Nevanlinna and Smirnov classes on the upper half plane

Nozomu Mochizuki

(Received September 10, 1990)

1. Introduction and notations

The Nevanlinna and Smirnov classes defined on the unit disk U in \boldsymbol{C} will be denoted by $N(U)$ and $N_{*}(U)$, respectively. In this paper, we shall define the Nevanlinna class, $N_{0}(D)$, and the Smirnov class, $N_{*}(D)$, on $D:=\{z \in \boldsymbol{C} \mid \operatorname{Im} z>0\}$. Yanagihara and Nakamura [10, 8. (3)] posed a problem to introduce the Smirnov class on D; our treatment will be an answer. We let $N_{0}(D)$ consist of all holomorphic functions f on D such that

$$
d(f, 0):=\sup _{y>0} \int_{R} \log (1+|f(x+i y)|) d x<+\infty,
$$

and we let $N_{*}(D)$ consist of f such that $\log (1+|f(z)|) \leqq P[\phi](z)(z \in D)$ for some $\phi \in L^{1}(\boldsymbol{R}), \phi \geqq 0$, where the right side means the Poisson integral. $N_{0}(D)$ is an algebra over \boldsymbol{C} and $N_{*}(D)$ is its subalgebra. First we prove a factorization theorem for functions in $N_{0}(D)$, as Krylov [4] does for functions in the class $\mathfrak{R} . \mathfrak{R}$ is defined by L^{1}-boundedness of $\log ^{+}|f(x+i y)|$ and, since $1 \in \mathfrak{R}$ and $2 \notin \mathfrak{R}$, this is not a vector space. $N(U)$ and $N_{*}(U)$ have remarkable topological properties, as shown by Shapiro and Shields [6] and Roberts [5]. We shall show that our classes have very similar properties. On the other hand, it will be proved that $N_{0}(D)$ and $N_{*}(D)$ cannot be linearly isometric to $N(U)$ and $N_{*}(U)$, respectively, in contrast to the fact that $H^{p}(D)$ are linearly isometric to $H^{p}(U)$ for all $p, 0<p \leqq$ $+\infty$.

We denote by σ the normalized Lebesgue measure on T, the unit circle in C. Let $\Psi(z)=(z-i)(z+i)^{-1}(z \in \bar{D})$. Let ν be a real measure on T. Then there corresponds a finite real measure μ on \boldsymbol{R} such that

$$
\int_{\boldsymbol{R}} h(t) d \mu(t)=\int_{T^{*}}\left(h \circ \Psi^{-1}\right)(\eta) d \nu(\eta) \quad\left(h \in C_{c}(\boldsymbol{R})\right),
$$

where $\quad T^{*}=T \backslash\{1\}$. Denoting the kernel $(\eta+w)(\eta-w)^{-1}$ by $H(w, \eta)$ $((w, \eta) \in U \times T)$, we can write

$$
\begin{align*}
\frac{1}{i} \int_{R} \frac{1+t z}{t-z} d \mu(t) & =\int_{T^{*}} H(\Psi(z), \eta) d \nu(\eta) \tag{1.1}\\
& =\int_{T} H(\Psi(z), \eta) d \nu(\eta)-i \alpha z \quad(z \in D)
\end{align*}
$$

where $\alpha=-\nu(\{1\})$. We write Poisson integrals as follows:

$$
\begin{aligned}
& P[\mu](z)=\int_{R} \frac{1}{\pi} \frac{y}{(x-t)^{2}+y^{2}} \mathrm{~d} \mu(t) \quad(z=x+i y \in D) \\
& Q[\nu](w)=\int_{T} \frac{1-|w|^{2}}{|\eta-w|^{2}} d \nu(\eta) \quad(w \in U)
\end{aligned}
$$

Taking the real parts in (1.1), we have

$$
\begin{equation*}
P\left[\pi\left(1+t^{2}\right) d \mu(t)\right](z)=Q[\nu](\Psi(z))+\alpha \cdot \operatorname{Im} z \quad(z \in D) \tag{1.2}
\end{equation*}
$$

2. A factorization theorem

Let $f \in N_{0}(D)$. Then the subharmonic function $\log (1+|f|)$ has the following properties, by [7, Chap. II, Theorem 4.6]:
(A) $\log (1+|f|)$ has the least harmonic majorant $P[\tau]$, where τ is a finite real measure on \boldsymbol{R}.
(B) $\|\tau\| \leqq d(f, 0)$.
(C) $\sup \left\{\log (1+|f(z)|) \mid z \in \bar{D}_{\delta}\right\} \leqq A_{0} \delta^{-1} d(f, 0)$, with a constant A_{0} independent of f and δ, where $D_{\delta}=\{z \in C \mid \operatorname{Im} z>\delta\}, \delta>0$.
(D) $\log (1+|f(z)|) \rightarrow 0$ as $|z| \rightarrow+\infty\left(z \in \bar{D}_{\delta}\right)$, for each $\delta>0$.

The property (A) implies that $f \circ \Psi^{-1} \in N(U)$, hence the nontangential limit $f^{*}(x)$ exists for a. e. $x \in \boldsymbol{R}$. Since $\log \left|\left(f \circ \Psi^{-1}\right)^{*}\right| \in L^{1}(T)$, we have $\log \left|f^{*}\right| \in L^{1}\left(\boldsymbol{R},\left(1+t^{2}\right)^{-1} d t\right)$, and Fatou's lemma shows that $\log \left(1+\left|f^{*}\right|\right) \in$ $L^{1}(\boldsymbol{R})$. Let $d(f, g)=d(f-g, 0)$ for $f, g \in N_{0}(D)$. Then $\left(N_{0}(D), d\right)$ is seen to be a complete metric space.

