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Introduction

This paper is a direct sequel to [8]. Its prime purpose is to discuss,
as transparently as possible and from the functional analytic angle, the
various types of measures–their mutual relation and basic properties
–that arise in the theory of integration on compact spaces. This is done
through a novel approach which the author believes will help to better
understand the cross-relations between the set theoretic and functional
analytic aspects of this area. The approach is based on imbedding the
space B(X) of (real, bounded) Borel functions on X into the second dual
\overline{C}(X) of the space C(X) of real continuous functions, without the a priori
use of the Riesz representation theorem. This was done in [8, B. 2. 6]; in
the interest of independent readability of this second part, the notation
and main result of [8] are recalled below (C. 1). It is certainly possible to
extend the present method to locally compact spaces X, but assuming X
to be compact (and restricting attention to bounded Baire and Borel func-
tions) cilitates the discussion without simplifying it beyond the accept-
able.

The main result of Section C below is a topological characterization
of regular Borel measures on X (C. 2. 3), which yields the Riesz represen-
tation theorem as well as several other distinguishing properties of regular
Borel measures as fairly immediate consequences; for example, the fact
that these measures form a band in the (Banach and order) dual B(X)’ of
B(X) (C. 2. 5). Section D is concerned with various aspects of regularity ,\cdot

for example, the question if a given Borel measure \mu on X is regular, is
already determined by the behavior of \mu on B_{0}(X) (D. 1. 1), where B_{0}(X)

is the first member in the transfinite chain \{B_{a} : \alpha<\omega_{1}\} of Borel classes
whose union is B(X) . In this context, we feel that the use of transfinite
ordinals in the construction of the spaces of Baire and Borel functions, is
of greater intuitive appeal than the usual measurability condition. Per-
haps unfortunately, the tool of ordinal numbers has been all but aban-
doned in favor of the (admittedly often convenient) maximality principle ,\cdot
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a notable exception is Semadeni’s monograph [11]. The final part of Sec-
tion D is concerned with a characterization of those compact spaces X for
which the canonical imbedding B(X)arrow\overline{C}(X) is surjective.

C. Topological characterization of regular Borel measures

C. 1 Preliminaries. We recall from [8] the basic notions used throughout
this paper. X always denotes a compact (Hausdorff)space; by C(X) ,
M(X) , \overline{C}(X) we denote, respectively, the Banach lattice of continuous
real functions on X, and its first and second dual which are Banach lat-
tices as well. On \overline{C}(X) , we consider the topology \mathfrak{T}=o(\overline{C}(X), M(X)) of
uniform convergence on the order intervals of M(X) . Under this topol-
ogy, \overline{C}(X) is a complete Lebesgue space (see [1], [5], and A. 1) with
dual M(X) ; of course, \overline{C}(X) is Dedekind complete and a Banach lattice
under its standard norm.

If L denotes the set (convex cone) of all bounded, lower semi-
continuous real functions \geqq 0 on X and if M denotes the set (convex
cone) of all bounded real functions \geqq 0 on X, the evaluation map \phi :
C(X)_{+}arrow\overline{C}(X)_{+} has an extension to L and M defined as follows (Def. A. 2.
1) :

\overline{\phi}(g)=\sup\{\phi(f) ^{:} ^{0\leqq f\leqq g} (h\in M)(g\in L)

.\phi^{*}(h)=\inf\{\overline{\phi}(g) : 0\leqq h\leqq g, g\in L\}

It should be noted that the suprema (respectively, infima) in the
definitions of \overline{\phi} and \phi^{*} are limits for the topology \mathfrak{T} ; the basic prop-
erties of \phi^{*} were given in Theorem A. 2. 4. Now let R denote a Riesz
subspace of R^{X}- containing 1, of bounded real functions on X : if \phi^{*} is
additive on R_{+} , then its linear extension \tilde{\phi}:Rarrow\overline{C}(X) is an isometric
Riesz isomorphism for the supremum norm of R and the standard norm of
\overline{C}(X) , respectively (A. 3. 5). It turns out (B. 2. 6) that the Riesz spaces R
with this property include the space B(X) of all bounded Borel functions
on X and that \tilde{\phi}:B(X)arrow\overline{C}(X) has some important additional properties
(B. 2. 6, B. 2. 7). (The space B(X) was defined in B. 2. 4 and is identical to
the space of bounded, real, Borel measurable functions in the usual sense,
cf. B. 3.) As the basis of the present paper, we recall these properties, as
follows:

1. 1. THEOREM. The map \phi^{*}: B(X)_{+}arrow\overline{C}(X) has a linear extension
\tilde{\phi}:B(X)arrow\overline{C}(X) which is an isometric Riesz isomorphism with these prop-
erties: \tilde{\phi} maps every bounded, pointwise convergent sequence in B(X)
onto a q-\sim -convergent sequence, with preservation of limits ; moreover, the
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range \overline{\phi}(B(X)) is a sequentially q-\sim -complete {hence Dedekind \sigma-complete)
Riesz subspace of \overline{C}(X) which is separated by the set \Delta=\{\delta_{t} : t\in X\}\subset

