Pseudo-hermitian symmetric spaces and Siegel domains over nondegenerate cones

Soji Kaneyuki
(Received April 26, 1990)

Dedicated to Professor Noboru Tanaka on his sixtieth birthday

Introduction

Korányi-Wolf [13] established a method of realizing a hermitian symmetric space M_{0} of noncompact type, equivariantly imbedded in its compact dual M^{*}, as a Siegel domain, by means of a so-called Cayley transform. The goal of this paper is to develop an analogy of the KorányiWolf theory for a certain class of complex affine symmetric spaces, called simple irreducible pseudo-hermitian symmetric spaces of K_{ε}-type (For the definition, see 2.3. Also see 5.2). It is proved that such a space arises as an open orbit in M^{*} under the identity component of the holomorphic automorphism group of M_{0} (Proposition 3.7). For our purpose, we introduce the notion of a Siegel domain over a nondegenerate cone (§1), which is a generalization of a Siegel domain over a positive definite (=self-dual) cone. Contrary to the hermitian symmetric case, not the whole part of a simple irreducible pseudo-hermitian (non-hermitian) symmetric space of K_{e}-type but an open dense subset of it is realized as an affine homogeneous Siegel domain over a nondegenerate cone (Theorem 5.3). This realization might serve the study of the boundary of such a symmetric space imbedded in M^{*}.

In § 1, the closure structure of a Siegel domain over a nondegenerate cone is given Theorem 1.1D. In §2, a signature of roots (OshimaSekiguchi [18]) of a semisimple Lie algebra g is described in terms of a gradation of g . Given a real simple Lie algebra g of hermitian type, we construct in $\S 3$ all simply connected irreducible pseudo-hermitian symmetric spaces of K_{ε}-type associated with g (Theorem 3.6). In §4, we give the graded Lie algebraic approach to the Korányi-Wolf theory. Let $g=\sum_{k=-2}^{2} g_{k}$ be a simple graded Lie algebra of hermitian type corresponding to a Siegel domain (The case $g_{-1}=g_{1}=(0)$ may occur). We then obtain the orbit decomposition of g_{-2} under the adjoint action of the group generated by the Lie algebra g_{0} Theorem 4.9). In § 5 , we give a list of simple
irreducible pseudo-hermitian symmetric spaces of K_{ε}-type and the corresponding Siegel domains over nondegenerate cones.

Notation. $\quad g^{c}$ denotes the complexification of a Lie algebra (or a real vector space) g. $\mathrm{c}_{8}(X)$ denotes the centralizer of an element $X\left(\epsilon_{\mathrm{g}}\right)$ in a Lie algebra g .

§ 1. Siegel domains over nondegenerate cones

We shall begin with a brief review for the previous work [9], [10]. Let \mathfrak{A} be a compact simple Jordan algebra of degree r, and let $\mathfrak{Q}_{p, q}$ ($p, q \geq 0, p+q \leq r$) be the set of elements $a \in \mathfrak{A}$ with $\operatorname{sgn}(a)=(p, q)$. Then we have the decomposition

$$
\begin{equation*}
\mathfrak{A}=\underset{p+q \leq r}{\amalg} \mathfrak{A}_{p, q}, \tag{1.1}
\end{equation*}
$$

which we shall call the Sylvester decomposition of \mathfrak{Q}. Let us choose a system of primitive orthogonal idempotents $\left\{e_{1}, \cdots, e_{r}\right\}$ such that $\sum_{i=1}^{r} e_{i}=e$, where e is the unit element of \mathfrak{Q}. Let

$$
\begin{equation*}
o_{p, q}=\sum_{i=1}^{p} e_{i}-\sum_{j=1}^{q} e_{p+j}, \quad p, q \geq 0, p+q \leq r ; \tag{1.2}
\end{equation*}
$$

here we are adopting the convention that the first or the second term of the right hand side of (1.2) is zero, provided that $p=0$ or $q=0$, respectively. Let $\operatorname{Str}^{0} \mathfrak{A}$ denote the identity component of the structure group Str \mathfrak{A} of \mathfrak{A}. Then it is known that (1.1) is the $\operatorname{Str}^{0} \mathfrak{N}$-orbit decomposition of \mathfrak{A}; more precisely we have
(1.3) $\quad \mathfrak{A}_{p, q}=\left(\operatorname{Str}^{0} \mathfrak{A}\right) o_{p, q}$.
$\mathfrak{A}_{p, q}$ is a cone in the sense that it is invariant under multiplication by positive real numbers \boldsymbol{R}^{+}, and it is open if and only if $p+q=r$. Also we have $\mathfrak{A}_{p, q}=-\mathfrak{A}_{q, p}$. We say that $\mathfrak{A}_{r-k, k}(0 \leq k \leq r)$ is a nondegenerate (homogeneous) cone. Note that the positive definite cone $V:=\mathfrak{A}_{r, 0}$ is an irreducible homogeneous self-dual open convex cone.

