Nevanlinna and Smirnov classes on the upper half plane

Nozomu MOCHIZUKI (Received September 10, 1990)

1. Introduction and notations

The Nevanlinna and Smirnov classes defined on the unit disk U in Cwill be denoted by N(U) and $N_*(U)$, respectively. In this paper, we shall define the Nevanlinna class, $N_0(D)$, and the Smirnov class, $N_*(D)$, on $D := \{z \in C | \text{Im } z > 0\}$. Yanagihara and Nakamura [10, 8. (3)] posed a problem to introduce the Smirnov class on D; our treatment will be an answer. We let $N_0(D)$ consist of all holomorphic functions f on D such that

$$d(f, 0): = \sup_{y>0} \int_{R} \log (1 + |f(x + iy)|) dx < +\infty,$$

and we let $N_*(D)$ consist of f such that $\log (1+|f(z)|) \leq P[\phi](z) (z \in D)$ for some $\phi \in L^1(\mathbb{R})$, $\phi \geq 0$, where the right side means the Poisson integral. $N_0(D)$ is an algebra over C and $N_*(D)$ is its subalgebra. First we prove a factorization theorem for functions in $N_0(D)$, as Krylov [4] does for functions in the class \mathfrak{N} . \mathfrak{N} is defined by L^1 -boundedness of $\log^+|f(x+iy)|$ and, since $1 \in \mathfrak{N}$ and $2 \in \mathfrak{N}$, this is not a vector space. N(U) and $N_*(U)$ have remarkable topological properties, as shown by Shapiro and Shields [6] and Roberts [5]. We shall show that our classes have very similar properties. On the other hand, it will be proved that $N_0(D)$ and $N_*(D)$ cannot be linearly isometric to N(U) and $N_*(U)$, respectively, in contrast to the fact that $H^p(D)$ are linearly isometric to $H^p(U)$ for all p, 0 $<math>+\infty$.

We denote by σ the normalized Lebesgue measure on T, the unit circle in C. Let $\Psi(z) = (z-i)(z+i)^{-1} (z \in \overline{D})$. Let ν be a real measure on T. Then there corresponds a finite real measure μ on R such that

$$\int_{\boldsymbol{R}} h(t) d\mu(t) = \int_{T^*} (h \circ \Psi^{-1})(\eta) d\nu(\eta) \quad (h \in C_c(\boldsymbol{R})),$$

where $T^* = T \setminus \{1\}$. Denoting the kernel $(\eta + w)(\eta - w)^{-1}$ by $H(w, \eta) ((w, \eta) \in U \times T)$, we can write

N. Mochizuki

(1.1)
$$\frac{1}{i} \int_{\mathbf{R}} \frac{1+tz}{t-z} d\mu(t) = \int_{T^*} H(\Psi(z), \eta) d\nu(\eta)$$
$$= \int_{T} H(\Psi(z), \eta) d\nu(\eta) - iaz \quad (z \in D),$$

where $\alpha = -\nu(\{1\})$. We write Poisson integrals as follows:

$$P[\mu](z) = \int_{\mathbf{R}} \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2} d\mu(t) \quad (z = x + iy \in D),$$

$$Q[\nu](w) = \int_{T} \frac{1 - |w|^2}{|\eta - w|^2} d\nu(\eta) \quad (w \in U).$$

Taking the real parts in (1.1), we have

(1.2) $P[\pi(1+t^2)d\mu(t)](z) = Q[\nu](\Psi(z)) + \alpha \cdot \operatorname{Im} z \quad (z \in D).$

2. A factorization theorem

Let $f \in N_0(D)$. Then the subharmonic function log (1+|f|) has the following properties, by [7, Chap. II, Theorem 4.6]:

(A) log (1+|f|) has the least harmonic majorant $P[\tau]$, where τ is a finite real measure on **R**.

 $(\mathbf{B}) \quad \|\boldsymbol{\tau}\| \leq d(f, 0).$

(C) sup $\{\log (1+|f(z)|)|z \in \overline{D}_{\delta}\} \leq A_0 \delta^{-1} d(f, 0), \text{ with a constant } A_0 \text{ independent of } f \text{ and } \delta, \text{ where } D_{\delta} = \{z \in C | \text{Im } z > \delta\}, \delta > 0.$

(D) log $(1+|f(z)|) \rightarrow 0$ as $|z| \rightarrow +\infty$ $(z \in \overline{D}_{\delta})$, for each $\delta > 0$.

The property (A) implies that $f \circ \Psi^{-1} \in N(U)$, hence the nontangential limit $f^*(x)$ exists for a.e. $x \in \mathbb{R}$. Since $\log |(f \circ \Psi^{-1})^*| \in L^1(T)$, we have $\log |f^*| \in L^1(\mathbb{R}, (1+t^2)^{-1}dt)$, and Fatou's lemma shows that $\log (1+|f^*|) \in L^1(\mathbb{R})$. Let d(f,g) = d(f-g,0) for $f, g \in N_0(D)$. Then $(N_0(D), d)$ is seen to be a complete metric space.