M(X) of all point functional.
1. 2. Under the mapping \tilde{\phi} defined above, we can and shall identify

B(X) with a Riesz subspace of \overline{C}(X) : in particular, this identification
places B(X) and M(X) in separated duality so that -M(X) becomes the
topological dual of (B(X) , q-)\sim . Thus in the sequel we shall consider
B(X) a Riesz subspace of \overline{C}(X) and M(X) a (Riesz) subspace of the
Banach and order dual B(X)’

1. 3 Note. The imbedding map \tilde{\phi}:B(X)arrow\overline{C}(X) is uniquely deter-
mined by the properties stated in 1. 1 and by the requirement that \tilde{\phi}

agrees on L with the map \overline{\phi} defined above. The existence of \overline{\phi} could
also be obtained from the Riesz-Markov representation theorem [4]; how-
ever, one purpose of this paper is to avoid that approach and instead
obtain the Riesz-Markov theorem as an immediate consequence of the
topological characterization of regular Borel measures given below (C. 2.
3).

C. 2 The Dual of B(X) . It is well known [4], [10] that the dual of
the Banach lattice B(X) (B. 2. 5) is the Riesz space of all order bounded
linear forms on B(X) and can be identified with the Riesz space of all
bounded, finitely additive real set functions on \mathfrak{B}(X) (the Borel field of X,
B. 3). Thus if \mu\in B(X)’ then Aarrow\mu(\chi_{A}) defines a bounded, finitely addi-
tive set function on \mathfrak{B}(X) with values in R, and conversely. We shall
henceforth not distinguish between these two versions and, for \mu\in B(X)’ ,

we shall write \mu(A)=\mu(\chi_{A})=\int_{A}d\mu . Moreover, it is well known and easy

to see that under this identification, the countably additive set functions
agree with the order \sigma-continuous [10] linear forms on B(X) .

There is less agreement in the literature on the use of the term
“Radon measure on X’ (cf. [11], for example), so let us agree on this
definition.

2. 1 DEFINITION. By a Radon measure on X, we understand a norm
bounded {equivalently, order bounded) linear form on C(X) . By a Borel
measure on X, we understand an order \sigma-continuous linear form on B(X) .

It is thus clear that M(X)=C(X)’ and B(X)’ are Dedekind complete
dual Banach lattices; in particular, for \mu\in B(X)’ it is customary to call
|\mu| the total variation of \mu .
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2. 2 DEFINITION. Let \mu\in B(X)’i . e. , let \mu be a bounded, finitely
additive set function \mathfrak{B}(X)arrow R . \mu is called regular if for each A\in \mathfrak{B}(X) ,

sup | \mu|(C)=|\mu|(A)=\inf|\mu|(G)

where C runs through the family of all compact subsets C of A and G runs
through the family of all open sets G containing A.

We recall that by C. 1. 2, B(X) is considered a subspace of \overline{C}(X) ;
the topology induced on B(X) by \mathfrak{T}=o(\overline{C}(X), M(X)) is again denoted by
c_{\zeta,\sim},. The following is the announced topological characterization of regular
Borel measures on X.

2. 3 THEOREM. A linear form \mu on B(X) is a regular Borel measure
if and only if \mu is %-continuous.

PROOF. It is clear that a linear form \mu on B(X) having either of the
properties enunciated is bounded, hence in B(X)’ : by Def. 2. 2 and
because q-\sim is a locally solid topology [1], [9], it suffices to consider linear
forms \mu\geqq 0 .

Suppose \mu\geqq 0 is a regular Borel measure on X. Denote by \mu_{0} the
restriction of \mu to C(X) (hence, \mu_{0} is a positive Radon measure), and by
\overline{\mu}_{0} the unique \mathfrak{T}-continuous extension of \mu_{0} to B(X) . By C. 1. 1, \overline{\mu}_{0} is
countably additive on \mathfrak{B}(X) , and so is \mu by hypothesis. It suffices, there-
fore, to prove that \mu and \overline{\mu}_{0} agree on the Riesz space B_{0}(X) (in B. 2. 3, B_{0}

was defined as the uniform closure in R^{X} of the Riesz space L_{0}-L_{0}), for
B(X) is the smallest Riesz subspace of R^{X} containing L_{0}-L_{0} and closed
under pointwise convergence of uniformly bounded sequences. To this
end, it is clearly sufficient to show that \mu(G)=\overline{\mu}_{0}(G) for each open set G
\subset X . (Recall that L_{0} is the convex conical hull of all \chi_{G} , B. 2. 2). In turn,
for this it suffices to show that \mu(G)=\sup\{\mu(f):0\leqq f\leqq\chi_{G}, f\in C(X)\} .
Now by regularity, for given \epsilon>0 there exists a compact set C\subset G such
that \mu(G)\leqq\mu(C)+\epsilon . By Urysohn’s theorem, there exists f\in C(X) , 0\leqq f

