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Introduction

Let H be a Hilbert space with norm ||\cdot|| , and let \Lambda be a non-negative
self-adjoint operator in H Let S_{1} , S, k, \alpha and \nu be real numbers with
S_{1}\leqq 0\leqq S , S_{1}\leqq k\leqq S , \alpha’>-1 and -2\alpha-1<\nu<1 . We are concerned with
the well-posedness of the following singular or degenerate hyperbolic equa-
tion in H :

(0. 1) u” (t)+\phi^{2}(t)\Lambda u(t)+\psi(t)u’(t)+_{-}^{-}-(t)u(t)=f(t)

(0.2) u(k)=u_{0} , |t|^{\nu}u’(t)|_{t=t_{0}}=u_{1} ,
on (k, S) , \} (WE)

where u ’ is the t -derivative in the sense of vector-valued derivative, \phi and
\psi are functions on [S_{1}, S] to [0, +\infty] satisfying the following;

(0. 3) \phi(\cdot)\in W_{1OC}^{2,\infty}((S_{1}, S)\backslash \{0\}) ,
(0. 4) C^{-1}|t|^{a}\leqq\phi(t)\leqq C|t|^{a} .
(0. 5) |\phi

’ (t)|\leqq C|t|^{a-1} , |\phi
’ (t)|\leqq C|t|^{a-2} ,

for a . e . t on (S_{1}, S) , with some positive constant C ,

(0. 6) \psi(t)-\nu/t\in L^{1}(S_{1}, S) ,

We note that \phi takes value 0 or \infty at t=0 . That is, the singularity or
the degeneracy of (0.1) occurs at t=0 , which may be initial time (k=0)
or not (k\neq 0) . Especially if 2\alpha>-1 , we can take \nu=0 . In [15], we
showed the well-posednes of (WE) in the space H=L^{2}(\Omega) , where \Omega is a
bounded domain in R^{n} with smooth boundary, \Lambda=-\Delta with homogeneous
Dirichlet boundary condition, 2\alpha>-1 , \nu=0 , \phi(t)=t^{a} . \psi=f=0 , —=0 .
The purpose of this paper is to generalize the above theorem. For this
purpose, we first prove an abstract theorem on the well-posedness of non-
homogeneous evolution equation, which generalizes the abstract theorem
on that of homogeneous equation in [15] (see Theorem 2). Then we
solve (WE) by applying this abstract theorem (see Theorem 1).

Equation (0.1) with k=0 is studied by various authors: see Carroll-
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Showalter [2] and Lacomblez [7] ; Bernardi [1], and Coppoletta [3] for
\alpha<0 ; Imai [4], Ivrii [5], Kubo [6], Oleinik [8], Protter [9], Sakamoto
[10], Segala [11] and Taniguchi [12] for concrete partial differential equa-
tions with \alpha>0 and \Lambda being dependent on t : and the references quoted
there and in [13]. (Here we note that [1] and [3] obtained more irregular
solutions to more irregular equation (0.1) than our setting.) But in their
results, the regularity of a solution of (WE) is lost at k_{I}(=0) . Hence,
the initial data needs strong regularity. Hence they did not show the
well-posedness in H itself.

The main difference between above results and this paper is that the
sum of the space regularity of a solution u and that of |t|^{\nu}u

’ is conserved
for all t , whether the singularity (or the degeneracy) occurs at \overline{1}nitial

time or en route. In particular, the initial condition is weaker than that
of the known results. More precisely, let D_{\beta}(\beta\geqq 0) denote the domain of
\Lambda^{\beta} with its graph norm and let D_{\beta}(\beta<0) denote the dual space of D_{-\beta} .
For an arbitrary real number \kappa , we define a product space:

\pi_{t}^{\kappa}=\{

D_{(1/2)+\kappa}\cross D_{\kappa} for t\neq 0 ,
D,+\kappa\cross D_{\sigma+\kappa} for t=0 ,

where \gamma and \sigma are real number with \gamma+\sigma=1/2determ\overline{l}ned by \alpha and \nu

(see (1.1) and (1.2)). Then we show that for every (m, u_{1})\in\pi_{t_{0}}^{\kappa} , (WE)

has a unique solution u with (u(t), |t|^{\nu}u’(t))\in\pi_{t}^{\kappa} for every t\geqq t_{0} . Thus
the sum of the space regular\dot{l}ty of u and |t|^{\nu}u

’ is conserved 1/2+2\kappa for
every t\geqq k . In other words, the well-posedness of (WE) in D_{(1/2)+\kappa}+D_{\kappa}

holds in some sense.
We apply the result of this paper to quasilinear degenerate hyperbolic

equations in [14].

\S 1. Notations and result

First we describe notations and definitions.
Let X and Y be Banach spaces. For an operator A from Y to X ,

the norm ||A||_{Y,X} is defined by ||A||_{Y,X}= \sup\{||Ay||_{X} ; y\in Y, ||y||_{Y}=1\} , which
may be \infty . The dual space of X is denoted by X^{*} . The duality map of
X into X^{*} is denoted by J_{X} .

Let m=0,1 . For a closed interval I in R, AC^{m}(I ; X) denotes the
set of functions in C^{m} (I : X) all of whose derivatives of order \leqq m are
absolutely continuous on I (as an X-valued function). For a subset I of
R, AC_{1OC}^{m}(I;X) denotes the set of functions belonging to AC^{m}(I’ : X) for
all closed interval I’\subset I . AC_{1OC}^{0}(I:X) is denoted by AC_{1OC}(I;X)
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Let \Lambda=\int_{0}^{\infty}\lambda dE_{\lambda} be the spectral decomposition of \Lambda .
For a nonnegative number \kappa , we define Hilbert space D_{\kappa} as D_{\kappa}=D(\Lambda^{\kappa}) ,

the domain of \Lambda^{\kappa} . with the graph norm ||\cdot||_{\kappa} of \Lambda^{\kappa} . where \Lambda^{\kappa}=\int_{0}^{\infty}\lambda^{\kappa}dE_{\lambda} .
For a negative number \kappa , we define

D_{\kappa}=(D_{-\kappa})^{*} .

We put

(1. 1) \gamma=(\alpha+2-\nu)/\{4(\alpha+1)\}(>1/4) , \gamma’=\min(\gamma, 1/2) ,
(1. 2) \sigma=(\alpha+\nu)/\{4(\alpha+1)\}(>-1/4) , \sigma’=\min(\sigma, 0) .

Here we note that \gamma+\sigma=1/2 . For each real number \kappa , we define product
spaces

\pi_{t}^{\kappa}=\{

D_{(1/2)+\kappa}\cross D_{\kappa} for t\neq 0 ,
D_{\gamma+\kappa}\cross D_{\sigma+\kappa} for t=0 ,

REMARK 1. 1 The sum of the space regularity in the product space
\pi_{t}^{\kappa} is constantly 1/2+2\kappa for every t .

We assume that— and f satisfy the following.
(HI) For every y\in l\lambda_{+\eta} , —( \cdot )y is a D_{(1/2)+\eta} -valued measurable func-

tion on (S_{1}, S) with

(1.3) ||_{-}^{-}-(t)||_{D_{1+\eta},D_{(112)+\eta}}\leqq b(t) ,
(1.3) ’

||_{-}^{-}-(t)||_{D_{(12)+\gamma+\eta},D\gamma+\eta},,,\leqq b(t) ,

for some non-negative function b ( \cdot ) satisfying

(1.4) |t|^{-a}b(t)\in L^{1}(S_{1}, S) if \alpha+\nu\geqq 0 .
(1.5) |t|^{\nu}b(t)\in L^{1}(S_{1}, S) if \alpha+\nu<0 .

(H2) f is a D_{(1/2)+\eta} -valued function on [S_{1}, S] satisfying

(1.6) |t|^{(-a+\nu)/2}f(t)\in L^{1}(S_{1}, S;D_{(1/2)+\eta}) if \alpha+\nu\geqq 0 .
(1. 7) |t|^{\nu}f(t)\in L^{1}(S_{1}, S;D_{(1/2)+\eta}) if \alpha+\nu<0 .

Now we describe our main result:

THEOREM 1. Let \eta be an arbitrary fixed real number and let \gamma

”

and \sigma

” be arbitrary numbers with \gamma"\leqq\gamma’+\eta and \sigma’’\leqq\sigma’+\eta . Assume
(0.3)–(0.6), (HI) and (H2) for \eta . Then for every (u), u_{1})\in\pi 1_{0}^{1/2)+\eta} .
there exists a unique solution u of (WE) in the following sense;

(u(t), |t|^{\nu}u’(t))\in\pi_{t}^{\eta} for every t\in[k, S] .
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u\in C ([k, S] : D_{\gamma},,)\cap L^{\infty}([k, S] ; D_{\gamma’+(1/2)+\eta})

\cap AC_{1OC}([k, S]\backslash \{0\}:D_{(1/2)+\eta})\cap AC_{1OC}^{1}([k, S]\backslash \{0\} ; D_{\eta}) ,
|t|^{\nu}u

’ (t)\in C([k, S],\cdot D_{\sigma},,)\cap L^{\infty}([k, S] ; D_{\sigma’+(1/2)+\eta}) ,

(0. 1) hold in D_{\eta}a . e . on (k, S) ,

u(k)=u), |t|^{1\supset}u’(t)|_{t=to}=u_{1} (so that u’(0)=0 if t=0 and \nu<0).

