The average intersection number of a pair of self-dual codes

Dedicated to Professor Noboru Tanaka's 60 -th birthday

Tomoyuki Yoshida*
(Received May 25, 1990)

Contents

1. Introduction. 2. The average of intersection numbers. 3. A counter example for Conjecture I. 4. Main theorem. 5. The second moments. 6. The average of dimensions of intersections.

1 Introduction

Let $C, D \subseteq \boldsymbol{F}_{2}{ }^{n}$ be binary self-dual codes of length n. In the preceding paper, we studied the average of joint weight enumerators of C, D, particularly the average intersection number :

$$
\begin{equation*}
\Delta(C, D):=\frac{1}{n!} \sum_{\pi \in S_{n}}\left|C \cap D^{\pi}\right|, \tag{1}
\end{equation*}
$$

and then we show that they can be presented by the weight enumerators of C, D.

After observing the values of average intersection numbers of some typical binary self-dual codes, I stated the following conjecture :
Conjecture I: $\Delta(C, D) \approx 4$ if C, D is of type I but not type II.
Conjecture II : $\Delta(C, D) \approx 6$ if C, D is of type II.
Here, a binary code is called to be type I if it is self-dual, and is called to be type II if it is of type I and the weight of any code word is divisible by 4. For example, let H_{8}, G_{24}, C_{72} be the extended Hamming code of length 8 , the binary Golay code of length 24, an extremal type II code of length 72 which has not yet discovered. Then we have that

$$
\begin{aligned}
\Delta\left(H_{8}, H_{8}\right) & =4.8=24 / 5, \\
\Delta\left(G_{24}, G_{24}\right) & =6.02048 \cdots=2^{8} \cdot 5 \cdot 79 / 13 \cdot 17 \cdot 19, \\
\Delta\left(H_{8}^{3}, G_{24}\right) & =5.91378 \cdots=2^{8} \cdot 97 / 13 \cdot 17 \cdot 19,
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
\left.\Delta C_{72}, G_{24}{ }^{3}\right) & =6.0000063564391594056 \cdots \\
& =28560387512926208 / 4760059542649555, \\
\Delta\left(C_{72}, C_{72}\right) & =6.00000019692653239457 \cdots \\
& =2810910453382553600 / 468450601875692031 .
\end{aligned}
$$
\]

In this paper, we give a counter-example for Conjecture I. There is no hope that conjecture II is valid, but the author has no counter-example.

However, the above conjectures are valid if we take the average on all self-dual codes of type I or II. This idea is very classical and familiar in the theory of error-correcting codes since Shannon. For a binary code C of length n, define

$$
\left.\begin{align*}
& \Delta_{\mathrm{I}}(C):=\frac{1}{\left|\mathrm{I}_{n}\right|} \sum_{D \in \mathrm{I}_{n}}|C \cap D| \tag{2}\\
& \Delta_{\mathrm{II}}(C): \left.=\frac{1}{\left|\mathrm{II}_{n}\right|_{D \in \mathrm{I}}^{n}} \right\rvert\, \tag{3}\\
&
\end{align*} C \cap D \right\rvert\,,
$$

where $\mathrm{I}_{n}\left(\right.$ resp. $\left.\mathrm{II}_{n}\right)$ denotes the set of self-dual codes of length n of type I (resp. II). Then the following holds :

THEOREM. Let C be a binary self-dual code of length n. Then

$$
\begin{array}{ll}
\Delta_{\mathrm{I}}(C) \approx 4 & \text { if } C \text { is of type } \mathrm{I} \\
\Delta_{\mathrm{II}}(C) \approx 6 & \text { if } C \text { is of type II. }
\end{array}
$$

The roof will be given in Section 4. In Section 5, we give the second moments of intersection numbers of codes of type I or II. In Section 6, we study the average of the dimensions of intersections:

$$
\begin{equation*}
\Delta_{J}^{\text {dim }}(C):=\frac{1}{|J|} \sum_{D \in J} \operatorname{dim}(C \cap D) \tag{4}
\end{equation*}
$$

where $J=\mathrm{I}_{n}$ or II_{n}.
Acknowledgement. The author would like to appreciate to Professor N. J. A. Sloane for his helpful comment for the " six" conjecture in the preceding paper.