\leqq 1 , such that Xc\leqq f\leqq\chi_{G} . It follows that \mu(G)\leqq\mu(f)+\epsilon . Therefore, \mu

and \overline{\mu}_{0} agree on all of B(X) , and \overline{\mu}_{0} is q-\sim -continuous by definition.
Conversely, suppose that the linear form \mu\geqq 0 is \mathfrak{T}-contionuous.

From C. 1. 1 we see that \mu is countably additive, hence a Borel measure;
we have to show that \mu is regular. Let A\subset X be any Borel set. By
definition of \phi^{*} (see C. 1 above), for a given \mathfrak{T}-neighborhood U of 0 there
exists g\in L , \chi_{A}\leqq g , such that g-\chi_{A}\in U . Let G_{n} :=\{t\in X:g(t)>1-n^{-1}\} :
Then G_{n} is open (n\in N) and \chi_{A}\leqq g\wedge\chi_{Gn}\leqq\chi_{Gn} . Since \chi_{Gn}-\chi_{Gn}\wedge g\leqq n^{-1}1 ,

this latter difference is in U for n large enough. It follows that \chi_{Gn}-\chi_{A}\in
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2 U for large enough n ; since U is arbitrary, we obtain \chi_{A}=\inf\chi_{G} (G
open \supset A ), and this infimum is a limit for the topology \mathfrak{T} . Since \mu is
\mathfrak{T}-continuous, it follows that \mu is regular.

2. 4 COROLLARY. For a linear form \mu\in B(X)’ to be a regular Borel
measure, it suffices that \mu be \mathfrak{T} -continuous on the unit b_{-}all of B(X) .

In fact, an inspection of the second part of the proof of 2. 3 shows that
\mathfrak{T}-continuity of \mu on the set \{f\in B(X) : 0\leqq f\leqq 1\} is sufficient for the con-
clusion. This means, in particular, that the linear subspace of \mathfrak{T}

-

continuous functionals is norm closed in B(X)’ Indeed, we can make the
following stronger assertion.

2. 5 PROPOSITION. The Riesz space of all regular Borel measures is a
band in B(X)’ In particular, if D\neq\emptyset is a directed (\leqq) norm bounded
set of regular Borel measures, then \mu=\sup D is a regular Borel measure.

PROOF. Since \mathfrak{T} is a locally solid topology, it is immediate from 2. 3
that the regular Borel measures form an ideal in B(X)’ On the other
hand, since B(X) is an AM-space, the norm of B(X)’ is additive on
B(X)_{+}’[10, II. 9.1] . Thus D is a Cauchy family for this norm and the
assertion follows from 2. 4.

C. 3. The Riesz-Markov Representation Theorem and Other Conse-
quences of Theorem 2. 3. Perhaps the most striking immediate conse-
quence of 2. 3 is the following result known as the Riesz (or Riesz-
Markov) representation theorem (cf. [2], [4], [6], [11]).

3. 1 THEOREM. Every Radon measure \mu on X possesses a unique regu-
lar Borel extension \overline{\mu} .

Precisely : \overline{\mu} is the unique c_{\zeta,\sim},-continuous extension of \mu\in C(X)’ to
B(X) , and the map \muarrow\overline{\mu} is an isometric isomorphism of the Banach lat-
ticc M(X) onto the band of regular Borel measures in B(X)’

PROOF. The first assertion follows at once from 2. 3, since C(X) is
a dense Riesz subspace of B(X) for the topology \mathfrak{T}=o(B(X), M(X)) .
Moreover, \muarrow\overline{\mu} is an isomorphism of Riesz spaces because \mu\geqq 0 iff \overline{\mu}\geqq 0

(note that C(X)_{+} is \mathfrak{T}-dense in B(X)_{+} ), and it is an isometry (for the
standard norms of M(X) and B(X)’) because the unit ball of C(X) is
\mathfrak{T}-dense in the unit ball of B(X) (bipolar theorem, [9]).

3. 2 Note. Since C(X) is a Banach sublattice of B(X) , C(X)’=
M(X) is canonically isomorphic to a quotient of B(X)’ ; thus the map
\muarrow\overline{\mu} of 3. 1 can be viewed as a lifting of M(X) into B(X)’ .
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3. 3 PROPOSITION. Let \mu be a Borel measure on X. If {and only if)
\mu is regular, for every non-void directed (\leqq) family \{g_{a} : \alpha\in A\} in L with
least upper bound g\in L we have \mu(g)=\lim_{a}\mu(g_{a}) .