THEOREM 2.1. Let $f \in N_0(D)$, $f \neq 0$. Then f is expressed, uniquely, in the form

$$(2.1) \qquad f(z) = a e^{iaz} b(z) d(z) g(z) \quad (z \in D),$$

with the following properties.

(i) $a \in C, |a|=1; a \in R, a \ge 0.$

(ii)
$$b(z)$$
 is the Blaschke product formed from the zeros of f .

(iii)
$$d(z) = \exp\left(\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log h(t) dt\right),$$

where $h(t) \ge 0$, $\log h \in L^1(\mathbf{R}, (1+t^2)^{-1}dt)$, and $\log (1+h) \in L^1(\mathbf{R})$.

(iv)
$$g(z) = \exp\left(\frac{1}{i}\int_{\mathbf{R}}\frac{1+tz}{t-z}d\mu(t)\right),$$

where μ is a finite real measure on **R**, singular with respect to Lebesgue measure, and such that

$$\int_{\mathbf{R}} (1+t^2) d\mu^+(t) < +\infty.$$

If f is expressed in the form (2.1), then $f \in N_0(D)$.

PROOF. Suppose $f \in N_0(D)$, $f \neq 0$. Then the canonical factorization theorem for N(U) shows that $(f \circ \Psi^{-1})(w) = aB(w)F(w)S_1(w)S_2(w)^{-1}$ ($w \in U$), where $a \in C$ with |a|=1, B(w) is the Blaschke product formed from the zeros of $f \circ \Psi^{-1}$, and

$$F(w) = \exp\left(\int_{T} H(w, \eta) \log|(f \circ \Psi^{-1})^{*}(\eta)| d\sigma(\eta)\right),$$

$$S_{j}(w) = \exp\left(-\int_{T} H(w, \eta) d\nu_{j}(\eta)\right) \quad (j=1, 2).$$

Here ν_j are positive singular measures on T and, moreover, mutually singular. In the factorization $f(z) = aB(\Psi(z))F(\Psi(z))S_1(\Psi(z))S_2(\Psi(z))^{-1}$, $b(z) := B(\Psi(z))$ is the Blaschke product with respect to the zeros of f, and the change of variables $\eta = \Psi(t)$ ($t \in \mathbf{R}$) shows that $d(z) := F(\Psi(z))$ is of the form (iii). Let μ be the singular measure on \mathbf{R} corresponding to $\nu_2 - \nu_1$. Then, by (1.1), we can write $S_1(\Psi(z))S_2(\Psi(z))^{-1} = g(z)e^{i\alpha z}$, where g is of the form (iv). Since f belongs to the class \mathfrak{N} of Krylov, [4, Theorem XVII] implies that $\alpha \ge 0$ and that $(1+t^2)d\mu^+(t)$ is a finite measure. Suppose, conversely, that f is expressed in the form (2.1). Then

$$|f(z)| = |e^{iaz}||b(z)|\exp(P[\log h + \pi(1+t^2)d\mu(t)](z)).$$

Let ν_0 be the measure on T concentrated on $\{1\}$ and $\nu_0(\{1\}) = -\alpha$. Then, by letting $z = \Psi^{-1}(w)$, we have $|\exp(i\alpha z)| = \exp(Q[\nu_0](w))$. μ determines a singular measure ν on T^* , for which we have $P[\pi(1+t^2)d\mu(t)](z) = Q[\nu](w)$, by (1.2). Thus,

$$|(f \circ \Psi^{-1})(w)| = |B(w)| \exp(Q[\log(h \circ \Psi^{-1}) + \nu + \nu_0](w)) \quad (w \in U).$$

From $\log^+|(f \circ \Psi^{-1})(w)| \leq Q[\log^+(h \circ \Psi^{-1}) + \nu^+](w)$, we see that $f \circ \Psi^{-1} \in N(U)$ and, letting $y \to 0^+$ in |f(x+iy)|, we have $|f^*(x)| = h(x)$ for a.e. $x \in \mathbf{R}$. Hence, by the canonical factorization of $f \circ \Psi^{-1}$, we get

$$|(f \circ \Psi^{-1})(w)| = |B(w)| \exp(Q[\log(h \circ \Psi^{-1}) + \nu_2 - \nu_1](w)) \quad (w \in U).$$

These two expressions of $|f \circ \Psi^{-1}|$ show that $\nu^+ - (\nu^- - \nu_0) = \nu_2 - \nu_1$ and this

implies that $\nu_2 = \nu^+$. Now log $(1+|f \circ \Psi^{-1}|)$ has the least harmonic majorant $v' = Q[\log (1+|(f \circ \Psi^{-1})^*|) + \nu_2]$, as shown in [6, Proof of Theorem 3.1]. The function $v := v' \circ \Psi$ is the least harmonic majorant of log (1+|f|), and we have

(2.2)
$$v = P[\log (1+|f^*|) + \pi(1+t^2)d\mu^+(t)].$$

This shows that $f \in N_0(D)$. Finally, suppose that f has another factorization of the form (2.1). Then

$$|(f \circ \Psi^{-1})(w)| = |B(w)| \exp(Q[\log (h \circ \Psi^{-1}) + \nu' + \nu'_0](w)) \quad (w \in U)$$

for some ν' and ν'_0 , and it follows that $\nu = \nu'$ and $\nu_0 = \nu'_0$.

