Existence results for singular elliptic equations

J. CHABROWSKI (Received January 16, 1990, Revised June 15, 1990)

The purpose of this paper is to study the existence of positive solutions in \mathbf{R}_n of the singular elliptic equation

(1)
$$Lu = -\sum_{i,j=1}^{n} D_i(a_{ij}(x)D_ju) + c(x)u = g(x, u),$$

where the nonlinearity g is defined on $\mathbf{R}_n \times (0, \infty)$. Solutions of (1), which are defined on \mathbf{R}_n , are called entire solutions. The precise conditions on g, to be formulated later, show that equation (1) is a natural extension of the following equation

(1')
$$-\Delta u = f(x) u^{-\gamma}$$
 in \mathbf{R}_n ,

where $\gamma > 0$ is a constant. The equation (1') is called in the existing literature the Lane-Emden-Fowler equation and arises in the boundary-layer theory of viscous fluids (see [4], [5], [6], [8] and the references given there). In papers [4] and [8] it is assumed that f(x) depends "almost" radially on x in the sense that

$$c_1p(|x|) \leq f(x) \leq c_2p(|x|),$$

where $c_1 > 0$ and $c_2 > 0$ are constants and p(|x|) is a positive function satisfying some integrability condition. The existence results are then obtained using the method of sub and supersolutions. In [5] the existence of positive solutions was obtained by replacing (1') with an equivalent operator equation which can be solved using the Schauder-Tichonov fixed point theorem. In this paper we develop ideas from paper [1], where the existence of weak solutions, in the case $g(x, u) = f(x)u^{-\gamma}$, $0 < \gamma < \infty$, has been considered. Here we consider more general nonlinearities g. Our method in based on approximation arguments. We first solve the Dirichlet problem in a bounded domain with zero boundary data. An entire solution is then obtained as a limit of solutions u_m of the Dirichlet problems on Ω_m , with $\{\Omega_m\}$ exhausting \mathbf{R}_n . The assumptions (g_1) and (g_2) ensure that solutions of the Dirichlet problem in a bounded domain Ω belong to $W_{10c}^{1,2}(\Omega) \cap C(\overline{\Omega})$. We also point out that under some additional J. Chabrowski

assumption a solution u is in $\mathring{W}^{1,2}(\Omega)$. Throughout this paper we assume that $n \ge 3$ and we extensively use the Sobolev inequality

 $\|\boldsymbol{u}\|_{\frac{2n}{n-2}} \leq S \|\boldsymbol{D}\boldsymbol{u}\|_{2},$

which is true for any u in $\mathring{W}^{1,2}(\Omega)$ and for an arbitrary domain $\Omega \subset \mathbb{R}_n$ with the constant S>0 depending only on n. The case n=2 can be treated in a similar way, with suitable modifications, due to the fact that in this case the Sobolev inequality remains true with $\|\cdot\|_{\frac{2n}{n-2}}$ replaced with $\|\cdot\|_p$, $1 , and with <math>\|Du\|_2$ replaced by $\|u\|_{W^{1,2}}$. However, we do not consider this case here. Some results concerning the case n=1 can be found in [6].

Finally, I would like to express my gratitude to Professor A. M. Fink for his interest in this research and bringing my attention to the paper [6]

1. The Dirichlet problem in a bounded domain.

We commence by studying the Dirichlet problem

(2)
$$Lu = -\sum_{i,j=1}^{n} D_i(a_{ij}(x)D_ju) + c(x)u = g(x, u) \text{ in } \Omega,$$

(3)
$$u(x) = 0 \text{ on } \partial\Omega.$$

where $\Omega \subset \mathbf{R}_n$ is a bounded domain with the boundary $\partial \Omega$ satisfying the exterior cone condition.

Throughout this section we make the following assumptions

(A) There exists a constant $\lambda > 0$ such that

$$\lambda |\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j$$

for all $x \in \mathbb{R}^n$ and $\xi \in \mathbb{R}_n$. Moreover, we assume that a_{ij} $(i, j=1, \dots, n)$ and c are in $L^{\infty}(\Omega)$ with $c(x) \ge 0$ on Ω .

