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Introduction.

Our main purpose is to determine the totally geodesic spheres in every
compact symmetric space. This includes finding of all the monomor-
phisms of the group SU(2)\cong S^{3} into the compact Lie groups. The task is
a part of the fundamental problem of determination of all the homomor-
phisms between symmetric spaces (1. 1) : a smooth mapping f:Marrow N
between symmetric spaces is a homomorphism if and only if f is totally
geodesic, provided M is connected.

Historically, the one dimensional case of S^{1} was done by E. Cartan
himself [C]. The case of S^{3} overlaps with Dynkin’s monumental work [D]
in the part where he determines all the three dimensional complex subalge-
bras of the complex simple Lie algebras. Wolf [W] studied the case of
the spheres in the real, complex and quaternion Grassmann manifolds
G_{n}(R^{2n}) , G_{n}(C^{2n}) and G_{n}(H^{2n}) under a certain condition to be explained
later (4. 6), completing a work of Y. C. Wong. Helgason studied a
sphere which corresponds to the highest root ([H], Chap. 7, \S 11).

Fomenko in [F-l], [F-2] and [F-3] discussed the homotopy and homology
classes of totally geodesic spheres; Fomenko’s book [F-4] (English trans-
lation) has just appeared. Finally, the case of the zero dimensional
sphere or the pair of points was done in [CN] and [N-l]; in this case a
homomorphism f:\{0, p\}arrow N is characterized by the property that f(p) is
fixed by the point symmetry s_{f(0)} at f(0) .

Our method is more geometric in a way, based on the theory under
development (See [CN], [N-1] and [N-2]) : one can determine the spheres
by using a huge induction mechanism coming from interrelationship
between the symmetric spaces, at least all those spheres in certain classes
(See the end of Section 1). The article [NS] might serve as another
introduction.

In \S 1 we will explain our geometric method along with basic con-
cepts. Careful reading of this section and the next will help understand
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our results in the later sections. In \S 2, we will prepare technical facts
including the Dynkin numbers (“ the characteristic numbers ” in his term)

and explain the finiteness of the congruence classes of the spheres in a
symmetric space. In \S 3, we will establish our main theorem 3. 2, precisely
ly describe the spheres which are not contained in subspaces (called

meridians 1. 3) and of the greatest curvature (or the smallest size)

among such spheres ,\cdot these spheres are intimately related to the Bott per-
iodicity (or rather they make a geometric background for it) and were
also studied by Wolf in certain cases. In \S 4, we will apply the theorem
3. 2 to each individual space. In \S 5, we will show how to deal with the
other spheres by means of the representation theory.

It will be convenient to agree that the term “ sphere ” means a sphere
of dimension \geqq 2 usually and a 1-dimensional sphere is called a circle.
The symbols for the symmetric spaces are standard ones (as in [H] or E.
Cartan’s papers) except for the Grassmannians. The symbols and num-
berings related to root systems will follow Bourbaki [B].

\S 1. Basic concepts and the method.

A symmetric space M is a manifold which admits a transformation of
M, called the point symmetry sx , for every point x such that (1) sx is
involutive, (2) x is an isolated fixed point of s_{x} and (3) M admits a
Riemannian metric of which every point symmetry sx is an isometry.

1. 1 DEFINITION. A homomorphism f:Marrow N of a symmetric space
M into another one N is a smooth map which commutes with every point
symmetry; i . e . one has f\circ s_{x}=s_{f(\chi)}\circ f for every point x of M. In particu-
lar a subspace means a space whose inclusion is a homomorphism.

1. 2 EXAMPLES. O1 If M and N are compact Lie groups, a Lie group
homomorphism f:Marrow N is a homomorphism of a symmetric space with
the point symmetry s_{x} defined by s_{x}(y)=xy^{-1}x . O2 The point symmetry sx

is an automorphism if the symmetric space M is connected, [N-2]. Thus
the automorphism group Aut(Af) is transitive on a connected M. Its
identity component, denoted by G, G_{M} or G(M) , is also transitive on M
then.

Since the symmetric space is defined in terms of its point symmetries,
it is not surprising that the fixed point set of a point symmetry s_{x} , denoted
by F(s_{x}, M) , plays a fundamental role; for instance, F(s_{x}, M) is closely
related to the topology of M (See [N-1]). Thus the next definitions
would be reasonable.
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1. 3 DEFINITIONS. A polar of a point x in M is an arbitrary con-
nected component of the fixed point set F(s_{x}, M) . We call it a pole if it
is a singleton \{p\} . For each polar F(s_{x}, M)_{(p)} through the point p, its
meridian at p is the connected component F(s_{x}\circ s_{p}, M)_{(p)} of the fixed point
set F(s_{x}\circ s_{p}, M) of s_{x}\circ s_{p} through p. More generally, an involution t of
M which fixes a point p gives rise to two subspaces F(t, M)_{(p)} and F(t\circ

Sp , M)_{(p)} . We call these subspaces the completely orthogonal space or
c- orthogonal space of one another; indeed their tangent spaces at p are
the orthogonal complement of each other in the tangent space T_{p}M .

1. 3a For a later reference, we point out that the distance from x to
every polar F(s_{x}, M)_{(p)} is known (2. 14 in [N-2]). By the way, theoreti-
cal importance of the concepts of the polar and the meridian lies in the
fact that a compact connected symmetric space M is completely deter-
mined by any pair (M^{+}(p), M^{-}(p)) of a polar and its meridian [N-2]. Its
relevance to our problem will be seen shortly.

1. 3b We have a complete list of the poles and the meridians (as

well as the centrosomes), the essential parts of which may be found in
[CN], [N-l] and [N-2]. Our hope is that the reader finds later examples
easy to see; but otherwise he could skip them. In Section 4, those indi-
vidual results are important; the reader could reinterprete the last chapter
of [M] in our context to obtain a clear picture.

Since a noncompact simple symmetric space contains no sphere, we
will consider the compact connected symmetric spaces only. Also we will
assume that they are simple: if a space M is not simple, M has a finite
covering space which is a product M_{1}\cross M_{2} , into which a sphere S^{m} in M
lifts and projects onto a sphere in each of M_{1} and M_{2} isomorphically or
onto a single point in it, and one can reverse the process to make a sphere
in M out of spheres in M_{1}and/orM_{2} .

Given a point 0 of S^{m} . its pole p\neq 0 in S^{m} lies in a polar M^{+}(p) of 0
in M. Hence S^{m} is entirely contained in the meridian M^{-}(p) by the
above relationship. Since all the pairs (M^{+}(p), M^{-}(p)) were determined
in [CN] and [N-l], our task of finding all the spheres in M is therefore
reduced to easy induction arguments on the dimension of M, unless M^{+}(p)

is a pole \{p\} of 0 in M so that the meridian M^{-}(p) is the whole space M.
Our problem is now the determination of the spheres in M which contains
the pole p of 0 in M along with 0. We will concentrate on this case.

In order to proceed further in this case, we consider the monomor-
phism of the equator S^{m-1} of S^{m} and we need the next concept.
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1. 4 DEFINITION. If there is a pole p of a point 0 in M, the set of the
midpoints of the geodesic segments joining 0 to p is called the centrosome
and denoted by C(0, p) . C(0, p) is disconnected in general.

1. 5 C(0, p) is a subspace; in fact it can be characterized by the
property that it projects onto the union of several polars under the unique
double covering epimorphism \pi:Marrow M’ which carries 0 and p into a sin-
gle point (1. 9 of [N-1] and [N-2]). Thus C(0, p) is known. The
centrosome comes into the scene when S^{m}\supset\{0, p\} in M is considered: S^{m}

meets C(0, p) in the subspace S^{m-1}=S^{m}\cap C(0, p) of C(0, p) . Question
arises whether or not a sphere S^{m-1} in C(0, p) extends to such an S^{m} in
M conversely. Uniqueness in the correspondence is another question. We
denote by \gamma:Marrow M the corresponding covering automorphism (deck
transformation) of M for a more precise describption of p=\gamma(0) in case a
point 0 has more than one poles. \pi is the projection of M onto the orbit
space M/\{1, \gamma\} . \gamma centralizes G. \gamma(x) is a pole of x in M for any point x .
G is transitive on the set \{(x, \gamma(x))|x\in M\} of these pairs of the points and
their specified poles. \gamma stabilizes C(0, p) and the above S^{m-1}- One might
remember that C(0, p) was fectively used in a proof of the Bott per-
iodicity [M].