COROLLARY 2.2. Let $f \in N_0(D)$, $f \neq 0$. Then

$$d(f, 0) = \lim_{y \to 0^+} \int_{\mathbf{R}} \log (1 + |f(x + iy)|) dx$$

= $\int_{\mathbf{R}} \log (1 + |f^*(x)|) dx + \int_{\mathbf{R}} \pi (1 + x^2) d\mu^+(x).$

PROOF. The integral of log (1+|f(x+iy)|) is increasing as $y \rightarrow 0^+$, as seen from the property (D) and [1, Theorem 1]. Thus the first equality holds. In the second equality, the left side does not exceed the right, by (2.2), Finally, the property (B) implies that

 $\|\log (1+|f^*(x)|dx+\pi(1+x^2)d\mu^+(x)\| \le d(f, 0).$

COROLLARY 2.3. Let $f \in N_0(D)$, $f \neq 0$. Then $\lim_{c \to 0} d(cf, 0) = \int_{\mathbf{R}} \pi (1 + x^2) d\mu^+(x).$

PROOF. If $c \in C$, $c \neq 0$, the measure occurring in the factorization (2.1) of *cf* is the same as that of *f*, hence Corollary 2.2 shows this.

COROLLARY 2.4. Let $f \in N_0(D)$, $f \neq 0$. Then the following are mutually equivalent. (i) $f \in N_*(D)$. (ii) $f \circ \Psi^{-1} \in N_*(U)$. (iii) $\mu \leq 0$, in the factorization (2.1).

(iv)
$$\lim_{y \to 0^+} \int_{R} \log (1 + |f(x + iy)| dx = \int_{R} \log (1 + |f^*(x)|) dx$$

PROOF. If $f \in N_*(D)$, then $\log (1+|(f \circ \Psi^{-1})(w)|) \leq Q[\phi \circ \Psi^{-1}](w)$ ($w \in U$), where $\phi \circ \Psi^{-1} \in L^1(T)$. Hence $f \circ \Psi^{-1} \in N_*(U)$. Suppose $f \circ \Psi^{-1} \in N_*(U)$. Then $\nu_2 = 0$ in the factorization of $f \circ \Psi^{-1}$, hence $\nu^+ = 0$, as in the proof of Theorem 2.1. This implies that $\mu^+ = 0$. If $\mu \leq 0$, then $f \in N_*(D)$ by (2.2). Finally, Corollary 2.2 shows that part (iii) is equivalent to part (iv).

COROLLARY 2.5. The space $(N_*(D), d)$ is an *F*-algebra, that is, a complete linear metric space with multiplication continuous. Moreover, $N_*(D)$ is the largest topological linear subspace of $N_0(D)$.

PROOF. First, we show the completeness. Difine an operator A by $Af = f \circ \Psi^{-1}$ for holomorphic functions f on D. Clearly, $A(N_0(D)) \subset N(U)$. Let

$$\rho(g, 0) = \sup_{0 < r < 1} \int_{T} \log \left(1 + |g(r\eta)| \right) d\sigma(\eta) \quad (g \in N(U)).$$

Then, as in Corollary 2.2, we can see that

$$\rho(g, 0) = \int_{T} \log (1 + |g^{*}(\eta)|) d\sigma(\eta) + \nu_{2}(T),$$

if $g \neq 0$. Hence, for $f \in N_0(D)$, we have

$$\rho(Af, 0) = \int_{\mathbf{R}} \log (1 + |f^*(x)|) \pi^{-1} (1 + x^2)^{-1} dx + \mu^+(\mathbf{R}) \le d(f, 0).$$

Thus $A: N_0(D) \to N(U)$ is continuous. Since $N_*(D) = N_0(D) \cap A^{-1}(N_*(U))$ by part (ii) of Corollary 2.4, $N_*(D)$ is complete. The second statement is an easy consequence of Corollary 2.3 and part (iii) of Corollary 2.4.

3. Topological properties

For $\overline{f} = f + N_*(D)$, $\overline{g} = g + N_*(D) \in N_0(D)/N_*(D)$, the metric \overline{d} is defined by letting $\overline{d}(\overline{f}, \overline{g}) = \inf \{d(f-g, h) | h \in N_*(D)\}$.