Furthermore, the following estimates hold:

(1.8) \sup_{to\leqq t\leq S_{2}}(||u(t)||_{\gamma’+(1/2)+\eta}+|t|^{\nu}||u’(t)||_{\sigma’+(1/2)+\eta}+|t|^{a^{+}/2}||u(t)||_{1+\eta})<\infty ,

(1.9) ||u
” (t)||_{\eta}\leqq C_{1}(|t|^{2a-\{(1/2)(a+\nu)^{+}/(1-\nu)\}}+b(t)+|t|^{-\nu}|\psi(t)|+|V(t)||_{\eta}) ,

for some positive constant C_{1} . Here we write \tau^{+}=\max\{\tau, 0\} for real num-
ber\tau.

Assume moreover that \psi, — and f satisfy the following;

\psi\in C^{1}([k, S]\backslash \{0\};[0^{ },\infty]) , f\in C([k, S]\backslash \{0\},\cdot D_{(1/2)+\eta}) ,
—(\cdot) is strongly continuous on [t_{0}, S_{2}]\backslash \{0\} , as an operator from

l\lambda_{+\eta} to D_{\eta} . Then

(1. 10) u \in\bigcap_{i=0}^{2}C^{i}([k, S]\backslash \{0\}:D_{\{(2-i)/2\}+\eta}) .

REMARK 1. 2. If \alpha+\nu\geqq 0 and

ess.\sup_{t_{0}<t<S_{2}}(|t|^{-(a+\nu\rangle/(1-\nu)}+b(t)+|\psi(t)|+|\int(t)||)<\infty ,

then

u\in W^{1,\infty}((k, S) ; D_{(1/2)+\eta} ) \cap W^{2,\infty}((k, S) ; D_{\eta} ).

In fact, that \alpha+\nu\geqq 0 means \sigma’\geqq 0 . Thus, (1.8) and (1.9) imply the
assertion.

We reduce this theorem to the case that \alpha>-1/2 and \nu=0 . For the
sake of this we change the variables as follows:

(1. 11) t(s)=|s|^{\beta-1}s (\beta=1/(1-\nu)(>0)) ,
v(s)=u(t(s)) ,

for S_{1}\leqq s\leqq S . Then it is easy to see that (WE) is transformed into the
following equation for v(s) :

v ” (s)+ ( -t” (s)/t ’ (s)+t ’ (s) \psi(t(s)) ) v ’ (s)
+t’ 2(s)\phi^{2}(t(s))\Lambda v(s)+t’ 2(s)_{-}^{-}-(t(s))v(s)=t’ 2(s)f(t(s))

for s_{)}<s<S_{2}’ ,
v(s_{)})=u_{0} , v’(_{\theta)})=\beta u_{1} ,

(WE) ’
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where s_{1}=|k|^{-\nu}t_{0} and S_{2}’=S_{2-}^{-\nu+1} We show that the equation (WE)’ (s-
invariant) satisfies the assumption of Theorem 1 with \alpha replaced by

(1. 12) \alpha’=\alpha\beta+\beta-1=(\alpha+\nu)/(1-\nu)(>-1/2)

and \nu=0 . From (0.3)\sim (0.5), (1.11) and (1.12), it follows that the func-
tion \overline{\phi}:sarrow|t ’ (s)|\phi(t(s)) satisfies the assumption (0.3)–(0.5) with \alpha re-
placed by \alpha

’ Using the relations: 1-\beta=-\beta\nu , we have

(t” (s)/t’ (s)+t’(s)\psi(t(s)))ds
=t ’ (s) (-\nu/t(s)+\psi(t(s)))ds=(-\nu/t+\psi(t))dt.

Thus by (0.6), the function \tilde{\psi}:sarrow-t ” (s)/t’(s)+t’(s)\psi(t(s)) belongs to
L^{1}(-1,1) . That is, \overline{\psi} satisfies (0.6) with \nu=0 . Inequality (1.3) means

||t’ 2(s)_{-}^{-}-(t(s))||_{D_{1+\eta,(1l2)+\eta}}\leqq t’ 2(s)b(t(s)) ,

So it remains only to prove that functions
\tilde{b}:sarrow t’ 2(s)b(t(s))(\in[0, \infty])

and
\tilde{f} : sarrow t’ 2(s)f(t(s))(\in H)

satisfy (1.4)–(1.7) with \alpha and \nu replaced by \alpha

’ and 0, respectively. For
the sake of this, we have only to note the following relations which follow
from (1.1\underline{1}) and (1.12) :

|s|^{-a’}t^{2}’(s)b(t(s))ds=\beta|t|^{-a}b(t)dt,
t^{2}’(s)b(t(s))ds=\beta|t|^{\nu}b(t)dt,
|s|^{-1a’/2)2}t’(s)f(t(s))ds=\beta|t|^{(-a+\nu)/2}f(t)dt,
\alpha’>0 if and only if \alpha+\nu>0 .

We have proved that (WE)’ satisfies the assumption of theorem 1 with \alpha

and \nu replaced by \alpha

’ and 0 respectively.
Here we note that the value of \gamma in (1.1) (resp. \sigma in (1.2)) with

substituted \alpha

’ for \alpha and 0 for \nu equals original \gamma in (1. 1) (resp. \sigma in
(1.2) ) . We also note that v’(s)=\beta|t|^{\nu}u’(t) . Thus it is easy to see that
(WE)’ has a unique solution v (s -invariant) if and only if (WE) has a
unique solution u ( t -invariant) in the sense of Theorem 1. We also see
that the additional condition and estimates except (1.9) in Theorem 1 are
satisfied by original one if and only if they are satisfied by transformed
one. The estimate (1.9) immediately follows from (0. 1), (0.4), (1.3)’
and (1.8), by noting that \sigma’+1/2\geqq 0 and \gamma’\geqq 0 . Therefore, it suffices to
show Theorem 1 except (1.9) in the case that \alpha>-1/2 and \nu=0 . We
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shall prove this by using an abstract theorem for generating an evolution
operator, which we describe in the next section.

\S 2. Abstract linear evolution equations

In this section, we study a linear evolution equation in a Banach space
Z with norm ||\cdot||_{Z} ;

(CP : F)_{s} du (t)/dt+A(t)u(t)=F(t) for s\leqq t\leqq T, u(s)=y,

where 0\leqq s<T, \{A(t)\}_{t\in[0,T]} is a family of linear operators in Z and F(t)
is a Z-valued function on [0, T] . In [13] we obtained unique solutions
to (CP;0)_{s} . Using this theorem, we shall show the well-posedness of
(CP;F)_{s} for non-zero function F .

First, we describe some definitions described in [13].
Let \{ W_{t}\}_{t\in[0,T]} be a family of Banach spaces in a Banach space Z with

norms \{||\cdot||_{W_{t}}\} .

DEFINITION 1. We say that ||\cdot||_{W_{t}} is differentiable at t if the following
holds; W_{t+h} equals W_{t} as a linear space for sufficiently small |h| with t+h
\in[0, T] and (||x||_{w_{t+h}}-||x||_{w_{t}})/h is convergent as h tends to 0, uniformly
with respect to x in each bounded subset of W_{t} . The limit of the above is

denoted by \frac{d}{dt}||x||_{w_{t}} .

DEFINITION 2. A tw0-parameter family \{ U(t, s) ; 0\leqq s\leqq t\leqq T\} of
operators in Z is said to be an evolution operator on \{ W_{t}\} if it satisfies the
following: for 0\leqq s\leqq r\leqq t\leqq T

(i) U(t, s) is a bounded linear operator on W_{s} into W_{t} ,
(ii) U(t, t)=I on W_{t} and U(t, r)U(r, s)=U(t, s) on W_{s} .
Now, we describe the assumtions in this section.
Let \Gamma be a closed subset of [0, T] which has at most countable num-

bers. Let \{X_{t}\}_{t\in[0,T]} and \{ Y_{t}\}_{t\in[0,T]} be families of Banach spaces in Z with
norms \{||\cdot||_{x_{t}}\} and \{||\cdot||_{Y_{t}}\} respectively such that Y_{t} is continuously and
densely imbedded in X_{t} for each t . Here we note that X_{t} (resp. Y_{t} ) is
not necessarily equivalent to X_{s} (resp. Y_{s}) if s\neq t .

(S. 1) There are constants C_{i}, i=1,2,3 , and \theta\in(0,1] such that
||\cdot||_{Z}\leqq C_{1}||\cdot||_{x_{t}}\leqq C_{2}||\cdot||_{Y\iota} , ||\cdot||_{x_{t}}\leqq C_{3}||\cdot||_{Y_{t}}^{1-\theta}||\cdot||_{Z}^{\theta}, for 0\leqq t\leqq T

(S. 2) If t_{n} tends to t\in[0, T] from the left and \{y_{n}\in Y_{tn}\} is a
sequence such that \sup_{n}||y_{n}||_{Y_{t_{n}}}<\infty and y_{n} converges to y in Z, then y

belongs to Y_{i} with

||y||_{X_{t}} \leqq\lim_{narrow}\sup_{\infty}||y_{n}||_{X_{tn}} , ||y||_{Y_{t}} \leqq\lim_{narrow}\sup_{\infty}||y_{n}||_{Y_{tn}} .
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(S. 3) For each t\in(0, T)\backslash \Gamma . ||x||_{X_{S}} (resp. ||x||_{Ys}) is differentiate with
derivative bounded uniformly with respect to s near t and x in every
bounded set in X_{t} (resp. Y_{t} ).