Let W be a complex vector space and F be a V-hermitian form on W. Let \mathfrak{A}^{C} be the complexification of \mathfrak{A}. We consider the smooth map Φ of $\mathfrak{A}^{C} \times W$ to \mathfrak{A} defined by

$$
\begin{equation*}
\Phi(z, u)=\operatorname{Im} z-F(u, u), \tag{1.4}
\end{equation*}
$$

where the imaginary part of $z \in \mathfrak{A}^{C}$ is taken with respect to \mathfrak{A}. As is easily proved, Φ is a surjective submersion. Let

$$
\begin{equation*}
D_{p, q}=\Phi^{-1}\left(\mathfrak{H}_{p, q}\right), \quad p, q \geq 0, p+q \leq r . \tag{1.5}
\end{equation*}
$$

It follows easily that each $D_{p, q}$ is connected. We say that the domain $D_{r-k, k}(0 \leq k \leq r)$ in the complex vector space $\mathfrak{A}^{C} \times W$ is a Siegel domain (of the second kind) over the nondegenerate cone $\mathfrak{A}_{r-k, k}$. Note that $D_{r, 0}$ is a usual Siegel domain over the selfdual cone V. Sometimes we will write $D\left(\mathfrak{A}_{r-k, k}, F\right)$ for $D_{r-k, k}$, that is,

$$
\begin{equation*}
D\left(\mathfrak{A}_{r-k, k}, F\right)=\left\{(z, u) \in \mathfrak{A}^{c} \times W: \operatorname{Im} z-F(u, u) \in \mathfrak{A}_{r-k, k}\right\} \tag{1.6}
\end{equation*}
$$

In the case where $W=(0)$, the above domain is reduced to the tube domain

$$
\begin{equation*}
D\left(\mathfrak{A}_{r-k, k}\right)=\left\{z \in \mathfrak{A}^{C}: \operatorname{Im} z \in \mathfrak{A}_{r-k, k}\right\} \tag{1.7}
\end{equation*}
$$

which is called the Siegel domain of the first kind over the nondegenerate cone $\mathfrak{A}_{r-k, k}$. From (1.1) we have the decomposition

$$
\begin{equation*}
\mathfrak{A}^{\boldsymbol{c}} \times W=\coprod_{p+q \leq r} D_{p, q} . \tag{1.8}
\end{equation*}
$$

Let $\operatorname{Aff}\left(D_{r, 0}\right)$ and $G L\left(D_{r, 0}\right)$ be the affine and linear automorphism groups of the Siegel domain $D_{r, 0}$, respectively. G_{a} and H denote the identity components of $\operatorname{Aff}\left(D_{r, 0}\right)$ and $G L\left(D_{r, 0}\right)$, respectively. There exists a natural Lie homomorphism ρ of $G L\left(D_{r, 0}\right)$ into the automorphism group $G(V)$ of the cone V ([5]).

THEOREM 1.1. (1) The closure $\bar{D}_{p, q}$ of $D_{p, q}$ is given by

$$
\begin{equation*}
\bar{D}_{p, q}=\coprod_{\substack{p_{1} \leq p \\ q_{1} \leq q}} D_{p_{1}, q_{1}} . \tag{1.9}
\end{equation*}
$$

(2) Suppose that ρ is surjective of H onto the identity component $G^{0}(V)$ of $G(V)$. Then each $D_{p, q}$ is a G_{a}-orbit, and (1.8) is the G_{a}-orbit decomposition of $\mathfrak{A}^{C} \times W$; in particular, $D_{r-k, k}$ is an affine homogeneous domain.

Proof. (1) We have ([9], [10]) that the closure $\overline{\mathfrak{A}}_{p, q}$ of $\mathfrak{A}_{p, q}$ is given by $\overline{\mathfrak{A}}_{p, q}=\coprod{ }_{p_{1} \leq p, q_{1} \leq q} \mathfrak{U}_{p_{1}, q_{1}}$. Therefore the right hand side of (1.9) is rewritten as

$$
\underset{\substack{p_{1} \leq p \\ q_{1} \leq q}}{ } \Phi^{-1}\left(\mathfrak{H}_{p_{1}, q_{1}}\right)=\Phi^{-1}\left(\underset{\substack{p_{1} \leq p \\ q_{1} \leq q}}{ } \mathfrak{A}_{p_{1}, q_{1}}\right)=\Phi^{-1}\left(\overline{\mathfrak{A}}_{p, q}\right) .
$$

Choose a point $\left(z_{0}, u_{0}\right) \in \Phi^{-1}\left(\overline{\mathcal{A}}_{p, q}\right)$. Then
(1.10) $\quad \operatorname{Im} z_{0}-F\left(u_{0}, u_{0}\right) \in \overline{\mathfrak{U}}_{p, q}$.