1. 6 Our problem is to determine all the maximal (in terms of inclu-
sions) spheres S^{m} . m\geqq 2 , which are subspaces of the compact connected
symmetric spaces M=G/K up to G-congruence, that is, we ignore the
difference between the spheres in M which some members of G carry one
onto another; we will mention something about a weaker equivalence, the
Aut(M)-congruence in appropriate occasions. As a summary, we will
explain our strategy. If p is the pole of 0 in S^{m},\cdot then S^{m} is a subspace of
the meridian M^{-}(p)=G^{-}/K^{+} in which p is a pole of 0. The G-congru-
ence class [S^{m}] restricts to the G^{-}-congruence class [S^{m}]^{-} injectively. In
case p is not a pole of 0 in M, M^{-}(p) is a well determined spece of a
lower dimension; some kind of induction argumes will thus work to clas-
sify the spheres. Hence we will concentrate on the case of a pole p=\gamma(0)

in M. Then S^{m} meets the centrosome C(0, p) in the equator S^{m-1} . More-
over, if x is a point of S^{m-1}- then its pole y=\gamma(x) lies in S^{m-1} and y is a
pole of x in C(0, p) , as mentioned in 1. 5. Thus we will have a similar
situation in a lower dimensional space C(0, p) ; that is, a sphere S^{m-1} in
the space C(0, p) contains a pair (x, \gamma(x)) , dim C(0, p)<\dim M .

\S 2. Technical preliminaries.

Given a sphere S^{m} in M, take a maximal torus A in M which meets
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S^{m} in a circle c . Let 0 be a point on c . Consider the symmetry decomp0-
sition g=k+m of the Lie algebra g=\mathscr{L}G at 0 (See [H] or [N-2]):

2. 1 g=k+m, where k is the eigenspace of ad (s_{0}) for the
eigenvalue 1 and m is the one for -1. k is the Lie algebra of the
isotropy subgroup K of G at 0. When necessary, k and m will be denoted
ed by k_{0} and m_{0} to indicate the point of reference 0 explicitly.

2. la LEMMA. The identity component K_{(1)} of K is transitive on each
polar M^{+}(p) of 0. In particular, one has k_{p}=k_{0} if p is a pole of 0.

PROOF. Since So fixes p, So commutes with sp . Hence one obtains the
eigenspace decompositions of k and m with respect to Sp : k=k^{+}+k^{-} and
m=m^{+}+m^{-} Thus the symmetry decomposition at p is g=(k^{+}+m^{+})

+(k^{-}+m^{-}) . It is immediate from the defintions that k^{-} gives the tangent
space to M^{+}(p) at p and m^{-} gives T_{p}(M^{-}(p)) . If p is a pole of 0, then
one has s_{0}=s_{p} . \square

2. lb COROLLARY. k^{-}\subset m_{p} and k^{-} gives the tangent space T_{p}M^{+}(p) ;
T_{p}M^{+}(p)=\{v(p)|v\in k^{-}\} .

One can easily verify or rather one knows

2. 2 [k, k]\subset k , [k, m]\subset m , and [m, m]=k.

2. 3 Let a denote a maximal abelian subalgebra contained in m

which may be identified with the tangent spact T_{0}A to A at 0 ; a contains
the initial tangent c’(0) , c(0)=0. Then the adjoint action of a on g
gives rise to the decomposition: g= \sum g(\alpha) , where \alpha is a linear form on
a, such that [a, g(\alpha)]\subset g(\alpha) and ad(H)^{2} acts on g(\alpha) as -\alpha(H)^{2} times
the identity for every member H of a, with our convention g(-\alpha)=g(\alpha) .
\alpha is called a root of M if \alpha\neq 0 . Indeed the set of all the roots form a root
system in the usual sense [B]. Since ad(H) skew-commutes with ad(s_{0}) ,
g(\alpha) decomposes into k(\alpha)+m(\alpha),\cdot k(\alpha)=k\cap g(\alpha) and m(\alpha)=m\cap

g(\alpha) . One has

2. 3a [a, k(\alpha)]=m(\alpha) and [a, m(\alpha)]=k(\alpha) if \alpha is a root.

2. 4 REMARK. It is important to notice that the decompositions are
closely related to the curvature and, more specifically, to the Jacobi equa-
tion for the geodesic with the initial tangent H\in a ; thus the Jacobi equa-
tion is reduced to ad(H)^{2}v+\alpha(H)^{2}v=0 for v\in g(\alpha) , where v is first
thought of as a vector field on M then one restricts it to one along c .
Based on this fact, one can determine conjugate points and the distance to



336 T. Nagano and M. Sumi

them. For instance, there is a conjugate point of 0 on the open interval
(0, t_{1}) along the geodesic c:tarrow\exp(tH)(0) , if and only if \alpha(H)t_{1}>\pi for
some root \alpha . Also, as mentined in (1. 3a) , we have explicitly determined
the distance between 0 and any of its polars, which we will talk about
later.

2. 4a REMARK. Another geometric meaning of a root \alpha is illustrated
by the fact that m(\alpha) and \alpha span the tangent space T_{0}\Psi to a subspace \Psi

=\Psi(\alpha) of positive constant curvature unless 2\alpha is another root. In fact,
for any nonzero vector X in m(\alpha) , one obtains [\alpha, X]=||\alpha||^{2}Y , [\alpha, Y]=

-||\alpha||^{2}X for some Y in k(\alpha) and hence a compact 3-dimensional subgroup
G^{(3\rangle} of G , whose orbit through 0 is a 2-dimensional space of positive con-
stant curvature; the desired space \Psi(\alpha) is the union of all these spaces
for X ranging over m(a) . In case 2\alpha is a root, one obtains a complex,
quaternin or Cayley projective space. For brevity, we call a subspace of
positive constant curvature a \phi-(pseudo-)sphere ; this is a sphere or a real
projective space. And we call \Psi(\alpha) the \phi- sphere for the root \alpha . Hel-
gason studied the \phi-spheres for the longest roots (Theorem 11. 1 on p. 334
and others in [H]) .

2. 5 REMARK. We recall a formula relating the roots to the curva-
ture. Let X be a unit vector in m and let H be a unit vector in a. Then
the sectional curvature at the 2-plane spanned by orthonormal X and H
equals the sum \sum\alpha(H)^{2}||X(\alpha)||^{2} . where X(\alpha) is the component of X=
\sum X(\alpha) in m(\alpha) and the summation occurs over all the roots, taking one
of \pm\alpha only for each \alpha . The greatest value of the sectional curvature of
M is realized by the \phi-spheres for the roots of the longest roots clearly.

Now we try to label the G-congruence classes of the 2-dimensional
\phi-sphere \Psi^{2} which are subspaces of M, following Dynkn’s idea for
3-dimensional subalgebras and hence aiming at some analogue of his
“ characterisitc numbers ” which we will call the Dynkin numbers. We
fix a maximal abelian subalgebra a=T_{0}A . We may assume that a tan-
gent vector H to a given \Psi^{2} lies in a and further that the values \alpha_{i}(H)

are nonnegative for all simple roots \alpha_{i} , 1\leqq i\leqq rank(M) , corresponding to
a fixed Weyl chamber. We so normalize H that the circle c : tarrow

\exp(tH)(0) in \Psi^{2} has the first conjugate point p of 0 at t= \frac{1}{2}\pi along the

geodesic c in \Psi^{2} : that is, T_{0}\Psi^{2} has another tangent vector X satisfying
[H, X]=2 Y_{-}[H, Y]=-2X and [X, Y]=2H for a member Y of k . The
Dynkin numbers of \Psi^{2} are d^{i} :=\alpha_{i}(H) , 1\leqq i\leqq r(M) , by definition.
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2. 6 PROPOSITION. ( i) The Dynkin numbers defifined above of a
2- dimensional \phi- sphere \Psi^{2} equal 0, 1 or 2. ( ii) These are all even num-
bers if \Psi^{2} is a sphere and contains a pole \gamma(0) of 0 in M for a point 0 in
\Psi^{2} . (iii) These are all even numbers also if \Psi^{2} is not a sphere, (iv) At
least one of the Dynkin numbers is odd if \Psi^{2} is a sphere such that p=

c( \frac{1}{2}\pi) lies on a polar which is not a pole in M.

