
Hokkaido Mathematical Joumal Vol. 20 (1991) p. 539-548

The average intersection number
of a pair of self-dual codes

Dedicated to Professor Noboru Tanaka’s 60-th birthday

Tomoyuki YOSHIDA*
(Received May 25, 1990)

Contents

1. Introduction. 2. The average of intersection numbers. 3. A counter
example for Conjecture I. 4. Main theorem. 5. The second moments. 6.
The average of dimensions of intersections.

1 Introduction

Let C, D\subseteq F_{2}^{n} be binary self-dual codes of length n . In the preceding
paper, we studied the average of joint weight enumerators of C, D , par-
ticularly the average intersection number:

\Delta(C, D) := \frac{1}{n!}\sum_{\pi\in Sn}|C\cap D^{\pi}| , (1)

and then we show that they can be presented by the weight enumerators
of C, D .

After observing the values of average intersection numbers of some
typical binary self-dual codes, I stated the following conjecture:
Conjecture I:\Delta(C, D)\approx 4 if C , D is of type I but not type II .
Conjecture II:\Delta(C, D)\approx 6 if C , D is of type II .
Here, a binary code is called to be type I if it is self-dual, and is called to
be type II if it is of type I and the weight of any code word is divisible by
4. For example, let H_{8} , G_{24} , C_{72} be the extended Hamming code of length
8, the binary Golay code of length 24, an extremal type II code of length
72 which has not yet discovered. Then we have that

\Delta(H_{8}, H_{8})=4.8=24/5 ,
\Delta(G_{24}, G_{24})=6.02048\cdots=2^{8}\cdot 5\cdot 79/13\cdot 17\cdot 19 ,
\Delta(H_{8}^{3}, G_{24})=5.91378\cdots=2^{8}\cdot 97/13\cdot 17\cdot 19 ,
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\Delta C_{72} , G_{24}^{3})=6.00000 63564391594056–
=28 560387512926208/4760059542649555,

\Delta(C_{72}, C_{72})=6.00000 019692653239457 \cdots

=2810 910453382553600/468450601875692031.

In this paper, we give a counter-example for Conjecture I. There is
no hope that conjecture II is valid, but the author has no counter-example.

However, the above conjectures are valid if we take the average on
all self-dual codes of type I or II . This idea is very classical and familiar
in the theory of error-correcting codes since Shannon. For a binary code
C of length n , define

\Delta_{I}(C) := \frac{1}{|I_{n}|}\sum_{D\in In}|C\cap D| , (2)

\Delta_{11}(C) := \frac{1}{|II_{n}|}\sum_{D\in 11n}|C\cap D| , (3)

where I_{n}(resp. II_{n}) denotes the set of self-dual codes of length n of type I
(resp. II). Then the following holds:

THEOREM. Let C be a binary self-dual code of length n. Then

\Delta_{11}(C)\approx 6\Delta_{1}(C)\approx 4
if C is of type I ,

if C is of type II .

The roof will be given in Section 4. In Section 5, we give the second
moments of intersection numbers of codes of type I or II . In Section 6,
we study the average of the dimensions of intersections:

\Delta_{J}^{d1m}(C):=\frac{1}{|J|}\sum_{D\in f}\dim(C\cap D) , (4)

where J=I_{n} or II_{n} .
Acknowledgement. The author would like to appreciate to Professor

N. J. A. Sloane for his helpful comment for the “ six ” conjecture in the
preceding paper.

2 The average of intersection numbers

2.1 We use the standard notation in the theory of error-correcting
codes ( [MS77] , [PI 82]). Let F_{q} be a q -element field. For a natural num-
ber n , F_{q}^{n} be a row vector space of dimension n over F_{q} :

F_{q}^{n}:=\{(v_{1,\uparrow\prime}\ldots v_{n})|v_{i}\in F_{q}\} .