(S. 4) For every t\in\Gamma and \epsilon>0 , if h>0 is sufficiently small, then
there exists a linear operator P on Y_{t} into Y_{t+h} such that

||P||_{x_{t},x_{t+h}} and ||P||_{Yt,Yt+h}<1+\epsilon , ||(I-P)||_{Y_{t},Z}<\epsilon .

Let \{A(t)\}_{t\in[0,T]} be a family of linear operators in Z which satisfies
the following conditions;

(A. 1) For each t\in[0, T]\backslash \Gamma . A(t) is a closed operator in X_{t} with Y_{t}

\subset D(A(t))(\subset X_{t}) , and if \lambda is sufficiently large, \lambda belongs to the resol-
vent set of A(t) and (A(t)+\lambda I)^{-1}Y_{t} is densely included in Y_{t} .

(A. 2) ( Weak stability condition) There are integrable functions \omega x

and \omega_{Y} which are continuous at every point of [0, T]\backslash \Gamma and satisfy the
following. If t\in[0, T]\backslash \Gamma . then for every x\in Y_{t} and y\in D(A(t)|_{Yt})=\{y\in

Y_{t} ; A(t)y\in Y_{t}\} , there are x^{*}\in J_{x_{t}}(x) and y^{*}\in J_{Y_{t}}(y) such that

(2. 1) \frac{d}{dt}||x||_{\chi_{t}}^{2}\leqq 2{\rm Re}(A(t)x, x^{*})+\omega_{X}(t)||x||_{Xt}^{2} ,

(2.2) \frac{d}{dt}||y||_{Y_{t}}^{2}\leqq 2{\rm Re}(A(t)y, y^{*})+\omega_{Y}(t)||y||_{Yt}^{2} ,

(A. 3) For each t\in[0, T]\backslash \Gamma and each y\in Y_{t} , A(s)y is right continu-
ous at t in X_{t} .

(A. 4) ||A(t)||_{Y_{t},X_{t}} is dominated by an integrable function \xi(t) which
is continuous at every point of [0, T]\backslash \Gamma\wedge

Let F(\cdot) be a Z-valued function with F(/)gX a. e . t on (0, T) .

DEFINITION 3. In the above situation, we say that u(\cdot)\in C([s, T] ;
Z) is a solution of (CP;F)_{s} with y\in Y_{s} , if

(i) u(t)\in Y_{t} for every t\in[s, T] and u(s)=y .
(ii) For all t except at most countably many points of (5, T) , there

is \delta_{t}>0 such that u belongs to AC ( [t-\delta_{t}, t\dagger \delta_{t}];X_{t} ) with

du(r)/dr+A (r) u(r)=F(r) in X_{t} a . e . on (t-\delta_{t}, t \dagger \delta_{t}) .
Now we state a theorem in [13].

THEOREM A (Theorem 2. 1 in [13]). Assume the conditions (S. 1)
-(S. 4) , (A. 1)–(A. 4). Then there exists an evolution operator { U(t, s) ;
0\leqq s\leqq t\leqq T\} on \{X_{t}\} and on \{ Y_{t}\} with the following three properties.

(i) ||U(t, s)||_{x_{s},x_{t}} \leqq\exp\int_{S}^{t}\omega_{X}(r)dr, ||U(t, s)||_{Y_{S},Y_{t}} \leqq\exp\int_{s}^{t}\omega_{Y} (r)dr,



132 T Yamazaki

for 0\leqq s\leqq t\leqq T.
(ii) If Y_{t} is a separable Banach space for every t\in[0, T]\backslash \Gamma- then

for each s\in[0, T] and y\in Y_{s}, u(\cdot)=U(\cdot, s)y is a unique solution of
(CP ; 0) s with \sup_{s\leq t\leqq T}||u(t)||_{Y_{t}}<\infty . Furthermore, u ( \cdot ) is in AC([s, T] ; z)
with

u(t)-u(s)+ \int_{s}^{t}A(r)u(r)dr=0 in Z for s\leqq t\leqq T.

Using Theorem A, we have the next theorem.

THEOREM 2. Assume the same situation as in Theorem A ( ii) and
assume moreover that D(A(t)) (the domain of A(t) as an operator in
X_{t})=Y_{t} for all t\in[0, T] . Let U(t, s) be the evolution operator given by
Theorem A. Let F be a Z-valued function on [0, T] with F(t)\in Y_{t} a. e.
on (0, T) , and with the following properties.

(i) There exists a sequence of Z-valued step functions \{F_{m}\} such that

F_{m}(t)arrow F(t) in X_{t} as marrow\infty for a. e. t on (0, T) ,

(ii) ||F(t)||_{Y_{t}}\leqq\sigma(t) on [0, T) , for some \sigma\in L^{1}(0, T) .
Then for every y\in Y_{s}(s\in[0, T]) ,

u(t)=U(t, s)y+ \int_{s}^{t}U(t, r)F(r)dr

is a unique solution of (CP;F)_{s} with \sup_{s\leqq t\leqq T}||u(t)||_{Y_{t}}<\infty .

Furthermore u(\cdot) is an absolutely continuous Z-valued function on
[s, T] .

REMARK 2. 1 Assume that for interval [\tau_{1}, \tau_{2}]\subset[0, T] , there exists a
positive constant d such that

d^{-1}||\cdot||_{\tau_{1}}\leqq||\cdot||_{X_{t}}\leqq d||\cdot||_{\tau_{1}} for \tau_{1}\leqq t\leqq\tau_{2} .

Then, u(\cdot) is an X_{\tau_{1}} -valued absolutely continuous function on [\tau_{1}, \tau_{2}] .
This immediately follows from the second inequality of (S. 1) and the

absolute continuity of U(\cdot, s)y in Z.

REMARK 2. 2 Assume that there are Banach spaces \tilde{X}_{i},\tilde{Y}_{i}(i=1 , \ldots ,
n) and that [0, T] is divided into finite intervals \{I_{i}\}_{i=1,\cdots,n} with the fol-
lowing properties; for each i, X_{t}-\tilde{X}_{i} and Y_{t}-\tilde{Y}_{i} as Banach space^{t}sa . e . t

on I_{i} , and F(\cdot) is \tilde{X}_{i}-measurable on I_{i} . Then ( i) is satisfied.
In fact, \tilde{X}_{i}-measurability on I_{i} means the existence of step functions

\{F_{i,m}\} such that
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F_{i,m}(t)- F(t) in \tilde{X}_{i} as marrow\infty for a . e . t on I_{i} .

By the denseness of Y_{t} in X_{t} , we can assume that F_{i,m}(t)\in\tilde{Y}_{i}a . e . on I_{i} .
If we put F_{m}(t)=F_{i,m}(t) for t\in I_{i}(i=1, \ldots.n) , then \{F_{m}\} satisfies ( i ) .

PROOF. We assume that \omega_{X}\equiv\omega_{Y}\equiv 0 without losing generality. Let
t^{*} be an arbitrary element of [0, T]\backslash \Gamma . Then by (S. 3) and the closed-
ness of \Gamma_{f} there is an interval [t_{1}, t_{2}] with the following two properties;

[t_{1}, t_{2}]\ni t^{*} . [ t_{1}, t_{2}]\cap\Gamma=\phi ,

(2. 3) \{

X_{t}-X_{t} . with d^{-1}||\cdot||_{x_{t}}.\leqq||\cdot||_{x_{t}}\leqq d||\cdot||_{x_{t}}. ,

| \frac{d}{dt}||\cdot||_{x_{t}}|\leqq d||\cdot||_{x_{t}} ,

Y_{t}-Y_{t} . with d^{-1}||\cdot||_{Y_{t}}.\leqq||\cdot||_{Yt}\leqq d||\cdot||_{Y_{t}}. ,

for t_{1}\leqq t\leqq t_{2} , with some positive constant d . By the same reason as
Remark 2. 11,

(2.4) U(\cdot, s)y\in AC([t_{1}, t_{2}];X_{t}*)

for every fixed s\in[0, T] and y\in Y_{s} . By the assumption, we can take a
subset \Theta of [0, T] satisfying :

[0, T]\backslash \Theta has measure 0, \Theta\cap\Gamma=\emptyset ,

(2.5) F(s)\in Y_{s} and F_{m}(s)arrow F(s) in X_{s} for s\in\Theta .

We put

\prime r =\{(t, s)\in[t_{1}, t_{2}]\cross[0, T]’. s\leqq t\} ,
\prime r_{\Theta}=\{(t, s)\in[t_{1}, t_{2}]\cross\Theta:s\leqq t\} .