Let $D_{u_{0}}\left(\subset D_{p, q}\right)$ be the domain in $\mathfrak{A}^{C} \times\left\{u_{0}\right\}$ defined by

$$
\begin{equation*}
D_{u_{0}}=\left\{\left(z, u_{0}\right) \in \mathfrak{A}^{C} \times\left\{u_{0}\right\}: \operatorname{Im} z \in F\left(u_{0}, u_{0}\right)+\mathfrak{H}_{p, q}\right\} \tag{1.11}
\end{equation*}
$$

Then, from (1.10) it follows that the point $\left(z_{0}, u_{0}\right)$ lies in the closure of $D_{u_{0}}$ in $\mathfrak{H}^{c} \times\left\{u_{0}\right\}$, which implies that $\left(z_{0}, u_{0}\right) \in \bar{D}_{p, q}$. The converse inclusion \subset in (1.9) is obvious. Since $G^{0}(V)=\operatorname{Str}^{0} \mathfrak{A}$ ([19]), the assertion (2) is an immediate consequence of Lemma 2.4 [6]. q.e.d.

COROLLARY 1.2. The boundary $\partial D_{r, 0}$ of the Siegel domain $D_{r, 0}$ can be expressed as a stratified set

$$
\begin{equation*}
\partial D_{r, 0}=D_{r-1,0} \Perp D_{r-2,0} \Perp \cdots \Perp D_{1,0} \Perp D_{0,0} . \tag{1.12}
\end{equation*}
$$

Furthermore, suppose that $\rho(H)=G^{0}(V)$. Then each stratum $D_{k, 0}$ in (1.12) is a Ga-orbit.

REMARK 1.3. The unique closed subset $D_{0,0}$ in the expression (1.12) is the Silov boundary of the Siegel domain $D_{r, 0}$.

§ 2. ε-modifications of Cartan involutions

2.1. For a graded Lie algebra (or shortly GLA), we will use terminologies in [8]. Let
be a semisimple GLA of the ν-th kind over \boldsymbol{R}, and let $Z \in g_{0}$ be its characteristic element. Choose a grade-reversing Cartan involution τ of g and let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be the corresponding Cartan decomposition, where $\left.\tau\right|_{\mathfrak{f}}=1$ and $\left.\tau\right|_{\mathfrak{p}}=-1$. Then Z lies in \mathfrak{p}. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} containing Z, and let Δ be the root system of g with respect to a. We identify Δ with a subset of a with respect to the inner product (,) induced by the Killing form of g. Put

$$
\begin{equation*}
\Delta_{k}=\{\gamma \in \Delta:(\gamma, Z)=k\}, \quad|k| \leq \nu \tag{2.2}
\end{equation*}
$$

Then we have ([8])

$$
\begin{align*}
& \mathrm{g}_{0}=\mathrm{c}(\mathfrak{a})+\sum_{r \in \Delta_{0}} \mathrm{~g}^{\gamma}, \tag{2.3}\\
& \mathrm{g}_{k}=\sum_{r \in \Delta_{k}} \mathrm{~g}^{\gamma}, \quad k \neq 0,
\end{align*}
$$

where $\mathfrak{c}(\mathfrak{a})$ is the centralizer of \mathfrak{a} in g and g^{γ} is the root space for the root $\gamma \in \Delta$.

Now let

$$
\begin{equation*}
g_{e v}=\sum_{|2 k| \leq \nu} g_{2 k}, \quad g_{o d}=\sum_{|2 k+1| \leq \nu} g_{2 k+1} . \tag{2.4}
\end{equation*}
$$

Then we have a \boldsymbol{Z}_{2}-GLA

$$
\begin{equation*}
g=g_{e v}+g_{o d}, \tag{2.5}
\end{equation*}
$$

which is called the \boldsymbol{Z}_{2}-reduction of the GLA (2.1). The involutive automorphism ε of g defined by $\left.\varepsilon\right|_{g e v}=1$ and $\left.\varepsilon\right|_{\rho o d}=-1$ is called the characteristic involution for the \boldsymbol{Z}_{2}-GLA (2.5).