PROOF. Let \Phi_{a} denote the set \{f\in C(X):0\leqq f\leqq g_{a}\}(\alpha\in A) . Then
\Phi_{a} is directed (\leqq) , and so is \Phi=\bigcup_{a}\Phi_{a} . Now if f\in C(X) , 0\leqq f\leqq g , Dini’s
theorem implies that the directed (\leqq) family \Phi’ :=\{f\wedge h:h\in\Phi\} con-
verges uniformly to f. By definition of the mapping \overline{\phi} (Def. A. 2. 1 and
C. 1), \Phi \mathfrak{T}-converges to g and hence \{g_{a} : \alpha\in A\}\mathfrak{T}-converges to g . Now if
\mu is regular, then by 2. 3 we obtain \mu(g)=\lim_{a}\mu(g_{a}) . Conversely, if \mu is a
Borel measure, \mu_{0} its restriction to C(X) and \overline{\mu}_{0} the unique regular Borel
extension of \mu_{0} , then from the equality \mu(g)=\lim_{a}\mu(g_{a}) above it follows
that \mu agrees with \overline{\mu}_{0} on B_{0}(X) and hence, by countable additivity, on all
of B(X) (cf. Def. B. 2. 4).

3. 4 COROLLARY. If \{G_{a} : \alpha\in A\} is a non-void family of pairwise dis-
joint open sets and \mu is a regular Borel measure on X, then the family
\{\mu(G_{a}):\alpha\in A\} is summable and, if G=\cup G_{a},

\mu(G)=\sum_{a\in A}\mu(G_{a}) .

We point out that 3. 3 generally fails for uncountable families if their
members g_{a} are not supposed to be lower semi-continuous.

3. 5 PROPOSITION. Let A_{i} (i=1, \cdots, n) be Borel sets, let \mu\geqq 0 be a
regular Borel measure on X, and let \alpha_{i} (i=1, \cdots, n) be real numbers such

that \int|c_{1}\chi_{A_{1}}+\cdots+c_{n}\chi_{An}|d\mu=0 implies c_{1}\alpha_{1}+\cdots c_{n}\alpha_{n}=0 . There exists a

bounded Borel function f on X such that

\int_{A_{i}}fd\mu=\alpha_{i} (i=1, \cdots, n) .

PROOF. Denote by E the finite-dimensional vector subspace of B(X)
spanned by \{\chi_{Ai} : i=1, \cdots, n\} , let n_{0}=\dim E , and let U=\{f\in B(X) : \mu(|f|)

\leqq 1\} . The condition \int|c_{1}\chi_{A_{1}}+\cdots+c_{n}\chi_{An}|d\mu=0 determines a k-dimensional
(k\leqq n_{0}\leqq n) subspace E_{0} of E which is the intersection of the null ideal of
U with E. There exist exactly n_{0}-k independent linear forms on E that
vanish on E_{0} . By virtue of the hypothesis, a suitable linear combination

1\nearrow of these forms satisfies the conditions 1/(\chi_{A_{i}})=\alpha_{i}(i=1, \cdots, n) , and \nu is
bounded on V=E\cap U by some \beta\in R . Thus by the Hahn-Banach the0-
rem, there exists a linear extension \mu_{1} of 1J to B(X) such that |\mu_{1}(f)|\leqq\beta

for all f\in U ; in particular, \mu_{1} is \mathfrak{T}-continuous and hence a regular Borel
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measure C. 2. 3. Moreover, \mu_{1}\in\beta U^{o} where U^{o} denotes the polar of U in
M(X) ; but U^{o}=[-\mu, \mu] and thus \mu_{1}\in\beta[-\mu, \mu] . By the Radon-Nikodym
theorem, we have \mu_{1}=f\mu for some f\in B(X) , ||f||\leqq\beta . Since \mu_{1}(A_{i})=\alpha_{i}

(i=1, \cdots, n) , the assertion follows.

D. Regularity of Baire and Borel measures

D. 1 Regularity of Borel Measures. It was shown in B. 2 that, if L_{0}

denotes the convex conical hull of all characteristic fu\overline{n}ctions \mathcal{X}c of open
subsets G\subset X , L_{0}-L_{0} is a Riesz subspace of R^{X} whose uniform closure
B_{0}=B_{0}(X) is a Banach lattice containing C(X) (B. 2. 3). Starting with
B_{0} , the Borel classes B_{a}(\alpha<\omega_{1}) of bounded functions were then defined by
transfinite induction (B. 2. 4) in a manner entirely analogous to the custom-
ary definition of the Baire classes \tilde{B}_{a} (B. 1).

1. 1 PROPOSITION. A Borel measure \mu on X is regular if and only if
\mu is \mathfrak{T} -continuous on B_{0}(X) .

