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Existence results
for singular elliptic equations

J. CHABROWSKI
(Received January 16, 1990, Revised June 15, 1990)

The purpose of this paper is to study the existence of positive solu-
tions in R_{n} of the singular elliptic equation

(1) Lu=- \sum_{i,j=1}^{n}D_{i}(a_{ij}(x)D_{j}u)+c(x)u=g(x, u) ,

where the nonlinearity g is defined on R_{n}\cross(0^{ },\infty) . Solutions of (1),
which are defined on R_{n} , are called entire solutions. The precise condi-
tions on g, to be formulated later, show that equation (1) is a natural
extension of the following equation

(1’) -\Delta u=f(x)u^{-\gamma} in R_{n} ,

where \gamma>0 is a constant. The equation (1’) is called in the existing liter-
ature the Lane-Emden-Fowler equation and arises in the boundary-layer
theory of viscous fluids (see [4], [5], [6], [8] and the references given
there). In papers [4] and [8] it is assumed that f(x) depends “ almost ”

radially on x in the sense that

c_{1}p(|x|)\leqq f(x)\leqq c_{2}p(|x|) ,

where c_{1}>0 and c_{2}>0 are constants and p(|x|) is a positive function satis-
fying some integrability condition. The existence results are then
obtained using the method of sub and supersolutions. In [5] the existence
of positive solutions was obtained by replacing (1’) with an equivalent
operator equation which can be solved using the Schauder-Tichonov fixed
point theorem. In this paper we develop ideas from paper [1], where the
existence of weak solutions, in the case g(x, u)=f(x)u^{-\gamma}, 0<\gamma<\infty , has
been considered. Here we consider more general nonlinearities g. Our
method in based on approximation arguments. We first solve the Dirich-
let problem in a bounded domain with zero boundary data. An entire
solution is then obtained as a limit of solutions u_{m} of the Dirichlet prob-
lems on \Omega_{m} , with \{\Omega_{m}\} exhausting R_{n} . The assumptions (g_{1}) and (g2)
ensure that solutions of the Dirichlet problem in a bounded domain \Omega

belong to W_{1OC}^{1,2}(\Omega)\cap C(\overline{\Omega}) . We also point out that under some additional
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assumption a solution u is in [mathring]_{W}^{1,2}(\Omega) . Throughout this paper we assume
that n\geqq 3 and we extensively use the Sobolev inequality

||u||_{\frac{2n}{n-2}}\leqq S||Du||_{2} ,

which is true for any u in [mathring]_{W}^{1,2}(\Omega) and for an arbitrary domain \Omega\subset R_{n}

with the constant S>0 depending only on n . The case n=2 can be treated
ed in a similar way, with suitable modifications, due to the fact that in
this case the Sobolev inequality remains true with ||\circ||_{\frac{2n}{n-2}} replaced with
||\circ||_{p} , 1<p<\infty , and with ||Du||_{2} replaced by ||u||_{W^{1,2}} . However, we do not
consider this case here. Some results concerning the case n=1 can be
found in [6].

Finally, I would like to express my gratitude to Professor A. M. Fink
for his interest in this research and bringing my attention to the paper [6]

1. The Dirichlet problem in a bounded domain.

We commence by studying the Dirichlet problem

(2) Lu=- \sum_{i,j=1}^{n}D_{i}(a_{ij}(x)D_{j}u)+c(x)u=g(x, u) in \Omega ,

(3) u(x)=0 on \partial\Omega ,

where \Omega\subset R_{n} is a bounded domain with the boundary \partial\Omega satisfying the
exterior cone condition.

