-T" is defined by
(TV)(x): =V(x) for x€Tv and (TV)(a): =—V(a) for a<T\.

In the next section we shall show that the functor C* coincides with
the Coxeter functor defined by Dlab and Ringel [5].

PROOF: According to the remark following Prop. 2, DT»TV is the
kernel in the exact sequence

® = DTITV—@V(d@M(@R L L@V (RIRL,

In order to indicate a right adjoint p* of p it is useful to interpret the

middle and the end term of sequence (*) as spaces of linear maps. We

consider the right representations Fo.(V), a<T1, and G« V), xET, depen-

ding functorially on V, which are defined as follows. For s&TI'y we put
Fo(V)(s): =( @ MOWOM()rur, V(da)rar),

S—ra
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G(V)(s) : =( D M(0Y)r., V(2)r),

and for some arrow B:s—— t we let Fo(V)(B): Fo(V)($)@M(B)—
FAV)(¢) be defined by Fo{V)(B)(¢®my) : =d(ms®—) and G(V)(B):
G(V)$S)QM(B)— G(V)(t) by G VY BATRms): =¥ (mps®—). There

are functorial isomorphisms

pa: V(de)QM(a)QI;e— F.(V) and
dx . V(x>®[x—> Gx( V),

given by pu.(s)(0®m.Q¢¥)(2Q®¢.): =v+(ma+¥(2))pa for vE V(da),
meEM(a), VvEIL(s), zE 69 MUY, po=M(a’), and by g(w®¥)(2): =

54' ra

w+¥(2) for we V(x), v€L(s) and z€ EB M(p) At last, if we define

Ora, Nea: Fal V)—> G«(V) by the formulae 0 da,a(s) (Pa) : = o — R€an),
0x a(S) =(0 for x#:da/ 77ra a(S)(¢ ) V(a’)(¢a®M(a))( ®€ra) and 77x a(S)
= (0 for x+ra, then the diagrams

Oua,a
V(dﬂ)@M(&')@[m ? d V(da/ ®Ida
Da dda
Fa( V) , Gda( V)
Oda,a
and
V(d)®M(@)®Le ———— V(@)@
Da qra
Fu(V) : S Gl V)
Nra,a

commute and we have the exact sequence
6"+
0—DTrTV—> E{t‘)Fa( V)—_"’ @Gx( V)

Now p*: mod-T—modTT is constructed as follows. For VEmodT
and sE Ty let p*V(s): =V(s) and o*V(s'): = Ker(8'(s)+7(s)). Note
that (%)EQ‘—)F(,( V)(s) belongs to o*V(s') if and only if the equations

(x*) ; V(C?)((¢a®M(a’))(Z®€ra))+ Zﬁ:fﬁﬂ(Z@Edﬂ):O
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hold for all x&€TI'y and z& EL—) M(p'). For some arrow B:s—¢ of T' we

S—Xx

require that o*V(8)=V(B), that p* V(8"): o* V(sHQM(8)— p* V(#) is
given by o*V(8')(¢®my): =d(ms@—), and p* V(B): o* V(1 HQM(B)—
p*V(s)=V(s) by o*V(B')¢Q@ps)=ds(ps), ¢s being the B-th component
of ¢=p*V(t'). To show that p*V is bound, let xET, and ¢< p* Vix');
then

E o* V(aa )(¢Qera)+ 20 V(8 BN R eas)
5 V(@ V@D M) $Der)
+ S0Vt V(EIM(B) $Dear)
= E V(a) ¢a®M(a))(sm)+£ ba(eas)=0,

taking into account equation (**). It remains to show that there is an
isomorphism

modIT (X, o* V)~—mod-T(pX, V)

functorial in X€modTT and VEmodI'. We start with a family of lin-
ear maps f(s) : X(s)— 0*V(s)=V(s) and f(s*): X(s'— p* V(s"), s€Ty;
to indicate that f(s')(z) is a linear map for 2€ X(s') we write f(s)(z): =
f(s')(2, —). This family constitutes a morphism X— o*V if and only if
for each arrow B:s——¢ in T the following equations hold :

i) V(B)(f(s)(2)®ms)=F(t)(X(8)(2®@ms)), where ms&M(B) and
z€X(s);

i) f(s')(z, me®—)=7(t"NX(B)(2Qms), —) for mse M(B) and
z€X(s");

i) fsHX(B)2®eps)=F(¢')(2, o) for paEM(S’) and z& X(sY).

It is easily verified that ii) and iii) are equivalent to the single equation
iv) flu')z, w)=7(t)(X(B ) (2®w)) for all paths ux: u—>t in T,
z€X(u') and weM(EHQM(B).

Equation i) expresses the fact that (f(s))ser, is a morphism pX— V.
Hence the restriction to I" of a morphism f: X— p*V yields a morphism
pX— V, which by iv) uniquely determines f. Conversely, given a mor-
phism poX — V, equation iv) enables us to expand it to a morphism
X— p*V whose restriction to T' coincides with the original one. Hence

o* is a right adjoint of p; according to the construction of o* we have
C*=DT»T.
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3. Description of C* by reflection functors

Now we show that the Coxeter functor C* as defined in the preceding
section is isomorphic to the composition of reflection functors. In the
latter form it has originally been introduced by Bernstein, Gelfand and
Ponomarev for quiver algebras and some years later by Dlab and Rin-
gel for modulated quivers . We assume T'v={1, 2, ---, n} and that the
orientation of I" is admissible for sinks, i.e. that 7>/ for each arrow
i—7. By K 0<:<n, we denote the full subqulver of TT contamlng
the edges 1, -, #,1!, -, i*; note that Ko=T, K,=TT and that i'is a
source of K;. Furthermore, we denote by mod-K; the full subcategory of
right representations W of K; which satisfy the equations

S W(ed)(2®ew)+ 3 W(B ) 2®eus)=0

for all x€{1, -+, 7} and z& W(7"); again, @ and B run over the set of
arrows of I" ending and starting in x, respectively.