PROOF. The necessity of the condition is clear from C. 2. 3. Con-
versely, if the restriction \mu_{1} :=\mu|B_{0}(X) is \mathfrak{T}-continuous, then \mu_{1} has a
(unique) c_{Y,\sim},-continuous extension \overline{\mu}_{1} to B(X) , which is regular by C. 2. 3.
Since \mu is countably additive (Def. C. 2. 1), the construction of B(X)
implies that \mu=\overline{\mu}_{1} , hence that \mu is regular.

1. 2 NOTE. Since (by definition of B_{0}) the Riesz space L_{0}-L_{0} is uni-
formly dense in B_{0} , a Borel measure \mu is regular even if its restriction to
L_{0}-L_{0} is \mathfrak{T}-continuous; in fact, it suffices that \mu be \mathfrak{T}-continuous on the
unit ball of L_{0}-L_{0} (cf. C. 2. 4).

Our next result is a special case of a well known theorem due to
Alexandroff [4, III. 5. 13]. As before (B. 2) we denote by \mathfrak{B}(X) the \sigma-field
of all Borel subsets of X.

1. 3 PROPOSITION. If \mu is a bounded, fifinitely additive set function on
\mathfrak{B}(X) which is regular then \mu is countably additive (hence a regular Borel
measure).

PROOF. Let \mu_{0} denote the restriction of \mu to C(X) , and let \overline{\mu}0

denote the regular Borel extension of \mu_{0} (C. 3. 1). Since \mu and \overline{\mu}_{0} are reg-
ular set functions, it suffices to show that \mu and \overline{\mu}_{0} agree on all open sets;
then \mu and \overline{\mu}_{0} will agree on \mathfrak{B}(X) .

Without loss of generality, we can suppose that \mu\geqq 0 . We show that
\mu(G)=\sup_{A}\mu(f) , where A=\{f\in C(X):0\leqq f\leqq\chi_{G}\} and G is open. By regu-
larity, we have \mu(G)=\sup_{B}\mu(C) where B is the family of all compact sub-
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sets of G . But for each C\in B , there exists f\in A such that Xc\leqq f\leqq\chi_{G}

(Urysohn’s theorem). Thus \mu(G)=\sup_{A}\mu(f) and hence, \mu(G)=\overline{\mu}_{0}(G) .
The following theorem, which is hard to find in the literature, draws

on the deeper properties of the space B(X) .

1. 4 THEOREM. Let (\mu_{n}) be a sequence of regular Borel measures
such that for each A\in \mathfrak{B}(X) , \lim_{n}\mu_{n}(A) exists (in R). Then A arrow\lim_{n}\mu_{n}(A)

is a regular Borel measure.

PROOF. It follows from the Nikodym Boundedness Theorem [3, I. 3
Thm. 1] that the sequence (\mu_{n}) is norm bounded in B(X)’ (in fact, the
space of simple Borel functions is a barreled subspace of B(X)) ; hence, it
converges to some \mu\in B(X)’ for the weak* topology \sigma(B(X)’. B(X)) .
By a well known theorem of T Ando [10, II. 10. 4] , B(X) is a Grothen-
dieck space hence, we have \mu=\lim_{n}\mu_{n} for the weak topology of B(X)’
Since by C. 3. 1, the space of regular Borel measures is a norm (and hence
weakly) closed subspace of B(X)’ . we conclude that \mu is a regular Borel
measure.

D. 2 Baire Measures. The Riesz space \tilde{B}(X) of all bounded Baire
functions on X (B. 1) is clearly \mathfrak{T}-dense in B(X) ; as can be seen from B.
1. 3, \tilde{B}(X) is q-\sim -sequentially closed in B(X) . In particular, if two regular
Borel measures agree on \tilde{B}(X) they are identical [6, p. 229].

We recall from B. 3 that the Baire field \tilde{\mathfrak{B}}(X) consists of all subsets A
\subset X such that \chi_{A} is a Baire function. Just as in the case of B(X) (see C.
2), the Banach (and order) dual of \tilde{B}(X) is the Riesz space \tilde{B}(X)’ of all
bounded, finitely additive set functions \tilde{\mathfrak{B}}(X)arrow R (or equivalently, of all
order bounded linear forms). The Riesz subspace of all order \sigma -

continuous linear forms is called the space of (bounded) Baire measures
on X;i . e. , a Baire measure is a countably additive (necessarily bounded)

set function \tilde{\mathfrak{B}}(X)arrow R . As before, we identify the set function \mu with the

linear form f arrow\int fd\mu it defines on \overline{B}(X) . It is well known [10, II . 4. 3

Cor.] that the Baire measures on X form a band in \tilde{B}(X)’ .
As agreed upon earlier (C. 1. 2) we shall consider \tilde{B}(X) as a (Dede-

find \sigma-complete) Riesz subspace of the bidual \overline{C}(X) of C(X) : the topol-
ogy on \tilde{B}(X) induced by \mathfrak{T}=o(\overline{C}(X), M(X)) will again be denoted by q-\sim .