The weight and the inner product of vectors in F_{q}^{n} are defined as follows:
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wt(v):=\#\{i|v_{i}\neq 0\} , (1)

(u, v):= \sum_{i=1}^{n}u_{i}v_{i} . (2)

A code C is a subspace of F_{q}^{n} . In particular, a code over a 2 -element
field F_{2} is called a binary code. When k=\dim C , such a code C is called
a [n, k]-code, where n is the length of C and k is the dimension. The
dual code C^{\perp} of C is defiened by

C^{\perp}: = { v\in F_{q}^{n}| ( u , v)=0 for all u\in C}. (3)

A code C is called self-dual if C=C^{\perp} . Then dim C^{\perp}=n- dim C, and so
in particular, the dimension of a self-dual code C is equal to n/2 and the
length n is even.

2.2 A binary self-dual code C is called to be of type I. It is easily
proved that for a code C of type I ,

h:=(1, \cdots 1)\in C . (4)

A binary self-dual code C is called to be of type II provided all ele-
ments of C have weights divisible by 4. It is well-known that the dimen-
sion of a self-dual code of type II is divisible by 8 (cf. [MS 77], [MST 72,
Corollary 4.7).

2.3 Let S_{n} be a symmetric group of degree n . Then S_{n} acts linearly

on the vector space F_{q}^{n} by the permutation of coordinates:

(v^{\pi})_{i}=y_{\pi(i)} . (5)

The automorphism group Aut(C) is defined by

Aut(C) =\{\pi\in S_{n}|C^{\pi}=C\} . (6)

(We do not consider monomial automorphisms.)

2.4 For two code C, D, the average intersection number is defined by

\Delta(C, D):=\frac{1}{n!}\sum_{\pi\in Sn}|C\cap D^{\pi}| . (7)

Then the following basic result has been proved in the preceding paper
[Yo 89, Corollary 1].

2.5 PROPOSITION. Let C, D be code of length n over F_{q} . Then
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\Delta(C, D)=\sum_{r=0}^{n}\frac{a_{r}b_{r}}{}, (8)

where

a_{r} :=\#\{u\in C|wt(u)=r\} ,
b_{r} :=\#\{v\in D|wt(v)=r\} .

PROOF. There is an easy direct proof for this proposition. Let C_{r} ,
D_{r} be the sets of all elements of C , D of weight r . Then we have that

n ! \Delta(C, D)=\sum_{\pi\in Sn}|C\cap D^{\pi}|

=\#\{(u, v, \pi)\in C\cross D\cross S_{n}|u=v^{\pi}\}

= \sum_{r=0}^{n}\sum_{u\in Cr}\sum_{v\in Dr}\#\{\pi\in S_{n}|u=v^{\pi}\}

= \sum_{r=0}^{n}a_{r}b_{r}r ! (n-r) !.

\square

2.6 EXAMPLE. Let H_{8} , G_{24} and C_{72} be the extended Hamming code
of length 8 and the binary Golay code of length 24, the supposed extremal
code of type II of length 72. Then the weight enumerators of H_{8} and G_{24}

are given by a_{0}=a_{8}=1 , a_{4}=14 for H_{8} and a_{0}=a_{24}=1 , a_{8}=a_{16}=7_{\backslash }^{\tau_{J}}9 , a_{12}=

2576 for G_{24} . Futhermore, the one of C_{72} is given in [CP 82]. Using these
values, we have that

\Delta(H_{8}, H_{8})=4.8-24/5 ,
\Delta(G_{24}, G_{24})=6.02048\cdots=2^{8}\cdot 5\cdot 7\cdot 79/13\cdot 17\cdot 19 .
\Delta(C_{72}, C_{72})=6.000000 019692653239457 \cdots

=2810 910453382553600/468450601875692031.

See also Introduction.