PROOF. The point c(\pi)=\exp(\pi H)(0) is 0 by the normalization.
Hence ad\circ\exp(\pi H) stabilizes k and every root space k(\alpha) . Thus \alpha(H)

is an integer. The adjoint representation of g restricts to that of the
subalgebra g(\Psi^{2}) spanned by \{H, X, Y\} with the Cartan subalgebra RH.
The positive weights of g(\Psi^{2})-modules which meet the root space g(\alpha_{k})

nontrivially are integral multiples of \alpha_{k}(H) for every simple root \alpha_{k} .
Therefere \alpha_{k}(H) cannot exceed 2; ( i) obtains. \Psi^{2} is a sphere if and
only if p\neq 0 . Since one has d^{k} even \Leftrightarrow a nonzero vector field Y_{k}\in k(\alpha_{k})

vanishes at p, one sees that all d^{k} are even = ad\circ\exp(\frac{1}{2}\pi H) stabilizes
k\Leftrightarrow p is either 0 or a pole \gamma(0) by 2. la. Hence one has ( ii) , (iii)

and (iv), which exhaust all the cases. \square

2. 6a REMARK. The part ( i) of the proposition is basically
Dynkin’s theorem about three-dimensional subalgebra of simple Lie alge-
bras (Thm 8. 3 [D], also Prop. 5 on p. 164, Chap. 8 of [B]).

2. 6b REMARK. As opposed to the case of the Lie subalgebras
(Same Thm 8. 3 [D] and Prop. 6 on p. 165, Chap. 8 of [B]), the Dynkin
numbers do not uniquely determine the congruence class of \Psi^{2} . as this
example shows. The real projective space RP^{3} is a polar in the adjoint
group ad SO (4), its meridian ad SO (3) share a subspace RP^{2} with RP^{3} .

which is a polar in both ,\cdot RP^{3} is certainly not congruent with the isomor-
phic space ad 50(3). The space ad 50(4) is not simple, but it is easy to
construct a simple one out of this; see (3. 4). For a later reference we
observe: by lifting these two RP^{3} ’s to the universal covering space
Spin(4)=: SO (4 )^{\sim} one obtains two 3-spheres which meet in S^{2} in the
common centrosome of different pairs (0, \gamma(0)) and (p, \gamma(p)) .

2. 7 THEOREM. The congruence classes of the \phi- spheres of dimen-
sions \geqq 2 in a compact symmetric space M are fifinite in number.

We have no direct, simple proof: what 2. 6 immediately gives is the
next 2. 8. As it will turn out alter, it suffices to show that the finiteness
of the conjugate classes of the orthogonal groups in a Lie group on the Lie
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algebra level. Also the fact will be revealed by later developments of this
paper.

2. 8 COROLLARY. The set of the diameters of the spheres S^{m}, m\geqq 2 ,

in M is fifinite. Similarly for the \phi- spheres, (but in sharp contrast with the
circles).

2. 9 PROPOSITION. There is a unique congruence class of the
2-dimensional \phi- spheres with all the Dynkin numbers d^{i}=2,1\leqq i\leqq r(M) ,

called principal.

PROOF. First we will prove the existence. Let H\in a denote \sum_{i}2H_{i} ,

where H_{i}=2^{2}||\alpha_{i}||_{\varpi i}^{-2} and \varpi i is the z’-th fundamental weight. H is a linear
combination \sum_{i}c_{i}\alpha_{i} of the simple roots. Choose X_{i}\in m(\alpha_{i}) such that [X_{i} ,

Y_{i}]=c_{i}\alpha_{i} , where Y_{i} :=[H, X_{i}],\cdot this is a matter of normalization. We
have -ad(H)^{2}X_{i}=2^{2}X_{i} . Then H and X=\Sigma_{i}X_{i} span the tangent space
T_{0}\Psi^{2} to a 2-dimensional \phi-sphere \Psi^{2} : in fact [X, Y]:=[\Sigma X_{i}, \Sigma Y_{j}]=

\Sigma[X_{i}, Y_{i}]=2H , since [H, [X_{i}, Y_{j}]+[X_{j}, Y_{i}]]=0 which, together with
(\alpha_{i}+\alpha_{j})(H)=4\neq 0 , implies that [X_{i}, Y_{j}]+[X_{j}, Y_{i}]\in k(\alpha_{i}+\alpha_{j}) vanishes.
Now we will show the uniqueness. The component X(\alpha) of X in the
earlier notation does not vanish if and only if \alpha is a simple root \alpha_{i} , 1\leqq i\leqq

r(M) , since every other positive root is the sum of two or more simple
roots, while one has \alpha(H)^{2}X(\alpha)=-ad(H)^{2}X(\alpha)=2^{2}X(\alpha) by -ad(H)^{2}X
=2^{2}X , which gives \alpha(H)^{2}=2^{2} for X(\alpha)\neq 0 . From [X, Y]=2H, one
obtains \sum||X(\alpha)||^{2}\alpha=2H . Since the simple roots make a basis for a, this
shows that the length ||X(\alpha)|| is uniquely determined by H for each root \alpha .
Suppose there is another \phi-sphere to which H and X’ are tangent at 0

with the similar relationship to the pair (H, X) ; so one has ||X’(\alpha)||=

||X(\alpha)|| . If the multiplicity m(\alpha):=\dim m(\alpha) equals 1 for a simple root
\alpha=\alpha_{i} , then one has X’(\alpha)=\pm X(\alpha) and one can carry X’(\alpha) into X(\alpha)

by means of the subgroup generated by \varpi_{i} without affecting H or the other
components. If m(\alpha)>1 , then one can do the same, by following the
proof of Proposition 6 in Chap. VIII, no3 or p. 165 of [B] basically or by
a geometric study of individulal cases using 2.25, 2.26a and the proof of
2.27 of [N-2] (among which the first two imply that the isotropy sub-
group contains a subgroup which leaves m(\alpha) invariant and acts transi-
tively on the unit sphere in m(\alpha)) . \square

2. 10 REMARK. The principal \psi-spheres have the smallest curvature
among all the \phi-spheres in M.

2. 11 QUESTION. A maximal \phi-sphere which contains a principal
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one has dimension\leqq 1+\min , where min denotes the minimum of the multi-
plicities m(\alpha) of the roots \alpha of M. Does it attain 1+ \min ? And are the
maximal ones unique up to congruence ? These are known to be the case
for the groups M, as one can easily deduce from 2. 9 also ,\cdot \min=2 .

\S 3. The spheres of maximal curvature.

In this section, we will explain how to determine the spheres of the
maximal curvature (See 2. 8) for a pair (0, \gamma(0)) in a compact simple
symmetric space M which contain a point 0 together with \dot{1}ts pole \gamma(0) in
M. A sphere of dimension >1 in a given M has a greater curvature than
another if and only if it has a smaller diameter.

3. 1 DEFINITION. When a sphere has the smallest diameter among
the spheres which contain a fixed point, say 0, as well as its pole \gamma(0) in
M, we say it has size S, for brevity.

If S^{m} contains \{0, \gamma(0)\} , then S^{m} meets the centrosome C(0, \gamma(0)) in
the equator S^{m-1} . The next theorem asserts the converse under certain
conditions. If S^{m} has size S , then S^{m-1} has size S too and the component
of C(0, \gamma(0)) which contains S^{m-1} is one of the closest to 0 among the
components of C(0, \gamma(0)) . The distance between a point 0 and its polar
or a component of the centrosome is known for each space (1. 3a) . To a
polar, there corresponds a simple root \alpha_{j} such that, if the highest root of
the root system (2. 3) of M is expressed as a linear combination of the
simple roots, the coefficient of \alpha_{j} is 1 or 2. Roughly speaking, the desired
distance is the length of the vector 2||\alpha_{j}||^{-2}\varpi_{j} , where \varpi_{j} is the j-th funda-
mental weight.