2 The average of intersection numbers

2.1 We use the standard notation in the theory of error-correcting codes ([MS 77], [Pl 82]). Let \boldsymbol{F}_{q} be a q-element field. For a natural number $n, \boldsymbol{F}_{q}^{n}$ be a row vector space of dimension n over \boldsymbol{F}_{q} :

$$
\boldsymbol{F}_{q}^{n}:=\left\{\left(v_{1}, \cdots, v_{n}\right) \mid v_{i} \in \boldsymbol{F}_{q}\right\} .
$$

The weight and the inner product of vectors in \boldsymbol{F}_{q}^{n} are defined as follows:

$$
\begin{align*}
& \mathrm{wt}(v):=\#\left\{i \mid v_{i} \neq 0\right\}, \tag{1}\\
& (u, v):=\sum_{i=1}^{n} u_{i} v_{i} . \tag{2}
\end{align*}
$$

A code C is a subspace of \boldsymbol{F}_{q}^{n}. In particular, a code over a 2-element field \boldsymbol{F}_{2} is called a binary code. When $k=\operatorname{dim} C$, such a code C is called a [n, k]-code, where n is the length of C and k is the dimension. The dual code C^{\perp} of C is defiened by

$$
\begin{equation*}
C^{\perp}:=\left\{v \in \boldsymbol{F}_{q}^{n} \mid(u, v)=0 \text { for all } u \in C\right\} . \tag{3}
\end{equation*}
$$

A code C is called self-dual if $C=C^{\perp}$. Then $\operatorname{dim} C^{\perp}=n-\operatorname{dim} C$, and so in particular, the dimension of a self-dual code C is equal to $n / 2$ and the length n is even.
2.2 A binary self-dual code C is called to be of type I. It is easily proved that for a code C of type I,

$$
\begin{equation*}
\boldsymbol{h}:=(1, \cdots, 1) \in C . \tag{4}
\end{equation*}
$$

A binary self-dual code C is called to be of type II provided all elements of C have weights divisible by 4 . It is well-known that the dimension of a self-dual code of type II is divisible by 8 (cf. [MS 77], [MST 72, Corollary 4.7).
2.3 Let S_{n} be a symmetric group of degree n. Then S_{n} acts linearly on the vector space \boldsymbol{F}_{q}^{n} by the permutation of coordinates:

$$
\begin{equation*}
\left(v^{\pi}\right)_{i}=y_{\pi(i)} . \tag{5}
\end{equation*}
$$

The automorphism group $\operatorname{Aut}(C)$ is defined by

$$
\begin{equation*}
\operatorname{Aut}(C):=\left\{\pi \in S_{n} \mid C^{\pi}=C\right\} \tag{6}
\end{equation*}
$$

(We do not consider monomial automorphisms.)
2.4 For two code C, D, the average intersection number is defined by

$$
\begin{equation*}
\Delta(C, D):=\frac{1}{n!} \sum_{\pi \in S_{n}}\left|C \cap D^{\pi}\right| . \tag{7}
\end{equation*}
$$

Then the following basic result has been proved in the preceding paper [Yo 89, Corollary 1].
2.5 Proposition. Let C, D be code of length n over $\boldsymbol{F}_{\boldsymbol{q}}$. Then

$$
\begin{equation*}
\Delta(C, D)=\sum_{r=0}^{n} \frac{a_{r} b_{r}}{\binom{n}{r}} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{r}:=\#\{u \in C \mid \operatorname{wt}(u)=r\}, \\
& b_{r}:=\#\{v \in D \mid \operatorname{wt}(v)=r\} .
\end{aligned}
$$

Proof. There is an easy direct proof for this proposition. Let C_{r}, D_{r} be the sets of all elements of C, D of weight r. Then we have that

$$
\begin{aligned}
n!\Delta(C, D) & =\sum_{\pi \in S_{n}}\left|C \cap D^{\pi}\right| \\
& =\#\left\{(u, v, \pi) \in C \times D \times S_{n} \mid u=v^{\pi}\right\} \\
& =\sum_{r=0}^{n} \sum_{u \in C_{r}} \sum_{v \in D_{r}} \#\left\{\pi \in S_{n} \mid u=v^{\pi}\right\} \\
& =\sum_{r=0}^{n} a_{r} b_{r} r!(n-r)!.
\end{aligned}
$$