The function $g: \Omega \times (0, \infty) \to (0, \infty)$ is a Carathéodory function, that is, $g(\cdot, u)$ is a measurable function for each $u \in (0, \infty)$ and $g(x, \cdot)$ is continuous on $(0, \infty)$ for a.e. $x \in \Omega$.

Further, we impose the following two conditions on g:

 (g_1) for each a > 0 there exists $f_a \in L^p(\Omega)$, with p > n, such that

 $g(x, u) \leq f_a(x)$ on Ω for all $a \leq u < \infty$,

 (g_2) the function $g(x, \cdot) : (0, \infty) \to (0, \infty)$ is nonincreasing for a.e. $x \in \Omega$.

THEOREM 1. The Dirichlet problem (2), (3) admits a positive solution $u \in W^{1,2}_{\text{loc}}(\Omega) \cap C(\overline{\Omega})$.

PROOF: Let $\varepsilon > 0$ and consider the Dirichlet problem for the equation

(2
$$\varepsilon$$
) $Lu = g(x, |u| + \varepsilon)$ in Ω ,

with the boundary condition (3). By the Schauder fixed point theorem and the Sobolev-Rellich embedding theorem, the problem (2ε) , (3) has a unique solution u_{ε} in $\mathring{W}^{1,2}(\overline{\Omega})$, which by (g_1) belongs to $C(\overline{\Omega})$ (see Theorem 8.30 in [6]). The uniqueness follows from the assumption (g_2) . It follows from the maximum principle that $u_{\varepsilon} > 0$ on Ω . We now show that $\{u_{\varepsilon}\}$ is an increasing sequence as $\varepsilon \searrow 0$. Let $0 < \varepsilon_1 < \varepsilon_2$. Taking $(u_{\varepsilon_1} - u_{\varepsilon_2})_+$ as a test function, we obtain on substitution

$$\int_{\Omega} \left[\sum_{i,j=1}^{n} a_{ij}(x) D_i (u_{\varepsilon_2} - u_{\varepsilon_1})_+ D_j (u_{\varepsilon_2} - u_{\varepsilon_1})_+ + c(x) (u_{\varepsilon_2} - u_{\varepsilon_1})_+^2 \right] dx$$

=
$$\int_{\Omega} (g(x, u_{\varepsilon_2} + \varepsilon_2) - g(x, u_{\varepsilon_1} + \varepsilon_1)) (u_{\varepsilon_2} - u_{\varepsilon_1})_+ dx.$$

Since by the condition (g_2) , $g(x, u_{\varepsilon_2} + \varepsilon_2) - g(x, u_{\varepsilon_1} + \varepsilon_1) \leq 0$ a.e. on the set $\{u_{\varepsilon_2} > u_{\varepsilon_1}\}$, we deduce using the ellipticity condition that

$$\int_{\Omega} |D(u_{\varepsilon_2} - u_{\varepsilon_1})_+|^2 dx \leq 0$$

and consequently $u_{\varepsilon_2} \leq u_{\varepsilon_1}$ a.e. on Ω . In the next step of the proof we show that the sequence $\{u_{\varepsilon}+\varepsilon\}$ is decreasing as $\varepsilon > 0$. Let $\varepsilon_1 > \varepsilon_2$ and since $u_{\varepsilon_1}-u_{\varepsilon_2}=0$ on $\partial\Omega$, $(u_{\varepsilon_1}+\varepsilon_1-u_{\varepsilon_2}-\varepsilon_2)_- \in W^{1,2}(\Omega)$ and on substitution we obtain

$$-\int_{\Omega} \left[\sum_{i,j=1}^{n} a_{ij}(x) D_{i}(u_{\varepsilon_{1}} + \varepsilon_{1} - u_{\varepsilon_{2}} - \varepsilon_{2}) D_{j}(u_{\varepsilon_{1}} + \varepsilon_{1} - u_{\varepsilon_{2}} - \varepsilon_{2}) - c_{1} + c(x)(u_{\varepsilon_{1}} + \varepsilon_{1} - u_{\varepsilon_{2}} - \varepsilon_{2})^{2} \right] dx$$
$$= \int_{\Omega} (g(x, u_{\varepsilon_{1}} + \varepsilon_{1}) - g(x, u_{\varepsilon_{2}} + \varepsilon_{2}))(u_{\varepsilon_{1}} + \varepsilon_{1} - u_{\varepsilon_{2}} - \varepsilon_{2}) dx$$
$$+ \int_{\Omega} c(x)(\varepsilon_{1} - \varepsilon_{2})(u_{\varepsilon_{1}} + \varepsilon_{1} - u_{\varepsilon_{2}} - \varepsilon_{2}) dx.$$