LEMMA 2.1. ε is a grade-preserving for the gradation (2.1) and is given by

$$
\begin{equation*}
\varepsilon=\operatorname{Adexp} \pi i Z . \tag{2.6}
\end{equation*}
$$

Proof. Since $Z \in_{g_{0}}$, we have $\varepsilon(Z)=Z$, which implies that ε is grade-preserving. An easy computation shows that

$$
\text { (Adexp } \pi i Z) X= \begin{cases}X, & X \in \mathfrak{c}(\mathfrak{a}), \tag{2.7}\\ e^{i \pi(\gamma, z)} X, & X \in g^{\gamma} .\end{cases}
$$

Hence (2.6) is immediate from (2.3) and (2.4).
q. e. d.

Remark 2.2. If we put

$$
\begin{equation*}
\tilde{\varepsilon}(\gamma)=e^{i \pi(\gamma, z)}, \quad \gamma \in \Delta, \tag{2.8}
\end{equation*}
$$

then $\tilde{\varepsilon}$ is seen to be a signature of roots. It turns out [18], [8] that every signature of roots of a simple Lie algebra g can be written as (2.8) for a certain gradation of g .

For the semisimple GLA (2.1), the grade-reversing Cartan involution τ commutes with ε. We say that the grade-reversing involution $\tau_{\varepsilon}:=\varepsilon \tau$ is the ε-modification of τ. τ_{ε} is an ε-involution in the sense of OshimaSekiguchi [18].

Lemma 2.3. The ε-modification τ_{ε} is uniquely determined by the gradation (2.1), up to conjugacy under the inner automorphism of an element of $\exp g_{0}$.

Proof. Let τ^{\prime} be another grade-reversing Cartan involution for the gradation (2.1), and let $\tau_{\varepsilon}^{\prime}=\varepsilon \tau^{\prime}$. By [8] there exists an element $X_{0} \in g_{0}$ such that

$$
\left(\operatorname{Adexp} X_{0}\right) \tau^{\prime}\left(\operatorname{Adexp}-X_{0}\right)=\tau .
$$

We also have $\varepsilon\left(\operatorname{Adexp} X_{0}\right) \varepsilon^{-1}=\operatorname{Adexp} \varepsilon\left(X_{0}\right)=\operatorname{Adexp} X_{0}$. Therefore
$\left(\operatorname{Adexp} X_{0}\right) \tau_{\varepsilon}^{\prime}\left(\operatorname{Adexp}-X_{0}\right)=\tau_{\varepsilon}$.
q. e. d.
2. 2. Let g be a real simple Lie algebra and τ be a Cartan involution of g. Let

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{k}+\mathfrak{p} \tag{2.9}
\end{equation*}
$$

be the Cartan decomposition by τ, where $\left.\tau\right|_{\mathfrak{f}}=1$ and $\left.\tau\right|_{\mathrm{n}}=-1$. Let a be a maximal abelian subspace of \mathfrak{k}, and Δ be the root system of \mathfrak{g} with respect to a. Choose a fundamental system $\Pi=\left\{\gamma_{1}, \cdots, \gamma_{r}\right\}$ for Δ and let $\left\{Z_{1}, \cdots\right.$, $\left.Z_{r}\right\}$ be the basis of a dual to Π with respect to the inner product (,) on a induced by the Killing form of g . For later considerations one can assume that Δ is of type BC_{r} or C_{r}. The following proposition follows from [8].

Proposition 2.4. Suppose that Δ (or Π) is of type BC_{r} or C_{r}. Then there exists a bijection between the set Π and the set of isomorphism classes of gradations of the $\boldsymbol{\nu}$-th kind of $\mathrm{g}, \boldsymbol{\nu}=1$ or 2 . The gradation of g corresponding to a root $\gamma_{k} \in \Pi(1 \leq k \leq r)$ is the one with Z_{k} as its characteristic element, in which case the Cartan involution τ is grade-reversing.

The situation being as above, let $\varepsilon_{k}(1 \leq k \leq r)$ be the characteristic involution of the \boldsymbol{Z}_{2}-reduction of the gradation of g corresponding to $\gamma_{k} \in$ Π. The ε_{k}-modification of the Cartan involution τ is denoted by τ_{k}.