2. 1 PROPOSITION. A linear form \mu\in\tilde{B}(X)’ is a Baire measure if
and only if \mu is \mathfrak{T} -continuous.

PROOF. If \mu is c_{\zeta,\sim},-continuous then \mu is clearly bounded and, since
bounded pointwise convergent sequences in \tilde{B}(X) converge for \mathfrak{T} (B. 1. 3),
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countably additive.
Conversely, let \mu be a Baire measure, \mu_{0} its restriction to C(X) , and

\overline{\mu}_{0} the unique c_{\zeta,\sim},-continuous extension of \mu_{0} to B(X) . By 2. 3, \overline{\mu}_{0} is a reg-
ular Borel measure, hence countably additive. Thus by definition of
\overline{B}(X) (B. 1), \mu agrees with \overline{\mu}_{0} on \tilde{B}(X) and is, therefore, q-\sim -continuous.

2. 2 LEMMA. Let A\subset X be a Baire set, G an 0,pen, F a compact
subset of X such that F\subset A\subset G . There exists a compact Baire set \tilde{F}

and an open Baire set \tilde{G} satisfying F\subset\tilde{F}\subset A\subset\tilde{G}\subset G .

PROOF. As in the proof of B. 3. 2, it follows by transfinite induction
on the Baire order of A (i . e. , on the Baire order of \chi_{A} , Def. B. 3. 1) that
there exists a sequence (F_{n}) of compact subsets of G such that A \subset\bigcup_{n}F_{n} .
By Urysohn’s theorem, for each n there exists a continuous function f_{n}

such that \chi_{Fn}\leqq f_{n}\leqq\chi_{G} . Now \tilde{G}_{n}=\{t\in X:f_{n}(t)>0\} is an open Baire set
(because it is an F_{\sigma}-set, B. 3. 2) for each n ; hence, \tilde{G}:=\bigcup_{n}\tilde{G}_{n} is an open
Baire set satisfying the assertion. The remainder follows by com-
plementation.

2. 3 DEFINITION. A Baire measure \mu on X is called {Baire) regular
if for each Baire set A\subset X and each real number \epsilon>0 , there exist a com-
pact Baire set \tilde{F} and an open Baire set \tilde{G} such that \tilde{F}\subset A\subset\tilde{G} and
|\mu|(\tilde{G}\backslash \tilde{F})<\epsilon .

The following theorem is well known (see, for example, [6, p. 228])
but still somewhat surprising.

2. 4 THEOREM. Every Baire measure on X is {Baire) regular.

PROOF. Let \mu denote a Baire measure on X : by Def. 2. 3 we can
assume that \mu\geqq 0 . Since \mu is q-\sim -continuous by 2. 1, it has a unique c_{Y,\sim},-

continuous extension \overline{\mu} to B(X) ; by C. 2. 3, \overline{\mu} is regular. The assertion
follows now immediately from 2. 2 and the definitions of regularity and
Baire regularity, respectively (C. 2. 2, D. 2. 3).

2. 5 Notes. Let us remark that for Baire measures, complete ana-
logs of Theorems C. 3. 1 and D. 1. 4 are valid; in particular, the band of all
Baire measures in \tilde{B}(X)’ is Riesz and norm isomorphic to the Banach lat-
tice M(X) of all Radon measures on X.

In fact, if \mu\in M(X) then \mu has a unique Baire extension \overline{\mu} to \tilde{B}(X) ,
and \tilde{\mu} is the restriction to \tilde{B}(X) of the unique regular Borel extension \overline{\mu}

of \mu . In the chain of (isometric) inclusions C(X)\subset\overline{B}(X)\subset B(X) , each
space is \mathfrak{T}-dense in its successor, and the same holds for the respective
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unit balls. However, while \tilde{B}(X) is q-\sim -sequentially closed in B(X),\tilde{B}(X)

is identical with the \mathfrak{T}-sequential closure of C(X) in B(X) (or in \overline{C}(X) ).
Thus it is no surprise that a Baire measure–through order \sigma -

continuity (or equivalently, countable addivity)–is uniquely determined by
its restriction to C(X) . What is perhaps surprising is the fact that order
\sigma-continuity of \mu\in\tilde{B}(X)’ implies continuity for the topology c_{\zeta,\sim},. This, in
turn, implies the (Baire) regularity of each Baire measure.

D. 3 Inclusion Relations of C(X),\tilde{B}(X) , B(X) , and \overline{C}(X) . In the
preceding notes, we have considered the chain of inclusions C(X)\subset\overline{B}(X)

\subset B(X)\subset\overline{C}(X) , where B(X) is canonically identified with a Riesz sub-
space of \overline{C}(X) by virtue of C. 1. 1, C. 1. 2. In this final section, we aim at
characterizing those compact spaces X for which some or all of these
inclusions are not proper.