It is easy to see that the right hand side is nonnegative and, as before, we conclude that $|D(u_{\varepsilon_1}+\varepsilon_1-u_{\varepsilon_2}-\varepsilon_2)|=0$ a.e. on Ω , that is $u_{\varepsilon_1}+\varepsilon_1\geq u_{\varepsilon_2}+\varepsilon_2$ a.e. on Ω . From these two claims we see that if $0 < \varepsilon < \delta$, Then

$$0 < u_{\varepsilon} - u_{\delta} < \delta - \varepsilon$$
 on $\overline{\Omega}$.

This means that there exists $u \in C(\overline{\Omega})$ such that $\lim_{\delta \to 0} u_{\delta} = u$ uniformly on $\overline{\Omega}$. We now show that $u \in W^{1,2}_{\text{loc}}(\Omega)$ and satisfies (2) in the distributional sense. Let $B(x_0, r)$ be a ball with a center at x_0 of radius r and assume

that $\overline{B(x_0, 2r)} \subset \Omega$. Let Φ be a function in $C^1(\mathbf{R}_n)$ such that $\Phi(x)=1$ on $B(x_0, r)$, $\Phi(x)=0$ on $\mathbf{R}_n - B(x_0, 2r)$ and $0 < \Phi(x) \le 1$ on \mathbf{R}_n . Taking $u_{\varepsilon} \Phi^2$ as a test function we obtain on substitution

$$(4) \qquad \int_{\Omega} \left[\sum_{ij=1}^{n} a_{ij} D_{i} u_{\varepsilon} D_{j} u_{\varepsilon} \Phi^{2} + 2 \sum_{ij=1}^{n} a_{ij} D_{j} u_{\varepsilon} u_{\varepsilon} \Phi D_{i} \Phi + c u_{\varepsilon}^{2} \Phi^{2} \right] dx$$
$$= \int_{\Omega} g(x, u_{\varepsilon} + \varepsilon) u_{\varepsilon} \Phi^{2} dx.$$

Since u_{ε} is positive and increases to u as $\varepsilon \searrow 0$, we may assume that there exist constants $\varepsilon_0 > 0$, a > 0 and A > 0 such that

 $a \leq u_{\varepsilon} \leq A$ on supp Φ ,

for all $0 < \varepsilon \leq \varepsilon_0$. Using the Young inequality and the assumptions (A) and (g_1) we easily derive from (4) that

$$(5) \qquad \int_{B(x_0,r)} |Du_{\varepsilon}|^2 dx \leq C \left[\int_{B(x_0,2r)} f_a u_{\varepsilon} dx + \int_{B(x_0,2r)} u_{\varepsilon}^2 dx \right]$$
$$\leq C \int_{B(x_0,2r)} (f_a A + A^2) dx,$$

where C>0 is a constant independent of ϵ . The inequality (5) shows that $\{u_{\epsilon}\}$ is bounded in $W_{\text{loc}}^{1,2}(\Omega)$. Finally, the Sobolev-Rellich embedding theorem, applied on each compact subset K of Ω , shows that u satisfies (2) in the distributional sense.

REMARK 1. The assumptions (g_1) and (g_2) are satisfied in each following example:

(a)
$$g(x, u) = f(x)u^{-r}$$
, with $0 < r < \infty$,
(b) $g(x, u) = \frac{f(x)}{\ln(1+u)}$,

(c)
$$g(x, u) = \frac{f(x)}{\sin(\frac{u}{1+u}\frac{\pi}{2})}$$
,

(d)
$$g(x, u) = f(x) \exp \frac{1}{u}$$
,

(e)
$$g(x, u) = \frac{f(x)}{(|x|^2 + u)^r}$$
, with $0 < \gamma < \infty$,

where f > 0 on Ω and $f \in L^{P}(\Omega)$, with p > n.