Throughout this section we make the following assumptions
(A) There exists a constant \mathcal{A}>0 such that

\lambda|\xi|^{2}\leqq\sum_{i,j=1}^{n}a_{ij}(x)\xi_{i}\xi_{j}

for all x\in R^{n} and \xi\in R_{n} . Moreover, we assume that a_{ij}(i, j=1, \cdots, n)

and c are in L^{\infty}(\Omega) with c(x)\geqq 0 on \Omega .
The function g:\Omega\cross(0, \infty) - (0, \infty) is a Carath\’eodory function, that

is, g(\cdot, u) is a measurable function for each u\in(0, \infty) and g(x^{ }, \cdot ) is con-
tinuous on (0, \infty) for a.e . x\in\Omega .

Further, we impose the following two conditions on g :
(g_{1}) for each a>0 there exists f_{a}\in L^{p}(\Omega) , with p>n , such that

g(x, u)\leqq f_{a}(x) on \Omega for all a\leqq u<\infty ,

(2) the function g(x^{ }, \cdot ) : (0, \infty) -arrow(0, \infty) is nonincreasing for a . e . x
\in\Omega .

THEOREM 1. The Dirichlet problem (2), (3) admits a positive solu-
tion u\in W_{1OC}^{1,2}(\Omega)\cap C(\overline{\Omega}) .
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PROOF: Let \epsilon>0 and consider the Dirichlet problem for the equation

(2\epsilon) Lu=g(x, |u|+\epsilon) in \Omega ,

with the boundary condition (3). By the Schauder fixed point theorem
and the Sobolev-Rellich embedding theorem, the problem (2\epsilon) , (3) has a
unique solution u_{\epsilon} in [mathring]_{W}^{1,2}(\overline{\Omega}) , which by (g_{1}) belongs to C(\overline{\Omega}) (see TheO-
rem 8.30 in [6] ) . The uniqueness follows from the assumption (g_{2}) . It
follows from the mximum principle that u_{\epsilon}>0 on \Omega . We now show that
\{u_{\epsilon}\} is an increasing sequence as \epsilon\searrow 0 . Let 0<\epsilon_{1}<\epsilon_{2} . Taking (u_{\epsilon_{1}}-u_{\epsilon_{2}})_{+}

as a test function, we obtain on substitution

\int_{\Omega}[\sum_{i,j=1}^{n}a_{ij}(x)D_{i}(u_{\epsilon_{2}}-u_{\epsilon_{1}})_{+}D_{j}(u_{\epsilon_{2}}-u_{\epsilon_{1}})_{+}+c(x)(u_{\epsilon z}-u_{\epsilon_{1}})_{+}^{2}]dx

= \int_{\Omega}(g(x, u_{\epsilon_{2}}+\epsilon_{2})-g(x, u_{\epsilon_{1}}+\epsilon_{1}))(u_{\epsilon_{2}}-u_{\epsilon_{1}})_{+}dx.

Since by the condition (g2), g(x, u_{\epsilon_{2}}+\epsilon_{2})-g(x, u_{\epsilon_{1}}+\epsilon_{1})\leqq 0a . e . on the set
\{u_{\epsilon_{2}}>u_{\epsilon 1}\} , we deduce using the ellipticity condition that

\int_{\Omega}|D(u_{\epsilon_{2}}-u_{\epsilon_{1}})_{+}|^{2}dx\leqq 0

and consequently u_{\epsilon_{2}}\leqq u_{\epsilon_{1}}a . e . on \Omega . In the next step of the proof we
show that the sequence \{ u_{\epsilon}+\epsilon\} is decreasing_{o} as \epsilon\searrow 0 . Let \epsilon_{1}>\epsilon_{2} and
since u_{\epsilon_{1}}-u_{\epsilon_{2}}=0 on \partial\Omega , (u_{\epsilon_{1}}+\epsilon_{1}-u_{\epsilon_{2}}-\epsilon_{2})_{-}\in W^{1,2}(\Omega) and on substitution
we obtain

- \int_{\Omega}[\sum_{i,j=1}^{n}a_{ij}(x)D_{i}(u_{\epsilon_{1}}+\epsilon_{1}-u_{\epsilon_{2}}-\epsilon_{2})_{-}D_{j}(u_{\epsilon_{1}}+\epsilon_{1}-u_{\epsilon_{2}}-\epsilon_{2})_{-}