3 A counter-example for Conjecture I

3.1 Counterexample: In this section, we give a counter-example for
conjecture I. Let C_{2}=\{00,11\} be a trivial binary self-dual code of length
2. Then the direct sum C_{2}^{m} of m copies of C_{2} is a type I code of length 2

m=n and the number of elements of C_{2}^{m} of weight 2r equals (\begin{array}{l}mr\end{array}) . Thus

by Proposition 2.5, we have that



The average intersection number of a pair of self-dual codes 543

\Delta(C_{2}^{m}, C_{2}^{m})=\sum_{r=0}^{m}\frac{(\begin{array}{l}mr\end{array})}{(\begin{array}{l}2m2r\end{array})}

= \frac{1}{(\begin{array}{l}2mm\end{array})}

\sum_{r=0}^{m}(\begin{array}{l}2rr\end{array})(\begin{array}{ll}2m -2rm-r \end{array}) .

In order to find this summation, we consider the following power series:

\sum_{m=0}^{\infty}(\begin{array}{l}2mm\end{array})\Delta(C_{2}^{m}, C_{2}^{m})t^{m}

= \sum_{m=0}^{\infty}\sum_{r=0}^{m}(\begin{array}{l}2rr\end{array})(\begin{array}{ll}2m -2rm-r \end{array}) t^{m}

= \sum_{r,s}(\begin{array}{l}2rr\end{array})(\begin{array}{l}2ss\end{array})t^{r+s}

=( \sum_{r=0}^{\infty}(\begin{array}{l}2rr\end{array})t^{r})^{2}=(\frac{1}{\sqrt{1-4t}})^{2}=\frac{1}{1-4t}

= \sum_{m=0}^{\infty}4^{m}t^{m}

Thus we have that

\Delta(C_{2}^{m}, C_{2}^{m})=4^{m}/(\begin{array}{l}2mm\end{array}) .

Using Stirling’s formula n!\approx n^{n}e^{-n}\sqrt{2n\pi}. we conclude that

\Delta(C_{2}^{m}, C_{2}^{m})\approx\sqrt{m\pi}arrow\infty (marrow\infty) .

Hence the codes C_{2}^{m} , m\geq 1 do not satisfy Conjecture I.

3.2 Let H_{8} be the extended Hamming code of length 8. Then it fol-
lows from Proposition 2.5 that

\Delta(H_{8}^{n}, H_{8}^{n})=\sum_{r=0}^{2m}\frac{a_{r}^{2}}{(\begin{array}{l}8m4r\end{array})}

,

where a_{r} , r\geq 0 are defined as coefficient of the following polynomial:

(1+14t+t^{2})^{m}= \sum_{r=0}^{2m}a_{r}t^{r}

It seems to be still true that \Delta(H_{8}^{n}, H_{8}^{n})\approx 6 .
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4 Main theorem

In this section, we state the main theorem of this paper and prove it.
4.1 Let J=I or II and let J_{n} be the set of binary self-dual codes of

length n of type J. We put

\epsilon(J):=\{
1 if J=I,
2 if J=II.

4.2 Let E be a subspace of F_{q}^{n} with h=(1, \cdots. 1)\in E\subseteq E^{\perp} and dim E
=k. When J=II , we further assume that

wt(e)\equiv 0 (mod 4) for all e\in E .

Put

M :=2^{n/2} .

For J=I or II and integer k\geq 1 , we define an integer N_{n,k}^{J} by

N_{n,k}^{J} :=\#\{C\in Jn|E\subseteq C\} , (1)

so that [MST 72] yields that

N_{n}^{J},k= \prod_{i=2-\epsilon(f)}^{\frac{n}{2}k+1-\epsilon(f)}(2^{i}+1) . (2)

The right hand side does not depend on E. In particular, applying this
formula to k=1 , we have that

|Jn|= \prod_{i=2-\epsilon(f)}^{\frac{n}{2}\epsilon(f)}(2^{i}+1) . (3)

(Remember that h\in C for any binary self-dual code C.)Thus

N_{n,k}^{J}/|Jn|= \prod_{i=0}^{k-2}\frac{1}{M\cdot 2^{-i-\epsilon(f)}+1} . (4)

In particular, when k=1,2,3, we have that
N_{n,1}^{J}/|J_{n}|=1 , (5)

N_{n,2}^{J}/|J_{n}|= \frac{1}{M\cdot 2^{-\epsilon(f)}+1} , (6)

N_{n,3}^{J}/|J_{n}|= \frac{1}{(M\cdot 2^{-\epsilon(f)}+1)\cdot(M\cdot 2^{-\epsilon(f)-1}+1)} . (7)

4.3 THEOREM (MAIN THEOREM). Let C be a binary self-dual code
of length n. Then the following hold:

(1) If C is of type I , then
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\Delta_{1}(C)=4-\frac{4}{2^{n/2-1}+1}\approx 4 .