3. 2 THEOREM. Let \gamma be the covering automorphism of a compact
connected symmetric space M for a double covering epimorphism: Marrow M’

Let Sm-1 be a sphere in a centrosome C(0, \gamma(0)) , m\geqq 1\backslash . Assume: (1)
\gamma(S^{m-1})=S^{m-1} ; (2) S^{m-1} has size S : and (3) the distance between the
points of S^{m-1} and 0 equals \frac{1}{2}dis(0, \gamma(0)) , that is, the components of
C(0, \gamma(0)) which contain S^{m-1} are the closest to 0. Then there exists a
unique sphere S^{m} which meets C(0, \gamma(0)) in S^{m-1} . (The assumptions (2)

and (3) are necessary for the conclusion only if M is SO (4n)^{\sim} , SO(4n)#,
E_{7} or EV.)

p_{ROOF} . Let p be a point on S^{m-1} . Then there is a unique shortest
circle c=c_{H} which passes through p and 0 by (3). Here H is a member
of m=m_{0} for the symmetry decomposition at 0 and tangent to c along it;
c(t)=\exp(tH)(0) for every t\in R . If m=1 , c is the desired S^{m} : one has
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\gamma(c)=c , in particular c\supset S^{m-1} , since c contains \gamma(0) and the epimor-
phism \pi:Marrow M’=M/\{1, \gamma\} must project c into a circle. Assume m>1 .
Let c_{Y} be a circle on S^{m-1} which passes through p:Y is a member of m_{P}

for the symmetry decomposition at p and tangent to c_{Y} along it. Y is
also a member of k_{0} , since every component of C(0, \gamma(0)) is an orbit of
the identity component K_{(1)} of the isotropy subgroup K of G at 0 as well
as every polar of 0 (See 2. la and 2. 1b). We will construct a 2-sphere
which contains c_{H} and c_{Y} . For that we will show that H is a member of
k_{q} for a point q on c_{Y} . Let q be the midpoint of an arc connecting p and
\gamma(p) on c_{Y} . Then the point symmetry s_{q} exchanges p and \gamma(p) as well
as 0 and \gamma(0) . Hence the double covering map \pi projects c_{H} into a polar
of \pi(q) in M’ Therefore H is a member of k_{q} by the proof of 2. la.
Since both c_{H} and c_{Y} have the property that every arc on the curve is one
of the shortest connecting its end points by (2) and (3), we can use conju-
gate point arguments. The vector field Y restricted to c is a Jacobi field
on c and vanishes at 0 and \gamma(0) only. If we normalize H so \exp (tH) (o)

reaches \gamma(0) at t=\pi for the first time, then one has ad(H)^{2}Y=-Y
Similarly one has ad(Y)^{2}H=-H . Therefore one obtains a 2-sphere
which contains c_{H} and c_{Y} ; the Lie algebra of its automorphism group is
spanned by H, Y and [H, Y] . (The assumptions (2) and (3) are thus
crucial for the existence of this 2-sphere.) The desired S^{m} should contain
it. To prove it, may be convenient to recall a theorem of Cartan’s: a
subspace m’ of m_{p} gives the tangent space T_{p}N to a subspace N of M if
and only if [m’, [m’, m’]]\subset m’ . Take a subspace m’ of m_{p} which gives
the tangent space T_{p}S^{m-1} through the evaluation: Z\in m’-Z(p) . Let m’
be the subspace spanned by m’ and H. We want to see that m’ satisfies
Cartan’s condition, m’ already satisfies it. We have proven ad(H)^{2}m’=

m’ Next we assert [H,[m’. m’]]=\{0\} . Let K^{rr} be the connected sub-
group of G whose Lie algebra is generated by [m^{rr}. m’] . K’ leaves C(0,
\gamma(0)) riant (2. la). K’ fixes not only p but 0 by the fact [k^{-}k^{-}]\subset

k^{+} from 2. 2 in the notation of the proof 2. la, recalling that \pi(p) is a
point of a polar \subset\pi(C(0, \gamma(0)) of \pi(p)(1.5) . Therefore the members
of [m’. m^{rr}] vanish identically on c_{H} (by the non-existence of conjugate
points on an open half circle in c_{H} ) : so one has [H,[m’. m’]]=\{0\} . This
implies [ Y_{1},[Y_{2}, H]]=[[Y_{1}, Y_{2}],H]+[Y_{2},[Y_{1}, H]]=[Y_{2},[Y_{1}, H]] is symmet-
ric in Y_{1} and Y_{2} for Y_{1} and Y_{2}\in m’ Thus we conclude from ad(Y)^{2}H=

-H that [m’,[H, m’]] is spanned by H. Finally the obtained S^{m} is
unique, simply because c_{H} is unique for the point p. \square

3. 2a REMARK. The above uniqueness implies that the completely
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orthogonal subspace to C(0, \gamma(0)) is a local product c_{H}\cdot N with another
subspace N. This helps pick up the components of C(0, \gamma(0)) which
meet the spheres of size S from the tables (in [CN]; see [N-1] also) of
the meridians in M. For example, C(0, \gamma(0)) of the group E_{7} has two
components EV and EVII, whose c^{-}orthogonal spaces are SU(8)/Z_{2} and
c\cdot E_{6} , c a circle, respectively. Hence the spheres of size S meet EVII and
never EV

3. 2b REMARK. The shortest geodesies joining points p and their
poles \gamma(p) within the centrosome are shortest in the whole space M,

although we can only verify it case by case.

The next (3. 3) supplements (3. 2) : so we have a complete process
of determining the S-size spheres\supset\{0, \gamma(0)\} .

3. 3 PROPOSITION. The bijection (given by 3. 2) of the spheres of
size S in G/K onto those of size S in the centrosome G_{C}/K_{C} which carries
S^{m} into S^{m-1}=S^{m}\cap G_{C}/K_{C} subject to the conditions in Theorem 3. 2,
induces a bijection of the set of the corresponding G-congruence classes
onto that of the G_{C^{-}} concgruence classes. Here, strictly speaking, G_{C}/K_{C} is
the component of the centrosome C that contains S^{m-1}=S^{m}\cap C, G_{C}=G(G_{C}/

K_{C}) , and G_{C}/K_{C} might have to be replaced with two isomorphic compO-

next G_{C}/K_{C}\underline{||}G_{C}/K_{C} if m=1 .

PROOF. This is another way of summarizing 3. 2. If a member b of
G carries a sphere into another and fixes the point 0, then b stabilizes G_{C}/

K_{C} and hence b may be thought of as a member of G_{C} . Conversely, every
member of G_{C} extends to that of G, since G_{C} is the 1-component of K.

\square

3. 4 EXAMPLE. Let M=SO(6)^{\sim}\cong SU(4) and S^{m} be a maximal
S-sized sphere \supset\{0, \gamma(0)\} . Then S^{m} meets the centrosome G_{2}^{o}(R^{6})\cong

G_{2}(C^{4}) in S^{m-1}- which meets the centrosome U(2)\cong c\cdot SU(2) in S^{m-2}

One sees that S^{m-2} is either c\cong S^{1} or SU(2)\cong S^{3} by maximality; m=3 or
5. Hence there are exactly two congruence classes, [S^{5}] and [S^{3}] , of the
maximal S-size sphere\supset\{0, \gamma(0)\} by 3. 3. Notice that a sphere of [S^{5}]

meets some of [S^{3}] in S^{2} ; indeed the subspaces c and SU(2) of U(2)
meet at a point p, one of the two and hence the uniqueness of c_{H}

mentioned in 3. 2a , applied twice, gives that those spheres in [S^{5}] and
[S^{3}] share an S^{2} if they share p. This fact does not contradict 3. 2, of
course; cf. the final remark in 2. 6b . The second example in 2. 6b is
contained in this one: embed SO (4) into SO (6 )^{\sim}in the usual way and the
two 3-spheres (which share S^{2}) are contained in S^{5} and S^{3} which share
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the same S^{2} .

\S 4. Applications of Theorem 3. 2; case studies.

We now apply Theorem 3. 2 and the theory briefly explained in the
previous sections to the individual spaces, by using the information about
the centrosomes in [N-2] (See 1. 3b) ; see 4. 12 for the go al of this sec-
tion. As mentioned in 1. 3b , our method is to use geometric relationship
between spaces systematically, which is hinted in the last chapter of [M]
in the cases of the first two series of classical spaces (4. 2 and 4. 4). We
begin with the unitary group U(n) , which is the most important case
because of the next lemma.