THEOREM 3.1. (i) $N_0(D)$ is disconnected. (ii) Every finite dimensional linear subspace of $N_0(D)/N_*(D)$ has the discrete topology. (iii) $N_0(D)/N_*(D)$ is not discrete.

PROOF. (i) For $x \in \mathbf{R}$, we define a functional λ_x by

$$\lambda_x(f) = \limsup_{y \to 0^+} y \log^+ |f(x+iy)| \quad (f \in N_0(D)).$$

The existence of $\lambda_x(f)$ is guaranteed by the property (C). λ_x is subadditive and continuous. Moreover, if $\lambda_x(f) < \lambda_x(g)$, then $\lambda_x(f+g) = \lambda_x(g)$. From these properties it can be proved that f and g belong to different components of $N_0(D)$, whenever $\lambda_x(f) \neq \lambda_x(g)$ for some $x \in \mathbf{R}$, just as in [6, Theorem 2.1]. Now, for $\alpha > 0$, we define $f_\alpha \in N_0(D)$ as follows:

$$f_{\alpha}(z) = \exp\left(\frac{1}{\pi i} \int_{R} \frac{1+tz}{t-z} \frac{1}{1+t^{2}} \log\frac{1}{1+t^{2}} dt\right) \exp\left(\frac{i\alpha}{z}\right) \quad (z \in D),$$

where $i\alpha z^{-1}$ is the function defined by the measure μ_{α} which is concen-

trated on $\{0\}$ with $\mu_{\alpha}(\{0\}) = \alpha$. Since

$$P[-\log(1+t^2)](iy) + \alpha y^{-1} = -\frac{1}{\pi} \int_{\mathbf{R}} \frac{\log(1+y^2s^2)}{1+s^2} \, ds + \frac{\alpha}{y} \ge 0 \quad (0 < y \le \delta)$$

for some $\delta > 0$, we can see that $\lambda_0(f_\alpha) = \alpha$. Thus the functions $f_\alpha(\alpha > 0)$ belong to different components of $N_0(D)$. (ii) Corollaries 2.2 and 2.3 can be used to prove this, in precisely the same way as in [6, Corollary 2, p. 926]. (iii) Put $g_\alpha = \alpha f_\alpha$, f_α being the function defined above. Then $\bar{g}_\alpha \neq \bar{0}$. By Corollary 2.2, we have

$$0 < \overline{d}(\overline{g}_{\alpha}, \overline{0}) \leq d(g_{\alpha}, 0) = \int_{\mathbf{R}} \log\left(1 + \frac{\alpha}{1 + x^2}\right) dx + \pi \alpha,$$

hence $\bar{g}_{\alpha} \rightarrow \bar{0}$ as $\alpha \rightarrow 0$.

4. The component of the origin in $N_0(D)$

The component of the origin can be determined in the same way as in [5]. Let $f \in N_0(D)$, $f \neq 0$. Then, by (2.1), f is expressed in the form $f(z) = f_0(z)g_{\mu+}(z)$ ($z \in D$), where

$$f_{0}(z) = ae^{iaz}b(z)d(z)\exp\left(-\frac{1}{i}\int_{R}\frac{1+tz}{t-z}d\mu^{-}(t)\right),\\g_{\mu+}(z) = \exp\left(\frac{1}{i}\int_{R}\frac{1+tz}{t-z}d\mu^{+}(t)\right).$$

Note that $f_0 \in N_*(D)$. Let ν be the measure on T^* determined by μ , and $\nu_2 - \nu_1$ be the measure occurring in the factorization of Af, where $Af = f \circ \Psi^{-1}$, as in the proof of Corollary 2.5. Then $\nu_2 = \nu^+$, $\nu_1 = \nu^- - \nu_0$, from the proof of Theorem 2.1, and we have $(Af)(w) = (Af_0)(w)S_{\nu^+}(w)^{-1}$ ($w \in U$), where

$$(Af_{0})(w) = aB(w)F(w)\exp\left(-\int_{T}H(w,\eta)d(\nu^{-}-\nu_{0})(\eta)\right),\\S_{\nu^{+}}(w) = \exp\left(-\int_{T}H(w,\eta)d\nu^{+}(\eta)\right).$$

We denote by K_0 the set of functions in $N_0(D)$ for which μ^+ are continuous measures, where we let $0 \in K_0$.

THEOREM 4.1. K_0 is the component of the origin in $N_0(D)$.