The functions g from the examples (a)-(d) have the property that $\lim_{u\to+0} g(x, u) = \infty$ for all $x \in \Omega$. Theorem 1 is related to the results of papers [2-3], where the existence of classical solutions have been investigated under a different set of assumptions including $\lim_{u\to0} g(x, u) = \infty$

uniformly on Ω .

We now impose an additional assumption on g guaranteeing that $u \in W^{1,2}(\Omega)$.

THEOREM 2. Suppose that there exist constants b>0 and $0 < \alpha \le 1$ and a function $f \in L^1(\Omega)$ such that

(6)
$$g(x, u)u^{\alpha} \leq f(x)$$

for all $u \in (0, b]$ and a. e. on Ω . Then the solution u of the problem (2), (3) belongs to $\mathring{W}^{1,2}(\Omega) \cap C(\overline{\Omega})$.

PROOF: The proof is straightforward. Let u_{ϵ} be a solution of the problem (2ϵ) , (3). Taking u_{ϵ} as a test function, we get on substitution

$$\int_{\Omega} \left[\sum_{i,j=1}^{n} a_{ij} D_{i} u_{\varepsilon} D_{j} u_{\varepsilon} + c u_{\varepsilon}^{2} \right] dx = \int_{\Omega} g(x, u_{\varepsilon} + \varepsilon) u_{\varepsilon} dx$$
$$\leq \int_{0 < u_{\varepsilon} < b} f u_{\varepsilon}^{1-\alpha} dx + \int_{b < u_{\varepsilon}} f_{b} u_{\varepsilon} dx$$
$$\leq \int_{\Omega} f A^{1-\alpha} dx + \int_{\Omega} f_{b} A dx,$$

where $A = \sup_{\varepsilon>0, x \in \Omega} u_{\varepsilon}(x)$. This inequality, together with the ellipticity condition (A), yields that $\{u_{\varepsilon}\}$ is bounded in $W^{1,2}(\Omega)$ and the result follows.

REMARK 2. The condition (6) is obviously satisfied in examples (b),(c) and (a), (e) with $0 < r \le 1$. If (6) holds with $\alpha > 1$, one can easily show that

$$\int_{\Omega} |Du(x)|^2 u(x)^{\alpha-1} dx < \infty \text{ and } u^{\frac{1+\alpha}{2}} \in \mathring{W}^{1,2}(\Omega)$$

This result has been obtained in the paper [1].

In the next result we briefly examine the behaviour of Du near the boundary. Let $r(x) = \text{dist}(x, \partial \Omega)$ for $x \in \Omega$.

THEOREM 3. Suppose that $\partial \Omega$ is of class C^2 and that there exist constants s>0, $0<\alpha\leq 1$, b>0 and a function f>0, with $r^{1+s}f\in L^1(\Omega)$ such that

(7)
$$g(x, u)u^{\alpha} \leq f(x) \text{ for } 0 < u \leq b \text{ and } a. e. x \in \Omega.$$

Then the solution u of (2), (3) has the property

$$\int_{\Omega} |Du(x)|^2 r(x)^{1+s} dx < \infty.$$

J. Chabrowski

PROOF: It follows from the regularity of $\partial\Omega$ that there exists δ_0 such that $\partial\Omega_{\delta}$ is of class C^2 for $\delta \in (0, \delta_0]$, where $\Omega_{\delta} = \{x \in \Omega; \text{dist}(x, \partial\Omega) > \delta\}$ (see [6] Lemma 14.16, p. 355). We now define a function $\rho \in C^2(\Omega)$ such that $\rho(x) = r(x)$ on $\Omega - \Omega_{\delta_0}$ and $c_1 r(x) \le \rho(x) \le c_2 r(x)$ on $\overline{\Omega}$ for some constants $c_1 > 0$ and $c_2 > 0$. Let $0 < \delta < \delta_0$ and set

$$v(x) = \begin{cases} u(x)(\rho(x) - \delta)^{1+s} & \text{for } x \in \Omega_{\delta}, \\ 0 & \text{for } x \in \Omega - \Omega_{\delta}. \end{cases}$$