4. 1 LEMMA. If S^{m} contains a point 0 together with its pole p in M,
then M is a subspace of SU(2k) for some k in which p is still a pole of 0.

PROOF. First assume that M is a simple group. Then M is a sub-
group of SU(n) for some n. The point p lies in a polar of 0 in U(n) ,

The corresponding meridian contains M and its semisimple part has the
form SU(2k)\cross SU(n-2k) . If 0 is located at (1, 1) in the meridian, then
p is (-1, 1) in it. And M is a subgroup of SU(2k) . If M is not a group
but a simple space G/K, then M is a subspace of some finite covering
group G^{\wedge} of the simple group G (See Thm 1. 9 in [N-2]; the local result
was known to E. Cartan). The point p is a pole of 0 in G^{\wedge} . since
Cartan’s homomorphism: Marrow G : xarrow s_{0}\circ s_{x} carries 0 and p into a single
point. And we are in the previous case. \square

4. 2 PROPOSITION (Case of U(n) and SU(n) ). Let \Sigma^{(m)} be the set
of the G- congruent classes of the maximal spheres S^{m} . m\geqq 2 , in the
unitary group U(n) which contain {1, -1} and have size S. Then the
dimension m is an odd number 2i+1\geqq 3 such that 2^{i} divides n. And
there is a bijection of \Sigma^{(m)} onto the set of the integers h satisfying 0\leqq h<

2^{-i}n-h ; the correspondence is explicitly given in the proof. Similarly for
S^{m} in SU(n) : indeed every sphere S^{m}-m\geqq 2 , in U(n) is contained in
SU(n) .

PROOF. The centrosome C(1, - 1)inU(n) is the disjoint union of the
subspaces which are isomorphic with Grassmannians G_{h}(C^{n}) of the h-
dimensional linear subspaces of C^{n} . which we identify with those sub-
spaces here ,\cdot these make the connected components of C(1, -1) . S^{m-1}=

S^{m}\cap C(1, -1) is a subspace of G_{\frac{n}{2}}(C^{n}) , since the pole \gamma(p) of a point p

in G_{h}(C^{n})\cap C(1, -1) lies in G_{n-h}(C^{n}) . Now the centrosome of G_{k}(C^{2k})

is U(k) , k\geqq 1 ; thus one has the “ period 2”-sequence of centrosomes
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U(1)\subset\cdots\subset U(k)\subset G_{k}( C^{2k})\subset U(2k)\subset\cdots . If one repeatedly takes the
intersections of the spheres with the centrosomes, one ends up with a cir-
cle S^{1} in the unitary group U(2^{-i}n) , 2i=m-1 , and not in a Grassman-
nian, simply because the centrosome of G_{k}(C^{2k}) is the connected space
U(k) and hence S^{1}\cap U(k) would be contained in a circle, contramy to
the maximality assumption of S^{m} (which implies the maximality of S^{1} by
Thm 3. 2). The intersection of our S^{1} with the centrosome are two points
in some subspace Gh(CJ)\cup G_{j-h}(C^{j}) , j=2^{-i}n . Two pairs of a point p and
its pole \gamma(p) in this centrosome are congruent to each other if and only if
they lie in the same Gh(Cn)\cup Gn-h(Cn) . Hence S^{m} is completely
classified by (h, i) , 2 i=m-1 and 0\leqq h<2^{-i}n-h , the correspondence being
bijective. S^{m}\wedge m\geqq 2 , in U(n) is necessarily a subspace of SU(n) . \square

The Grassmannian G_{h}(C^{n}) contains poles if and only if n=2h.

4. 3 COROLLARY (Case of G_{n}(C^{2n}) ). Let \Sigma^{(m)} be the set of the
G-congruence classes of the maximal spheres S^{m} m\geqq 2 , in G_{n}(C^{2n}) which
contain a fifixed point together with its pole and have size S. Then the
dimension m is an even number 2i+2\geqq 2 such that 2^{i} divides n . And
there is a bijection of \sum^{(m)} onto the set of the integers h satisfying 0\leqq h<

2^{-i}n-h .

For other spaces, one has a sequence of “ period 8 ”. which is sche-
matically described by the diagram below, the arrows indicating embed-
dings as centrosomes.

G_{n}(R^{2n}) UI

\nearrow \backslash

O CI
\uparrow \downarrow

OIII Sp

\backslash ’

UII G_{m}(H^{2m})

More precisely, the poles and hence the centrosomes are unique for given
points in these spaces and the real Grassmannian G_{n}(R^{2n}) is one of the
components, G_{k}(R^{2n}) , of the centrosome in UI(2n)=U(2n)/O(2n) ,
UI(n) the centrosome of CI(n)=SU(n) \cdot U(n) CI(n) that of Sp(ri),
Sp(n) that of the quaternion Grassmann manifold G_{n}(H^{2n}) , G_{n}(H^{2n}) one
of the components, G_{k}(H^{2n}) , of the centrosome in UII(2n)=U(4n)/
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Sp(2n) , UII(n) that of DIII (2n)=SO(4n)/U(2n) , OIII (2n)=O(4n)/
U(2n) that of SO(2w), and O(n) that of G_{n}(R^{2n}) . The selected comp0-

nents are those which satisfy the conditions in Theorem 3. 2. One has the
next proposition.

4. 4 PROPOSITION (Case of those 8 spaces). Let M(n) be one of the
8 spaces in the fifirst line of the table below. We write n=2^{q}w, w odd, and
q=4a+b, b=0,1 , 2 or 3. Then ( i) the table gives the highest dimen-
sion, 8a+k, of the spheres S^{m}\subset M(n) of size S which contain the unique
poles \gamma(0) (in M(n) ) of points 0\in S^{m} . ( ii) If 0\leqq a’\leqq a, then M(n) also
contains the spheres S^{m}\subset M(n) of that property, m=8a’+b’ . where b’ is
any number in the column of b such that the entry of the line of b’ and

of the column of M(n) is not marked (2) and, in case a’=a, it has to
satisfy an additional condition b’\leqq b . Finally, (iii) two spheres of equal
dimensions among these spheres belong to the same congruence class if and
only if they end up with the same (or congruent, strictly speaking) pair

of connected components of a centrosome after one successively takes the
intersections with the centrosomes.

b UI(n) CI (n) Sp(n) G_{n}(H^{2n}) UII(n) DIII (2n) so(n) G_{n}(R^{2n})

0 8a+1 8a+2 8a+3 8a+4 8a+1 8a
8a(2)

F
8a+1(2)F

1
8a+2(2)F 8a+3(2)F 8a+4(2)F 8a+5(2)F

8a+5 8a+2
8a+1(2) 8a+2(2)

2
8a+3(2) 8a+4(2) 8a+5(2) 8a+6(2) 8a+6(2)F

8a+6 8a+3 8a+4

3 8a+5 8a+6 8a+7 8a+8
8a+7(2) 8a+7(2)F

8a+7 8a+8

4. 5 REMARK. If the entry m=8a+k is marked (2) in the column
of M(n) , then the corresponding sphere S^{m} gives the generator of the
homotopy group \pi_{m}(M(n)) which is of order 2. If not, \pi_{m}(M(n)) is
infinite cyclic and S^{m} generates it. Our table is naturally compatible with
the well known periodicity of the homotopy groups of those 8 spaces in
the stable range. Cf. [F-l], to which one could add the spheres corre-
sponding to the mark (F). In order to obtain the spheres, subspaces of
M(n) , in [F-l], one has only to look at every meridian M^{-} in M(n) and
find the sphere of the above property in M^{-}

4. 6 REMARK. Wolf [W] classified the spheres of the above property
(characterized differently as the isoclinic ones) for M(n)=G_{n}(R^{2n}) and
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G_{n}(H^{2n}) as well as G_{n}(C^{2n}) . His results agrees perfectly with ours. If
M(n) is G_{n}(H^{2n}) , for instance, one has b’=0 or 3 and the number of the

congruence classes of the (8a’+b’)-spheres equals [2^{-4a^{r}-b’-1}n+ \frac{1}{2}] . His

index thus has the explained geometric meaning. Also one sees that the
isoclinic spheres generate \pi_{m}(M(n))\cong Z .