THEOREM 2.1. Let $f \in N_{0}(D), f \neq 0$. Then f is expressed, uniquely, in the form

$$
\begin{equation*}
f(z)=a e^{i \alpha z} b(z) d(z) g(z) \quad(z \in D) \tag{2.1}
\end{equation*}
$$

with the following properties.
(i) $\quad a \in \boldsymbol{C},|a|=1 ; \alpha \in \boldsymbol{R}, \alpha \geqq 0$.
(ii) $\quad b(z)$ is the Blaschke product formed from the zeros of f.
(iii) $\quad d(z)=\exp \left(\frac{1}{\pi i} \int_{R} \frac{1+t z}{t-z} \frac{1}{1+t^{2}} \log h(t) d t\right)$,
where $h(t) \geqq 0, \log h \in L^{1}\left(\boldsymbol{R},\left(1+t^{2}\right)^{-1} d t\right)$, and $\log (1+h) \in L^{1}(\boldsymbol{R})$.
(iv)

$$
g(z)=\exp \left(\frac{1}{i} \int_{R} \frac{1+t z}{t-z} d \mu(t)\right)
$$

where μ is a finite real measure on \boldsymbol{R}, singular with respect to Lebesgue measure, and such that

$$
\int_{R}\left(1+t^{2}\right) d \mu^{+}(t)<+\infty
$$

If f is expressed in the form (2.1), thı $n f \in N_{0}(D)$.
Proof. Suppose $f \in N_{0}(D), f \neq 0$. Then the canonical factorization theorem for $N(U)$ shows that $\left(f \circ \Psi^{-1}\right)(w)=a B(w) F(w) S_{1}(w) S_{2}(w)^{-1} \quad(w \in$ U), where $a \in C$ with $|a|=1, B(w)$ is the Blaschke product formed from the zeros of $f \circ \Psi^{-1}$, and

$$
\begin{aligned}
& F(w)=\exp \left(\int_{T} H(w, \eta) \log \left|\left(f \circ \Psi^{-1}\right)^{*}(\eta)\right| d \sigma(\eta)\right) \\
& S_{j}(w)=\exp \left(-\int_{T} H(w, \eta) d \nu_{j}(\eta)\right) \quad(j=1,2)
\end{aligned}
$$

Here ν_{j} are positive singular measures on T and, moreover, mutually singular. In the factorization $f(z)=a B(\Psi(z)) F(\Psi(z)) S_{1}(\Psi(z)) S_{2}(\Psi(z))^{-1}$, $b(z):=B(\Psi(z))$ is the Blaschke product with respect to the zeros of f, and the change of variables $\eta=\Psi(t)(t \in \boldsymbol{R})$ shows that $d(z):=F(\Psi(z))$ is of the form (iii). Let μ be the singular measure on \boldsymbol{R} corresponding to $\nu_{2}-\nu_{1}$. Then, by (1.1), we can write $S_{1}(\Psi(z)) S_{2}(\Psi(z))^{-1}=g(z) e^{i \alpha z}$, where g is of the form (iv). Since f belongs to the class \mathfrak{R} of Krylov, [4, Theorem XVII] implies that $\alpha \geqq 0$ and that $\left(1+t^{2}\right) d \mu^{+}(t)$ is a finite measure. Suppose, conversely, that f is expressed in the form (2.1). Then

$$
|f(z)|=\left|e^{i \alpha z} \| b(z)\right| \exp \left(P\left[\log h+\pi\left(1+t^{2}\right) d \mu(t)\right](z)\right)
$$

Let ν_{0} be the measure on T concentrated on $\{1\}$ and $\nu_{0}(\{1\})=-\alpha$. Then, by letting $z=\Psi^{-1}(w)$, we have $|\exp (i \alpha z)|=\exp \left(Q\left[\nu_{0}\right](w)\right)$. μ determines a singular measure ν on T^{*}, for which we have $P\left[\pi\left(1+t^{2}\right) d \mu(t)\right](z)=$ $Q[\nu](w)$, by (1.2). Thus,

$$
\left|\left(f \circ \Psi^{-1}\right)(w)\right|=|B(w)| \exp \left(Q\left[\log \left(h \circ \Psi^{-1}\right)+\nu+\nu_{0}\right](w)\right) \quad(w \in U)
$$

From $\log ^{+}\left|\left(f \circ \Psi^{-1}\right)(w)\right| \leqq Q\left[\log ^{+}\left(h \circ \Psi^{-1}\right)+\nu^{+}\right](w)$, we see that $f \circ \Psi^{-1} \in N(U)$ and, letting $y \rightarrow 0^{+}$in $|f(x+i y)|$, we have $\left|f^{*}(x)\right|=h(x)$ for a. e. $x \in \boldsymbol{R}$. Hence, by the canonical factorization of $f \circ \Psi^{-1}$, we get

$$
\left|\left(f \circ \Psi^{-1}\right)(w)\right|=|B(w)| \exp \left(Q\left[\log \left(h \circ \Psi^{-1}\right)+\nu_{2}-\nu_{1}\right](w)\right) \quad(w \in U)
$$