PROOF. The component of the origin in N(U), K, consists of the origin and of functions in N(U) such that ν_2 are continuous. Let K'_0 be the component of the origin in $N_0(D)$. Then, since $A(K'_0) \subset K$, the correspondence of measures shows that $K'_0 \subset K_0$. Therefore, it is sufficient to

prove that K_0 is connected. The proofs of Lemma 3.2 and Theorem 3.3 of [5] are valid in the setting of $N_0(D)$, because $K_0 = N_0(D) \cap A^{-1}(K)$, a complete metric space. Hence we need only show that every open ball in K_0 is ε -chainable, for any $\varepsilon > 0$. Let B be the open ball in K_0 , centered at 0 and of radius r. Take $f \in B$, $f \neq 0$. Then $f = f_0 g_{\mu^+}$. Since the measure $\pi(1+x^2)d\mu^+(x)$ is finite and continuous on \mathbf{R} , we can choose open intervals I_i and closed intervals J_i $(1 \le i \le n)$, where $I_1 = \{x \in \mathbf{R} \mid |x| > M\}$ and $J_1 = \{x \in$ $\mathbf{R} \mid |x| \ge M+1\}$ for some M > 0, such that $J_i \subset I_i$ $(1 \le i \le n)$, $\bigcup_{i=1}^n J_i = \mathbf{R}$, and

$$\int_{I_i} \pi(1+x^2) d\mu^+(x) < \varepsilon/2 \quad (1 \le i \le n).$$

Let μ_i denote the measure μ^+ restricted to I_i . Then μ^+ corresponds to ν^+ and μ_i corresponds to ν_i , where ν_i is the measure ν^+ restricted to $\Psi(I_i)$. Hence we have $A(g_{\mu_i-\mu^+})=S_{\nu^+-\nu_i}$. By the corona theorem, we can take $s'_i \in H^{\infty}(U)$ $(1 \leq i \leq n)$ such that $\sum_{i=1}^n s'_i S_{\nu^+-\nu_i}=1$. Letting $s_i=A^{-1}s'_i$, we get $\sum_{i=1}^n s_i g_{\mu_i-\mu^+}=1$ on D, hence $\sum_{i=1}^n s_i f_0 g_{\mu_i-\mu^+}=f_0$. Since $\mu_i-\mu^+\leq 0$ and $s_i\in H^{\infty}(D)$, we see that $s_i f_0 g_{\mu_i-\mu^+}\in N_*(D)$. Let L be the linear subspace of $N_*(D)$ generated by $\{s_i f_0 g_{\mu_i-\mu^+}|1\leq i\leq n\}$ and let

$$B_0 = \{g \in L | d(g, 0) < r - \int_{\mathbf{R}} \pi(1 + x^2) d\mu^+(x) \}.$$

Then $f_0 \in B_0$. There exist functions $K_j (1 \le j \le m)$ such that $K_j = \varepsilon_j s_i f_0 g_{\mu_i - \mu^+}, \ \varepsilon_j \in C$, for some *i* and such that (a) $d(K_j, 0) < \varepsilon/2 \ (1 \le i \le m)$, (b) $K_1 + \dots + K_p \in B_0 \ (1 \le p \le m)$, and (c) $K_1 + \dots + K_m = f_0$. If we put $\tau_j = \mu_i$ and $f_j = \varepsilon_j s_i f_0$, where $K_j = \varepsilon_j s_i f_0 g_{\mu_i - \mu^+}$, then $K_j = f_j g_{\mu_i - \mu^+}$ and $d(K_j, 0) = d(f_j, 0)$. Now we can see that

(i)
$$\sum_{j=1}^{m} f_j g_{\tau_j} = f_0 g_{\mu^+} = f,$$

(ii)
$$d\left(\sum_{j=1}^{p} f_{j}g_{\tau_{j}}, 0\right) \leq d\left(\sum_{j=1}^{p} K_{j}, 0\right) + \int_{\mathbf{R}} \pi(1+x^{2})d\mu^{+}(x) < r, \text{ and}$$

(iii)
$$d(f_j g_{\tau_j}, 0) \leq d(f_j, 0) + \int_{\mathbf{R}} \pi(1 + x^2) d\mu_i(x) < \varepsilon.$$

Since $\sum_{j=1}^{p} K_{j} \in N_{*}(D)$ and since μ^{+} is continuous, the minimum property of the Jordan decomposition of measures implies that $\sum_{j=1}^{p} f_{j}g_{\tau_{j}} \in K_{0}$. Hence $\sum_{j=1}^{p} f_{j}g_{\tau_{j}} \in B$. Thus we have an ε -chain $\{\sum_{j=1}^{p} f_{j}g_{\tau_{j}} | 1 \leq p \leq m\}$ from 0 to f.

5. Isometries

We prove two theorems. For $0 , <math>H^{p}(D)$ is defined by L^{p} -boundedness of f(x+iy), where f is holomorphic on D.

THEOREM 5.1. (i) There does not exist a linear isometry of N(U) onto $N_0(D)$. (ii) There does not exist a linear isometry of $N_*(U)$ onto $N_*(D)$.