It is clear that $v \in \mathring{W}^{1,2}(\Omega)$ and taking v as a test function we obtain (8)

$$\begin{split} &\int_{\Omega_{\delta}i,j=1}^{n} a_{ij}(x) D_{i}u D_{j}u(\rho-\delta)^{1+s} dx + (1+s) \int_{\Omega_{\delta}i,j=1}^{n} a_{ij}(x) D_{i}uu D_{j}\rho(\rho-\delta)^{s} dx \\ &+ \int_{\Omega_{\delta}} c(x) u^{2}(\rho-\delta)^{1+s} dx \leq A^{1-\alpha} \int_{u$$

where $A = \max_{\bar{u}} u(x)$. We now observe that by the Young inequality we have

$$(1+s)\int_{\Omega_{\delta}i,j=1}^{n}a_{ij}(x)D_{i}uuD_{j}\rho(\rho-\delta)^{s}dx \leq \frac{\lambda}{2}\int_{\Omega_{\delta}}|Du(x)|^{2}(\rho-\delta)^{s+1}dx$$
$$+C\int_{\Omega_{\delta}}u(x)^{2}(\rho-\delta)^{s-1}dx,$$

where C > 0 is a constant depending on $||a_{ij}||_{L_{\infty}}$, s and λ . Hence

$$\frac{\lambda}{2} \int_{\Omega_{\delta}} |Du(x)|^2 (\rho - \delta)^{1+s} dx \leq A^{1-\alpha} \int_{\Omega} f(x) \rho^{1+s} dx + A \int_{\Omega} f_b(x) \rho^{1+s} dx + CA^2 \int_{\Omega} \rho^{s-1} dx.$$

Since $\int_{\Omega} \rho^{s-1} dx < \infty$, the result follows from the Lebesgue Monotone Convergence Theorem.

REMAMK 3. The assertion of Theorem 3 can be slightly improved if $a_{ij} \in C^1(\overline{\Omega} - \Omega_{\delta_0})$ and the condition (7) holds with s=0. Then the solution u of the problem (2), (3) has the property

$$\int_{\Omega} |Du(x)|^2 r(x) \, dx < \infty.$$

Indeed, using a truncation we may assume that $a_{ij} \in C^1(\overline{\Omega})$. Then we proceed as in the proof of Theorem 3. Taking

$$v(x) = \begin{cases} u(x)(\rho(x) - \delta) & \text{for } x \in \Omega_{\delta} \\ 0 & \text{for } x \in \Omega - \Omega_{\delta}, \end{cases}$$

with $0 < \delta < \delta_0$, as a test function we arrive at the relation (8) with s=0. The second integral can be handled by integration by parts

$$\int_{\Omega_{\delta}ij=1}^{n} a_{ij}D_{j}uuD_{i}\rho dx = \frac{1}{2}\int_{\Omega_{\delta}ij=1}^{n} a_{ij}D_{j}(u^{2})D_{i}\rho dx =$$
$$+\frac{1}{2}\int_{\partial\Omega_{\delta}ij=1}^{n} a_{ij}u^{2}D_{i}\rho D_{j}\rho|D\rho|^{-1}dS_{x} - \frac{1}{2}\int_{\Omega_{\delta}}u^{2}\sum_{ij=1}^{n}D_{j}(a_{ij}D_{i}\rho)dx$$

which shows that this integral is bounded independently of δ .

2. Entire solutions of (1).

We now use the results of Section 1 to obtain the existence of positive solutions of (1).

We assume that the hypothesis (A) holds on \mathbf{R}_n and that the nonlinearity g satisfies the Carathéodory condition and moreover

 (g'_1) For each a > 0 there exists a positive function $f_a \in L^p_{loc}(\mathbf{R}_n) \cap L^{\frac{2n}{n+2}}(\mathbf{R}_n)$, with p > n, such that

 $g(x, u) \leq f_a(x)$

for all $u \ge a$ and a.e. on \mathbf{R}_n .

(g'_2) The function $g(x \cdot)$ is nonincreasing on $(0, \infty)$ for a. e. $x \in \mathbf{R}_n$. We need the following lemma.

LEMMA 1. For each number $\delta > 0$ the equation

(9) $Lu = g(x, u+\delta)$ in \mathbf{R}_n

admits a positive solution $v^{\delta} \in W^{1,2}_{loc}(\mathbf{R}_n)$ such that $Dv^{\delta} \in L^2(\mathbf{R}_n)$ and $v^{\delta} \in L^{\frac{2n}{n-2}}(\mathbf{R}_n)$.