These two expressions of $\left|f \circ \Psi^{-1}\right|$ show that $\nu^{+}-\left(\nu^{-}-\nu_{0}\right)=\nu_{2}-\nu_{1}$ and this
implies that $\nu_{2}=\nu^{+}$. Now $\log \left(1+\left|f \circ \Psi^{-1}\right|\right)$ has the least harmonic majorant $v^{\prime}=Q\left[\log \left(1+\left|\left(f \circ \Psi^{-1}\right)^{*}\right|\right)+\nu_{2}\right]$, as shown in [6, Proof of Theorem 3.1]. The function $v:=v^{\prime} \circ \Psi$ is the least harmonic majorant of \log (1 $+|f|)$, and we have

$$
\begin{equation*}
v=P\left[\log \left(1+\left|f^{*}\right|\right)+\pi\left(1+t^{2}\right) d \mu^{+}(t)\right] \tag{2.2}
\end{equation*}
$$

This shows that $f \in N_{0}(D)$. Finally, suppose that f has another factorization of the form (2.1). Then

$$
\left|\left(f \circ \Psi^{-1}\right)(w)\right|=|B(w)| \exp \left(Q\left[\log \left(h \circ \Psi^{-1}\right)+\nu^{\prime}+\nu_{0}^{\prime}\right](w)\right) \quad(w \in U)
$$

for some ν^{\prime} and ν_{0}^{\prime}, and it follows that $\nu=\nu^{\prime}$ and $\nu_{0}=\nu_{0}^{\prime}$.
Corollary 2.2. Let $f \in N_{0}(D), f \neq 0$. Then

$$
\begin{aligned}
d(f, 0) & =\lim _{y \rightarrow 0^{+}} \int_{R} \log (1+|f(x+i y)|) d x \\
& =\int_{R} \log \left(1+\left|f^{*}(x)\right|\right) d x+\int_{R} \pi\left(1+x^{2}\right) d \mu^{+}(x)
\end{aligned}
$$

Proof. The integral of $\log (1+|f(x+i y)|)$ is increasing as $y \rightarrow 0^{+}$, as seen from the property (D) and [1, Theorem 1]. Thus the first equality holds. In the second equality, the left side does not exceed the right, by (2.2), Finally, the property (B) implies that

$$
\| \log \left(1+\left|f^{*}(x)\right| d x+\pi\left(1+x^{2}\right) d \mu^{+}(x) \| \leqq d(f, 0)\right.
$$

Corollary 2.3. Let $f \in N_{0}(D), f \neq 0$. Then

$$
\lim _{c \rightarrow 0} d(c f, 0)=\int_{R} \pi\left(1+x^{2}\right) d \mu^{+}(x)
$$

PROOF. If $c \in \boldsymbol{C}, c \neq 0$, the measure occurring in the factorization (2.1) of $c f$ is the same as that of f, hence Corollary 2.2 shows this.

Corollary 2.4. Let $f \in N_{0}(D), f \neq 0$. Then the following are mutually equivalent. (i) $f \in N_{*}(D)$. (ii) $f \circ \Psi^{-1} \in N_{*}(U)$. (iii) $\mu \leqq 0$, in the factorization (2.1).

$$
\text { (iv) } \lim _{y \rightarrow 0^{+}} \int_{R} \log \left(1+|f(x+i y)| d x=\int_{R} \log \left(1+\left|f^{*}(x)\right|\right) d x\right.
$$

PROOF. If $f \in N_{*}(D)$, then $\log \left(1+\left|\left(f \circ \Psi^{-1}\right)(w)\right|\right) \leqq Q\left[\phi \circ \Psi^{-1}\right](w)(w \in$ U), where $\phi \circ \Psi^{-1} \in L^{1}(T)$. Hence $f \circ \Psi^{-1} \in N_{*}(U)$. Suppose $f \circ \Psi^{-1} \in$ $N_{*}(U)$. Then $\nu_{2}=0$ in the factorization of $f \circ \Psi^{-1}$, hence $\nu^{+}=0$, as in the proof of Theorem 2.1. This implies that $\mu^{+}=0$. If $\mu \leqq 0$, then $f \in N_{*}(D)$ by (2.2). Finally, Corollary 2.2 shows that part (iii) is equivalent to part (iv).

COROLLARY 2.5. The space $\left(N_{*}(D), d\right)$ is an F-algebra, that is, a complete linear metric space with multiplication continuous. Moreover, $N_{*}(D)$ is the largest topological linear subspace of $N_{0}(D)$.

Proof. First, we show the completeness. Difine an operator A by $A f=f \circ \Psi^{-1}$ for holomorphic functions f on D. Clearly, $A\left(N_{0}(D)\right) \subset N(U)$. Let

$$
\rho(g, 0)=\sup _{0<r<1} \int_{T} \log (1+|g(r \eta)|) d \sigma(\eta) \quad(g \in N(U)) .
$$

Then, as in Corollary 2.2, we can see that

$$
\rho(g, 0)=\int_{T} \log \left(1+\left|g^{*}(\eta)\right|\right) d \sigma(\eta)+\nu_{2}(T)
$$

if $g \neq 0$. Hence, for $f \in N_{0}(D)$, we have

$$
\rho(A f, 0)=\int_{R} \log \left(1+\left|f^{*}(x)\right|\right) \pi^{-1}\left(1+x^{2}\right)^{-1} d x+\mu^{+}(\boldsymbol{R}) \leqq d(f, 0)
$$

Thus $A: N_{0}(D) \rightarrow N(U)$ is continuous. Since $N_{*}(D)=N_{0}(D) \cap A^{-1}\left(N_{*}(U)\right)$ by part (ii) of Corollary 2.4, $N_{*}(D)$ is complete. The second statement is an easy consequence of Corollary 2.3 and part (iii) of Corollary 2.4.