PROOF. Suppose $f \in H^p(D)$, $0 . Then <math>|f|^{p/2} \le P[\phi]$ for some $\phi \in L^2(\mathbb{R})$. Hence $f \in N_*(D)$, by $\log(1+x) \le p^{-1}x^p$ $(x \ge 0)$; thus $H^p(D) \subset N_*(D)$ (0 . Now we prove part (i), part (ii) being very similar. Suppose that an operator A is a linear isometry of <math>N(U) onto $N_0(D)$. We show that A transforms $H^1(U)$ onto $H^1(D)$ as an H^1 -isometry, following [8, Theorem 2.1]. Take a sequence $\{y_j\}$ such that $y_1 > y_2 > \cdots$, $y_j \to 0$ as $j \to \infty$ and, for $g \in H^1(U)$, put

$$a_{nj} = \int_{\mathbf{R}} \log \left(1 + \frac{1}{n} |(Ag)(x + iy_j)| \right)^n dx \quad (n, j = 1, 2, \cdots).$$

Then $\{a_{nj}\}$ is increasing in both *n* and *j* and, since $nd(n^{-1}Ag, 0) = n\rho(n^{-1}g, 0)$ for each *n*, we have

$$\lim_{j\to\infty}a_{nj}=\int_T\log\left(1+\frac{1}{n}|g^*(\eta)|\right)^nd\sigma(\eta)\quad(n=1,\,2,\,\cdots).$$

Here the integrand tends to $|g^*(\eta)|$ increasingly as $n \to \infty$, hence $\lim_{n \to \infty} \lim_{j \to \infty} a_{nj} = ||g||_{H^1(U)}$. We can interchange the limits, and the integral of |(Ag)(x + iy)| with respect to dx is increasing as $y \to 0^+$, as seen from the property (D) and [1, Theorem 1]. We have thus $||Ag||_{H^1(D)} = ||g||_{H^1(U)}$. The same argument for A^{-1} shows that A transforms $H^1(U)$ onto $H^1(D)$. Next we define A_1 by

(5.1)
$$(A_1f)(w) = \pi f(\Psi^{-1}(w)) \left(\frac{2i}{1-w}\right)^2 \quad (w \in U)$$

for $f \in H^1(D)$. Since A_1 is a linear isometry of $H^1(D)$ onto $H^1(U)$, $A_1 \circ A$ becomes a linear isometry of $H^1(U)$ onto $H^1(U)$. Hence, by [2, Theorem 2], we can write $A_1 \circ A$ in the form

$$((A_1 \circ A)g)(w) = c \frac{1 - |a|^2}{(1 - \bar{a}w)^2} g(\phi(w)) \quad (w \in U)$$

for $g \in H^1(U)$, where $c \in C$ with |c|=1 and ψ a conformal map of U onto U with $\psi(a)=0$. Letting f=Ag in (5.1) and $w=\Psi(z)$, we obtain

$$(Ag)(z) = \frac{c}{\pi} \frac{1 - |a|^2}{(1 - \bar{a}\psi(z))^2} \frac{1}{(z+i)^2} g((\psi \circ \Psi)(z)) \quad (z \in D).$$

Put g=1 and let $y \rightarrow 0^+$ in z=x+iy. Then

$$|(A1)(x)| = \frac{1 - |a|^2}{\pi} \frac{1}{|1 - \bar{a}\Psi(x)|^2} \frac{1}{|x + i|^2}$$
$$\leq \frac{2}{\pi(1 - |a|)} \frac{1}{x^2 + 1} \quad (x \in \mathbf{R}).$$

Hence, for $0 \le t \le 4^{-1}\pi(1-|a|)$, we have $t|(A1)(x)| \le (2(x^2+1))^{-1} (x \in \mathbf{R})$. By $\rho(t, 0) = d(At, 0)$ and by the dominated convergence theorem, we obtain

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} t^n = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} \left(\int_{\mathbf{R}} |(A1)(x)|^n dx \right) t^n.$$

This must imply that

(5.2)
$$\int_{\mathbf{R}} |(A1)(x)|^n dx = 1 \quad (n=1, 2, \cdots)$$

But, since |(A1)(x)| is continuous on **R**, it must follow that $|(A1)(x)| \le 1$ ($x \in \mathbf{R}$). Hence (5.2) is impossible.

REMARK. We note that

 $H^p(D) \subset N_0(D) \quad (1$

For $1 , take <math>\alpha$ such that $p^{-1} < \alpha < 1$. Then $(z+i)^{-\alpha} \in H^p(D)$. But $(z+i)^{-\alpha} \notin N_0(D)$, by $\log (1+x) \ge 2^{-1}x$ $(0 \le x \le 1)$. The usual Nevanlinna class consists of holomorphic functions f on D such that $\log^+|f|$ have harmonic majorants ([3, p. 69]). Compared with this, $N_0(D)$ is considerably small.