Let Π be of type C_{r}. We then choose a basis $\left\{x_{1}, \cdots, x_{r}\right\}$ in a such that

$$
\begin{align*}
& \Delta=\left\{ \pm\left(x_{i} \pm x_{j}\right)(1 \leq i<j \leq r), \pm 2 x_{i}(1 \leq i \leq r)\right\}, \tag{2.10}\\
& \gamma_{i}=x_{i}-x_{i+1}(1 \leq i \leq r-1), \gamma_{r}=2 x_{r} .
\end{align*}
$$

If Π is of type $B C_{r}$, then we choose a basis $\left\{x_{1}, \cdots, x_{r}\right\}$ in a such that

$$
\begin{align*}
& \Delta=\left\{ \pm\left(x_{i} \pm x_{j}\right)(1 \leq i<j \leq r), \pm x_{i}, \quad \pm 2 x_{i}(1 \leq i \leq r)\right\}, \tag{2.11}\\
& \gamma_{i}=x_{i}-x_{i+1}(1 \leq i \leq r-1), \gamma_{r}=x_{r} .
\end{align*}
$$

Lemma 2.5. If $I \mathrm{I}$ is of type C_{r}, then

$$
\begin{align*}
& Z_{k}=\frac{4}{(\vartheta, \vartheta)}\left(x_{1}+\cdots+x_{k}\right), \quad 1 \leq k \leq r-1, \tag{2.12}\\
& Z_{r}=\frac{2}{(\vartheta, \vartheta)}\left(x_{1}+\cdots+x_{r}\right),
\end{align*}
$$

where $\vartheta=2 x_{1}$ is the dominant root in Δ. If Π is of type $B C_{r}$, then

$$
\begin{equation*}
Z_{k}=\frac{4}{(\vartheta, \vartheta)}\left(x_{1}+\cdots+x_{k}\right), \quad 1 \leq k \leq r, \tag{2.13}
\end{equation*}
$$

where $\vartheta=2 x_{1}$ is the dominant root in Δ.

Proof. Let $\check{\gamma}_{i}=2\left(\gamma_{i}, \gamma_{i}\right)^{-1} \gamma_{i}, 1 \leq i \leq r$, and let $\left\{\omega_{1}, \cdots, \omega_{r}\right\}$ be the basis of \mathfrak{a} dual to the basis $\left\{\check{\gamma}_{1}, \cdots, \check{\gamma}_{r}\right\}$. Then an easy computation shows that

$$
\begin{equation*}
Z_{k}=2\left(\gamma_{k}, \gamma_{k}\right)^{-1} \omega_{k}, \quad 1 \leq k \leq r . \tag{2.14}
\end{equation*}
$$

Suppose that Π is of type C_{r}. Then we have $2\left(\gamma_{k}, \gamma_{k}\right)=\left(\gamma_{r}, \gamma_{r}\right)=(\vartheta, \vartheta)$, $1 \leq k \leq r-1$. Hence, by (2.14) we have that $Z_{k}=4(\vartheta, \vartheta)^{-1} \omega_{k}, 1 \leq k \leq r-1$ and $Z_{r}=2(\vartheta, \vartheta)^{-1} \omega_{r}$. It is known (Bourbaki [4]) that $\omega_{k}=x_{1}+\cdots+x_{k}$, $1 \leq k \leq r$. So we get (2.12). Suppose next that Π is of type $B C_{r}$. Then we have $2\left(\gamma_{k}, \gamma_{k}\right)=4\left(\gamma_{r}, \gamma_{r}\right)=(\vartheta, \vartheta), 1 \leq k \leq r-1$. Hence it follows from (2.14) that $Z_{k}=4(\vartheta, \vartheta)^{-1} \omega_{k}, 1 \leq k \leq r-1$ and $Z_{r}=8(\vartheta, \vartheta)^{-1} \omega_{r}$. Also it is known [4] that $\omega_{k}=x_{1}+\cdots+x_{k}, 1 \leq k \leq r-1$ and $\omega_{r}=(1 / 2)\left(x_{1}+\cdots+x_{r}\right)$. Therefore we obtain (2.13).
q. e. d.