+c(x)(u_{\epsilon_{1}}+\epsilon_{1}-u_{\epsilon_{2}}-\epsilon_{2})_{-}^{2}]dx

= \int_{\Omega}(g(x, u_{\epsilon_{1}}+\epsilon_{1})-g(x, u_{\epsilon_{2}}+\epsilon_{2}))(u_{81}+\epsilon_{1}-u_{\epsilon_{2}}-\epsilon_{2})_{-}dx

+ \int_{\Omega}c(x)(\epsilon_{1}-\epsilon_{2})(u_{\epsilon_{1}}+\epsilon_{1}-u_{\epsilon z}-\epsilon_{2})_{-}dx.

It is easy to see that the right hand side is nonnegative and, as before, we
conclude that |D(u_{\epsilon 1}+\epsilon_{1}-u_{\epsilon z}-\epsilon_{2})_{-}|=0a . e . on \Omega , that is u_{\epsilon 1}+\epsilon_{1}\geqq u_{\epsilon 2}+\epsilon_{2}

a . e . on \Omega . From these two claims we see that if 0<\epsilon<\delta , Then
0<u_{\epsilon}-u_{8}<\delta-\epsilon on \overline{\Omega} .

This means that there exists u\in C(\overline{\Omega}) such that \lim_{8arrow 0}u_{8}=u uniformly on
\overline{\Omega}. We now show that u\in W_{1oc}^{1,2}(\Omega) and satisfies (2) in the distributional
sense. Let B(x), r) be a ball with a center at x) of radius r and assume
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that \overline{B(x_{1},2r)}\subset\Omega . Let \Phi be a function in C^{1}(R_{n}) such that \Phi(x)=1 on
B(x_{0}, r) , \Phi(x)=0 on R_{n}-B(x_{)}, 2r) and 0<\Phi(x)\leqq 1 on R_{n} . Taking u_{\epsilon}\Phi^{2}

as a test function we obtain on substitution

(4 ) \int_{\Omega}[\sum_{ij=1}^{n}a_{ij}D_{i}u_{\epsilon}D_{i}u_{\epsilon}D_{j}u_{\epsilon}\Phi^{2}+2\sum_{ij=1}^{n}a_{ij}D_{j}u_{\epsilon}u_{\epsilon}\Phi D_{i}\Phi+cu_{\epsilon}^{2}\Phi^{2}]dx

= \int_{\Omega}g(x, u_{\epsilon}+\epsilon)u_{\epsilon}\Phi^{2}dx.

Since u_{\epsilon} is positive and increases to u as \epsilon\searrow 0 , we may assume that there
exist constants \epsilon_{0}>0 , a>0 and A>0 such that

a\leqq u_{\epsilon}\leqq A on supp \Phi ,

for all 0<\epsilon\leqq\epsilon_{0} . Using the Young inequality and the assumptions (A)

and (g_{1}) we easily derive from (4) that

(5) \int_{B(xo,r)}|Du_{\epsilon}|^{2}dx\leqq C[\int_{B(xo,2r)}f_{a}u_{\epsilon}dx+\int_{B(xo,2r)}u_{\epsilon}^{2}dx]

\leqq C\int_{B(x_{0},2r)}\varphi_{a}A+A^{2})dx,

where C>0 is a constant independent of \epsilon . The inequality (5) shows
that \{ u_{\epsilon}\} is bounded in W_{1OC}^{1,2}(\Omega) . Finally, the Sobolev-Rellich embedding
theorem, applied on each compact subset K of \Omega , shows that u satisfies
(2) in the distributional sense.