2.6 Example. Let H_{8}, G_{24} and C_{72} be the extended Hamming code of length 8 and the binary Golay code of length 24, the supposed extremal code of type II of length 72. Then the weight enumerators of H_{8} and G_{24} are given by $a_{0}=a_{8}=1, a_{4}=14$ for H_{8} and $a_{0}=a_{24}=1, a_{8}=a_{16}=759, a_{12}=$ 2576 for G_{24}. Futhermore, the one of C_{72} is given in [CP 82]. Using these values, we have that

$$
\begin{aligned}
\Delta\left(H_{8}, H_{8}\right) & =4.8-24 / 5 \\
\Delta\left(G_{24}, G_{24}\right) & =6.02048 \cdots=2^{8} \cdot 5 \cdot 7 \cdot 79 / 13 \cdot 17 \cdot 19 \\
\Delta\left(C_{72}, C_{72}\right) & =6.000000019692653239457 \cdots \\
& =2810910453382553600 / 468450601875692031 .
\end{aligned}
$$

See also Introduction.

3 A counter-example for Conjecture I

3.1 Counterexample: In this section, we give a counter-example for conjecture I. Let $C_{2}=\{00,11\}$ be a trivial binary self-dual code of length 2. Then the direct sum C_{2}^{m} of m copies of C_{2} is a type I code of length 2 $m=n$ and the number of elements of C_{2}^{m} of weight $2 r$ equals $\binom{m}{r}$. Thus by Proposition 2.5, we have that

$$
\begin{aligned}
\Delta\left(C_{2}^{m}, C_{2}^{m}\right) & =\sum_{r=0}^{m} \frac{\binom{m}{r}^{2}}{\binom{2 m}{2 r}} \\
& =\frac{1}{\binom{2 m}{m}} \sum_{r=0}^{m}\binom{2 r}{r}\binom{2 m-2 r}{m-r}
\end{aligned}
$$

In order to find this summation, we consider the following power series :

$$
\begin{aligned}
& \sum_{m=0}^{\infty}\binom{2 m}{m} \Delta\left(C_{2}^{m}, C_{2}^{m}\right) t^{m} \\
& \quad=\sum_{m=0}^{\infty} \sum_{r=0}^{m}\binom{2 r}{r}\binom{2 m-2 r}{m-r} t^{m} \\
& \quad=\sum_{r, s}\binom{2 r}{r}\binom{2 s}{s} t^{r+s} \\
& \quad=\left(\sum_{r=0}^{\infty}\binom{2 r}{r} t^{r}\right)^{2}=\left(\frac{1}{\sqrt{1-4 t}}\right)^{2}=\frac{1}{1-4 t} \\
& \quad=\sum_{m=0}^{\infty} 4^{m} t^{m}
\end{aligned}
$$

Thus we have that

$$
\Delta\left(C_{2}^{m}, C_{2}^{m}\right)=4^{m} /\binom{2 m}{m}
$$

Using Stirling's formula $n!\approx n^{n} e^{-n} \sqrt{2 n \pi}$, we conclude that

$$
\Delta\left(C_{2}^{m}, C_{2}^{m}\right) \approx \sqrt{m \pi} \rightarrow \infty \quad(m \rightarrow \infty)
$$

Hence the codes $C_{2}^{m}, m \geq 1$ do not satisfy Conjecture I.
3.2 Let H_{8} be the extended Hamming code of length 8. Then it follows from Proposition 2.5 that

$$
\Delta\left(H_{8}^{n}, H_{8}^{n}\right)=\sum_{r=0}^{2 m} \frac{a_{r}{ }^{2}}{\binom{8 m}{4 r}}
$$

where $a_{r}, r \geq 0$ are defined as coefficient of the following polynomial :

$$
\left(1+14 t+t^{2}\right)^{m}=\sum_{r=0}^{2 m} a_{r} t^{r}
$$

It seems to be still true that $\Delta\left(H_{8}^{n}, H_{8}^{n}\right) \approx 6$.