(1) First we prove that U(t, s)F(s) is an X_{t} .-valued integrable func-
tion with respect to it,s) on T. It can be written as

F_{m}(s)=F_{m}(s_{m,j}) for s\in[s_{m,j-1}, s_{m,j}) ,

where s_{m,0}=0<\cdots<s_{m,j}<s_{m,j+1}<\cdots<s_{m,Nm}=t . We define a function G_{m,t} by

G_{m}(t, s)=U(t, s_{m,j})F_{m}(s_{m,j}) for s\in[s_{m,j-1}, s_{m,j}) ,

Then by (2.4), G_{m} becomes an X_{t} .-valued measurable function with
respect to it,s). Thus for the measurability of G, it suffices to show that
(2.6) G_{m}(t, s)arrow U(t, s)F(s) in X_{t} . for every it,s) \in T_{\Theta} ,

i . e. , a . e . on \prime r For every it,s) \in 1_{\theta} , it is written as
G_{m}(t, s)-U(t, s)F(s)=U(t, s_{m,j})F(s_{m,j})-U(t, s)F(s)
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=U(t, s_{m,j})F_{m}(s_{m,j})-F(s))+U(t, s_{m_{j}})(I-U(s_{m,j}, s))F(s)

with some partition point s_{m,j} . Thus by ( i) of theorem A, we have

(2.7) ||G_{m}(t, s)-U(t, s)F(s)||_{x_{t}}

\leqq M\{||F(s_{m,j})-F(s)||_{x_{smj}}+||(I-U(s_{m,j}, s))F(s)||_{X_{S}}\} ,

for some positive constant M . The right-hand side of (2.7) tends to 0 as
marrow\infty , by (2.4), (2.5) and the continuity of norm ||\cdot||_{X\gamma} at r=s(\not\in\Gamma) .
Thus (2.6) holds, and therefore the integrability of U(t, s)F(s) immedi-
ately follows from ( i) of Theorem A and assumption ( ii) .

(2) We prove that A(t)U(t, s)F(s) is integrable with respect to
(t, s) on \prime r . By assumptions (2.3) and (A. 2), if \omega>0 is large enough,
then

(2.3) 0\leqq{\rm Re}(A(t)x, x^{*})+\omega||x||_{x_{t}}^{2} for some x^{*}\in J_{x_{t}}(x) ,

for every x\in Y_{t}, t\in[t_{1}, t_{2}] . From (2.8) and the assumption (A. 1), we
easily see that A(t)+\omega I is m -accretive in X_{t} for every t\in[t_{1}, t_{2}] . Thus,
for every t\in[t_{1}, t_{2}] ,

J_{\epsilon}(t)=\{I+\epsilon(A(t)+\omega I)\}^{-1}

exists and satisfies the following:

(2.9) J_{\epsilon}(t)-I as \epsilonarrow 0+

in the strong topology of bounded operators in X_{t} (-X_{t^{*}}) ,

(2. 10) |[\gamma_{\epsilon}(t)||_{\chi_{t},\chi_{t}}\leqq 1 .

We put

A_{\epsilon}(t)=A(t)J_{\epsilon}(t)\subset J_{\epsilon}(t)A(t) .

Then it follows from (2.9) that

A_{\epsilon}(t)xarrow A(t)x in X_{t} as \epsilonarrow 0+ ,

for every x\in D(A(t)) , t\in[t_{1}, t_{2}] . Hence

(2. 11) A_{\epsilon}(t)U(t, s)F(s)arrow A(t)U(t, s)F(s) in X_{t} . as \epsilonarrow 0+ ,

for every (t, s)\in T_{\Theta} , and thus for a . e . (t, s) on \prime r . We show that
A_{\epsilon}(t)U(t, s)F(s) is measurable with respect to (t, s) on T. By (A. 3),
(2.3) and (2.10), A_{\epsilon}(t) is strongly right-continuous with respect to t as a
bounded operator in Xt\cdot . Hence in the same way as in (2 7),
A_{\epsilon}(t)G_{m}(t, s) converges to A_{\epsilon}(t)G(t, s) as marrow\infty . Thus by the same
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reason as the proof of (1), A_{\epsilon}(t)U(t, s)F(s) is Xt -measurable with
respect to (t s) , and so is A_{\epsilon}(t)U(t, s)F(s) by (2. 11). By (A. 4) and
the assumption ( ii) , the integrability follows.

(3) We show that

(2. 12) \frac{d}{dt}\int_{0}^{t}U(t, s)F(s)ds+A(t)\int_{0}^{t}U(t, s)F(s)=F(t)

for a . e . t on (t_{1}, t_{2}) . First we show that

(2. 13) \frac{1}{h}\{\int_{0}^{t+h}U(t+h, s)F(s)ds-\int_{0}^{t}U(t, s)F(s)ds\}

arrow-\int_{0}^{t}A(t)U(t, s)F(s)ds+F(t)

as harrow 0+ , for a.e. t on (t_{1}, t_{2}) . Let h>0 . We have

(2. 14) \frac{1}{h}\{\int_{0}^{t+h}U(t+h, s)F(s)ds-\int_{0}^{t}U(t, s)F(s)ds\}

= \frac{1}{h}\int_{t}^{t+h}( U(t ’ h, s)F(s)-F(s))ds+\frac{1}{h}\int_{t}^{t+h}F(s)ds

+ \frac{1}{h}\int_{0}^{t}(U(t+h, s)-U(t, s))F(s)ds

=- \frac{1}{h}\int_{t}^{t+h}\int_{s}^{t+h}A(r)U(t, s)F(s)drds+\frac{1}{h}\int_{t}^{t+h}F(s)ds

- \frac{1}{h}\int_{0}^{t}\int_{t}^{t+h}A(r)U(t, s)F(s) drds,

since U(t, s)F(s) is a solution of (CP; 0)_{s} with y=F(s) (see ( ii) of
Definition 3). We estimate the right-hand side of (2. 14). By assumption
(ii) of Theorem, (A. 4) and result ( i) of Theorem A,

(2. 15) || \frac{1}{h}\int_{t}^{t+h}\int_{s}^{t+h}A(r)U(t, s)F(s)drds||\leqq\frac{1}{h}\int_{t}^{t+h}\xi(s)ds\int_{t}^{t+h}\sigma(s)ds,

which tends to 0 as harrow 0 . By the assumption, we easily see that F(t) is
integrable with respect to t on (t_{1}, l_{2}) . Hence

(2.16) \frac{1}{h}\int_{t}^{t+h}F(s)dsarrow F(l) as harrow 0 for a . e . t on (t_{1}, t_{2}) .

Fubini’s theorem impl\overline{l}es

(2. 17) \frac{1}{h}\int_{0}^{t}\int_{t}^{t+h}A(r)U(r, s)F(s) drds= \frac{1}{h}\int_{t}^{t+h}\int_{0}^{t}A(r)U(r, s)F(s) dsdr

= \frac{1}{h}\int_{t}^{t+h}\int_{0}^{r}A(r)U(r, s)F(s) dsdr
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+ \frac{1}{h}\int_{t}^{t+h}\int_{r}^{t}A(r)U(r, s)F(s) dsdr.

arrow\int_{0}^{t}A(t)U(t, s)F(s)ds as harrow 0+ ,

Here we used that \int_{0}^{r}A(r)U(r, s)F(s)ds is integrable with respect to r ,

and the estimate similar to (2.15). Equality (2.14) combined with
(2.15) -(2.17) yields (2.13). Convergence (2.13) with “ harrow 0+ ” re-
placed by “ harrow 0-

,,
holds similarly. Therefore, using that A(t) is closed

in X_{t} for every t\in[t_{1}, t_{2}] , we obtain (2.12).

The above and the definition of u(t) imply that u(t) is a solution of
(CP;F)_{s} .

The uniqueness holds by Theorem A, and the rest is easily seen.

\S 3. The existence of an evolution operator for (WE)

In this section, we consider (WE) with \psi=0 , —=0 , f=0 and \nu=0 .
Then by putting v(t)=u’(t) , (WE) in D_{\eta} is transformed into the follow-
ing;

U(k)=(\begin{array}{l}mu_{1}\end{array}) (\in\pi_{to}^{(1/2)+\eta}) ,

dU (t)/dt+A(t)u(t)=0 for k<t<S ,

\}(E)

where

U(t)=(\begin{array}{l}u(t)v(t)\end{array}) , A(t)=(\begin{array}{ll}0 -I\phi^{2}(t)\Lambda 0\end{array}) .

For each real number \kappa , we shall define Hilbert spaces \{X_{t}^{\kappa}\} with X_{t}^{\kappa}

-\pi_{t}^{\kappa} for - 1\leqq t\leqq 1 and Z^{\kappa} so as to apply Theorem A to (E). For \lambda>1 ,

we define t_{\lambda} by

(3. 1) 8C^{3}t_{\lambda}^{-a-1}=\lambda^{1/2}

we define the functions p^{o} q^{o} and r^{o} on [S_{1}, S]\cross[0^{ },\infty) as follows:

p^{o}(t, \lambda)=

’1 for 0\leqq\lambda\leqq 1 , S_{1}\leqq t\leqq S ,
\lambda\{\phi(t_{\lambda})(t+t_{\lambda})+\phi (-t_{\lambda})(t_{\lambda}-t)\}/(2t_{\lambda})

for \lambda>1 , |t|\leqq t_{\lambda} ,
-\lambda\phi(t) for \lambda>1 , |t|>t_{\lambda} .
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q^{o}(t, \lambda)=\{

1 for 0\leqq\lambda\leqq 1 , S_{1}\leqq t\leqq S ,
(2l_{\lambda})/\{\phi(t_{\lambda})(t+t_{\lambda})+\phi (-t_{\lambda})(t_{\lambda}-t)\}

for \lambda>1 , |t|\leqq t_{\lambda} ,
1/\phi(t) for \lambda>1 , |t|>t_{\lambda} .

r^{o}(t, \lambda)=\{

0 for 0\leqq\lambda\leqq 1 , S_{1}\leqq t\leqq S ,

0 for \lambda>1 , |t|\leqq t_{\lambda} ,

\frac{1}{2}\phi
’ (t)/\phi^{2}(t) for \lambda>1 , |t|>t_{\lambda} .