Our final result shows that every linear isometry of $N_*(D)$ onto $N_*(D)$ is induced by a translation along the real axis. We notice that, in the case of U, a linear isometry A of $N_*(U)$ onto $N_*(U)$ is of the form

$$(Af)(w) = af(bw) \ (w \in U) \text{ for } f \in N_*(U),$$

where $a, b \in C$ with |a| = |b| = 1 ([8, Corollary 2.3]); namely, A is induced by a rotation.

THEOREM 5.2. Let A be a linear isometry of $N_*(D)$ outo $N_*(D)$. Then there exist $c \in C$, |c|=1, and $a \in \mathbf{R}$ such that

$$(Af)(z) = cf(z+\alpha) \ (z \in D) \ for \ f \in N_*(D).$$

LEMMA 5.3. Let A be a linear isometry of $H^{p}(D)$ onto $H^{p}(D)$, 0 < p

 $c(\psi'(\Psi(z)))^{1/p} \left(\frac{1}{z+i}\right)^{2/p} \left(\frac{2i}{1-(\psi\circ\Psi)(z)}\right)^{2/p} f((\Psi^{-1}\circ\psi\circ\Psi)(z)) \ (z \in D)$ for $f \in H^p(D)$, where $c \in C$, |c|=1, ψ a conformal map of U onto U, and ψ' the derivative of ψ . If we put $\phi = \Psi^{-1} \circ \psi \circ \Psi$, then

(5.4)
$$(Af)(z) = c(\phi'(z))^{1/p} f(\phi(z)) \quad (z \in D).$$

PROOF. Define A_p by

(5.5)
$$(A_{P}h)(w) = \pi^{1/P}h(\Psi^{-1}(w))\left(\frac{2i}{1-w}\right)^{2/P} (w \in U)$$

for $h \in H^{p}(D)$. Then A_{p} is a linear isometry of $H^{p}(D)$ onto $H^{p}(U)$. Since $A_{p} \circ A \circ A_{p}^{-1}$ is a linear isometry of $H^{p}(U)$ onto $H^{p}(U)$, there exist $c \in C$, |c|=1, and a conformal map ψ of U onto U such that

(5.6)
$$((A_{p} \circ A \circ A_{p}^{-1})g)(w) = c(\psi'(w))^{1/p}g(\psi(w)) \quad (w \in U)$$

for $g \in H^p(U)$. Take $f \in H^p(D)$ and let $A_p f = g$. Then $(A_p(Af))(w) = ((A_p \circ A \circ A_p^{-1})g)(w)$. By (5.5) and (5.6), we get

$$(Af)(\Psi^{-1}(w)) = c\pi^{-1/p}(\psi'(w))^{1/p} \left(\frac{2i}{1-w}\right)^{-2/p} g(\psi(w)).$$

By (5.5) again and by letting $w = \Psi(z)$, we obtain (5.3).

LEMMA 5.4. Let V be the family of holomorphic functions f on D such that $|f(z)||z+i|^2$ are bounded. Then V is a linear subspace of $H^p(D)$ $(1 \le p < +\infty)$, for which the following hold : (i) V is dense in $H^p(D)$. (ii) V is dense in $N_*(D)$.

PROOF. We prove part (ii). Let $f \in N_*(D)$. For s > 0, we define f_s by $f_s(z) = f(z+is)$ ($z \in D$). Clearly, $f_s \in N_0(D)$, and f_s satisfies part (iv) of Corollary 2.4. Hence $f_s \in N_*(D)$. By using a generalized form of the dominated convergence theorem, as in [9, Theorem 2], we can conclude that $d(f_s, f) \to 0$ as $s \to 0^+$. Now there exists a sequence $\{g_j\}$ of continuous functions on \overline{D} which are holomorphic on D and such that $|g_j(z)| \leq 1$ ($z \in \overline{D}$), $|g_j(z)| |z+i|^2 \to 0$ as $|z| \to +\infty$ in \overline{D} , and $g_j(z) \to 1$ as $j \to \infty$ ($z \in \overline{D}$). Indeed, following [3, Chap.II, Corollary 3.3], it suffices to put $g_j(z) =$ $h_j(\alpha_j \Psi(z))(z \in D)$, where $0 < \alpha_j < 1$ with $\alpha_j \to 1$, and

$$h_j(w) = \left(\frac{a_j - w}{1 - a_j w}\right)^3 \quad (w \in U).$$

For $f \in N_*(D)$ and s > 0, we have $|f_s(z)| \leq M$ ($z \in D$), by the property (C). If we let $f_j = f_s g_j$, then $f_j \in V$, and $d(f_j, f_s) \to 0$ as $j \to \infty$.

LEMMA 5.5. Let A be a linear isometry of $N_*(D)$ onto $N_*(D)$. Then A transforms V onto V as an $H^3(D)$ -isometry.