To characterize the equality C(X)=\tilde{B}(X) , we need this elementary
lemma.

3. 1 LEMMA. Every infifinite, compact space X contains a sequence
(F_{n})_{n\in N} of pairwise disjoint closed subsets with non-void interior.

PROOF. If X contains infinitely many isolated points, there is noth-
ing to prove; so let us assume X does not. We construct a sequence (F_{n})

with the required properties by induction, as follows. Let t_{1}\in X ; if every
compact neighborhood of t_{1} has finite complement, then t_{1} is the unique
accumulation point of X, contrary to our assumption. Thus there exists
a compact neighborhood F_{1} of t_{1} such that X\backslash F_{1} is infinite. Suppose
now that F_{1} , \cdots , F_{n-1} are disjoint compact sets, each with non-void inte-

rior, such that G_{n} :=X \backslash \bigcup_{\nu=1}^{n-1}F_{\nu} is infinite. Then if t_{n}\in G_{n} , there exists a
compact neighborhood F_{n} of t_{n} in G_{n} such that G_{n}\backslash F_{n} is infinite; other-
wise t_{n} would be the unique accumulation point of the locally compact
space G_{n} , which is impossible. The sequence (F_{n}) , defined by induction,
satisfies the assertion.

3. 2 PROPOSITION. One has C(X)=\tilde{B}(X) if and only if X is fifinite.
PROOF. Clearly, we only have to show that the condition is neces-

sary. If C(X)=\tilde{B}(X) then each bounded Baire function on X is continu-
ous; in particular, each Baire set is open and closed (hence compact).
This implies that every family of disjoint non-void open Baire sets is
finite; obviously, then, the same holds for any family of disjoint, non-void
open subsets of X. Thus by 3. 1, X is finite.
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3. 3 PROPOSITION. The following assertions are pairwise equivalent:
(a) Every Borel subset of X is a Baire set.
(b) Every open subset of X is an F_{\sigma} set.
(c) \tilde{B}(X)=B(X) .

PROOF. (a)\supset(c) : Since every f\in B(X) is the uniform limit of a
sequence of simple Borel (hence Baire) functions, and since \tilde{B}(X) is
closed in R^{X} under the topology of uniform convergence, it follows that
B(X)\subset\tilde{B}(X) .

(c)\supset(b) : If G is open in X, it suffices to apply the first part of the
proof of 2. 2 to A=G.

(b)\supset(a):(b) implies that the space B_{0}(X) (Dei. B. 2. 3) is contained
in the first Baire class \tilde{B}_{1}(X) ; hence, by B. 2. 4, \mathfrak{B}(X)\subset\tilde{\mathfrak{B}}(X) .

3. 4 REMARKS. It is well known [6, p. 218] that separability of X
implies \tilde{B}(X)=B(X) : on the other hand, a necessary condition for this
equality to hold is that every disjoint family of non-void open subsets of X
be countable.

Each of the equivalent assertions of 3. 3 implies that every Borel mea-
sure on X is regular; it would be interesting to know if this condition
actually characterizes the equality \tilde{B}(X)=B(X) .

For a characterization of the equality B(X)=\overline{C}(X) , we need another
seemingly well known result whose proof is included for completeness.

3. 5 PROPOSITION. The order continuous dual of B(X) is l^{1}(X) .
Moreover, B(X), is Dedekind complete if and only if \mathfrak{B}(X)=2^{X}.

PROOF. Let \mu denote an order continuous linear form on B(X) ;
without loss of generality we assume that \mu\geqq 0 . If \chi_{t} denotes the charac-
teristic function of the singleton \{t\}\subset X , then \mu(\chi_{t})=0 except for t\in A ,
where A is a countable subset of X (depending on \mu). If A_{1} :=X\backslash A

then \chi_{A_{1}}=\sup\{\chi_{t} : t\in A_{1}\} and, by order continuity, \mu(A_{1})=0 . Thus \mu=

\sum_{t\in A}a_{t}\delta_{t} where (a_{t})\in l^{1}(X) with || \mu||=\sum_{t\in X}a_{t} . Clearly, l^{1}(X) is a Riesz sub-
space (in fact, a band) in M(X) .