(2) If C is of type II, then

\Delta_{11}(C)=6-\frac{6}{2^{n/2-2}+1}\approx 6 .

Proof. Let J=I or II and let C\in J_{n} . Then we have that

\sum_{D\in Jn}|C\cap D|=\#\{(u, D)\in C\cross Jn |u\in D\}

= \sum_{u\in C}\#\{D\in Jn|u\in D\} .

We divide this summation into three parts, that is, u=0, u=h and u\in C

-\{0, h\} , so that

\sum_{D\in Jn}|C\cap D|=(\sum_{a=0,h}+\sum_{u\in C-\{0,h\}})\#\{D\in Jn|\langle h, u\rangle\subseteq D\}

=2\cross N_{n,1}+(|C|-2)\cross N_{n,2} .

Here, \langle u, h\rangle is the subspace generated by u and h of F_{2}^{n} Thus by
(5) and (6),

\Delta_{J}(C)=2+(2^{n/2}-2)\cdot\frac{N_{n,2}}{|J_{n}|}

=2+(2^{n/2}-2) \cdot\frac{1}{2^{n/2-\epsilon(f)}+1}

=(2+2^{\epsilon(f)}) \cross(1-\frac{1}{2^{n/2-\epsilon(f)}+1}) .

This complete the proof of the theorem. \square

5 The second moments

In this section, we calculate the second moments of intersection numbers.

5.1 THEOREM. Let C be a binary self-dual code of length n. Put
M :=|C|=2^{n/2}- Then the following hold:

(1) If C is of type I , then

\frac{1}{|I_{n}|}\sum_{D\in I_{n}}|C\cap D|^{2}=\frac{24M^{2}}{(M+2)(M+4)}\approx 24 .

(2) If C is of type II , then

\frac{1}{|II_{n}|}\sum_{D\in IIn}|C\cap D|^{2}=\frac{60M^{2}}{(M+4)(M+8)}\approx 60 .
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PROOF. Let J=In or II_{n} and let \epsilon:=\epsilon(J) . Then similarly as in the
proof of the theorem of the preceding section, we have that

\sum_{D\in f}|C\cap D|^{2}=\#\{(u, v, D)\in C\cross C\cross J|u, v\in D\}

= \sum_{u,v\in c}\#\{D\in J|\langle u, v, h\rangle\subseteq D\}

= \sum_{\dim\langle u,v,h\rangle=1}+\sum_{\dim\langle u,v,h\rangle=2}+\sum_{\dim\langle u,v,h\rangle=3}

=4N_{n,1}^{J}+6(|C|-2)\cdot Nh_{2},+(|C|-2)\cdot (|C|-4)\cdot N_{n,3}^{J} .

Thus by (5), (6), (7) of the preceding section,

\frac{1}{|J|}\sum_{D\in f}|C\cap D|^{2}=4+\frac{4(M-2)}{M\cdot 2^{-\epsilon}+1}+\frac{(M-2)(M-4)}{(M\cdot 2^{-\epsilon}+1)\cdot(M\cdot 2^{-\epsilon-1}+1)}

= \frac{M^{2}\cdot 2^{-2\epsilon}(2^{\epsilon}+1)(2^{\epsilon}+2)}{(M\cdot 2^{-\epsilon}+1)\cdot(M\cdot 2^{-\epsilon-1}+1)} .

The theorem follows immediately from this formula. \square

6 The average of dimensions of intersection

In this section, we study the average of the dimensions of intersections.