Lemma 2.6. Let K be the maximal compact subgroup of the adjoint group $G=\operatorname{Adg}$ generated by the subalgebra \mathfrak{E}. Suppose that Π is of type C_{r}. Then there exists an element a in the normalizer $N_{K}(\mathfrak{a})$ of a in K such that

$$
\begin{equation*}
(\operatorname{Ad} a)^{-1} \varepsilon_{k}(\operatorname{Ad} a)=\varepsilon_{r-k} \quad(1 \leq k \leq r-1) ; \tag{2.15}
\end{equation*}
$$

furthermore we have

$$
\begin{equation*}
(\operatorname{Ad} a)^{-1} \tau_{k}(\operatorname{Ad} a)=\tau_{r-k} \quad(1 \leq k \leq r-1) . \tag{2.16}
\end{equation*}
$$

Proof. Let $W(\Delta)$ be the Weyl group for the root system Δ. Consider the element $w \in W(\Delta)$ defined by

$$
\begin{equation*}
w\left(x_{i}\right)=x_{r+1-i} \quad(1 \leq i \leq r) . \tag{2.17}
\end{equation*}
$$

From (2.12) we get $w\left(Z_{k}\right)+Z_{r-k}=2 Z_{r}$ for $1 \leq k \leq r-1$. Hence, from (2.8) it follows that for $\gamma \in \Delta$

$$
\begin{equation*}
\tilde{\varepsilon}_{k}(w(\gamma))=\tilde{\varepsilon}_{r-k}(\gamma), \quad 1 \leq k \leq r-1 . \tag{2.18}
\end{equation*}
$$

Choose an element $a \in N_{K}(\mathfrak{a})$ such that $\left.(\operatorname{Ad} a)\right|_{\mathfrak{a}}=w$. Let $X \in \mathfrak{g}^{\gamma}$. Then, in view of (2.18), (2.6)-(2.8), we have

$$
\begin{aligned}
\varepsilon_{k}((\operatorname{Ad} a) X) & =\tilde{\varepsilon}_{k}(w(\gamma))(\operatorname{Ad} a) X=\tilde{\varepsilon}_{r-k}(\gamma)(\operatorname{Ad} a) X \\
& =(\operatorname{Ad} a)\left(\tilde{\varepsilon}_{r-k}(\gamma) X\right)=(\operatorname{Ad} a) \varepsilon_{r-k}(X) .
\end{aligned}
$$

Let $X \in \mathfrak{c}(\mathfrak{a})$. Then $\varepsilon_{k}(X)=\varepsilon_{r-k}(X)=X$. Therefore (2.15) follows. Since τ commutes with $\operatorname{Ad} a$ ($a \in K$), (2.16) follows from (2.15). q. e.d.
2.3. Here we give some definitions which are needed for later considerations. Let G be a Lie group and L be a closed subgroup of G. Suppose
that the coset space G / L is a (affine) symmetric (coset) space. G / L is called simple irreducible if G is real simple and if the linear isotropy representation of L is irreducible. G / L is called pseudo-hermitian symmetric if it is given a G-invariant almost complex structure J and a G-invariant pseudo-hermitian metric g (with respect to J). As is the case for a hermitian symmetric coset space, the almost complex structure J is automatically integrable and the metric g is automatically pseudo-kähler (cf. [17]).

Let us assume further that G is simple. Let θ be the involutive automorphism of G associated with L. The Lie algebra involution induced by θ is denoted again by θ. Let $g=\operatorname{Lie} G$ and $\mathfrak{l}=\operatorname{Lie} L$. We have then the symmetric triple $(\mathfrak{g}, \mathfrak{l}, \theta)$. The simple symmetric space G / L is said to be of K_{ε}-type, if θ is an ε-involution of g. Now we go back to the situation in 2.2. Let $\mathfrak{G}_{k}(1 \leq k \leq r)$ be the subalgebra consisting of τ_{k}-fixed elements in g. For the sake of convenience, we define τ_{0} to be $\tau . \tau_{k}$'s $(0 \leq k \leq r)$ are ε-involutions of g. Hence a symmetric coset space associated with the simple symmetric triple $\left(\mathfrak{g}, \mathfrak{h}_{k}, \tau_{k}\right), 0 \leq k \leq r$, is of K_{ε}-type.

§ 3. Construction of pseudo-hermitian symmetric spaces

3.1. Let g be a real simple Lie algebra of hermitian type and τ be a Cartan involution of g. Let $g=f+p$ be the Cartan decomposition by τ as in (2.9). The complexification of $\mathfrak{g}, \mathfrak{k}, \mathfrak{p}$ are denoted by $\mathfrak{g}^{C}, \mathfrak{f}^{C}, \mathfrak{p}^{C}$, respectively. We extend τ to the conjugation of g^{c} with respect to the compact real form $g_{u}=\mathfrak{f}+i \mathfrak{p}$. Since g is of hermitian type, \mathfrak{p} has an ad \mathfrak{k}-invariant complex structure. Let $\mathfrak{p}^{ \pm}$be the $\pm i$-eigenspaces of \mathfrak{p}^{c} under that complex structure. If we put $\overline{\mathrm{g}}_{ \pm 1}:=\mathfrak{p}^{ \pm}$and $\overline{\mathrm{g}}_{0}:=\mathfrak{k}^{C}$, then one can write g^{C} as a GLA :

$$
\begin{equation*}
\mathrm{g}^{c}=\overline{\mathrm{g}}_{-1}+\overline{\mathrm{g}}_{0}+\overline{\mathrm{g}}_{1} . \tag{3.1}
\end{equation*}
$$