REMARK 1. The assumptions (g_{1}) and (g_{2}) are satisfied in each fol-
lowing example:

(a) g(x, u)=f(x)u^{-r}- with 0<r<\infty ,

(b) g(x, u)= \frac{f(x)}{\ln(1+u)} ,

(c)
g(x, u)= \frac{f(x)}{\sin(\frac{u}{1+u}\frac{\pi}{2})}

,

(d) g(x, u)=f(x) \exp\frac{1}{u} ,

(e) g(x, u)= \frac{f(x)}{(|x|^{2}+u)^{r}} , with 0<\gamma<\infty ,

where f>0 on \Omega and f\in L^{P}(\Omega) , with p>n .
The functions g from the examples (a)-(d) have the property that

\lim_{u\sim+0}g(x, u)=\infty for all x\in\Omega . Theorem 1 is related to the results of
papers [2-3], where the existence of classical solutions have been inves-
tigated under a different set of assumptions including \lim_{uarrow 0}g(x, u)=\infty
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uniformly on \Omega .
We now impose an additional assumption on g guaranteeing that u\in

W^{1,2}(\Omega) .

THEOREM 2. Suppose that there exist constants b>0 and 0<\alpha\leqq 1

and a function f\in L^{1}(\Omega) such that

(6) g(x, u)u^{a}\leqq f(x)

for all u\in(0, b]\circ and a. e. on \Omega . Then the solution u of the problem (2),
(3) belongs to W^{1,2}(\Omega)\cap C(\overline{\Omega}) .

PROOF: The proof is straightforward. Let u_{\epsilon} be a solution of the
problem (2\epsilon) , (3). Taking u_{\epsilon} as a test function, we get on substitution

\int_{\Omega}[\sum_{i,j=1}^{n}a_{ij}D_{i}u_{\epsilon}D_{j}u_{\epsilon}+cu_{\epsilon}^{2}]dx=\int_{\Omega}g(x, u_{\epsilon}+\epsilon)u_{\epsilon}dx

\leqq\int_{0<u_{\epsilon}<b}fu_{\epsilon}^{1-a}dx+\int_{b<u_{\epsilon}}f_{b}u_{\epsilon}dx

\leqq\int_{\Omega}fA^{1-a}dx+\int_{\Omega}f_{b}Adx,

where A= \sup_{\epsilon>0,x\in\Omega}u_{\epsilon}(x) . This inequality, together with the ellipticity
condition (A), yields that \{ u_{\epsilon}\} is bounded in W^{1,2}(\Omega) and the result fol-
lows.

REMARK 2. The condition (6) is obviously satisfied in examples
(b),(c) and (a), (e) with 0<r\leqq 1 . If (6) holds with \alpha>1 , one can easily
show that

\int_{\Omega}|Du(x)|^{2}u(x)^{a-1}dx<\infty and u^{\frac{1+a}{2}}\in[mathring]_{7}V^{1,2}(\Omega)

This result has been obtained in the paper [1].
In the next result we briefly examine the behaviour of Du near the

boundary. Let r(x)=dist(x, \partial\Omega) for x\in\Omega .

THEOREM 3. Suppose that \partial\Omega is of class C^{2} and that there exist con-
stants s>0,0<\alpha\leqq 1 , b>0 and a function f>0 , with r^{1+S}f\in L^{1}(\Omega) such
that

(7) g(x, u)u^{a}\leqq f(x) for 0<u\leqq b and a. e . x\in\Omega .

Then the solution u of (2), (3) has the property

\int_{\Omega}|Du(x)|^{2}r(x)^{1+S}dx<\infty .
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PROOF: It follows from the regularity of \partial\Omega that there exists \delta_{0} such
that \partial\Omega_{8} is of class C^{2} for \delta\in(0, \delta_{0}] , where \Omega_{8}= { x\in\Omega : dist (x, \partial\Omega)>\delta}
(see [6] Lemma 14.16, p. 355). We now define a function \rho\in C^{2}(\Omega) such
that \rho(x)=r(x) on \Omega-\Omega_{80} and c_{1}r(x)\leqq\rho(x)\leqq c_{2}r(x) on \overline{\Omega} for some con-
stants c_{1}>0 and c_{2}>0 . Let 0<\delta<\delta_{0} and set

v(x)=\{
u(x)(\rho(x)-\delta)^{1+S} for x\in\Omega_{8},

0 for x\in\Omega-\Omega_{8} .