3. Topological properties

For $\bar{f}=f+N_{*}(D), \bar{g}=g+N_{*}(D) \in N_{0}(D) / N_{*}(D)$, the metric \bar{d} is defined by letting $\bar{d}(\bar{f}, \bar{g})=\inf \left\{d(f-g, h) \mid h \in N_{*}(D)\right\}$.

THEOREM 3.1. (i) $N_{0}(D)$ is disconnected. (ii) Every finite dimensional linear subspace of $N_{0}(D) / N_{*}(D)$ has the discrete topology. (iii) $N_{0}(D) / N_{*}(D)$ is not discrete.

Proof. (i) For $x \in \boldsymbol{R}$, we define a functional λ_{x} by

$$
\lambda_{x}(f)=\lim _{y \rightarrow 0^{+}} \sup y \log ^{+}|f(x+i y)| \quad\left(f \in N_{0}(D)\right)
$$

The existence of $\lambda_{x}(f)$ is guaranteed by the property (C). λ_{x} is subadditive and continuous. Moreover, if $\lambda_{x}(f)<\lambda_{x}(g)$, then $\lambda_{x}(f+g)=\lambda_{x}(g)$. From these properties it can be proved that f and g belong to different components of $N_{0}(D)$, whenever $\lambda_{x}(f) \neq \lambda_{x}(g)$ for some $x \in \boldsymbol{R}$, just as in [6, Theorem 2.1]. Now, for $\alpha>0$, we define $f_{\alpha} \in N_{0}(D)$ as follows :

$$
f_{\alpha}(z)=\exp \left(\frac{1}{\pi i} \int_{R} \frac{1+t z}{t-z} \frac{1}{1+t^{2}} \log \frac{1}{1+t^{2}} d t\right) \exp \left(\frac{i \alpha}{z}\right) \quad(z \in D)
$$

where $i \alpha z^{-1}$ is the function defined by the measure μ_{α} which is concen-
trated on $\{0\}$ with $\mu_{\alpha}(\{0\})=\alpha$. Since

$$
P\left[-\log \left(1+t^{2}\right)\right](i y)+\alpha y^{-1}=-\frac{1}{\pi} \int_{R} \frac{\log \left(1+y^{2} s^{2}\right)}{1+s^{2}} d s+\frac{\alpha}{y} \geqq 0 \quad(0<y \leqq \delta)
$$

for some $\delta>0$, we can see that $\lambda_{0}\left(f_{\alpha}\right)=\alpha$. Thus the functions $f_{\alpha}(\alpha>0)$ belong to different components of $N_{0}(D)$. (ii) Corollaries 2.2 and 2.3 can be used to prove this, in precisely the same way as in [6, Corollary 2, p. 926]. (iii) Put $g_{\alpha}=\alpha f_{\alpha}, f_{\alpha}$ being the function defined above. Then $\bar{g}_{\alpha} \neq \overline{0}$. By Corollary 2.2, we have

$$
0<\bar{d}\left(\bar{g}_{\alpha}, \overline{0}\right) \leqq d\left(g_{\alpha}, 0\right)=\int_{R} \log \left(1+\frac{\alpha}{1+x^{2}}\right) d x+\pi \alpha
$$

hence $\bar{g}_{\alpha} \rightarrow \overline{0}$ as $\alpha \rightarrow 0$.

4. The component of the origin in $N_{0}(D)$

The component of the origin can be determined in the same way as in [5]. Let $f \in N_{0}(D), f \neq 0$. Then, by (2.1), f is expressed in the form $f(z)$ $=f_{0}(z) g_{\mu+}(z)(z \in D)$, where

$$
\begin{gathered}
f_{0}(z)=a e^{i a z} b(z) d(z) \exp \left(-\frac{1}{i} \int_{R} \frac{1+t z}{t-z} d \mu^{-}(t)\right), \\
g_{\mu+}(z)=\exp \left(\frac{1}{i} \int_{R} \frac{1+t z}{t-z} d \mu^{+}(t)\right) .
\end{gathered}
$$

Note that $f_{0} \in N_{*}(D)$. Let ν be the measure on T^{*} determined by μ, and $\nu_{2}-\nu_{1}$ be the measure occurring in the factorization of $A f$, where $A f=$ $f \circ \Psi^{-1}$, as in the proof of Corollary 2.5. Then $\nu_{2}=\nu^{+}, \nu_{1}=\nu^{-}-\nu_{0}$, from the proof of Theorem 2.1, and we have $(A f)(w)=\left(A f_{0}\right)(w) S_{\nu+}(w)^{-1} \quad(w \in$ U), where

$$
\begin{gathered}
\left(A f_{0}\right)(w)=a B(w) F(w) \exp \left(-\int_{T} H(w, \eta) d\left(\nu^{-}-\nu_{0}\right)(\eta)\right), \\
S_{\nu+}(w)=\exp \left(-\int_{T} H(w, \eta) d \nu^{+}(\eta)\right)
\end{gathered}
$$

We denote by K_{0} the set of functions in $N_{0}(D)$ for which μ^{+}are continuous measures, where we let $0 \in K_{0}$.