Choose a Cartan subalgebra \mathfrak{h} of g contained in \mathfrak{k}. Let Σ be the root system of g^{C} with respect to the Cartan subalgebra \mathfrak{K}^{C} ($=$ the complexification of \mathfrak{G}). We identify Σ with a subset of the real part $i \mathfrak{h}$ of \mathfrak{h}^{C} with respect to the inner product (,) on $i \mathfrak{h}$ induced by the Killing form of g^{C}. Let $E_{0} \in \bar{g}_{0}$ be the characteristic element of the GLA (3.1), and let $\Sigma_{k}=\{\alpha \in \Sigma$: $\left.\left(\alpha, E_{0}\right)=k\right\}, k=0, \pm 1$. Then one has the decomposition:
(3.2) $\quad \Sigma=\Sigma_{-1} \cup \Sigma_{0} \cup \Sigma_{1}$.

One can choose a linear order in Σ with respect to which the set ${ }^{+} \Sigma$ of positive roots in Σ satisfies ([8])

$$
\begin{equation*}
\Sigma_{1} \subset^{+} \Sigma \subset \Sigma_{0} \cup \Sigma_{1} \tag{3.3}
\end{equation*}
$$

For a root $\alpha \in \Sigma$ we choose a root vector E_{α} in such a way that

$$
\begin{equation*}
\tau E_{\alpha}=-E_{-\alpha}, \quad\left[E_{\alpha}, E_{-\alpha}\right]=\stackrel{\vee}{\alpha} \tag{3.4}
\end{equation*}
$$

where $\stackrel{v}{\alpha}=2(\alpha, \alpha)^{-1} \alpha$. For a root $\alpha \in^{+} \boldsymbol{\Sigma}$, we put

$$
\begin{equation*}
X_{\alpha}=E_{\alpha}+E_{-\alpha}, \quad Y_{\alpha}=-i\left(E_{\alpha}-E_{-\alpha}\right) \tag{3.5}
\end{equation*}
$$

\mathfrak{p} is spanned by those X_{α} and Y_{α} satisfying $\alpha \in \Sigma_{1}$. Let $\Gamma=\left\{\beta_{1}, \cdots, \beta_{r}\right\} \subset \Sigma_{1}$ be a maximal system of strongly orthogonal roots such that

$$
\begin{align*}
& \theta=\beta_{1}>\beta_{2}>\cdots>\beta_{r} \tag{3.6}\\
& \left(\beta_{j}, \beta_{j}\right)=(\theta, \theta), 1 \leq j \leq r
\end{align*}
$$

where $\theta \in \Sigma$ is the dominant root. Consider the subsets of Γ :

$$
\begin{equation*}
\Gamma_{k}=\left\{\beta_{1}, \cdots, \beta_{k}\right\}, 1 \leq k \leq r, \quad \Gamma_{0}=\varnothing . \tag{3.7}
\end{equation*}
$$

Let $G^{C}:=\operatorname{Ad} g^{c}$ be the adjoint group generated by the Lie algebra g^{c}, and put

$$
\begin{array}{lll}
c_{\beta j}=\exp \frac{\pi i}{4} X_{\beta j}, & c_{k}=c_{\beta_{1}} \cdots c_{\beta_{k}}, & 1 \leq k \leq r, \tag{3.8}\\
c_{0}=1, & c=c_{r} . &
\end{array}
$$