For each function \nu^{o}=p^{o} q^{o} r^{o} we put

\tilde{\nu}(t, \lambda)=(\nu^{o_{*}}\rho_{\epsilon_{\lambda}})(t)=\int_{-1}^{1}\nu(s, \lambda)\rho_{\epsilon_{\lambda}}(t-s)ds ,

where \rho_{\epsilon} is a Friedrichs mollifier and \epsilon_{\lambda} is a positive number depending on
\lambda and determined later in Propositions 3. 1 and 3. 2. We define

(3.2) g_{1}(t, \lambda)=2\{p’(t, \lambda)-2\phi^{2}(t)\lambda\tilde{r}(t, \lambda)\}/p(t, \lambda) ,
(3.3) g_{2}(t, \lambda)=2\{\tilde{q}’(t, \lambda)+2\tilde{r}(t, \lambda)\}/\tilde{q}(t, \lambda) ,
(3. 4) g_{3}(t, \lambda)=4|\tilde{r}’(t, \lambda)+p(t, \lambda)-\phi^{2}(t)\lambda\tilde{q}(t, \lambda)|/(p\tilde{q})^{1/2}(t, \lambda) ,

g(t, \lambda)=\max\{g_{1}(t, \lambda), g_{2}(t, \lambda), g_{3}(t, \lambda)\} ,

G(t, \lambda)=\int_{-1}^{t}g(s, \lambda)ds,

and we put

\nu(t, \lambda)=e^{-G(t,\lambda)}\tilde{\nu}(t, \lambda) for \nu=p, q, r,

Using the above functions p, q and r, we define Hilbert spaces X_{t}^{\kappa} and
Z^{\kappa} for each real number \kappa and - 1\leqq t\leqq 1 .

X_{t}^{\kappa}=\{U=(\begin{array}{l}uv\end{array}) ; ||U||_{x_{t}^{\kappa}}^{2}= \int_{0}^{\infty}(\lambda+1)^{2\kappa}[p(t, \lambda)d(E_{\lambda}u, u)

+q(t, \lambda)d(E_{\lambda}v, v)+2r(t, \lambda)d(E_{\lambda}u, v)]

(= \int_{0}^{\infty}(\lambda+1)_{\mu_{t,\lambda}}^{2\kappa}(U))<\infty\} , with norm ||\cdot||_{X_{t}^{\kappa}} .

Z^{\kappa}=\{U=(\begin{array}{l}uv\end{array}) ; ||U||_{Z^{\kappa}}^{2}= \int_{0}^{\infty}(\lambda+1)^{2\kappa}[\lambda^{2\gamma}’ d(E_{\lambda}u, u)+\lambda^{2\sigma}’ d(E_{\lambda}v, v)]

(= \int_{0}^{\infty}(\lambda+1)_{\underline{\mu}\lambda}^{\kappa}(U))<\infty\} , with norm ||\cdot||_{Z^{\mathcal{K}}} .

Here we note that

||U||_{Z^{\mathcal{K}}}\leqq||U||_{x_{t}^{\kappa}}\leqq||U||_{x_{t}^{\kappa}’} for U=(\begin{array}{l}uv\end{array}) \kappa\leqq\kappa ’.
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PROPOSITION 3. 1. If \epsilon is sufficiently small, then there exists a posi-
tive constant a_{1} for which the following holds:

a_{1}^{-1}||U||_{[mathring]_{t}_{\chi}^{2_{\kappa}}}\leqq||U||_{x_{t}^{\kappa}}^{2}\leqq a_{1}||U||_{[mathring]_{t}_{x}^{2_{\kappa}}} for every U=(\begin{array}{l}uv\end{array}) ,

where ||U||_{[mathring]_{t}_{x}^{2_{\kappa}}}= \int_{0}^{\infty}(\lambda+1)^{2\kappa}\{p\circ(t, \lambda)d(E_{\lambda}u, u)+q^{o}(t, \lambda)d(E_{\lambda}v, v)\} . Thus

||\cdot||_{x_{t}^{\kappa}} actually defines the norm which is equivalent to ||\cdot||_{[mathring]_{t}_{x}^{\kappa}} .

REMARK 3. 1. The constant a_{1} depends only on the constant C in
(0.4) and (0.5), and not depend on \phi itself.

PROOF Using (0.4), (0.5) and (3. 1), we have

|r^{o}(t, \lambda)|\leqq\frac{1}{8}\lambda^{1/2}=\frac{1}{8}(p^{o}q^{o})^{1/2}(t, \lambda) for every t , \lambda .

Thus

(3.5) | \tilde{r}(t, \lambda)|\leqq\frac{1}{4}(p\tilde{q})^{1/2}(t, \lambda) for every t , \lambda .

if \epsilon is sufficiently small, and therefore

|r(t, \lambda)|\leqq\frac{1}{4}(pq)^{1/2}(t, \lambda) for every t , \lambda .

Hence we have

(3.6) 2^{-1} \int_{0}^{\infty}(\lambda+1)^{2\kappa}\{p(t, \lambda)d(E_{\lambda}u, u)+q(t, \lambda)d(E_{\lambda}v, v)\}

\leqq||U||_{t,\kappa}^{2}\leqq 2\int_{0}^{\infty}(\lambda+1)^{2\kappa}\{p(t, \lambda)d(E_{\lambda}u, u)+q(t, \lambda)d(E_{\lambda}v, v)\} ,

for every U=(\begin{array}{l}uv\end{array}) . If we take \epsilon small enough to satisfy

|( \nu^{o}-\nu^{o}*\rho_{\epsilon})(t, \lambda)|\leqq\frac{1}{2}\nu^{o}(t, \lambda) for \lambda\geqq 0 , - 1\leqq t\leqq 1 ,

for \nu=p, q, then

(3. 7) \frac{1}{2}\nu^{o}(t, \lambda)\leqq\tilde{\nu}(t, \lambda)\leqq 2\nu(\circ t, \lambda) for \lambda\geqq 0 , - 1\leqq t\leqq 1 ,

for \nu=p, q . By (3.6), (3.7) and the definitions of p and q , the proof is
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complete if we show that

(3. 8) (G(t, \lambda)\leqq)s_{\lambda}u_{\geqq}P^{||g(\cdot,\lambda)||_{L^{1}(-1,1)}<\infty} .

Let h_{1} , h_{2} and h_{3} be functions defined by the right-hand sides of (3.2),
(3.3) and (3.4) respectively, with p,\tilde{q} and \tilde{r} replaced by p^{o}-q^{O} and r^{o}

respectively. We first show that

(3. 9) s_{\lambda}u_{\geqq}p||h_{i}(\cdot, \lambda)||_{L^{1}(S_{1},S_{2})}<\infty , i=1,2,3 .

It is trivial that

(3. 10) \sup_{0\leqq\lambda\leqq 1}||h_{i}(\cdot , \lambda)||_{L^{1}(-1,1)}<\infty , i=1,2,3 .

So we estimate h_{i} (i=1,2, 3) for \lambda\geqq 1 . From now on in the proof, we
denote by the same c the various constants independent of \lambda and t . By
the definition,

(3. 11) h_{i}(t, \lambda)=0 for |t|\geqq t_{\lambda} , i=1,2 .

by (0.4), we have

(3. 12) h_{1}(t, \lambda)=(p^{o}’/p^{o})(t, \lambda)

= (\phi(t_{\lambda})-\phi (-t_{\lambda}))/\{\phi(t_{\lambda})(t+t_{\lambda})+\phi (-t_{\lambda})(t_{\lambda})(t_{\lambda}-t)\}

\leqq ct_{\lambda-}^{-1} for |t|\leqq t_{\lambda} .

In the way similar to this, we have

(3. 13) h_{2}(t, \lambda)\leqq c for |t|\geqq t_{\lambda} .

By (0.4), (0. 5) and (3. 1),

(3. 14) h_{3}(t, \lambda)=4|r^{o}’(t, \lambda)|\lambda^{-1/2}

\leqq c(t^{-a-2}\lambda^{-1/2})=c(t_{\lambda}^{a+1}|t|^{-a-1}) .

for |t|>t_{\lambda} , and

(3. 15) h_{3}(t, \lambda)=4|r^{o}(t, \lambda)-\phi^{2}(t)\lambda q^{o}(t, \lambda)|\lambda^{-1/2}

\leqq c\lambda^{1/2}(t_{\lambda}^{a}+t_{\lambda}^{-a}|t|^{2a})\leqq c(t_{\lambda}^{-1}+t_{\lambda}^{-2a-1}|t|^{2a}) ,

for |t|\leqq t_{\lambda} . From (3. 11)–(3. 15), (3.9) follows. Using (3.9), we easily
see that (3.8) holds if \epsilon is small enough.

REMARK 3. 2. Banach space X_{t}^{\kappa} is equivalent to \pi_{t}^{\kappa}, for each real
numbers \kappa and t with - 1\leqq t\leqq 1 . More precisely, there is a positive con-
stant a2 (\geqq 1) depending only on the constant C in (0.4) and (0.5) such
that for each real number \kappa , the following inequalities hold for every
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(x, y)\in D_{(1/2)+\kappa}\cross D_{\kappa} .