ThEOREM 4.1. $\quad K_{0}$ is the component of the origin in $N_{0}(D)$.
Proof. The component of the origin in $N(U), K$, consists of the origin and of functions in $N(U)$ such that ν_{2} are continuous. Let K_{0}^{\prime} be the component of the origin in $N_{0}(D)$. Then, since $A\left(K_{0}^{\prime}\right) \subset K$, the correspondence of measures shows that $K_{0}^{\prime} \subset K_{0}$. Therefore, it is sufficient to
prove that K_{0} is connected. The proofs of Lemma 3.2 and Theorem 3.3 of [5] are valid in the setting of $N_{0}(D)$, because $K_{0}=N_{0}(D) \cap A^{-1}(K)$, a complete metric space. Hence we need only show that every open ball in K_{0} is ε-chainable, for any $\varepsilon>0$. Let B be the open ball in K_{0}, centered at 0 and of radius r. Take $f \in B, f \neq 0$. Then $f=f_{0} g_{\mu+}$. Since the measure $\pi\left(1+x^{2}\right) d \mu^{+}(x)$ is finite and continuous on \boldsymbol{R}, we can choose open intervals I_{i} and closed intervals $J_{i}(1 \leqq i \leqq n)$, where $I_{1}=\{x \in \boldsymbol{R}| | x \mid>M\}$ and $J_{1}=\{x \in$ $\boldsymbol{R}||x| \geqq M+1\}$ for some $M>0$, such that $J_{i} \subset I_{i}(1 \leqq i \leqq n), \bigcup_{i=1}^{n} J_{i}=\boldsymbol{R}$, and

$$
\int_{I_{i}} \pi\left(1+x^{2}\right) d \mu^{+}(x)<\varepsilon / 2 \quad(1 \leqq i \leqq n)
$$

Let μ_{i} denote the measure μ^{+}restricted to I_{i}. Then μ^{+}corresponds to ν^{+} and μ_{i} corresponds to ν_{i}, where ν_{i} is the measure ν^{+}restricted to $\Psi\left(I_{i}\right)$. Hence we have $A\left(g_{\mu_{i}-\mu^{+}}\right)=S_{\nu^{+}-\nu_{i}}$. By the corona theorem, we can take s_{i}^{\prime} $\in H^{\infty}(U)(1 \leqq i \leqq n)$ such that $\sum_{i=1}^{n} s_{i}^{\prime} S_{\nu+-\nu i}=1$. Letting $s_{i}=A^{-1} s_{i}^{\prime}$, we get $\sum_{i=1}^{n} s_{i} g_{\mu_{i}-\mu^{+}}=1$ on D, hence $\sum_{i=1}^{n} s_{i} f_{0} g_{\mu_{i}-\mu^{+}}=f_{0}$. Since $\mu_{i}-\mu^{+} \leqq 0$ and $s_{i} \in H^{\infty}(D)$, we see that $s_{i} f_{0} g_{\mu_{i}-\mu^{+}} \in N_{*}(D)$. Let L be the linear subspace of $N_{*}(D)$ generated by $\left\{s_{i} f_{0} g_{\mu_{i}-\mu+} \mid 1 \leqq i \leqq n\right\}$ and let

$$
B_{0}=\left\{g \in L \mid d(g, 0)<r-\int_{R} \pi\left(1+x^{2}\right) d \mu^{+}(x)\right\}
$$

Then $f_{0} \in B_{0}$. There exist functions $K_{j}(1 \leqq j \leqq m)$ such that $K_{j}=$ $\varepsilon_{j} s_{i} f_{0} g_{\mu_{i}-\mu^{+}}, \varepsilon_{j} \in \boldsymbol{C}$, for some i and such that
(a) $d\left(K_{j}, 0\right)<\varepsilon / 2(1 \leqq i \leqq m)$, (b) $K_{1}+\cdots+K_{p} \in B_{0}(1 \leqq p \leqq m)$, and (c) $K_{1}+\cdots+K_{m}=f_{0}$. If we put $\tau_{j}=\mu_{i}$ and $f_{j}=\varepsilon_{j} s_{i} f_{0}$, where $K_{j}=\varepsilon_{j} s_{i} f_{0} g_{\mu_{i}-\mu^{+}}$, then $K_{j}=f_{j} g_{\mu_{i}-\mu^{+}}$and $d\left(K_{j}, 0\right)=d\left(f_{j}, 0\right)$. Now we can see that

$$
\begin{equation*}
\sum_{j=1}^{m} f_{j} g_{\tau_{j}}=f_{0} g_{\mu^{+}}=f, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
d\left(\sum_{j=1}^{p} f_{j} g_{\tau_{j}}, 0\right) \leqq d\left(\sum_{j=1}^{p} K_{j}, 0\right)+\int_{R} \pi\left(1+x^{2}\right) d \mu^{+}(x)<r, \text { and } \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
d\left(f_{j} g_{\tau_{j}}, 0\right) \leqq d\left(f_{j}, 0\right)+\int_{R} \pi\left(1+x^{2}\right) d \mu_{i}(x)<\varepsilon \tag{iii}
\end{equation*}
$$

Since $\sum_{j=1}^{p} K_{j} \in N_{*}(D)$ and since μ^{+}is continuous, the minimum propery of the Jordan decomposition of measures implies that $\sum_{j=1}^{p} f_{j} g_{\tau_{j}} \in K_{0}$. Hence $\sum_{j=1}^{p} f_{j} g_{\tau_{j}} \in B$. Thus we have an ε-chain $\left\{\sum_{j=1}^{p} f_{j} g_{\tau_{j}} \mid 1 \leqq p \leqq m\right\}$ from 0 to f.

5. Isometries

We prove two theorems. For $0<p<+\infty, H^{p}(D)$ is defined by L^{p}-boundedness of $f(x+i y)$, where f is holomorphic on D.

Theorem 5.1. (i) There does not exist a linear isometry of $N(U)$ onto $N_{0}(D)$. (ii) There does not exist a linear isometry of $N_{*}(U)$ onto $N_{*}(D)$.