6.1 The Gaussian binomial coefficient \{\begin{array}{l}nk\end{array}\}

q
is the number of k-dimen-

sional subspaces in F_{q}^{n} . Then we have that

\{\begin{array}{l}nk\end{array}\} q= \frac{(q)_{n}}{(q)_{k}\cdot(q)_{n-k}} , (1)

where

(q)_{r} := \prod_{i=1}^{k}(q^{i}-1) . (2)

6.2 THEOREM. Let J=I_{n} or II_{n} and let C be a binary self-dual
code of length n. Let N_{n,k}^{J} be the number given in (2) of Section 4.
Define T_{1} , T_{2} , \cdots by

T_{1} :=T_{2} :=1 , T_{k} :=(-1)^{k}(2)_{k-2} (k\geq 2) .

Then

\frac{1}{|J|}\sum_{D\in f}\dim(C\cap D)=\sum_{k=1}^{n/2}T_{k}\cdot\{\begin{array}{l}n/2-1k-1\end{array}\}2\circ\prod_{i=0}^{k-2}\frac{1}{M\cdot 2^{-i-\epsilon(f)}+1}.

PROOF. For C\in J , we have that



The average intersection number of a pair of self-dual codes 547

\sum_{D\in J}\dim(C\cap D)=\sum_{h\in U\subseteq C}\sum_{D\in J}\dim(U)

D\cap C=U

= \sum_{h\in U\subseteq C}.\dim(U)\cross\#\{D\in J|C\cap D=U\} .

Define two functions f, g on subspaces of C\cong F_{2}^{n/2} by

f(U) :=\#\{D\in J|C\cap D=U\} ,
g(W) :=\#\{D\in J|W\subseteq D\} ,

so that

g(W)= \sum_{W\subseteq U\subseteq C}.f(U) ,

and

g(W)=N_{n,d1mW}^{J} if h\in W\subseteq V

Let \mu be the M\"obius function of the lattice of subspaces of C . Then it is
known that

\mu(U, W)=\{
(-1)^{r}2(\begin{array}{l}r2\end{array}) if U\subseteq W and \dim(W/U)=r ,

0 otherwise.

See, for example, Aigner’s book [Ai 79], Proposition 4.20 (iii). It follows
from the M\"obius inversion formula that for h\in U\subseteq V_{\tau}

f(U)= \sum_{U\subseteq W\subseteq C}.\mu(U, W)g(W)

= \sum_{U\subseteq W\subseteq C}.(-1)^{d1m(W/U)}2(\begin{array}{l}dim(W/U)2\end{array}) N_{n}^{J},d1mW .

Thus

\frac{1}{|J|}\sum_{D\in J}\dim(C\cap D)

= \frac{1}{|J|}\sum_{k=1}^{n/2}[_{m-1}^{n/2-1}]_{2}\sum_{r=0}^{k-1}(-1)^{r}2(\begin{array}{l}r2\end{array}) (m-r)\{k -1r\} N_{n2,k}^{J},

= \frac{1}{|J|}\sum_{k=1}^{n/2}T_{k}\cdot[_{m-1}^{n/2-1}]_{2}\cdot N_{n2,k}^{J}, ,

where

T_{k} := \sum_{r=0}^{k-1}(-1)^{r}(k-r)2(\begin{array}{l}r2\end{array})\{k -1r\} .

Clearly, T_{1}=T_{2}=1 . By the q -binomial theorem, we have that
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F_{n}( \lambda):=\sum_{r=0}^{n}\{\begin{array}{l}nr\end{array}\}qq(\begin{array}{l}r2\end{array})\lambda^{r}=\prod_{i=1}^{n}(1+q^{i-1}\mathcal{A}) .

For q=2 and k\geq 2 ,

T_{k}= \sum_{r=0}^{k-1}(-1)^{r}(k-r)2(\begin{array}{l}r2\end{array})\{k -1r\}

=kF_{k-1}(-1)+F_{k-1}’(-1)

=k \delta_{k,1}+(-1)^{k}\prod_{j=1}^{k-2}(2^{j}-1)

=(-1)^{k} \prod_{j=1}^{k-2}(2^{j}-1) .

The theorem is proved. \square
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