PROOF: Let $\{\Omega_m\}$, $m \ge 1$, be an increasing sequence of bounded domains with smooth boundaries $\{\partial\Omega_m\}$, such that $\mathbf{R}_n = \bigcup_{m\ge 1}\Omega_m$. For each $m\ge 1$, the Dirichlet problem

- (10) $Lu = g(x, |u| + \delta)$ in Ω_m ,
- (11) $u(x)=0 \text{ on } \partial \Omega_m$

J. Chabrowski

admits a positive solution $v_m^{\delta} \in W^{1,2}(\Omega_m) \cap C(\overline{\Omega}_m)$. This follows by applying the Schauder fixed point theorem. We now extend each function v_m^{δ} by 0 outside Ω_m . Since $v_m^{\delta} \leq v_{m+1}^{\delta}$ on $\partial\Omega_m$ and $g(x, \cdot)$ is deacreasing it is easy to show that sequence $\{v_m^{\delta}\}$ is increasing as $m \nearrow \infty$. Let $\lim_{m\to\infty} v_m^{\delta}(x) = v^{\delta}(x)$ on \mathbf{R}_n . The following estimates show that the function v^{δ} has all desired properties. Indeed, for each m we have

$$\int_{\Omega_m} \left[\sum_{i,j=1}^n a_{ij} D_i v_m^{\delta} D_j v_m^{\delta} + c (v_m^{\delta})^2 \right] dx = \int_{\Omega_m} g(x, v_m^{\delta} + \delta) v_m^{\delta} dx$$
$$\leq \left[\int_{\Omega_m} f_{\delta}^{\frac{2n}{n+2}} dx \right]^{\frac{n+2}{2n}} \left[\int_{\Omega_m} |v_m^{\delta}|^{\frac{2n}{n-2}} dx \right]^{\frac{n-2}{2n}}$$

On the other hand by the Sobolev inequality we have

$$\lambda \left[\int_{\Omega_m} |v_m^{\delta}|^{\frac{2n}{n-2}} dx \right]^{\frac{n-2}{n}} \leq S \lambda \int_{\Omega_m} |Dv_m^{\delta}|^2 dx \leq S \quad \int_{\Omega_m} \sum_{i,j=1}^n a_{ij} D_i v_m^{\delta} D_j v_m^{\delta} dx,$$

where S > 0 is a constant independent of *m*. These two estimates yield that the integrals

$$\int_{\Omega_m} |Dv_m^{\delta}|^2 dx$$
 and $\int_{\Omega_m} |v_m^{\delta}|^{\frac{2n}{n-2}} dx$

are bounded independently of m and the result easily follows.

THEOREM 4. The equation (1) admits an entire positive solution $u \in W_{\text{loc}}^{1,2}(\mathbf{R}_n)$ such that

(12)
$$v^{\delta}(x) \leq u(x) \leq v^{\delta}(x) + \delta \text{ on } \mathbf{R}_n$$

for each $\delta > 0$, where v^{δ} is a solution of the equation (9), constructed in the proof of Lemma 1.

PROOF: As in the proof of Lemma 1, let $\{\Omega_m\}$ be sequence of bounded domains with smooth boundaries such that $R_n = \bigcup_{m \ge 1} \Omega_m$. According to Theorem 1 for each *m* the Dirichlet problem

(13)
$$Lu = g(x, u)$$
 in Ω_m ,

(14)
$$u(x)=0 \text{ on } \partial \Omega_m$$

admits a positive solution u_m in $W^{1,2}_{\text{loc}}(\Omega_m) \cap C(\overline{\Omega}_m)$. It follows from the proof of Theorem 1 that for each m, $u_m(x) = \lim_{\delta \to 0} v_m^{\delta}(x)$ uniformly on $\overline{\Omega}_m$, where v_m^{δ} is a solution of the problem (10), (11). Moreover, we have for $0 < \varepsilon < \delta$

$$0 \leq v_m^{\varepsilon} - v_m^{\delta} \leq \delta - \varepsilon \text{ in } \Omega_m.$$