Proof. Suppose $f \in H^{p}(D), 0<p \leqq 1$. Then $|f|^{p / 2} \leqq P[\phi]$ for some ϕ $\in L^{2}(\boldsymbol{R})$. Hence $f \in N_{*}(D)$, by $\log (1+x) \leqq p^{-1} x^{p}(x \geqq 0)$; thus $H^{p}(D) \subset$ $N_{*}(D)(0<p \leqq 1)$. Now we prove part (i), part (ii) being very similar. Suppose that an operator A is a linear isometry of $N(U)$ onto $N_{0}(D)$. We show that A transforms $H^{1}(U)$ onto $H^{1}(D)$ as an H^{1}-isometry, following [8, Theorem 2.1]. Take a sequence $\left\{y_{j}\right\}$ such that $y_{1}>y_{2}>\cdots, y_{j} \rightarrow 0$ as j $\rightarrow \infty$ and, for $g \in H^{1}(U)$, put

$$
a_{n j}=\int_{R} \log \left(1+\frac{1}{n}\left|(A g)\left(x+i y_{j}\right)\right|\right)^{n} d x \quad(n, j=1,2, \cdots) .
$$

Then $\left\{a_{n j}\right\}$ is increasing in both n and j and, since $n d\left(n^{-1} A g, 0\right)=n \rho\left(n^{-1} g\right.$, 0) for each n, we have

$$
\lim _{j \rightarrow \infty} a_{n j}=\int_{T} \log \left(1+\frac{1}{n}\left|g^{*}(\eta)\right|\right)^{n} d \sigma(\eta) \quad(n=1,2, \cdots) .
$$

Here the integrand tends to $\left|g^{*}(\eta)\right|$ increasingly as $n \rightarrow \infty$, hence $\lim _{n \rightarrow \infty} \lim _{j \rightarrow \infty}$ $a_{n j}=\|g\|_{H^{1}(U)}$. We can interchange the limits, and the integral of $\mid(A g)(x$ $+i y) \mid$ with respect to $d x$ is increasing as $y \rightarrow 0^{+}$, as seen from the property (D) and [1, Theorem 1]. We have thus $\|A g\|_{H^{1}(D)}=\|g\|_{H^{1}(U)}$. The same argument for A^{-1} shows that A transforms $H^{1}(U)$ onto $H^{1}(D)$. Next we define A_{1} by

$$
\begin{equation*}
\left(A_{1} f\right)(w)=\pi f\left(\Psi^{-1}(w)\right)\left(\frac{2 i}{1-w}\right)^{2} \quad(w \in U) \tag{5.1}
\end{equation*}
$$

for $f \in H^{1}(D)$. Since A_{1} is a linear isometry of $H^{1}(D)$ onto $H^{1}(U), A_{1} \circ A$ becomes a linear isometry of $H^{1}(U)$ onto $H^{1}(U)$. Hence, by [2, Theorem 2], we can write $A_{1} \circ A$ in the form

$$
\left(\left(A_{1} \circ A\right) g\right)(w)=c \frac{1-|a|^{2}}{(1-\bar{a} w)^{2}} g(\psi(w)) \quad(w \in U)
$$

for $g \in H^{1}(U)$, where $c \in C$ with $|c|=1$ and ψ a conformal map of U onto U with $\psi(a)=0$. Letting $f=A g$ in (5.1) and $w=\Psi(z)$, we obtain

$$
(A g)(z)=\frac{c}{\pi} \frac{1-|a|^{2}}{(1-\bar{a} \psi(z))^{2}} \frac{1}{(z+i)^{2}} g\left(\left(\psi^{\circ} \Psi\right)(z)\right) \quad(z \in D)
$$

Put $g=1$ and let $y \rightarrow 0^{+}$in $z=x+i y$. Then

$$
\begin{aligned}
|(A 1)(x)| & =\frac{1-|a|^{2}}{\pi} \frac{1}{|1-\bar{a} \Psi(x)|^{2}} \frac{1}{|x+i|^{2}} \\
& \leqq \frac{2}{\pi(1-|a|)} \frac{1}{x^{2}+1} \quad(x \in \boldsymbol{R}) .
\end{aligned}
$$

Hence, for $0 \leqq t \leqq 4^{-1} \pi(1-|a|)$, we have $t|(A 1)(x)| \leqq\left(2\left(x^{2}+1\right)\right)^{-1}(x \in \boldsymbol{R})$. By $\rho(t, 0)=d(A t, 0)$ and by the dominated convergence theorem, we obtain

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n} t^{n}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}\left(\int_{R}|(A 1)(x)|^{n} d x\right) t^{n} .
$$

This must imply that

$$
\begin{equation*}
\int_{R}|(A 1)(x)|^{n} d x=1 \quad(n=1,2, \cdots) . \tag{5.2}
\end{equation*}
$$

But, since $|(A 1)(x)|$ is continuous on \boldsymbol{R}, it must follow that $|(A 1)(x)| \leqq 1(x$ $\in \boldsymbol{R}$). Hence (5.2) is impossible.

Remark. We note that

$$
H^{p}(D) \llbracket N_{0}(D) \quad(1<p \leqq+\infty) .
$$

For $1<p<+\infty$, take α such that $p^{-1}<\alpha<1$. Then $(z+i)^{-\alpha} \in H^{p}(D)$. But $(z+i)^{-\alpha} \notin N_{0}(D)$, by $\log (1+x) \geqq 2^{-1} x(0 \leqq x \leqq 1)$. The usual Nevanlinna class consists of holomorphic functions f on D such that $\log ^{+}|f|$ have harmonic majorants ([3, p. 69]). Compared with this, $N_{0}(D)$ is considerably small.