(i) For every t\in[S_{1}, S]\cap[-T, T] ( T>0) ,

a_{2}^{-1}(t^{a}||x||_{(1/2)+\kappa}^{2}+T^{-a}||y||_{\kappa}^{2})^{1/2}\leqq||(\begin{array}{l}xy\end{array})||_{X_{t}^{\kappa}}\leqq a_{2}(T^{a}||x||_{(1/2)+\kappa}+t^{-a}||y||_{\kappa}^{2})^{1/2}

if \alpha\geqq 0 , and

a_{2}^{-1}(T^{a}||x||_{(1/2)+\kappa}^{2}+|t|^{-a}||y||_{\kappa}^{2})^{1/2}\leqq||(\begin{array}{l}xy\end{array})||_{X_{t}^{\kappa}}\leqq a_{2}(|t|^{a}||x||_{(1/2)+\kappa}+T^{-a}||y||_{\kappa}^{2})^{1/2}

if \alpha<0 .

(ii) a_{2}^{-1}(||x||_{\gamma+\kappa}^{2}+||y||_{\sigma+\kappa}^{2})^{1/2}\leqq||(\begin{array}{l}xy\end{array})||_{X_{0}^{\kappa}}\leqq a_{2}(||x||_{\kappa+\gamma}^{2}+||y||_{\sigma+\gamma}^{2})^{1/2} .

We first prove ( i) when \alpha\geqq 0 . When \alpha<0 , it is proved similarly.
Noting that

C^{-1}|t|^{a}(\lambda+1)\leqq p^{o}(t, \lambda)\leqq CT^{a}(\lambda+1)

for t\in[S_{1}, S]\cap[-T, T] , we have

C^{-1}|t|^{a}||x||_{(1/2)+\kappa}^{2} \leqq\int_{0}^{\infty}(\lambda+1)^{2\kappa}p^{o}(t, \lambda)d(E_{\lambda}x, x)\leqq C||x||_{(1/2)+\kappa}^{2}

for every x\in D_{(1/2)+\kappa} and t\in[S_{1}, S]\cap[-T, T] . Noting that
C^{-1}T^{-a}\leqq q^{o}(t, \lambda)\leqq Ct^{-a}-

for t\in[S_{1}, S]\cap[-T, T] , we have

C^{-1}||y||_{\kappa}^{2} \leqq\int_{0}^{\infty}(\lambda+1)^{2\kappa}q^{o}(t, \lambda)d(E_{\lambda}y, y)\leqq Ct^{-a}||y||_{\kappa}^{2},

for every y\in D_{\kappa} . Hence, with the aid of Proposition 3. 1, we obtain ( i ) .
Secondly, we prove ( ii) . From (0.4) and (3.1), it follows that

a_{2}^{-1}’\lambda^{-a/2(a+1)}\leqq\phi(\pm t_{\lambda})\leqq a_{2}’\lambda^{-a/2(a+1)} if \lambda>1 ,

with some positive constant a_{2}’ . Using this inequality and the definitions
of \gamma and \sigma , we get

a_{2}^{-1}’\lambda^{2\gamma}\leqq p^{o}(0, \lambda)=\lambda\{\phi(t_{\lambda})+\phi(-t_{\lambda})\}/2\leqq a_{2}’\lambda^{2\gamma} .
a_{2}^{-1}’\lambda^{2\sigma}\leqq q^{o}(0, \lambda)=2/\{\phi(t_{\lambda})+\phi(-t_{\lambda})\}\leqq a_{2}’\lambda^{2\sigma} ,

if \lambda>1 . By Proposition 3. 1, the above inequalities imply ( ii) .

Now, we have the following proposition, which is the purpose of this
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section.

PROPOSITION 3. 2. Assume (0. 1)-(0.6) . If \epsilon is sufficiently small,
then for each \kappa, the Hilbert spaces \{X_{t}=X_{t}^{\kappa}\} , \{ Y_{t}=X_{t}^{(1/2)+\kappa}\} , Z=Z^{\kappa} and
the operator \{A(t)\} satisfy the assumption of Theorem A with \Gamma=\{0\} and
\omega_{X}\equiv\omega_{Y}\equiv 0 .

If Proposition 3. 2 is assumed, the next proposition follows.
PROPOSITION 3. 3. In the same situation as in Proposition 3. 2, A(t)

generates the evolution operator U(t, s) on \{X_{t}^{\kappa}\} for each \kappa with the fol-

lowing properties.

(i) ||U(t, s)||_{x_{s}^{\kappa},x_{t}^{\kappa}}\leqq 1 for S_{1}\leqq s\leqq t\leqq S ,

(ii) For every r\neq 0 and V\in X_{r-}^{(1/2)+\kappa}U(t, s)V is continuous in X_{r}^{\kappa}

with respect to (t, s) in the neighborhood of (r, r) .
(iii) For every U_{0}\in X_{t_{0}}^{(1/2)+\kappa} . U(\cdot)=U(\cdot, k)U_{0} is a unique solution of

(E) in Z^{\kappa} in the sense of Definition 3. Furthermore, the following hold;

U(\cdot)\in AC([k, S] : Z^{\kappa})\cap AC_{1OC}([k, S]\backslash [0\} ; D_{(1/2)+\kappa}\cross D_{\kappa}) ,

\frac{d}{dt}U(t)+A(t)U(t)=0 in Z^{\kappa}a . e . t on (k, S) .

PROOF By Proposition 3. 2 and Theorem A, the conclusion except
the uniqueness of a solution in (iii) holds. Theorem A guarantees the
uniqueness of a solution of (E) in Z with bounded Y_{t} -norm. In this case,
every solution of (E) in Z^{\kappa} has a bounded X_{r}^{-(1/2)+\kappa}-norm, since it belongs
to C([k, S]:Z^{\kappa}) and ||\cdot||_{X_{t}^{-(112\rangle+\kappa}}\leqq||\cdot||_{Z^{\kappa}} . If we take - 1+\kappa for \kappa in Proposi-
tion 3. 2, then Z=Z^{-1+\kappa} and Y_{t}=X_{\overline{r}}^{(1/2)+\kappa} Thus the uniqueness holds as a
solution in Z^{-1+\kappa} with bounded X_{\overline{r}}^{(1/2)+\kappa}-norm.

PROOF OF PROPOSITION 3. 2. We prove the case that \kappa=0 . The
other case is proved parallel to this.

(S. 1) It is easy to see that
\lambda^{2\gamma}’\leqq cp^{o}(t, \lambda)\leqq c’(\lambda+1)^{1-\theta}\lambda^{2\gamma} ’

\lambda^{2\sigma}’\leqq cq^{o}(t, \lambda)\leqq c’(\lambda+1)^{1-\theta}\lambda^{2\sigma}’ .

for some constants \theta\in(0,1] and c, c’>0 independent of t and \lambda . By
using Proposition 3. 1, these inequalities imply (S. 1).

(S. 2) Let t_{n}arrow t as narrow\infty , and

(3.16) U_{n}=(\begin{array}{l}u_{n}v_{n}\end{array})\in X_{tn}arrow U=(\begin{array}{l}uv\end{array}) in Z as narrow\infty ,
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with

(3. 17) \sup_{n}||U_{n}||_{Xt_{n}}(=M)<\infty .

Let \eta be an arbitrary fixed positive number. Then the total variation of
||E_{\lambda}(u_{n}-u)||^{2} and ||E_{\lambda}(v_{n}-v)||^{2} on (-\infty, \eta] are dominated by ||E_{\eta}(u_{n}-u)||^{2}

and ||E_{\eta}(v_{n}-v)||^{2} respectively, which tend to 0 by (3.16). From this and
the continuities of the functions p, qy r with respect to t uniformly in \lambda\leqq

\eta , we have

(3. 18) \int_{0}^{\eta}\mu_{tn,\lambda}(U_{n})arrow\int_{0}^{\eta}\mu_{t,\lambda}(U) as n .

On the other hand, by (3.17) we have

\int_{0}^{\eta}\mu_{tn,\lambda}(U_{n})\leqq M for every n .

By (3.18), letting narrow\infty in the last inequality yields

\int_{0}^{\eta}\mu_{t,\lambda}(U)\leqq M .

Since this inequality holds for every positive number \eta , we obtain

\int_{0}^{\infty}\mu_{t,\lambda}(U)\leqq M and U\in X_{t} .

In the same way, we obtain the conclusion for Y_{t} .
(S. 3) Let t\neq 0 . We take \delta such that [t-\delta, t+\delta]\ni 0 . Then we see

that

\sup\{|p’(s, \lambda)|/p(t, \lambda) , |q’(s, \lambda)|/q(t, \lambda) , |r’(s, \lambda)|/(pq)^{\frac{1}{2}}(t, \lambda) ,

|p"(s, \lambda)|/p(t, \lambda) , |q ” (s, \lambda)|/q(t, \lambda) , |r"(s, \lambda)|/(pq)^{\frac{1}{2}}(t, \lambda) ;
s\in[t-\delta, t+\delta]\cap[S_{1}, S] , \lambda\geqq 0\}<\infty .

From this, it follows that (S. 3) holds.
(S. 4) Let \epsilon be an arbitrary fixed number. We take \lambda^{*} large enough

to satisfy

(3. 19) \lambda^{*}+1>\epsilon^{-2} .