It is clear that v\in[mathring]_{W}^{1,2}(\Omega) and taking v as a test function we obtain

(8)

\int_{\Omega_{\delta}}\sum_{i.j=1}^{n}a_{ij}(x)D_{i}uD_{j}u(\rho-\delta)^{1+S}dx+(1+s)\int_{\Omega_{\delta}}\sum_{i,j=1}^{n}a_{ij}(x)D_{i}uuD_{j}\rho(\rho-\delta)^{s}dx

+ \int_{\Omega_{\delta}}c(x)u^{2}(\rho-\delta)^{1+s}dx\leqq A^{1-a}\int_{u<b}f(x)(\rho-\delta)^{1+s}dx

+A \int_{u\geqq b}f_{b}(x)(\rho-\delta)^{1+S}dx,

where A= \max - u(x) . We now observe that by the Young inequality we
have

(1+s) \int_{\Omega_{\delta}}\sum_{i,j=1}^{n}a_{ij}(x)D_{i}uuD_{j}\rho(\rho-\delta)^{s}dx\leqq\frac{\lambda}{2}\int_{\Omega_{\delta}}|Du(x)|^{2}(\rho-\delta)^{s+1}dx

+C \int_{\Omega_{\delta}}u(x)^{2}(\rho-\delta)^{s-1}dx,

where C>0 is a constant depending on ||a_{ij}||_{L_{\infty}} , s and \lambda . Hence

\frac{\mathcal{A}}{2}\int_{\Omega_{\delta}}|Du(x)|^{2}(\rho-\delta)^{1+s}dx\leqq A^{1-a}\int_{\Omega}f(x)\rho^{1+s}dx+A\int_{\Omega}f_{b}(x)\rho^{1+s}dx

+CA^{2} \int_{\Omega}\rho^{s-1}dx.

Since \int_{\Omega}\rho^{s-1}dx<\infty , the result follows from the Lebesgue Monotone Con-

vergence Theorem.

REMAMK 3. The assertion of Theorem 3 can be slightly improved if
a_{ij}\in C^{1}(\overline{\Omega}-\Omega_{8_{0}}) and the condition (7) holds with s=0 . Then the solution
u of the problem (2), (3) has the property

\int_{\Omega}|Du(x)|^{2}r(x)dx<\infty .
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Indeed, using a truncation we may assume that a_{ij}\in C^{1}(\overline{\Omega}) . Then we pr0-
ceed as in the proof of Theorem 3. Taking

v(x)=\{
u(x)(\rho(x)-\delta) for x\in\Omega_{\delta}

0 for x\in\Omega-\Omega_{8},

with 0<\delta<\delta_{0} , as a test function we arrive at the relation (8) with s=0 .
The second integral can be handled by integration by parts

\int\sum_{\Omega_{\delta}ij=1}^{n}a_{ij}D_{j}uuD_{i}\rho dx=\frac{1}{2}\int\sum_{\Omega_{\delta}ij=1}^{n}a_{ij}D_{j}(u^{2})D_{i}\rho dx=

+ \frac{1}{2}\int\sum_{\partial\Omega_{\delta}ij=1}^{n}a_{ij}u^{2}D_{i}\rho D_{j}\rho|D\rho|^{-1}dS_{x}-\frac{1}{2}\int_{\Omega_{\delta}}u^{2}\sum_{ij=1}^{n}D_{j}(a_{ij}D_{i}\rho)dx,

which shows that this integral is bounded independently of \delta .