4 Main theorem

In this section, we state the main theorem of this paper and prove it.
4.1 Let $J=\mathrm{I}$ or II and let J_{n} be the set of binary self-dual codes of length n of type J. We put

$$
\varepsilon(J):= \begin{cases}1 & \text { if } J=\mathrm{I}, \\ 2 & \text { if } J=\mathrm{II} .\end{cases}
$$

4.2 Let E be a subspace of \boldsymbol{F}_{q}^{n} with $\boldsymbol{h}=(1, \cdots, 1) \in E \subseteq E^{\perp}$ and $\operatorname{dim} E$ $=k$. When $J=\mathrm{II}$, we further assume that

$$
\mathrm{wt}(e) \equiv 0 \quad(\bmod 4) \quad \text { for all } e \in E .
$$

Put

$$
M:=2^{n / 2} .
$$

For $J=\mathrm{I}$ or II and integer $k \geq 1$, we define an integer $N_{n, k}^{J}$ by

$$
\begin{equation*}
N_{n, k}^{J}:=\#\left\{C \in J_{n} \mid E \subseteq C\right\}, \tag{1}
\end{equation*}
$$

so that [MST 72] yields that

$$
\begin{equation*}
N_{n, k}^{J}=\underset{i=2-\varepsilon(J)}{\frac{n}{2}-k+1-\varepsilon(J)}\left(2^{i}+1\right) . \tag{2}
\end{equation*}
$$

The right hand side does not depend on E. In particular, applying this formula to $k=1$, we have that
(Remember that $\boldsymbol{h} \in C$ for any binary self-dual code C.)Thus

$$
\begin{equation*}
N_{n, k}^{J} /\left|J_{n}\right|=\prod_{i=0}^{k-2} \frac{1}{M \cdot 2^{-i-\varepsilon(J)}+1} . \tag{4}
\end{equation*}
$$

In particular, when $k=1,2,3$, we have that

$$
\begin{align*}
& N_{n, 1}^{J} /\left|J_{n}\right|=1 \tag{5}\\
& N_{n, 2}^{J} /\left|J_{n}\right|=\frac{1}{M \cdot 2^{-\varepsilon(J)}+1}, \tag{6}\\
& N_{n, 3}^{J} /\left|J_{n}\right|=\frac{1}{\left(M \cdot 2^{-\varepsilon(J)}+1\right) \cdot\left(M \cdot 2^{-\varepsilon(J)-1}+1\right)} . \tag{7}
\end{align*}
$$

4.3 Theorem (Main Theorem). Let C be a binary self-dual code of length n. Then the following hold:
(1) If C is of type I , then

$$
\Delta_{\mathrm{r}}(C)=4-\frac{4}{2^{n / 2-1}+1} \approx 4 .
$$

(2) If C is of type II, then

$$
\Delta_{\mathrm{H}}(C)=6-\frac{6}{2^{n / 2-2}+1} \approx 6 .
$$

Proof. Let $J=\mathrm{I}$ or II and let $C \in J_{n}$. Then we have that

$$
\begin{aligned}
\sum_{D \in J_{n}}|C \cap D| & =\#\left\{(u, D) \in C \times J_{n} \mid u \in D\right\} \\
& =\sum_{u \in C} \#\left\{D \in J_{n} \mid u \in D\right\} .
\end{aligned}
$$

We divide this summation into three parts, that is, $u=0, u=\boldsymbol{h}$ and $u \in C$ $-\{0, \boldsymbol{h}\}$, so that

$$
\begin{aligned}
\sum_{D \in J n_{n}}|C \cap D| & =\left(\sum_{a=0, h}+\sum_{u \in C-\{0, \boldsymbol{h})}\right) \#\left\{D \in J_{n} \mid\langle\boldsymbol{h}, u\rangle \subseteq D\right\} \\
& =2 \times N_{n, 1}+(|C|-2) \times N_{n, 2} .
\end{aligned}
$$

Here, $\langle u, \boldsymbol{h}\rangle$ is the subspace generated by u and \boldsymbol{h} of \boldsymbol{F}_{2}^{n}. Thus by (5) and (6),

$$
\begin{aligned}
\Delta_{J}(C) & =2+\left(2^{n / 2}-2\right) \cdot \frac{N_{n, 2}}{\left|J_{n}\right|} \\
& =2+\left(2^{n / 2}-2\right) \cdot \frac{1}{2^{n / 2-\varepsilon(J)}+1} \\
& =\left(2+2^{\varepsilon(J)}\right) \times\left(1-\frac{1}{2^{n / 2-\varepsilon(J)}+1}\right) .
\end{aligned}
$$

This complete the proof of the theorem.