4. 7 REMARK. We like to point out certain details. The centrosome
C(0, \gamma(0)) is disconnected if and only if M(n) is UI(n) , UIKn) , SO (n)
(with n even) or G_{n}(R^{2n}) . There are more than one components of C(0,
\gamma(0)) that are the closest to 0 if and only if M(n) is SO(n) (with n

even) or G_{n}(R^{2n}) ; they are OIII (n/2)=DIII(n/2)\underline{||} DIII (n/2) and 0 (n)

=SO ( n)\underline{||} SO ( n) respectively. H owever. the two components of
OIII(n/2) are congruent in G_{n}(R^{2n})\supset SO(n) , and similarly for those of
O(n) in UIKn),

Among the above 8 spaces, SO(n) and G_{n}(R^{2n}) have the fundamental
groups of order 2. We now examine the spheres in their universal cover-
ing spaces SO (n)^{\sim}=Spin(n) and G_{n}^{o}(R^{2n}) . Let \{1, \epsilon\} be the kernel of
the projection \pi : SO (n)^{\sim}arrow SO(n) . \epsilon is the only pole of 1 in SO (n)^{\sim}

unless n=4k is a multiple of 4. Let \delta=\delta_{n} denote a member of SO (n )^{\sim}

which projects onto –1, if n is 4k . Also we will study SO^{\#} ( n) :=
SO (n)^{\sim}/\{1, \delta_{n}\} and G_{n}^{\#}(R^{2n}) :=G_{n}^{o}(R^{2n})/\{1, \delta_{2n}\} later, which are isomor-
phic with the quotient spaces by \{1, \delta\epsilon\} .

4. 8 PROPOSITION ( Case of Spin(n) yG_{p}^{o}(R^{n}) , SO^{\#} ( n) and
G_{n}^{\#}(R^{2n})) . ( i) A mmimal sphere of size S passing 1 and \epsilon in SO (n)^{\sim}

is S^{3} or S^{n-1} : there are exactly two congruence classes. ( ii) The spheres
(of size S or not) passing 1 and \delta (or \delta\epsilon) in SO (n)^{\sim} project onto spheres
in SO(n) isomorphically; they are in a one-tO-One correspondence with the
spheres passing \pm 1 in SO(n). (iii) For G_{p}^{o}(R^{n})\subset SO(n)^{\sim} it is S^{p} or
S^{n-p} if the pole is \epsilon and it projects into a sphere in G_{p}(R^{n}) similarly.
(iv) These spheres through 1 and \epsilon in SO (n )^{\sim} project into spheres of that
property in SO^{\#}(n) and G_{p}^{\#}(R^{n}) , 2p=n, respecively, and vice versa.

PROOF. The right (that is, the nearest to 1) component of the
centrosome C(1, \epsilon) in SO (n)^{\sim} is G_{2}^{o}(R^{n}) (See 1. 3a and 3. 2a), of which
the centrosome is G_{1}^{o}(R^{2})\cdot G_{1}^{o}(R^{n-2})\cong S^{1}\cdot S^{n-3} . The centrosome of
G_{p}^{o}(R^{n}) is the disjoint union of G_{a}^{o}(R^{p})\cdot G_{b}^{o}(R^{n-p}) , a+b=p and b odd.
The right component corresponds to b=1 , which is S^{p-1}\cdot S^{n-p-1} . The
sphere through 1 and \delta or \delta\epsilon project onto spheres through 1 and -1 in
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SO(n), since the kernel of the projection is \{1, \epsilon\} ; conversely those
spheres in SOin) lift to spheres through 1 and \delta or \delta\epsilon in SO (n)^{\sim} (iii)

and (iv) are similarly proved. \square

We now consider the quotient groups SUin) /ZPy p a divisor of n .
SU(n)/Z_{p} has a pole p_{p} if and only if n/p is even.

4. 9 PROPOSITION (Case of SU(n)/Z_{p} and the other spaces of root
system A_{n-1}). Suppose SU(n)/Z_{p} has a pole p_{p} of 1. If p is odd, the
congruence classes of the maximal spheres S^{m}m\geqq 2 , of size S and contain-
ing \{1, p_{p}\} in SU(n)/Z_{p} correspond bijectively to those containing \pm 1 in
SU(n) by the projection. If p is even, SU(n)/Z_{p} has no such sphere S^{m},
m\geqq 2 . Similarly for the other spaces of type A.

PROOF. Notice that pole -1 of 1 in SU(n) projects to that of 1 in
SU(n)/Z_{p} in case p is odd and it projects to 1 in the other case. Let S^{m} .
m\geqq 2 , be a sphere in SU(n)/Z_{p} which passes through 1 and its pole. S^{m}

lifts to a sphere\ni 1 in SUin). The pole of 1 in the lift is either a pole in
SU(n) or a point of another polar. The second case does not occur,
since a polar of positive dimension projects to a polar of positive dimen-
sion. Conversely, a sphere containing \pm 1 in SU(n) projects to a sphere
in SU(n)/Z_{p} in case p is odd and it projects to a real projective space in
the even case. The size is well preserved under the projection; and so is
congruence. \square

4. 10 PROPOSITION (Case of E7 and EV). There are two congru-
ence classes of the maximal spheres S^{m} m\geqq 2 , of size S and passing \pm 1 in
E7. The dimension m=3 for both. In EV\subset E_{7} , there is only one congru-
ence class of the nmimal spheres S^{m} . m\geqq 2 , of size S and passing \pm 1 :
m=2 .

PROOF. The centrosome of the (1-connected) E7 is EV\underline{||}EVII , of
which EVII is the right one (3. 2a) . The centrosome of EVII is T\cdot EIV

and that of T\cdot EIV is the union of two points and 2\cross FII , the disjoint
union of 2 copies of FIL Those two points are the poles of each other,
while the pole of a point in a component of 2\cross FII lies in the other. The
minimality condition in Theorem 3. 2 can be verified for both of these
cases directly or by observing U(3)\subset UII(3)\subset T\cdot EIV in view of 4. 2.
EV\subset E_{7} has the centrosome AI(8)/Z_{2}\underline{||}AII(4)/Z_{2} , of which AII(4)/Z_{2} is
the right one, because this is contained in EVII and because EV has the
same root system as E7. The centrosome of AII(4)/Z_{2} is G_{1}(H^{4})\underline{||}
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G_{3}(H^{4}) , both of which have no pole. Hence EV has only one class as
stated. \square

4. 11 PROPOSITION {Case of EVIT). There are two congruence clas-
ses of the mmimal spheres S^{m} . m\geqq 2 , of size S and passing poles in EVII
each containing 2-spheres.

PROOF. This is immediate from the preceding proof. \square

4. lla REMARK. One may note the subspace DIII(6)\subset EVII has the
same property.

4. 12 A concluding remark. The spheres of size S have been com-
pletely classified. Their congruence classes correspond bijectively with
the pairs of their dimensions and the Wolf indices in our generalized sense.
\S 5. The other spheres.

It remains to determine the maximal spheres S^{m} in M which are not
of size S and yet pass through a point 0 along with its pole \gamma(0) in M.
However, our classifications in this section will be somewhat less than
complete. In the next proposition of elementary nature, we use an embed-
ding of M=G/K into a finite covering G^{\wedge} of G (as in the proof of 4. 1):

in case M is a group, we choose G^{\wedge}=M\cross M and identify M with its sub-
space \{(b, b^{-1})|b\in M\} .

5. 1 p_{ROPOSITION} . Let S^{m} . m\geqq 2 , be a maximal sphere in a compact
space M=G/K which contains the pole \gamma(p) of a point p\in S^{m} . Then ( i)

the group G^{\wedge}\supset M contains a subgroup G^{\wedge}(S^{m})=SO(m+1)^{\sim}or SO (m+1) ^{\#}

which contains S^{m} : \varpi_{1}=\varpi_{1}(O(m+1)) is a tangent vector to S^{m} up to con-
jugacy in the notation of [B] . ( ii)\gamma(p) is a pole of p in G^{\wedge} (iii) If
M is a group, them m\geqq 3 and, if m>3 , M contains G^{\wedge}(S^{m}) . (iv) In
case m=3 and M is a group, S^{3} is congruent with a subgroup if and only
if the restriction of the projection: M\cross Marrow M(onto either one of the 2
copies of M) to G^{\wedge}(S^{m}) has the image of 3 dimensions.