2. Entire solutions of (1).

We now use the results of Section 1 to obtain the existence of positive
solutions of (1).

We assume that the hypothesis (A) holds on R_{n} and that the non-
linearity g satisfies the Carath\’eodory condition and moreover

(g_{\acute{1}}) For each a>0 there exists a positive function f_{a}\in L_{1OC}^{p}(R_{n})\cap

L^{\frac{2n}{n+2}}(R_{n}) , with p>n, such that

g(x, u)\leqq f_{a}(x)

for all u\geqq a and a . e . on R_{n} .
(g_{\acute{2}}) The function g(x.) is nonincreasing on (0, \infty) for a . e . x\in R_{n} .
We need the follwing lemma.

LEMMA 1. For each number \delta>0 the equation

(9) Lu=g(x, u+\delta) in R_{n}

admits a positive solution v^{\delta}\in W_{1OC}^{1,2}(R_{n}) such that Dv^{8}\in L^{2}(R_{n}) and v^{8}\in

L^{\frac{2n}{n-2}}(R_{n}) .

PROOF: Let \{\Omega_{m}\} , m\geqq 1 , be an increasing sequence of bounded
domains with smooth boundaries \{\partial\Omega_{m}\} , such that R_{n}= \bigcup_{m\geq 1}\Omega_{m} . For
each m\geqq 1 , the Dirichlet problem

(10) Lu=g(x, |u|+\delta) in \Omega_{m} ,
(11) u(x)=0 on \partial\Omega_{m}
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admits a positive solution v_{m}^{8}\in[mathring]_{W}^{1,2}(\Omega_{m})\cap C(\overline{\Omega}_{m}) . This follows by apply-
ing the Schauder fixed point theorem. We now extend each function v_{m}^{8} by
0 outside \Omega_{m} . Since v_{m}^{8}\leqq v_{m+1}^{8} on \partial\Omega_{m} and g(x, \cdot) is deacreasing it is easy
to show that sequence \{ v_{m}^{8}\} is increasing as m\nearrow\infty . Let lim marrow\infty v_{m}^{8}(x)=

v^{8}(x) on R_{n} . The following estimates show that the function v^{8} has all
desired properties. Indeed, for each mw,e have

\int_{\Omega_{m}}[\sum_{i,j=1}^{n}a_{ij}D_{i}v_{m}^{8}D_{j}v_{m}^{8}+c(v_{m}^{8})^{2}]dx=\int_{\Omega_{m}}g(x, v_{m}^{8}+\delta)v_{m}^{8}dx

\leqq[\int_{\Omega_{m}}f_{8}^{\hslash 2}dx]^{\frac{n+2}{2n}}+^{n}[\int_{\Omega_{m}}|v_{m}^{8}|^{\frac{2n}{n-2}}dx]^{\frac{n-2}{2n}}

On the other hand by the Sobolev inequality we have

\mathcal{A}[\int_{\Omega_{m}}|v_{m}^{8}|^{\frac{2n}{n-2}}dx]^{\frac{n-2}{n}}\leqq S\lambda\int_{\Omega_{m}}|Dv_{m}^{8}|^{2}dx\leqq S\int_{\Omega_{m}}\sum_{i,j=1}^{n}a_{ij}D_{i}v_{m}^{8}D_{j}v_{m}^{8}dx,

where S>0 is a constant independent of m. These two estimates yield
that the integrals

\int_{\Omega_{m}}|Dv_{m}^{8}|^{2}dx and \int_{\Omega_{m}}|v_{m}^{8}|^{\frac{2n}{n-2}}dx

are bounded independently of m and the result easily follows.

THEOREM 4. The equation (1) admits an entire positive solution u\in

W_{1OC}^{1,2}(R_{n}) such that

(12) v^{8}(x)\leqq u(x)\leqq v^{8}(x)+\delta on R_{n}

for each \delta>0 , where v^{8} is a solution of the equation (9), constructed in
the proof of Lemma 1.