PROOF. First note that A transforms $H^1(D)$ onto $H^1(D)$ as an H^1 -isometry. Hence Af is written in the form (5.3) for $f \in H^1(D)$, with p = 1. Let $f \in V$, $|f(z)||z+i|^2 \leq M$ $(z \in D)$. Then, since $2i(1-(\psi \circ \Psi)(z))^{-1} = (\Psi^{-1} \circ \psi \circ \Psi)(z) + i$, we have

$$\left|\frac{2i}{1-(\psi\circ\Psi)(z)}\right|^2 |f((\Psi^{-1}\circ\psi\circ\Psi)(z))| \leq M.$$

Moreover, ψ is of the form: $\psi(w) = b(a-w)(1-\bar{a}w)^{-1}$ ($w \in U$), with |b|=1and $a \in U$, hence $|\psi'(w)| \leq 2(1-|a|)^{-1}$. From these we see that $|(Af)(z)| \leq 2M(1-|a|)^{-1}|z+i|^{-2}$ ($z \in D$), which implies that $Af \in V$. The same argument for A^{-1} shows that A transforms V onto V. Now from

$$|tf^*(x)|, |t(Af)^*(x)| \le \frac{1}{2(x^2+1)} (x \in \mathbf{R})$$

for $0 \le t \le \delta$ and from d(tf, 0) = d(A(tf), 0), we can conclude that

$$\int_{R} |(Af)^{*}(x)|^{3} dx = \int_{R} |f^{*}(x)|^{3} dx,$$

just as in the proof of Theorem 5.1.

PROOF OF THEOREM 5.2. Since V is dense in $H^3(D)$, there is a linear isometry \tilde{A} of $H^3(D)$ onto $H^3(D)$ such that $\tilde{A}=A$ on V. Thus $\tilde{A}f$ is of the form (5.4), with p=3. Now let $f \in V$. Then (5.4) is valid for both p=1 and p=3; namely,

$$(Af)(z) = c_1\phi_1'(z)f(\phi_1(z)) = c_3(\phi_3'(z))^{1/3}f(\phi_3(z)) \quad (z \in D).$$

Here ϕ_j (j=1, 3) are conformal maps of D onto D, hence

$$\phi_j(z) = \frac{\alpha_j z + \beta_j}{\gamma_j z + \delta_j} \quad (z \in D)$$

where α_j , β_j , γ_j , $\delta_j \in \mathbf{R}$ and $D_j := \alpha_j \delta_j - \beta_j \gamma_j > 0$. Thus we have

$$\frac{D_3}{D_1^3} \left| \frac{f(\phi_3(z))}{f(\phi_1(z))} \right|^3 \frac{|\gamma_1 z + \delta_1|^6}{|\gamma_3 z + \delta_3|^2} = 1 \quad (z \in D).$$

Suppose $\gamma_1 \neq 0$, and put $f(z) = (z+i)^{-3}$. Then, by letting $|z| \rightarrow +\infty$, we would have a contradiction. Therefore, Af must be of the form (Af)(z)

 $= cf(\beta z + \alpha) \ (z \in D)$ for $f \in V$, where $c \in C$, $\beta > 0$, and $\alpha \in \mathbb{R}$. But $||Af||_{H^p}$ $= ||f||_{H^p} \ (p=1,3)$, hence $|c| = \beta = 1$. Finally, since V is dense in $N_*(D)$, we conclude that $(Af)(z) = cf(z+\alpha) \ (z \in D)$ for $f \in N_*(D)$.

References

- [1] T. M. FLETT, Mean values of subharmonic functions on half-spaces, J. London Math. Soc. (2) 1 (1969), 375-383.
- [2] F. FORELLI, The isometries of H^{p} , Can. J. Math. 16 (1964), 721-728.
- [3] J. B. GARNETT, Bounded analytic functions, Academic Press, New York, 1981.
- [4] V. I. KRYLOV, On functions regular in a half-plane, Mat. Sb. 6 (48) (1939); Amer. Math. Soc. Transl. (2) 32 (1963), 37-81.
- [5] J. W. ROBERTS, The component of the origin in the Nevanlinna class, Ill. J. Math. 19 (1975), 553-559.
- [6] J. H. SHAPIRO and A. L. SHIELDS, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), 915-936.
- [7] E. M. STEIN and G. WEISS, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971.
- [8] K. STEPHENSON, Isometries of the Nevanlinna class, Indiana Univ. Math. J. 26 (1977), 307-324.
- [9] M. STOLL, The space N_* of holomorphic functions on bounded symmetric domains, Ann. Polon. Math. 32 (1976), 95-110
- [10] N. YANAGIHARA and Y. NAKAMURA, On functional analysis of the Nevanlinna class, Sûgaku 28 (1976), 323-334, Iwanami (Japanese).

College of General Education Tôhoku University Kawauchi, Sendai 980 Japan