PROOF. M is a subspace of a covering group G^{\wedge}- For the same rea-
son, S^{m} is a subspace of G^{\wedge}(S^{m}) , the counterpart of G^{\wedge} for S^{m} . G^{\wedge}(S^{m})

is a subgroup of G^{\wedge} if one agrees that S^{m} contains the unit element 1 of
G^{\wedge} We show that the pole \gamma(1) of 1 in S^{m} is one in G^{\wedge} By the assump-
tion \gamma(1) is a pole in M. Hence M is contained in the meridian
G^{\wedge-}(\gamma(1)) , a subgroup of G^{\wedge} . Since the Lie algebra of G^{\wedge} is generated
by the tangent space m=T_{1}M\subset T_{1}G^{\wedge} , one sees G^{\wedge-}(\gamma(1))=G^{\wedge}; \gamma(1) is a
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pole in G^{\wedge} consequently. In particular \gamma(1) is a pole in G^{\wedge}(S^{m}) . Since
SO(m+l) does not contain S^{m}=SO(m+1)/SO(m) , the group G^{\wedge}(S^{m}) is
either SO (m+1)^{\sim} or SO (m+1) ^{\#} ; G^{\wedge}(S^{m}) can act on S^{m} as the connected
automorphism group. Clearly \varpi_{1} , the first fundamental weight [B], is a
tangent vector to S^{m} ; we always identify a linear form on a metric vector
space V with a member of V. Now assume M is a group. If m+1\neq 4 ,
G^{\wedge}(S^{m}) is simple, and hence the first projection : M\cross M- M carries
G^{\wedge}(S^{m}) onto a subgroup which is isomorphic with SO (m+1)^{\sim} or
SO (m+1) ^{\#}\cdot. in fact (\gamma(1), \gamma(1)) projects to \gamma(1)=\epsilon . If m=2 in particu-
lar, M thus contains SO (3 )^{\sim}\cong S^{3} which in turn contains a congruent S^{2}

with the given S^{m} . contrary to its maximality. Finally assume m=3.
Then it can happen that G^{\wedge}(S^{m}) projects onto SO (3 )^{\sim} in which case S^{3} is
congruent with this group. Otherwise the image is SO (4)^{\sim}=Sp(1)\cross Sp(1)

or SO (4) \#=Sp(1)\cross SO(3) . Let p denote an epimorphism of the first fac-
tor Sp(1) onto the second. Then the sphere S^{3} in question is congruent
with the subspace \{(b, pb^{-1})|b\in Sp(1)\} . \square

5. 2 REMARK. There is something subtle about this. Let M=Sp(1)
\cross Sp.(1) . If S^{3} is a subgroup, then it is congruent with one of these fac-
tors or the diagonal subgroup \{b, pb)|b\in Sp(1))\} , where p may be taken
as the identity. But M admits the group automorphism: (b, c)arrow(c, b) ,
by which those factors are congruent each other. Also the space M
admits the automorphisms defined by the point symmetry s_{1} : barrow b^{-1}- by
which the subspace \{b, pb^{-1})|b\in Sp(1)\} is congruent with the diagonal sub-
group. Thus there are only two different congruence classes of the 3-
spheres; those two are different because of the difference in curvature.
But if M is a subspace of some space N, then the above automorphism 1\cross

s_{1} does not necessarily extend to that of N. In the proposition and other
places, we mean by congruence the one in terms of the connected automor-
phism group G unless otherwise mentioned.

5. 3 REMARK. If M is a simple connected group and contains S^{3}\supset\{1 ,
\gamma(1)\} , then M is one of SU(2n)/Z_{k} , Sp(n) , 50(2n), SO (n)^{\sim} SO (4w) ^{\#}

and E_{7} . The divisor k of 2n here is odd; in fact S^{3} lifts to a sphere and
every circle\supset\{1, \gamma(1)\} on it lifts to a circle c , which shows that the
point -1 coresponding to \gamma(1) on c is involutive. Besides the congru-
ence classes of the spheres S^{3}\supset\{1, \gamma(1)\} in SU(2n)/Z_{k} correspond bi-
jectively with those containing \{\pm 1\} in SU(2n) ; thus one has only to
investigate SU(2n) among the groups SU(2n)/Z_{k} , k odd divisor of 2n.
One can effectively use the representation theory to determine the congru-
ent classes of the spheres. In case M is not a group, the connected simple
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space M has a pole if and only if M has the same root system and the
same center [N-2] as one of the above groups.

5. 4 PROPOSITION. Let M=SU(2n) . Then ( i) every subgroup S^{3}

\supset\{\pm 1\} is conjugate with the diagonal in the product of the principal sub-
group SU(2) of subgroups SU(2n_{k}) , \Sigma_{k}n_{k}=n and \Pi_{k}SU(2n_{k})\subset SU(2n) .
(ii) If a subspace S^{3}\supset\{\pm 1\} is not congruent with a subgroup, then a
minimal subgroup G^{\wedge}(S^{3}) is determined similarly {See 5. 2 and the proof
below), (iii) The other spheres S^{m}\supset\{\pm 1\} , m>3 , are determined by faith-
ful representations \rho_{k} : SO (m+1)^{\sim} or SO (m+1)^{\#}arrow SU(2n_{k}) , \Sigma_{k}n_{k}=n :
thus, if m+1=2r+1 is odd for instance, the highest weight of \rho_{k} is of
the form \Sigma_{j}h^{j}\varpi_{j} , h^{r} odd, in the notation of [B] . (iv) In all these cases,
the congruence classes are completely determined thereby.

PROOF. ( i) The subgroup S^{3}=SU(2) defines the tautological repre-
notation on C^{2n} through the inclusion map into SU(2n) . The linear
space C^{2n} is the direct sum \oplus_{k}V_{k} of simple SU(2)-modules V_{k} . Since
\in SU(2) acts on V_{k} as such, V_{k} has an even dimension 2n_{k} , \sum_{k}n_{k}=n . A
subgroup SU(2) of SU(2n_{k}) is irreducible on V_{k} if and only if it is prin-
ipal: in particular the representation is unique up to conjugacy. Collect-

ing all these representations, one obtains the description of SU(2) in the
theorem, ( ii) Similarly, C^{2n} is the direct sum of simple G^{\wedge}(S^{3})-modules
V_{k} . Since G^{\wedge}(S^{3}) is the direct product G_{1}\cross G_{2}=Sp(1)\cross Sp(1) or Sp(1)\cross

SO(3), each V_{k} is the tensor product U_{k}\otimes W_{k} of a simple G_{1^{-}}module U_{k}

and a simple G_{2}-module W_{k} ; here a possible trivial action on C=U_{k} or
W_{k} is allowed. Since -1\in G^{\wedge}(S^{3}) acts on V_{k} as such, G_{1} or G_{2} must be
faithfully represented on U_{k} or W_{k} ; that is, either G_{1} or G_{2} is a principal
subgroup of SU(U_{k}) or SU(W_{k}) respectively. Since G^{\wedge}(S^{3}) is a sub-
group of SU(2n) , G_{1}=Sp(1) must be a principal for some k and G_{2} must
be faithfully represented on W_{k} for another k . (iii) and (iv) must be
obvious by now. \square

5. 5 REMARK. In (iii), S^{m} has size S if and only if (h^{j})=(0,0,\cdots, 0 ,
1) with n_{k}=n , provided m+1 is odd.

5. 6 REMARK. For the other classical groups SO(2n), SO (n)^{\sim}

SO (4k) ^{\#}- and SpCn), one can determine the conjugate classes of the
spheresD{l,\gamma(1) } similarly to 5. 4 with slightly more representation the-
ory. SO(2n) and Sp(n) are subgroups of SU(2n) . It is well known
(See [D_{0}] , e . g. ) how to determine whether a representation: Garrow SU(2n)

has the image in SO(2n) or Spin). The congruence classes of S^{m}\supset\{1 ,
-1} in SO(2n) correspond bijectively with those of S^{m}\supset\{1, \delta\} in SO (2n)^{\sim}
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and with those of S^{m}\supset\{1, \delta\epsilon\} in it by the projection, while those of S^{m}\supset

\{1, \epsilon\} in SO (4k) ^{\#} correspond with those of S^{m}\supset\{1, \epsilon\} in SO (2n)^{\sim} similar-
ly.