5 The second moments

In this section, we calculate the second moments of intersection numbers.
5.1 Theorem. Let C be a binary self-dual code of length n. Put $M:=|C|=2^{n / 2}$. Then the following hold:
(1) If C is of type I , then

$$
\frac{1}{\left|I_{n}\right|} \sum_{D \in I_{n}}|C \cap D|^{2}=\frac{24 M^{2}}{(M+2)(M+4)} \approx 24 .
$$

(2) If C is of type II, then

$$
\frac{1}{\left|I_{n}\right|} \sum_{D \in I_{n}}|C \cap D|^{2}=\frac{60 M^{2}}{(M+4)(M+8)} \approx 60 .
$$

Proof. Let $J=\mathrm{I}_{n}$ or I_{n} and let $\varepsilon:=\varepsilon(J)$. Then similarly as in the proof of the theorem of the preceding section, we have that

$$
\begin{aligned}
& \sum_{D \in J}|C \cap D|^{2}=\#\{(u, v, D) \in C \times C \times J \mid u, v \in D\} \\
& \quad=\sum_{u, v \in C} \#\{D \in J \mid\langle u, v, \boldsymbol{h}\rangle \subseteq D\} \\
& \quad=\sum_{\text {dim }\langle u, v, h\rangle=1}+\sum_{\text {dim }\langle u, v, h\rangle=2}+\sum_{\text {dim }\langle u, v, h\rangle=3} \\
& =4 N_{n, 1}^{J}+6(|C|-2) \cdot N h, 2+(|C|-2) \cdot(|C|-4) \cdot N_{n, 3}^{J} .
\end{aligned}
$$

Thus by (5), (6), (7) of the preceding section,

$$
\begin{aligned}
\frac{1}{|J|} \sum_{D \in J}|C \cap D|^{2} & =4+\frac{4(M-2)}{M \cdot 2^{-\varepsilon}+1}+\frac{(M-2)(M-4)}{\left(M \cdot 2^{-\varepsilon}+1\right) \cdot\left(M \cdot 2^{-\varepsilon-1}+1\right)} \\
& =\frac{M^{2} \cdot 2^{-2 \varepsilon}\left(2^{\varepsilon}+1\right)\left(2^{\varepsilon}+2\right)}{\left(M \cdot 2^{-\varepsilon}+1\right) \cdot\left(M \cdot 2^{-\varepsilon-1}+1\right)} .
\end{aligned}
$$

The theorem follows immediately from this formula.

6 The average of dimensions of intersection

In this section, we study the average of the dimensions of intersections.
6.1 The Gaussian binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the number of k-dimensional subspaces in $\boldsymbol{F}_{q}^{\boldsymbol{n}}$. Then we have that

$$
\left[\begin{array}{l}
n \tag{1}\\
k
\end{array}\right]_{q}=\frac{(q)_{n}}{(q)_{k} \cdot(q)_{n-k}},
$$

where

$$
\begin{equation*}
(q)_{r}:=\prod_{i=1}^{k}\left(q^{i}-1\right) . \tag{2}
\end{equation*}
$$

6.2 THEOREM. Let $J=\mathrm{I}_{n}$ or II_{n} and let C be a binary self-dual code of length n. Let $N_{n, k}^{J}$ be the number given in (2) of Section 4. Define T_{1}, T_{2}, \cdots by

$$
T_{1}:=T_{2}:=1, \quad T_{k}:=(-1)^{k}(2)_{k-2} \quad(k \geq 2) .
$$

Then

$$
\frac{1}{|J|} \sum_{D \in J} \operatorname{dim}(C \cap D)=\sum_{k=1}^{n / 2} T_{k} \cdot\left[\begin{array}{c}
n / 2-1 \\
k-1
\end{array}\right]_{2} \cdot \prod_{i=0}^{k-2} \frac{1}{M \cdot 2^{-i-\varepsilon(J)}+1}
$$

Proof. For $C \in J$, we have that

$$
\begin{aligned}
\sum_{D \in J} \operatorname{dim}(C \cap D) & =\sum_{k \in U \subseteq C} \sum_{D \in J} \operatorname{dim}(U) \\
& =\sum_{h \in U \subseteq C} \operatorname{dim}(U) \times \#\{D \in J \mid C \cap D=U\}
\end{aligned}
$$