PROPOSITION 4:  The restriction functor o:: mod-Ki— mod-Ki-1 pos-
sesses a vight adjoint 0 : mod-K;—-,— mod-K..

PROOF: Let VEmod-K:.;. We require that o®V(x):=V(x) for
the edges x of K;-; and that o V(7") is the kernel in the exact sequence

(V(A)

0— 0 V(i) f—»@ V(@M (A)—= V(i)

where A runs over the arrows of K;-: ending in 7. The A-th projection of
the direct sum is denoted by p».. Next we have to define o'”V on the
arrows of K;. For an arrow y of K;-, we put 0 V(y): =V(y). For
some arrow a:j—17 in T' we let 0@ V(a): 0 V(i")QM(a' ) — 0 V(j)
be the composition e V(e )=mso((precr)@M(a’)) where 74 :
V(de)QM(a)@M (') — V(da) is given by m(v@mePRoo): =v. (mq)@a.
A straightforward calculation shows that (o V(a)QM(a))(z2Q¢er)=

pro(2) for all z€p0”V(:'). On the other hand, for the arrows B:i—J
in " we let

eV (B): o V(IHRM(B)— 0 V(")

be the composition p'? V(BY)=mso((prsor)QM(B')) where ms :
V(dB)QM(B)QM(B)—> V(dB’) is defined by 7 (vQesQmys) : =
v wz'(ps)(ms). In this case we have (0@ V(BHQM(8)) 2R eas)=prs(z)
for all z€p” V(7'). In consequence
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2 0V V(ea' N(2Qere) + %‘.p‘” V(B B)(2®ea)
=2 0 V() (0 V(2)QM(2))(2Q¢r)
+ %Ip"" V(B (0P V(BHQM(B))(2Qeqs)

:%‘,'V(a')pra(z)-i- Eﬂ] V(8)pre(2)=0 for all zE 0 V(i),

i.e. the representation o’V belongs to mod-K. It is obvious how to
define o' on morphisms.

To show that o is a right adjoint of p:;, we check that the restric-
tion map

mod-K;( X, o V)—mod-K:_1(p:X, V)

is an isomorphism. To show that it is injective, let f: X—o 0’V be a
morphism whose restriction to K;_; is zero. For each arrow @:j—1 in
I' we have o V(a)(f(:")®M(a"))=£(;)X(a’)=0, hence prof(iN)(2)=
(0P V(2)QM(a))(F (") 2)R®er)=0 for all 2€0”V(7"). Similarly we have
o V(BYF(HRM(B)=0 and pref(i')(2)=0 for the arrows B:i—; in
. Consequently f(i')(z)=0 for all z€0”V(;i}). To show surjectivity
we start with a morphism ¢: 0. X— V. We consider the linear map ¢:
X(z’l)——>C—AB X(dA)QM(A) such that p7rep(2)=(X(a)QM(2))(2®er.) for

each arrow a:/—7 and pre9(2)=(X(8)QM (8))(2®e4s) for the arrows
B :i— j.The equation

0=33 X(ae)(2®e)+ %]X(B'ﬁl)(z®sdﬁ)
=2 X(a)(X(2)Q®M(a))(2Q&ra)
+ ;X (BNX(BHYQM(B))(2Qeqs)

implies that the composition of maps

X2 @ x(an@un EAL, x)

is zero, hence there exists a unique linear map f(7') making the diagram
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X(iY) 4 - © X(d)@M()
£(Y) j o Dg(d)QM ()
POV © : - ® V(d)@M(A)

commutative. It is easy to see that f(¢') and the maps g(x), xEKi,
constitute a morphism X—— p*V whose restriction to K- is g.

As a consequence, the composition of functors p--p® is a right ad-
joint of o=p:'**px, hence isomorphic to the functor p* constructed in sec-
tion 2. Now let To: =T, let I": be the full subquiver of K; containing the
edges Ki\(1, -, 7} for 1<i<n, j;: mod-T'——mod-K; the trivial extension,
p: - mod-K;—— mod-T'; the restriction functor and o:: =p:0'”ji-1: mod-T':-
——mod-T';; note that Toy=Ko=T, T'»=T", jo is the identity and p.=p"
Now it is obvious that ai, --*, 0» are the well-known reflection functors and

N 2

that o 0™ pM=0,+-01, hence C*=p p*=0p"--01.

We conclude with an example (compare [7], p.292). Let F be a skew
field endowed with a derivation F—F, £ &', and 7M. =pF XgF
with canonical basis x=(1,0) and y=(0,1). By use of the derivation M
can also be made a right vector space by x£: =& and y&: =8 +&x. It
is easy to see that x,y is a basis of this new vector space Mr as well,
that =Mr is a bimodule and the map M*—*M, o+— &, with &(x): =
o(x), #(y): =0p(x)+¢(y) is a bimodule isomorphism. If we take for T’

the quiver 2-%51 and put i=F=F, M(a): =M, then the assumptions of
section 1 are fulfilled and theorem 3 applies. In the present special case
T is isomorphic to the identity functor, hence we even have C*=DTr.
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