5. 7 PROPOSITION. Let M=E_{7} . Then ( i) every mmimal sphere S^{m}

\supset\{1, \gamma(1)\} in M has dimension m\leqq 3 . ( ii) As to the Dynkin numbers
(d^{j}) of S^{3}\supset\{1, \gamma(1)\} , d^{j} are all even and one of d^{2} . d^{5} and d^{7} equals 2.
Assume in (iii) and (iv) that the given S^{3}\supset\{1, \gamma(1)\} is not congruent
with a group, (iii) If G^{\wedge}(S^{3})=SO(4)^{\sim} then one has G^{\wedge}(S^{3})\subset Sp(1) .
SO (12 )^{\sim} a meridian in E_{7} ; hence 5. 4 and 5. 6 apply. Thus there are
two cases : either 1^{o}G^{\wedge}(S^{3})\subset SO(12)^{\sim} or 2^{o}G^{\wedge}(S^{3}) meets SO (12 )^{\sim} in
Sp(1) . In case of 1^{o} . the class of G^{\wedge}(S^{3}) is unique; under the projection
of SO (12 )^{\sim} onto SO(12), G^{\wedge}(S^{3}) projects to the group SO(4)# described
by R^{3}\otimes R^{4}=R^{12} . In the case 2^{o} . G^{\wedge}(S^{3}) projects to Sp(1) in SO(12) de-
scribed by R^{4}\oplus R^{4}\oplus R^{4} or R^{4}\oplus R^{3} . (iv) If G^{\wedge}(S^{3})=SO(4)\# , then G^{\wedge}(S^{3})

is one of the subgroups listed below in 5. 8.

PROOF. ( i) As mentioned in the proof of 4. 10, the centrosome of
the E_{7} is EV\underline{||} EVII. That of EV is AI(8)/Z_{2}\underline{||}AII(4)/Z_{2} ; hence the
given S^{m} meets EV in a sphere of dimension \leqq 2 by 5. 3. The centrosome
of EVII is T’ EIV , of which EIV has the center of order 3. And ( i) is
proven. ( ii) is immediate from the fact that \gamma(1) lies in the direction of

\varpi_{7} . (iii) Since SO (4 )^{\sim} has the center C of order 4, it meets a polar of 1
(other than the pole \gamma(1) ) at a member \delta of C. Hence it is contained in
the meridian of the polar M^{+}(\delta) ; M^{+}(\delta) is EVI whose meridian is
Sp(1)\cdot SO(12)^{\sim} The rest of (iii) is easy to see. (iv) We have no simple
argument to deal with the case of G^{\wedge}(S^{3})=SO(4)^{\#} The 3-dimensional
subgroups of E_{7} are listed in table 19 of [D]: by the way, there is a mis-
print in that table: the characteristic for the subgroup of index 60 has
Dynkin number d^{i}=2 at the extreme right (i. e . 2\varpi_{i} should be added to
H) . On the other hand, one has E_{7}\subset Sp(28)\subset SU(56) by the representa-
tion \varpi_{7} . Its restriction to SO (4)\# gives the decomposition of C^{56} into the
sum of the simple SO (4) \#-modules as in 5. 8, which one could determine
by picking up Sp(1) and SO(3) from Dynkin’s table, reading off the
restrictions \rho_{1} , \rho_{2} of the representation \varpi_{7} to these groups and checking
whether or not the pairs of these groups are compatible. We have not yet
verified these actually give subgroups of E_{7} , however. \square

5. 8 Supplement. For instance, pick up Sp(1) and SO(3) with in-
li es (3^{rr}) and (8) from Dynkin’s table 19. Then \rho_{1} is C^{4}\otimes C\oplus 26C^{2}\otimes C

=C^{56}- while \rho_{2} is 2 C\otimes C^{5}\oplus 14C\otimes C^{3}\oplus 4C\otimes C=C^{56} . Out of these, one



The spheres in symmetric spaces 351

could get the simple SO (4) \#-modules C^{4}\otimes C\oplus C^{2}\otimes C^{5}\oplus 7C^{2}\otimes C^{3}=C^{56} .

From (3’) , (36’) : C^{4}\otimes C\oplus C^{2}\otimes C^{9}\oplus C^{2}\otimes C^{7}\oplus 2C^{2}\otimes C^{5} .
(3^{rr}) , (156) : C^{4}\otimes C\oplus C^{2}\otimes C^{9}\oplus C^{2}\otimes C^{17} .
(7), (24) : C^{4}\otimes C^{7}\oplus C^{2}\otimes C^{5}\oplus 3C^{2}\otimes C^{3}-

(7), (28) : C^{4}\otimes C^{7}\oplus C^{2}\otimes C^{7}\oplus 7C^{2}\otimes C .
(7), (56) : C^{4}\otimes C^{7}\oplus C^{2}\otimes C^{11}\oplus C^{2}\otimes C^{3} .
(15), (24) : C^{6}\otimes C^{3}\oplus C^{4}\otimes C^{7}\oplus C^{2}\otimes C^{5}-

(35), (28) : C^{10}\otimes C\oplus C^{6}\otimes C^{7}\oplus C^{4}\otimes C .
(31), (8) : C^{8}\otimes C^{3}\oplus C^{6}\otimes C^{3}\oplus C^{4}\otimes C\oplus C^{2}\otimes C^{5}-

We turn to the non-group spaces for short discussions. In continua-
tion of 5. 3, if a simple space M is not a group but contain S^{m}\supset\{0, \gamma(0)\} ,

then we have to study (1) AI(2n) , or AII(2n) if R(M)=A_{2n-1} ; (2)

CI (n), G_{n}(C^{2n}) , G_{n}(H^{2n}) , DIII (2n) , or EVII (for n=3) if R(M)=C_{n} ;
(3) G_{n}(R^{2n}) , G_{n}^{o}(R^{2n})=G_{n}(R^{2n})^{\sim} or G_{n}(R^{2n})^{\#} (for n=2w) if R(M)=
D_{n} ; and (4)EV if R(M)=E_{7} .

In order to use the results in the case of groups, one could use the
following known inclusions [N-2], in which the symbol- means inclusion
as a component of a centrosome. (1) SO(n)arrow G_{n}(R^{2n}) ; (2) U(n)arrow

G_{n}(C^{2n});(3)Sp(n)arrow G_{n}(H^{2n});(4)G_{n}(R^{2n})\subset G_{n}(C^{2n})\subset G_{n}(H^{2n}) : and
(5) SO (n)^{\sim}arrow G_{n}(R^{2n})^{\sim} If S^{m}\supset\{0, \gamma(0)\} is a sphere in M, one of these
Grassmannians, then S^{m-1} is a subspace in the group in the centrosome.
Conversely, if S^{m-1} is a sphere in that group, then S^{m-1} is a subspace in
M. And this way the spheres3\{0, \gamma(0)\} in M would be determined for
the following reason. Let S^{m} be a sphere in SU(2n) which is obtained by
a faithful representation: SO (m+1)^{\sim}arrow SU(2n) with the highest weight
\Sigma h^{k}\varpi_{k} . If S^{m} is the equator of S^{m+1} in G_{2n}(C^{4n}) , then SO (m+2)^{\sim}\supset S^{m+1}

must be a subgroup of SU(4n) by a representation such that a highest
weight \Sigma c^{k}\varpi_{k} restricts to \Sigma h^{k}\varpi_{k} for SO (m+1)^{\sim}: if m+1 is, say, even m
+1=2r , then one has c^{k}=h^{k} for 1\leqq k<r and h^{r}=c^{r-1}+c^{r} From Weyl’s
formula one concludes that the degree of the representation \sum c^{k}\varpi_{k} is far
greater than 4n in general.

For the rest of spaces, one could use further inclusions. (6) G_{n}(R^{2n})

arrow AI(2n)\subset SU(2n) : (7) SU(2n)\subset AII(2n)\subset G_{n}(H^{2n}) ; (8) AI(n)\subset

UI(n)arrow CI(n)arrow Sp(n) in which one notes that S^{m}\supset\{0, \gamma(0)\} in CI (n)

meets UI(n) in S^{m-1} contained in AI(n) : (9) AII(n)arrow DIII (2n)\subset

OIII (2n)arrow SO(4n):(10) DIII (6)\subset EVIIarrow E_{7},\cdot and (11) EVarrow E_{7} .
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