Letting $\varepsilon \rightarrow 0$ we get

$$0 \leq u_m - v_m^{\delta} \leq \delta$$
 on Ω_m

and consequently

(15) $v_m^{\delta} \leq u_m \leq v_m^{\delta} + \delta \text{ on } \Omega_m.$

Let $B(x_0, r)$ be a ball with center at x_0 of radius r. Let Φ be a C^1 -function defined as in the proof of Theorem 1. We now choose an integer $q \ge 1$ such that $\overline{B(x_0, 2r)} \subset \Omega_q$. Since $\{v_m^{\delta}\}$ is as increasing sequence as $m \nearrow \infty$, we have $v_q^{\delta}(x) \le u_m(x)$ for all m > q. Let $0 < a = \inf_{\overline{B(x_0, 2r)}} v_q^{\delta}(x)$, then taking $u_m \Phi^2$ as a test function we get

$$\int_{\Omega_m} \sum_{i,j=1}^n a_{ij} D_i u_m D_j u_m \Phi^2 dx + 2 \int_{\Omega_m} \sum_{i,j=1}^n a_{ij} D_i u_m u_m D_j \Phi \Phi dx + \int_{\Omega_m} c u_m^2 \Phi^2 dx$$
$$= \int_{\Omega_m} g(x, u_m) u_m \Phi^2 dx \leq \int_{\Omega_m} f_a u_m \Phi^2 dx.$$

From this inequality we easily derive the following estimate

(16)
$$\int_{\Omega_m} |Du_m|^2 \Phi^2 dx \leq K \bigg(\int_{\Omega_m} u_m^2 |D\Phi|^2 dx + \int_{\Omega_m} f_a u_m \Phi^2 dx \bigg),$$

for some constant K>0 independent of m. On the other hand we have for v_m^{δ}

$$\int_{\Omega_m} \left[\sum_{i,j=1}^n a_{ij} D_i v_m^{\delta} D_j v_m^{\delta} + c (v_m^{\delta})^2 \right] dx = \int_{\Omega_m} g(x, v_m^{\delta} + \delta) v_m^{\delta} dx$$
$$\leq \int_{\Omega_m} f_{\delta} v_m^{\delta} dx \leq \left[\int_{\Omega_m} f_{\delta}^{\frac{2n}{n+2}} dx \right]^{\frac{n+2}{2n}} \left[\int_{\Omega_m} |v_m^{\delta}|^{\frac{2n}{n-2}} dx \right]^{\frac{n-2}{2n}}$$

Consequently using the ellipticity and the Sobolev inequality we get

(17)
$$\left[\int_{\Omega_m} |v_m^{\delta}|^{\frac{2n}{n-2}} dx\right]^{\frac{n-2}{2n}} \leq C \left[\int_{\Omega_m} f_{\delta}^{\frac{2n}{n+2}} dx\right]^{\frac{n+2}{2n}}$$

for some constant C>0 independent of m. Since $\frac{2n}{n-2}=2+\frac{4}{n-2}$, we deduce from (15), (16) and (17) that the sequence $\{u_m\}$ is bounded in $W_{\text{loc}}^{1,2}(\mathbf{R}_n)$ and we may assure that $\lim_{m\to\infty}u_m=u$ strongly in $L^2(K)$, and weakly in $W^{1,2}(K)$ for each bounded domain $K \subset \mathbf{R}_n$. The inequality (12) is a consequence of Lemma 1 and the inequality (15). It is obvious that u

is a solution of (1) in the distributional sense.

The following result is an analogue of Theorem 2.

THEOREM 5. Suppose that

(18)
$$g(x, u)u^{\alpha} \leq f(x) \text{ on } \mathbf{R}_n \times (0, a]$$

for some constants a>0 and $0<\alpha\leq 1$, where f(x)>0 on \mathbf{R}_n and $f\in L^{\frac{2n}{n+2+\alpha(n-2)}}(\mathbf{R}_n)$. Then there exsits an entire positive solution u of (1) such that $Du\in L^2(\mathbf{R}_n)$ and $u\in L^{\frac{2n}{n-2}}(\mathbf{R}_n)$.