PROOF: As in the proof of Lemma 1, let \{\Omega_{m}\} be sequence of bounded
domains with smooth boundaries such that R_{n}= \bigcup_{m\geq 1}\Omega_{m} . According to
Theorem 1 for each m the Dirichlet problem

(13) Lu=g(x, u) in \Omega_{m} ,

(14) u(x)=0 on \partial\Omega_{m}

admits a positive solution u_{m} in W_{1OC}^{1,2}(\Omega_{m})\cap C(\overline{\Omega}_{m}) . It follows from the
proof of Theorem 1 that for each m, u_{m}(x)= \lim_{8arrow 0}v_{m}^{8}(x) uniformly on \overline{\Omega}_{m} ,

where v_{m}^{8} is a solution of the problem (10), (11). Moreover, we have for
0<\epsilon<\delta
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0\leqq v_{m}^{\epsilon}-v_{m}^{8}\leqq\delta-\epsilon in \Omega_{m} .

Letting \epsilonarrow 0 we get

0\leqq u_{m}-v_{m}^{8}\leqq\delta on \Omega_{m}

and consequently
(15) v_{m}^{8}\leqq u_{m}\leqq v_{m}^{8}+\delta on \Omega_{m} .

Let B(x_{0}, r) be a ball with center at xo of radius r . Let \Phi be a C^{1_{-}}func-
tion defined as in the proof of Theorem 1. We now choose an integer q\geqq

1 such that \overline{B(x_{0},2r)}\subset\Omega_{q} . Since \{ v_{m}^{8}\} is as increasing sequence as m

\nearrow\infty , we have v_{q}^{8}(x)\leqq u_{m}(x) for all m>q . Let 0<a= \inf_{\overline{B(x_{0},2r)}}v_{q}^{8}(x) ,

then taking u_{m}\Phi^{2} as a test function we get

\int_{\Omega_{m}}\sum_{i,j=1}^{n}a_{ij}D_{i}u_{m}D_{j}u_{m}\Phi^{2}dx+2\int_{\Omega_{m}}\sum_{i,j=1}^{n}a_{ij}D_{i}u_{m}u_{m}D_{j}\Phi\Phi dx+\int_{\Omega_{m}}cu_{m}^{2}\Phi^{2}dx

= \int_{\Omega_{m}}g(x, u_{m})u_{m}\Phi^{2}dx\leqq\int_{\Omega_{m}}f_{a}u_{m}\Phi^{2}dx.

From this inequality we easily derive the following estimate

(16) \int_{\Omega_{m}}|Du_{m}|^{2}\Phi^{2}dx\leqq K(\int_{\Omega_{m}}u_{m}^{2}|D\Phi|^{2}dx+\int_{\Omega_{m}}f_{a}u_{m}\Phi^{2}dx) ,

for some constant K>0 independent of m. On the other hand we have for
v_{m}^{\delta}

\int_{\Omega_{m}}[\sum_{i,j=1}^{n}a_{ij}D_{i}v_{m}^{8}D_{j}v_{m}^{8}+c(v_{m}^{8})^{2}]dx=\int_{\Omega_{m}}g(x, v_{m}^{8}+\delta)v_{m}^{8}dx

\leqq\int_{\Omega_{m}}f_{8}v_{m}^{8}dx\leqq[\int_{\Omega_{m}}f_{8}^{\frac{zn}{n+2}}dx]^{\frac{n+2}{2n}}[\int_{\Omega_{m}}|v_{m}^{8}|^{\frac{2n}{n^{-}2}}dx]^{\frac{n-2}{2n}}