Let h be an arbitrary number with

(3.20) 0<h\leqq t_{\lambda}\cdot ,

where t_{\lambda} . is defined by (3.1). We define
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P=E_{\lambda}\cdot|_{Y_{0}} : Y_{0}arrow Y_{h} ,

the restriction of E_{\lambda^{*}} on Y_{0} . We prove that P satisfies the condition of
(S. 4). It follows from (3.20) that

p(h, \lambda)=p(0, \lambda) , q(h, \lambda)=q(0, \lambda) , r(h, \lambda)=r(0, \lambda) ,

for every \lambda\leqq\lambda^{*} . From these relations and (3.19), it follows that
||PU||_{X_{h}}=||PU||_{X_{0}}\leqq||U||_{X_{0}} , ||PU||_{Y_{h}}=||PU||_{Y_{0}}\leqq||U||_{Y_{0}} ,

||(I-P)U||_{Z}^{2} \leqq\int_{\lambda}^{\infty}.\mu_{\lambda}(U)\leqq(\lambda^{*}+1)^{-1}\int_{\lambda}^{\infty}.(\lambda+1)\mu_{\lambda,0}(U)\leqq\epsilon^{2}||U||_{Y_{0}}^{2} ,

for every U\in Y_{0} . Thus (S. 4) holds.
(A. 1) Let t be an arbitrary fixed number in [S_{1}, S]\backslash \{0\} . Using the

fact that \phi^{2}(t)\Lambda is a non-negative self-adjoint operator, we easily see that
(A. 1) holds.

(A. 2) We shall prove the condition for X_{t-} In the same way, we
can prove the condition for Y_{t} . Let t\neq 0 . By the definition of ||\cdot||_{t} , we
have

(3.21) (d/dt)||U||_{X_{t}}^{2}= \int_{0}^{\infty}\{p’(t, \lambda)d(E_{\lambda}u, u)+q’(t, \lambda)d(E_{\lambda}v, v)

+2r ’
(t, \lambda)dE_{\lambda}(u, v)\} ,

= \int_{0}^{\infty}e^{-G(t)}\{(p’-gp)(t, \lambda)d(E_{\lambda}u, u)

+(\tilde{q}’-g\tilde{q})(t, \lambda)d(E_{\lambda}v, v)

+2 (\tilde{r}’-g\tilde{r})(t, \lambda)d(E_{\lambda}u, v)\} ,

(3.22) (A U, U)_{x_{t}}= \int_{0}^{\infty}e^{-G(t)}[-p(t, \lambda)d(E_{\lambda}u, v)

+\tilde{q}(t, \lambda)\phi^{2}(t)\lambda d(E_{\lambda}u, v)

+\tilde{r}(t, \lambda)\{-dE_{\lambda}(v, v)+\phi^{2}(t)\lambda d(E_{\lambda}u, u)\}] .
Comparing each terms which corresponds to d(E_{\lambda}u, u) , d(E_{\lambda}v, v) and
d(E_{\lambda}u, v) respectively, and noting that

(p \tilde{q})^{1/2}d(E_{\lambda}u, v)\leqq\frac{1}{2}(p(t, \lambda)d(E_{\lambda}u, u)+\tilde{q}(t, \lambda)d(E_{\lambda}v, v)) ,

we see that (2.1) holds with \omega_{X}=0 if the following hold;

(3.23) p’(t, \lambda)\leqq 2\phi^{2}(t)\lambda\tilde{r}(t, \lambda)+\frac{1}{2}(gp)(t, \lambda) ,

(3.24) \tilde{q}’(t, \lambda)\leqq-2\tilde{r}(t, \lambda)+\frac{1}{2}(g\tilde{q})(t, \lambda) ,

(3. 25) 2|\tilde{r}
’

(t, \lambda)-(g\tilde{r})(t, \lambda)+p(t, \lambda)-\phi^{2}(t)\lambda\tilde{q}(t, \lambda)|
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\leqq(g(p\tilde{q})^{1/2})(t, \lambda) .

Thus it suffices to show (3.23)–(3.25). But these are trivial from the
definitions of p,\tilde{q},\tilde{r} and g. Here we note that from (3.5), (3.25) holds
if

2|\tilde{r}
’ (t, \lambda)+p(t, \lambda)-\phi^{2}(t)\lambda\tilde{q}(t, \lambda)|\leqq\frac{1}{2}(g(p\tilde{q})^{1/2})(t, \lambda) .

(A. 3) This is trivial.
(A. 4) From Proposition 3. 1 with \kappa=0 , we have

||A(t)(\begin{array}{l}uv\end{array})||_{x_{t}}^{2}=||(\begin{array}{l}-v\phi^{2}(t)\Lambda u\end{array})||_{x_{t}}^{2}

\leqq a_{1}\{\int_{0}^{\infty}p^{o}(t, \lambda)dE_{\lambda}||v||^{2}+\int_{0}^{\infty}q^{o}(t, \lambda)\phi^{4}(t)\lambda^{2}dE_{\lambda}||u||^{2}\} .

From Proposition 3. 1 with \kappa=1/2 , we have

|| (\begin{array}{l}uv\end{array})||_{Yt}^{2}\leqq a_{1}^{-1}\int_{0}^{\infty}(\lambda+1)\{p^{o}(t, \lambda)dE_{\lambda}||u||^{2}+q^{o}(t, \lambda)dE_{\lambda}||v||^{2}\} .

Hence, for (A^{\backslash }.4) , it suffices to prove the following inequalities.

(3.26) \phi^{4}(t)\lambda^{2}q^{o}(t, \lambda)\leqq\xi^{2}(t)(\lambda+1)p^{o}(t, \lambda) ,
(3.27) p^{o}(t, \lambda)\leqq\xi^{2}(t)(\lambda+1)q^{o}(t, \lambda) ,

for every t\in[S_{1}, S] and \lambda\in[0, \infty) . By the definition of p^{o} and q^{o} in-
equalities (3.26) and (3.27) are satisfied if the following hold:

(3.28) \phi(t)+1\leqq\xi(t) for 0\leqq\lambda\leqq 1 , S_{1}\leqq t\leqq S ,
(3.29) \phi^{2}(t)/\phi(\pm t_{\lambda})+\phi(\pm t_{\lambda})\leqq\xi(t) for \lambda\leqq 1 , |t|\leqq t_{\lambda} ,

(3.30) \phi(t)\leqq\xi(t) for \lambda\leqq 1 , |t|\leqq t_{\lambda} .

From Assumption (0.4), we easily see that these hold by taking \xi(t)=

c(|t|^{2a}+1) for sufficiently large constant c . Since 2\alpha>-\nu-1=-1 , \xi is
integrable, and the proof of Proposition 3. 2 is complete.

\S 4. Proof of theorem 1

As \overline{1}S noted in \S 1, we have only to prove Theorem 1 except (1.9) in
case that \alpha>-1/2 and \nu=0 . We assume that \eta=0 . When \eta\neq 0 , it is
proved parallel to this. We asume [S_{1}, S]=[-1,1] without loss of gener-
ality. X_{t}^{\kappa}, Z^{\kappa} and A(t) denote the Hilbert spaces and the operator defined
in \S 3. U(t, s) denotes the evolution operator given by Proposition 3. 3.
By putting u’=v , (WE) is equivalent to the following equation in Z^{0} ;
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\frac{d}{dt}U(t)+A(t)U(t)+B(t)U(t)=\tilde{F}(t) for k<t<1 ,

\}(EE)
U(k)=(\begin{array}{l}u_{l}u_{1}\end{array}) (=U_{0}) ,

where

U(t)=(\begin{array}{l}u(t)v(t)\end{array}) (\in X_{t}^{1/2}),\tilde{F}(t)=(\begin{array}{l}0f(t)\end{array}) (\in X_{t}^{1/2}) ,

B(t)=(\begin{array}{ll}0 0---(t) \psi(t)I\end{array}) (the bounded operator on X_{t}^{1/2} for a . e . t ).

We shall prove Theorem 1 in the following stepcl : estimates of operators
B(t) and \tilde{F}(t) , existence of a solution, estimates of the solution, unique-
ness, estimates of the solution under the additional assumption.

\ll Estimates of ||B(t)||_{x_{t}^{112},x_{t}^{112}} and ||\tilde{F}(t)||_{x_{t}^{112}}\gg If\alpha\geqq 0 , ( i) of Remark

3. 2 with \kappa=1/2 and (1.3) with \eta=0 yield

||(\begin{array}{l}0\overline{=}(t)x\end{array})||_{x_{t}^{112}}=a_{2}t^{-a/2}||_{-}^{-}-(t)x||_{1/2}\leqq a_{2}t^{-a/2}b(t)||x||_{1}

\leqq a_{2}^{2}t^{-a}b(t)||(\begin{array}{l}xy\end{array})||_{X_{t}^{112}} ,

for every (\#, y)\in \mathfrak{Q}\cross l\lambda_{/2} . From this and (3.6), it follows that

||B(t)(_{y^{)}}^{\chi\backslash }||_{X_{t}^{112}}\leqq||(\begin{array}{l}0---(t)x+\psi(t)y\end{array})||_{x_{t}^{112}}

\leqq(a_{2}^{2}|t|^{-a}b(t)+2|\psi(t)|)||(\begin{array}{l}xy\end{array})||_{X_{t}^{112}} ,

for (x, y)\in l\lambda\cross l\lambda_{/2} , which implies that

(4. 1) ||B(t)||_{x_{t}^{112},x_{t}^{112}}\leqq a_{2}^{2}|t|^{-a}b(t)+2|\psi(t)| if \alpha\geqq 0 .

we similarly obtain

(4.2) ||B(t)||_{X_{t}^{112},X_{t}^{112}}\leqq a_{2}^{2}b(t)+2|\psi(t)| if \alpha<0 .