PROOF: It is sufficient to show that the sequence of solutions $\{u_m\}$ of the Dirichlet problems (13), (14) has the properties: (i) $\{u_m\}$ is bounded in $L^{\frac{2n}{n-2}}(\mathbf{R}_n)$, (ii) $\{Du_m\}$ is bounded in $L^2(\mathbf{R}_n)$. By Theorem 2 $u_m \in W^{1,2}(\Omega_m)$ and we extend functions u_m by 0 outside Ω_m . Taking u_m as a test function we obtain on substitution

$$\int_{\Omega_{m}} \left[\sum_{i,j=1}^{n} a_{ij} D_{i} u_{m} D_{j} u_{m} + c u_{m}^{2} dx \right] dx \leq \int_{\Omega_{m}} g(x, u_{m}) u_{m} dx$$

$$\leq \int_{u_{m} \leq a} f u_{m}^{1-\alpha} dx + \int_{u_{m} \geq a} f_{a} u_{m} dx$$

$$\leq \left[\int_{\Omega_{m}} u_{m}^{\frac{2n}{n-2}} dx \right]^{\frac{(n-2)(1-\alpha)}{2n}} \left[\int_{\Omega_{m}} f^{\frac{2n}{n+2+\alpha(n-2)}} dx \right]^{\frac{n+2+\alpha(n-2)}{2n}} + \left[\int_{\Omega_{m}} f^{\frac{2n}{n+2}} dx \right]^{\frac{n+2}{2n}} \left[\int_{\Omega_{m}} u_{m}^{\frac{2n}{n-2}} dx \right]^{\frac{n-2}{2n}}$$

On the other hand by the Sobolev inequality we have

$$S^{-1}\lambda \left[\int_{\Omega_m} u_m^{\frac{2n}{n-2}} dx\right]^{\frac{n-2}{n}} \leq \int_{\Omega_m} \sum_{ij=1}^n a_{ij} D_i u_m D_j u_m dx$$

and the combination of these two estimates gives first the boundedness of $\{u_m\}$ in $L^{\frac{2n}{n-2}}(\mathbf{R}_n)$ and then the boundedness of $\{Du_m\}$ and the result follows.

REMARK 4. If (18) holds with $\alpha > 1$, we assume that $f \in L^1(\mathbf{R}_n)$ and (g'_1) holds with $f_a \in L^p_{loc}(\mathbf{R}_n) \cap L^{\frac{2n}{n+2}}(\mathbf{R}_n) \cap L^{\frac{n(\alpha+1)}{n+2\alpha}}(\mathbf{R}_n)$. Under these assumptions $\int_{\mathbf{R}_n} u^{\frac{n(\alpha+1)}{n-2}} dx < \infty$ and $\int_{\mathbf{R}_n} |Du|^2 u^{\alpha-1} dx < \infty$. To prove this we use as a test function u^{α}_m .

474

References

- J. CHABROWSKI & M. KÖNIG, On entire solutions of elliptic equations with singular nonlinearity, Commet. Math. Univ. Carolinae 31, 4 (1990), 645-654.
- [2] M. M. COCLITE & G. PALMIERI, On a singular nonlinear Dirichlet problem, Comm. in Partial Diff. Equations 14(10) (1989), 1315-1327.
- [3] M. CRANDALL, P. H. RABINOWITZ & L. TARTAR, On a Dirichlet problem with a singular nonlinearity, Comm. in Partial Diff. Equations 2(2) (1977), 1983-222.
- [4] R.DALMASSO, Solutions d'équations elliptiques semi-linéaires singuliéres, Ann, Mat. Pura Appl. 4(153) (1989), 191-201.
- [5] A. L. EDELSON, Entire solutions of singular elliptic equations, J. Math. Anal. Appl. 139 (2) (1989), 523-532.
- [6] A. M. FINK, J. A. GATICA, G. E. HERNANDEZ & P. WALTMAN, Approximation of solutions of singular second order boundary value problems, proprint.
- [7] D. GILBARG & N. S. TRUDINGER, "Elliptic partial differential equations of second order," Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (second edition), 1983.
- [8] T. KUSANO & C. A. SWANSON, Entire positive solutions of singular elliptic equations, Japan J. Math. 11(1) (1985), 145-155.

The University of Queensland Department of Mathematics St. Lucia, Queensland Australia, 4067