Define two functions f, g on subspaces of $C \cong \boldsymbol{F}_{2}^{n / 2}$ by

$$
\begin{aligned}
& f(U):=\#\{D \in J \mid C \cap D=U\} \\
& g(W):=\#\{D \in J \mid W \subseteq D\}
\end{aligned}
$$

so that

$$
g(W)=\sum_{W \subseteq U \subseteq C} f(U)
$$

and

$$
g(W)=N_{n, \mathrm{dim} W}^{J} \quad \text { if } \boldsymbol{h} \in W \subseteq V
$$

Let μ be the Möbius function of the lattice of subspaces of C. Then it is known that

$$
\mu(U, W)= \begin{cases}(-1)^{r} 2^{\binom{r}{2}} & \text { if } U \subseteq W \text { and } \operatorname{dim}(W / U)=r \\ 0 & \text { otherwise } .\end{cases}
$$

See, for example, Aigner's book [Ai 79], Proposition 4.20 (iii). It follows from the Möbius inversion formula that for $\boldsymbol{h} \in U \subseteq V$,

$$
\begin{aligned}
f(U) & =\sum_{U \subseteq W \subseteq C} \mu(U, W) g(W) \\
& \left.=\sum_{U \subseteq W \subseteq C}(-1)^{\operatorname{dim}(W / U)} 2^{(\operatorname{dim}(W / U)} 2^{2}\right) N_{n, \operatorname{dim} W}^{J}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \frac{1}{|J|} \sum_{D \in J} \operatorname{dim}(C \cap D) \\
& \quad=\frac{1}{|J|} \sum_{k=1}^{n / 2}\left[\begin{array}{c}
n / 2-1 \\
m-1
\end{array}\right]_{2} \sum_{r=0}^{k-1}(-1)^{r} 2\binom{r}{2}(m-r)\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{2} N_{n / 2, k}^{J} \\
& \quad=\frac{1}{|J|} \sum_{k=1}^{n / 2} T_{k} \cdot\left[\begin{array}{c}
n / 2-1 \\
m-1
\end{array}\right]_{2} \cdot N_{n / 2, k}^{J},
\end{aligned}
$$

where

$$
T_{k}:=\sum_{r=0}^{k-1}(-1)^{r}(k-r) 2^{\binom{r}{2}\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{2}}
$$

Clearly, $T_{1}=T_{2}=1$. By the q-binomial theorem, we have that

$$
F_{n}(\lambda):=\sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} q^{\binom{r}{2}} \lambda^{r}=\prod_{i=1}^{n}\left(1+q^{i-1} \lambda\right) .
$$

For $q=2$ and $k \geq 2$,

$$
\begin{aligned}
T_{k} & =\sum_{r=0}^{k-1}(-1)^{r}(k-r) 2\binom{r}{2}\left[\begin{array}{c}
k-1 \\
r
\end{array}\right]_{2} \\
& =k F_{k-1}(-1)+F_{k-1}^{\prime}(-1) \\
& =k \delta_{k, 1}+(-1)^{k} \prod_{j=1}^{k-2}\left(2^{j}-1\right) \\
& =(-1)^{k} \prod_{j=1}^{k-2}\left(2^{j}-1\right) .
\end{aligned}
$$

The theorem is proved.

References

[Ai 79] M. AIGNER, "Combinatorics", Springer-Verlag, Berlin, 1979.
[CP 82] J. H. CONWAY and V. Pless, On primes dividing the group order of a doubly-even $(72,36,16)$ code and the group order of a qaternay ($24,12,10$) code, Discrete Math, 38 (1982), 143-156
[MST 72] F. J. MAcwilliams, N. J. A. Sloane and J. G. Thompson, Good self dual codes exist, Discrete Math., 3 (1972), 153-162.
[MS 77] F. J. Macwilliams and N. J. A. Sloane, "The Theory of Frror-Correcting Codes", North Holland, New York, 1977.
[Pl 82] V. PLESS, "Introduction to the Theory of Error-Correcting Codes", Wiley-Interscience Series in Discrete Math., New York, 1982.
[Yo 89] T. Yoshida, The average of joint weight enumerators, Hokkaido Math. J., 18 (1989), 217-222.

Department of Mathematics Hokkaido University
Kita 10 Nishi 8
Sapporo 060
JAPAN

[^0]: *Partially supported by $\mathrm{SFB} 7^{3}$ at Fakultät für Mathematik, Universität Bielefeld, FRG, Oct., 1989-Sep., 1990.