Our final result shows that every linear isometry of $N_{*}(D)$ onto $N_{*}(D)$ is induced by a translation along the real axis. We notice that, in the case of U, a linear isometry A of $N_{*}(U)$ onto $N_{*}(U)$ is of the form

$$
(A f)(w)=a f(b w)(w \in U) \text { for } f \in N_{*}(U),
$$

where $a, b \in C$ with $|a|=|b|=1$ ([8, Corollary 2.3]); namely, A is induced by a rotation.

Theorem 5.2. Let A be a linear isometry of $N_{*}(D)$ outo $N_{*}(D)$. Then there exist $c \in \boldsymbol{C},|c|=1$, and $\alpha \in \boldsymbol{R}$ such that

$$
(A f)(z)=c f(z+\alpha)(z \in D) \text { for } f \in N_{*}(D) .
$$

Lemma 5.3. Let A be a linear isometry of $H^{p}(D)$ onto $H^{p}(D), 0<p$
$<+\infty, p \neq 2$. Then A is written in the form
(5.3) $(A f)(z)=$
$c\left(\psi^{\prime}(\Psi(z))\right)^{1 / p}\left(\frac{1}{z+i}\right)^{2 / p}\left(\frac{2 i}{1-(\psi \circ \Psi)(z)}\right)^{2 / p} f\left(\left(\Psi^{-1} \circ \psi \circ \Psi\right)(z)\right)(z \in D)$
for $f \in H^{p}(D)$, where $c \in \boldsymbol{C},|c|=1, \psi$ a conformal map of U onto U, and ψ^{\prime} the derivative of ψ. If we put $\phi=\Psi^{-1} \circ \psi \circ \Psi$, then

$$
\begin{equation*}
(A f)(z)=c\left(\phi^{\prime}(z)\right)^{1 / p} f(\phi(z)) \quad(z \in D) \tag{5.4}
\end{equation*}
$$

Proof. Define A_{p} by

$$
\begin{equation*}
\left(A_{p} h\right)(w)=\pi^{1 / p} h\left(\Psi^{-1}(w)\right)\left(\frac{2 i}{1-w}\right)^{2 / p} \quad(w \in U) \tag{5.5}
\end{equation*}
$$

for $h \in H^{p}(D)$. Then A_{p} is a linear isometry of $H^{p}(D)$ onto $H^{p}(U)$. Since $A_{p} \circ A \circ A_{p}^{-1}$ is a linear isometry of $H^{p}(U)$ onto $H^{p}(U)$, there exist c $\in \boldsymbol{C},|c|=1$, and a conformal map ψ of U onto U such that

$$
\begin{equation*}
\left(\left(A_{p} \circ A \circ A_{p}^{-1}\right) g\right)(w)=c\left(\psi^{\prime}(w)\right)^{1 / p} g(\psi(w)) \quad(w \in U) \tag{5.6}
\end{equation*}
$$

for $g \in H^{p}(U)$. Take $f \in H^{p}(D)$ and let $A_{p} f=g$. Then $\left(A_{p}(A f)\right)(w)=$ $\left(\left(A_{p} \circ A \circ A_{p}^{-1}\right) g\right)(w)$. By (5.5) and (5.6), we get

$$
(A f)\left(\Psi^{-1}(w)\right)=c \pi^{-1 / p}\left(\psi^{\prime}(w)\right)^{1 / p}\left(\frac{2 i}{1-w}\right)^{-2 / p} g(\psi(w))
$$

By (5.5) again and by letting $w=\Psi(z)$, we obtain (5.3).
Lemma 5.4. Let V be the family of holomorphic functions f on D such that $|f(z) \| z+i|^{2}$ are bounded. Then V is a linear subspace of $H^{p}(D)$ $(1 \leqq p<+\infty)$, for which the following hold: (i) V is dense in $H^{p}(D)$. (ii) V is dense in $N_{*}(D)$.

Proof. We prove part (ii). Let $f \in N_{*}(D)$. For $s>0$, we define f_{s} by $f_{s}(z)=f(z+i s)(z \in D)$. Clearly, $f_{s} \in N_{0}(D)$, and f_{s} satisfies part (iv) of Corollary 2.4. Hence $f_{s} \in N_{*}(D)$. By using a generalized form of the dominated convergence theorem, as in [9, Theorem 2], we can conclude that $d\left(f_{s}, f\right) \rightarrow 0$ as $s \rightarrow 0^{+}$. Now there exists a sequence $\left\{g_{j}\right\}$ of continuous functions on \bar{D} which are holomorphic on D and such that $\left|g_{j}(z)\right| \leqq 1(z \in$ $\bar{D}),\left|g_{j}(z)\right||z+i|^{2} \rightarrow 0$ as $|z| \rightarrow+\infty$ in \bar{D}, and $g_{j}(z) \rightarrow 1$ as $j \rightarrow \infty(z \in \bar{D})$. Indeed, following [3, Chap.II, Corollary 3.3], it suffices to put $g_{j}(z)=$ $h_{j}\left(\alpha_{j} \Psi(z)\right)(z \in D)$, where $0<\alpha_{j}<1$ with $\alpha_{j} \rightarrow 1$, and

$$
h_{j}(w)=\left(\frac{\alpha_{j}-w}{1-\alpha_{j} w}\right)^{3} \quad(w \in U)
$$

For $f \in N_{*}(D)$ and $s>0$, we have $\left|f_{s}(z)\right| \leqq M(z \in D)$, by the property (C). If we let $f_{j}=f_{s} g_{j}$, then $f_{j} \in V$, and $d\left(f_{j}, f_{s}\right) \rightarrow 0$ as $j \rightarrow \infty$.