Consequently using the ellipticity and the Sobolev inequality we get

(17) [ \int_{\Omega_{m}}|v_{m}^{\delta}|^{\frac{2n}{n-2}}dx]^{\frac{n-2}{2n}}\leqq C[\int_{\Omega_{m}}f_{8}^{\frac{2n}{n+z}}dx]^{\frac{n+2}{2n}}

for some constant C>0 independent of m. Since \frac{2n}{n-2}=2+\frac{4}{n-2} , we

deduce from (15), (16) and (17) that the sequence \{ u_{m}\} is bounded in
W_{1oc}^{1,2}(R_{n}) and we may assure that \lim_{marrow\infty}u_{m}=u strongly in L^{2}(K) , and
weakly in W^{1,2}(K) for each bounded domain K\subset R_{n} . The inequality (12)

is a consequence of Lemma 1 and the inequality (15). It is obvious that u
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is a solution of (1) in the distributional sense.

The following result is an analogue of Theorem 2.

THEOREM 5. Suppose that

(18) g(x, u)u^{a}\leqq f(x) on R_{n}\cross(0, a]

for some constants a>0 and 0<\alpha\leqq 1 , where f(x)>0 on R_{n} and f\in
L^{\frac{2n}{n+2+atn-2)}(R_{n})} . Then there exsits an entire positive solution u of (1) such

that Du\in L^{2}(R_{n}) and u\in L^{\frac{2n}{n-2}}(R_{n}) .

PROOF: It is sufficient to show that the sequence of solutions \{ u_{m}\} of
the Dirichlet problems (13), (14) has the properties: ( i)\{u_{m}\} is bounded
in L^{\frac{2n}{n-2}}(R_{n}) , (ii) { Du m } is bounded in L^{2}(R_{n}) . By Theorem 2 u_{m}\in

[mathring]_{W}^{1,2}(\Omega_{m}) and we extend functions u_{m} by 0 outside \Omega_{m} . Taking u_{m} as a
test function we obtain on substitution

\int_{\Omega_{m}}[\sum_{i,j=1}^{n}a_{ij}D_{i}u_{m}D_{j}u_{m}+cu_{m}^{2}dx]dx\leqq\int_{\Omega_{m}}g(x, u_{m})u_{m}dx

\leqq\int_{um\leq a}fu_{m}^{1-a}dx+\int_{um\geqq a}f_{a}u_{m}dx

\leqq[\int_{\Omega_{m}}u^{\frac{2n}{mn- 2}}dx]^{\frac{(n-2)(1-a)}{2n}}[\int_{\Omega_{m}}f^{\frac{2n}{n+2+a(n-2)}}dx]^{\frac{n+2+a(n-2)}{2n}}

+[ \int_{\Omega_{m}}f_{a}^{n}+^{n_{2}}dx]^{\frac{n+2}{2n}}[\int_{\Omega_{m}}u^{\frac{2n}{mn- 2}}dx]^{\frac{n-2}{2n}}

On the other hand by the Sobolev inequality we have

S^{-1} \mathcal{A}[\int_{\Omega_{m}}u^{\frac{zn}{mn- 2}}dx]^{\frac{n-2}{n}}\leqq\int_{\Omega_{m}}\sum_{ij=1}^{n}a_{ij}D_{i}u_{m}D_{j}u_{m}dx

and the combination of these two estimates gives first the boundedness of
\{u_{m}\} in L^{\frac{2n}{n-2}}(R_{n}) and then the boundedness of {_{Du_{m}\}} and the result fol-
lows.

REMARK 4. If (18) holds with \alpha>1 , we assume that f\in L^{1}(R_{n}) and
(g_{1}’) holds with f_{a}\in L_{1OC}^{p}(R_{n})\cap L^{\frac{2n}{n+2}}(R_{n})\cap L^{\frac{n(a+1)}{n+2a}}(R_{n}) . Under these

assumptions \int_{R_{n}}u^{\frac{n(a+1)}{n-2}}dx<\infty and \int_{R_{n}}|Du|^{2}u^{a-1}dx<\infty . To prove this we

use as a test function u_{m}^{a} .
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