By ( \overline{1}) of Remark 3. 2 with \kappa=1/2 , we have

(4.3) ||\tilde{F}(t)||_{X_{t}^{112}}\{_{\leqq a_{2}|\psi(t)||_{1/2}}\leqq a_{2}|t|^{-a/2}|\psi(t)||_{1/2}
if \alpha\geqq 0 ,
if \alpha<0 .
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\ll Existence of a solution\gg We define T^{*} and R as follows.

(4.4) T^{*}(\leqq 1) is the supremum of S satisfying

\int_{to}^{s}\sigma^{(t)dt\leqq 1/4} ,

where

(4.5) \sigma^{(t)}\{

=a_{2}^{2}|t|^{-a}b(t)+2|\psi(t)| if \alpha\geqq 0 ,
=a_{2}^{2}b(t)+2|\psi(t)| if \alpha<0 .

(4.6) R=2(||U_{0}||_{\chi_{t}^{1\prime 2}}+ \int_{to}^{1}||\tilde{F}(s)||_{\chi_{t}^{112}}ds) .

We note that T^{*}>k by assumptions (0.6), (1.4) and (1.5) with \nu=0 .
We set

G_{T}\cdot=\{V\in C([k, T^{*}] ; Z^{0}) ;
V(\cdot)\in AC_{1OC}([k, T^{*}]\backslash \{0\};n_{/2}\cross H) ,
V(t)\in X_{t}^{1/2} for k\leqq t\leqq T^{*} .

(4.7) ||V(t)||_{x_{t}^{112}}\leqq R\} .

We define Banach space \chi by

\chi=\{V\in C([k, T^{*}];Z) ; \sup_{to\leqq t\leqq T}.||V(t)||_{x_{t}^{112}}<\infty) ,

with norm \sup_{to\leq t\leqq T}.||V(t)||_{x_{t}^{1\prime 2}} . Then G_{T} . becomes a bounded closed convex

subset of \chi .

For an arbitrary W=(\begin{array}{l}w_{1}w_{2}\end{array}) in G_{T}\cdot , we consider the equation:

\frac{d}{dt}U(t)+A(t)U(t)=-B(t)W(t)+\tilde{F}(t) on (k, T^{*})\}(EE)_{W}

U(k)=U_{0} ,

We show that the Hilbert spaces \{X_{t}=X_{t}^{0}\} , \{ Y_{t}\}=\{X_{t}^{1/2}\}, Z=Z^{0} . the oper-
ator \{A(t)\} , and the function F(\cdot)=-B ( \cdot ) W(\cdot)+\overline{F} ( \cdot ) satisfy the
assumption of Theorem 2. It is trivial that D(A(t))=Y_{t} . Thus by PrO-
position 3. 2, the assumption of Theorem 2 other than ( i) and ( ii) are
satisfied. The X_{1} -measurability of -B ( \cdot ) W(\cdot)+\tilde{F} ( \cdot ) on (-1, 1) fol-
lows from the assumptions (HI) and (H2), the denseness of D_{1} in l\lambda_{/2} and
the local continuity of W:[k, T^{*}]\backslash \{0\}arrow D_{/2}\cross H (-X_{1}) . Therefore by
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Remark 2. 2 with i=1 , assumption ( i) of Theorem 2 is satisfied.
Assumption ( ii) follows from (4. 1)-(4.3) , (1.4)–(1. 7) and (4. 7) with
V=W Hence we can apply Theorem 2 to (EE)_{W} and obtain a unique
solution U with form:

(4. 8) U(t)=U(t, k)U_{0}+ \int_{to}^{t}U(t, s)(\tilde{F}(s)-B(s)W(s))ds,

for k\leqq t\leqq T^{*} . By Theorem 2 and Remark 2. 1, U satisfies the conditions
for belonging to G_{T} . except (4. 7). We prove (4. 7). By using ( i) of
Theorem A, (4. 1) and (4.2), (4.8) yields

(4.9) ||U(t)||_{x_{t}^{112}} \leqq||U_{0}||_{x_{0}^{112}}+\int_{to}^{t}(||\tilde{F}(s)||_{x_{s}^{112}}+\sigma(s)||W(s)||_{x_{s}^{112}})ds,

where \sigma is defined by (4.5). We get (4.7) with V=U from (4.9), (4.6),
(4.4) and (4. 7) with V=W

By the above, we can define a mapping \Phi from D_{T} . into D_{T} . by

\Phi:Warrow U : a solution of (EE) W .

We show that \Phi is a contraction mapping on D_{T}\cdot . Let W_{1} and W_{2} be arbi-
trary elements of D_{T}\cdot , and put W=W_{1}-W_{2} . From (4.8), it follows that

\Phi W_{1}(t)-\Phi W_{2}(t)=-\int_{to}^{t}U(t, s)B(s)W(s)ds.

Thus using ( i) of Theorem 3. 1, (4.1), (4.2) and (4.4), we have

||( \Phi W_{1}-\Phi W_{2})(t)||_{x_{t}^{112}}\leqq\int_{to}^{t}\sigma^{(s)d_{S}}\sup_{to\leqq t\leqq T}.||W(s)||_{x_{s}^{112}}

\leqq\frac{1}{2}\sup_{to\leqq t\leqq T}.||W(s)||_{X_{S}^{112}}

.

Hence we get

\sup_{to\leqq t\leqq T}.||(\Phi W_{1}-\Phi W_{2})(t)||_{x_{t}^{112}}\leqq\frac{1}{2}\sup_{to\leqq t\leqq T}.||(W_{1}-W_{2})(t)||_{x_{t}^{112}} ,

which means that \Phi is a contraction mapping in D_{T}\cdot . Hence by the con-
traction mapping theorem, \Phi has a fixed point U, which is a solution of
(EE) on [k, T^{*}] .

Next, starting from T^{*} , we extend a solution to T^{**}(>T^{*}) in the
same way. By definition (4.4) and the integrability of \sigma , we arrive at 1
in finite steps. Thus we have obtained a solution U=(\begin{array}{l}uv\end{array}) of (EE),
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belonging to AC([k, 1];Z)\cap AC_{1OC}([k, 1]\backslash \{0\};l\lambda_{/2}\cross H) and having bounded
ed X_{t}^{1/2}-norm. It is easy to see that u becomes a solution of (WE) in the
sense stated in the assertion of the theorem.

\ll Estimate of the solution u(t)\gg Using(4.9) with W=U and
Gronwall’s lemma finite times, we have

(4. 10) ||U(t)||_{X_{t}^{112}} \leqq(||U_{0}||_{X_{0}^{112}}+\int_{to}^{t}||\overline{F}(s)||_{\chi_{s}^{112}}ds)\exp\int_{to}^{t}\sigma^{(s)ds\leqq M},

for t_{0}\leqq t\leqq 1 , with some positive constant M . Thus, we obtain (1.8) by
noting that

the left-hand side of (1.8) =||U(t)||_{Z^{112}}\leqq||U(t)||_{X_{t}^{112}} for k\leqq t\leqq 1 .

\ll Uniqueness\gg Letu and \tilde{u} be solutions of (WE), and put w=u-\tilde{u},

W=(\begin{array}{l}ww’\end{array}) . Then W is a solution of the following equation for V :

\frac{d}{dt}V(t)+A(t)V(t)=-B(t)W(t) in Za. e. on (k, 1) ,
\}(E)

V(k)=0 .

By using that w\in C([k, 1];D_{\gamma’+(1/2)}) and that D_{1} is dense in D_{\gamma’+(1/2)} , (HI)

implies the measurability of—(\cdot)w(\cdot) in D_{\gamma’} . By this and (1.3)’ in (HI),
B(\cdot)W ( \cdot ) satisfies the condition of F(\cdot) in Theorem 2 with Z=Z^{\gamma’-8} .
Hence, by the same argument as in (4.9), we have

(4. 11) ||W(t)||_{x_{t}^{\gamma’+(112)}} \leqq\int_{0}^{t}\sigma^{(s)||w(s)||_{x_{\acute{t}}^{+(112\rangle}},ds} .

Since \sigma is integrable, (4. 11) means W\equiv 0 .
\ll Estimate of the solution under the additional assumption\gg Last we

show that u satisfies (1.10), under additional assumption. Let [b_{1}, b_{2}] be
an arbitrary closed interval in [t_{0},1]\backslash \{0\} . We consider the following equa-
tion for v :

v ” (t)+\phi^{2}(t)\Lambda v(t)+\psi(t)u’(t)+_{-}^{-}-(t)u(t)=1(t) on (k, T)\} (WE) ,
v(b_{1})=u(b) , v ’ (b_{1})=u’(b) .

Since (u(b), u’(b_{1})) belongs to D_{1}\cross l\lambda_{/2} , it is well-known that under the
assumptions on \phi , \psi , — and f . (WE)’ has a solution v in

(^{*}) \bigcap_{i=0}^{2}C^{i}([b_{1} , &]; D_{(2-i)/2}) .
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The uniqueness of the solution assures v=u on [b_{1} , & ] . Hence u belongs
to the function space (^{*}) . Since [b_{1} , & ] is an arbitrary closed interval in
[k, 1]\backslash \{0\} , the above implies (1. 10).
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