Lemma 5. 5. Let A be a linear isometry of $N_{*}(D)$ onto $N_{*}(D)$. Then A transforms V onto V as an $H^{3}(D)$-isometry.

Proof. First note that A transforms $H^{1}(D)$ onto $H^{1}(D)$ as an H^{1}-isometry. Hence $A f$ is written in the form (5.3) for $f \in H^{1}(D)$, with p $=1$. Let $f \in V,|f(z) \| z+i|^{2} \leqq M(z \in D)$. Then, since $2 i(1-(\psi \circ \Psi)(z))^{-1}=$ $\left(\Psi^{-1} \circ \psi \circ \Psi\right)(z)+i$, we have

$$
\left|\frac{2 i}{1-\left(\psi^{\circ} \Psi\right)(z)}\right|^{2}\left|f\left(\left(\Psi^{-1} \circ \psi \circ \Psi\right)(z)\right)\right| \leqq M .
$$

Moreover, ψ is of the form: $\psi(w)=b(a-w)(1-\bar{a} w)^{-1}(w \in U)$, with $|b|=1$ and $a \in U$, hence $\left|\psi^{\prime}(w)\right| \leqq 2(1-|a|)^{-1}$. From these we see that $|(A f)(z)| \leqq$ $2 M(1-|a|)^{-1}|z+i|^{-2}(z \in D)$, which implies that $A f \in V$. The same argument for A^{-1} shows that A transforms V onto V. Now from

$$
\left|t f^{*}(x)\right|,\left|t(A f)^{*}(x)\right| \leqq \frac{1}{2\left(x^{2}+1\right)}(x \in \boldsymbol{R})
$$

for $0 \leqq t \leqq \delta$ and from $d(t f, 0)=d(A(t f), 0)$, we can conclude that

$$
\int_{R}\left|(A f)^{*}(x)\right|^{3} d x=\int_{R}\left|f^{*}(x)\right|^{3} d x
$$

just as in the proof of Theorem 5.1.
Proof of Theorem 5.2. Since V is dense in $H^{3}(D)$, there is a linear isometry \tilde{A} of $H^{3}(D)$ onto $H^{3}(D)$ such that $\tilde{A}=A$ on V. Thus $\tilde{A} f$ is of the form (5.4), with $p=3$. Now let $f \in V$. Then (5.4) is valid for both $p=1$ and $p=3$; namely,

$$
(A f)(z)=c_{1} \phi_{1}^{\prime}(z) f\left(\phi_{1}(z)\right)=c_{3}\left(\phi_{3}^{\prime}(z)\right)^{1 / 3} f\left(\phi_{3}(z)\right) \quad(z \in D) .
$$

Here $\phi_{j}(j=1,3)$ are conformal maps of D onto D, hence

$$
\phi_{j}(z)=\frac{\alpha_{j} z+\beta_{j}}{\gamma_{j} z+\delta_{j}} \quad(z \in D)
$$

where $\alpha_{j}, \beta_{j}, \gamma_{j}, \delta_{j} \in \boldsymbol{R}$ and $D_{j}:=\alpha_{j} \delta_{j}-\beta_{j} \gamma_{j}>0$. Thus we have

$$
\frac{D_{3}}{D_{1}^{3}}\left|\frac{f\left(\phi_{3}(z)\right)}{f\left(\phi_{1}(z)\right)}\right|^{3} \frac{\left|\gamma_{1} z+\delta_{1}\right|^{6}}{\gamma_{3} z+\left.\delta_{3}\right|^{2}}=1 \quad(z \in D) .
$$

Suppose $\gamma_{1} \neq 0$, and put $f(z)=(z+i)^{-3}$. Then, by letting $|z| \rightarrow+\infty$, we would have a contradiction. Therefore, $A f$ must be of the form $(A f)(z)$
$=c f(\beta z+\alpha)(z \in D)$ for $f \in V$, where $c \in \boldsymbol{C}, \beta>0$, and $\alpha \in \boldsymbol{R}$. But $\|A f\|_{H^{p}}$ $=\|f\|_{H^{p}}(p=1,3)$, hence $|c|=\beta=1$. Finally, since V is dense in $N_{*}(D)$, we conclude that $(A f)(z)=c f(z+\alpha)(z \in D)$ for $f \in N_{*}(D)$.

References

[1] T. M. Flett, Mean values of subharmonic functions on half-spaces, J. London Math. Soc. (2) 1 (1969), 375-383.
[2] F. Forelli, The isometries of H^{p}, Can. J. Math. 16 (1964), 721-728.
[3] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[4] V.I. Krylov, On functions regular in a half-plane, Mat. Sb. 6 (48) (1939); Amer. Math. Soc. Transl. (2) 32 (1963), 37-81.
[5] J. W. Roberts, The component of the origin in the Nevanlinna class, Ill. J. Math. 19 (1975), 553-559.
[6] J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), 915-936.
[7] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971.
[8] K. Stephenson, Isometries of the Nevanlinna class, Indiana Univ. Math. J. 26 (1977), 307-324.
[9] M. Stoll, The space N_{*} of holomorphic functions on bounded symmetric domains, Ann. Polon. Math. 32 (1976), 95-110
[10] N. Yanagihara and Y. Nakamura, On functional analysis of the Nevanlinna class, Sưgaku 28 (1976), 323-334, Iwanami (Japanese).

College of General Education
Tôhoku University
Kawauchi, Sendai 980
Japan