Clearly, if \mathfrak{B}(X)=2^{X} then B(X) is Dedekind complete. Conversely,
let B(X) be Dedekind complete. If A is any non-void subset of X, let h :
= \sup\{\chi_{t} : t\in A\} in B(X) . The set A_{1} :=\{t\in X:h(t)>0\} is a Borel set:
if A_{1}\backslash A were non-void then h_{1}=h\wedge\chi_{Az} , where A_{2}=A_{1}\backslash \{t\} for some t\in

A_{1}\backslash A , would be an upper bound for all \chi_{t}(t\in A) and strictly less than h,
which is impossible. Thus A=A_{1} and \mathfrak{B}(X)=2^{X}\wedge

Let us recall again that by \mathfrak{T} we denote the weak Riesz topology



162 H. H. Schaefer

o(\overline{C}(X), M(X)) on \overline{C}(X) as well as the induced topology o(B(X), M(X))
on B(X) (C. 1. 2). A compact space X is scattered [11, 8. 5] if X contains
no non-void perfect subset, or equivalently, if for some ordinal \alpha the \alpha-th
derived set X^{(a)} is void.

3. 6 THEOREM. The following assertions are pairwise equivalent:
(a) B(X)=\overline{C}(X)

(b) B(X) is Dedekind complete and X is scattered.
(c) Every bounded real function on X is a Borel function and every

regular Borel measure on X is purely atomic.
(d) (B(X), \mathfrak{T}) is complete.

Moreover, if the continuum hypothesis is assumed then in both (b) and (c),

the fifirst assertion implies the second.

PROOF. (a)\supset(b) : Clearly, B(X) is Dedekind complete, since \overline{C}(X)

is (A. 1). Second, since M(X) is the order continuous dual of \overline{C}(X) (A.
1) and since l^{1}(X) is the order continuous dual of B(X)(3.5) , (a) implies
that M(X)=l^{1}(X) . But this equality is equivalent to X being scattered
[11, 19. 7. 6].

(b)\supset(c) : It follows from 3. 5 that \mathfrak{B}(X)=2^{X} (hence B(X)=l^{\infty}(X) ),
and from [11, 19. 7. 6] that M(X)=l^{1}(X) .

(c)\supset(d) : Considering the canonical imbedding \tilde{\phi}:B(X)arrow\overline{C}(X) , the
adjoint mapping \tilde{\phi}’ transforms, by virtue of the assumption M(X)=l^{1}(X) ,

the order continuous dual M(X) of \overline{C}(X) onto the order continuous dual
l^{1}(X) of B(X) ; by [7, Prop. 1] this means that \tilde{\phi} is order continuous (in
other words, if we think of B(X) as a Riesz subspace of \overline{C}(X) then a
directed (\leqq) majorized subset A\neq\emptyset of B(X) has the same least upper
bound in B(X) as it does in \overline{C}(X) .

This implies the topology q-\sim on B(X) to be a Fatou topology in the
sense of [5]; clearly, since each q-\sim -bounded set of B(X) is norm bounded
(hence majorized), \mathfrak{T} is also a Levi topology [5]. But \mathfrak{B}(X)=2^{X} implies
that B(X) is Dedekind complete; hence from Nakano’s theorem [5, 23 K]
it follows that (B(X), \mathfrak{T}) is complete (as a uniform space).

(d)\supset(a) is trivial, since B(X) is dense in ( \overline{C}(X) , q-)\sim . Concerning
the final assertion, we observe that by a long known result of Banach-
Kuratowski (cf. [12, p. 150]) the continuum hypothesis implies that the
cardinality of the continuum I:=[0,1] is non-measurable ( i. e. , there
exists no countably additive set function \mu\neq 0 on 2^{I} that vanishes on
finite sets). Suppose, then, that \mathfrak{B}(X)=2^{X} but X is not scattered. There
exists a continuous surjection \tau:Xarrow I[11,8.5.4] . Now \tau induces an
isometric injection farrow f\circ\tau of C(I) into C(X) , with adjoint surjection
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M(X)arrow M(I) . In particular, if m denotes the Lebesgue-Borel measure [2]
on I , there exists \mu\in M(X) such that m=\mu\circ\tau^{-1} . But since \mathfrak{B}(X)=2^{X} it
follows that m has a countably additive extension to the power set 2^{I} .
vanishing on finite sets, which contradicts the non-measurability of I .

3. 7 NOTE. A shorter (but perhaps less instructive) proof of the
equivalence of (a) through (d) in 3. 6 results by observing that (c)\Rightarrow(a) ,
because (c) implies \overline{C}(X)=M(X)’=l^{1}(X)’=l^{\infty}(X) and B(X)=l^{\infty}(X):(a)

\supset(d) follows from the completeness of ( \overline{C}(X), \mathfrak{T}) which, in turn, rests
on Grothendieck’s theorem [9, IV. 6. 2] .

3. 8 REMARK. It is not known to the author if X scattered implies
\mathfrak{B}(X)=2^{X} . However, if X is scattered with X^{(a)} void for some fifinite ordi-
nal \alpha then \mathfrak{B}(X)=2^{X} . The simplest example of this kind is the one point
compactification of any discrete space; another is given by any compact
( i . e. , isolated) ordinal \beta such that \beta<\omega^{\omega}[11,8.6.6] .
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