Let $\bar{g}_{\lambda}(k)=\left(\operatorname{Ad} c_{k}^{2}\right) \bar{g}_{\lambda}, \lambda=0, \pm 1$. Then we have the gradation of g^{c} :
$(3.9)_{k} \quad g^{C}=\bar{g}_{-1}(k)+\bar{g}_{0}(k)+\bar{g}_{1}(k), \quad 0 \leq k \leq r$,
whose characteristic element is
$(3.10)_{k} \quad E_{k}=\left(\operatorname{Ad} c_{k}^{2}\right) E_{0}, \quad 0 \leq k \leq r$.
Consider the \boldsymbol{Z}_{2}-reduction of the gradation $(3.9)_{k}$:
$(3.11)_{k} \quad g^{c}=\overline{\mathfrak{h}}_{k}+\bar{m}_{k}, \quad 0 \leq k \leq r$,
where $\overline{\mathfrak{h}}_{k}=\overline{\mathrm{g}}_{0}(k)$ and $\overline{\mathrm{m}}_{k}=\overline{\mathrm{g}}_{-1}(k)+\overline{\mathrm{g}}_{1}(k)$. Then, by Lemma 2.1, the characteristic involution η_{k} of the \boldsymbol{Z}_{2}-GLA $(3.11)_{k}$ is given by
$(3.12)_{k} \quad \eta_{k}=\operatorname{Adexp} \pi i E_{k}$,
where $\eta_{k}=1$ on $\overline{\mathfrak{h}}_{k}$ and $\eta_{k}=-1$ on \bar{m}_{k}.
LEMMA 3.1. Let $0 \leq k \leq r$. Then the element $i E_{k} \in g^{C}$ lies in g. In particular, the conjugation σ of g^{c} with respect to g is a grade-reversing involution of the GLA (3.9) k.

Proof. It is known by Korányi-Wolf [13] that E_{0} can be written as

$$
\begin{equation*}
E_{0}=E_{0}^{+}+\frac{1}{2} \sum_{j=1}^{r} \breve{\beta}_{j}, \tag{3.13}
\end{equation*}
$$

where $E_{0}^{+} \in i \emptyset$ is orthogonal to the subspace $\sum_{j=1}^{r} \boldsymbol{R} \breve{\beta}_{j}$ with respect to (,). We have ([13])

$$
\begin{equation*}
\operatorname{Ad} c_{\beta_{j}}: X_{\beta_{j}} \mapsto X_{\beta_{j}}, \quad Y_{\beta_{j}} \mapsto-\check{\beta}_{j}, \check{\beta}_{j} \mapsto Y_{\beta_{j}} . \tag{3.14}
\end{equation*}
$$

Therefore we have $E_{k}=E_{0}-\sum_{j=1}^{k} \breve{\beta}_{j}$, which implies that $E_{k} \in i \mathfrak{h}$. Therefore $\sigma E_{k}=-E_{k}$, or equivalently, σ is grade-reversing.
q. e.d.

Lemma 3.2. (i) If we put $\mathfrak{h}_{k}=\overline{\mathfrak{h}}_{k} \cap \mathfrak{g}$ and $\mathfrak{m}_{k}=\overline{\mathfrak{m}}_{k} \cap \mathfrak{g}$, then g can be written as a \boldsymbol{Z}_{2}-GLA
$(3.15)_{k} \quad \mathfrak{g}=\mathfrak{h}_{k}+\mathfrak{m}_{k}, \quad 0 \leq k \leq r$,
which is a real form of the \boldsymbol{Z}_{2}-GLA (3.11) ${ }_{k}$. (ii) η_{k} in (3.12) ${ }_{k}$ is an inner characteristic involution of \mathfrak{g} satisfying $\left.\eta_{k}\right|_{b_{k}}=1$ and $\left.\eta_{k}\right|_{m_{k}}=-1$. (iii) $i E_{k}$ lies in \mathfrak{h}_{k}, and \mathfrak{h}_{k} coincides with the centralizer $\mathfrak{c}\left(i E_{k}\right)$ of $i E_{k}$ in \mathfrak{g}.

Proof. It follows from (3.12) ${ }_{k}$ and Lemma 3.1 that σ commutes with η_{k}. Let $X \in g$. One can write $X=X_{1}+X_{2}$, where $X_{1} \in \overline{\mathfrak{h}}_{k}$ and $X_{2} \in \bar{m}_{k}$. Then $\overline{\mathfrak{h}}_{k}$ and $\overline{\mathfrak{m}}_{k}$ are stable under σ. Therefore $\sigma X=X$ implies that $\sigma X_{i}=$ $X_{i}(i=1,2)$, from which $(3.15)_{k}$ follows. Note that \mathfrak{G}_{k} and \mathfrak{m}_{k} are real forms of $\overline{\mathfrak{h}}_{k}$ and \bar{m}_{k}, respectively. By Lemma 3.1, η_{k} is an inner involution of g . Since E_{k} is the characteristic element of the GLA (3.9) $)_{k}, \overline{\mathfrak{H}}_{k}$ is the centralizer of $i E_{k}$ in g^{c}. Also we have seen $E_{k} \in i \mathfrak{h}$, and hence $i E_{k} \in \mathfrak{h}_{k}$. (iii) is a direct consequence of this fact.
q. e.d.
3.2. Let $\mathfrak{h}^{-} \subset \mathfrak{h}$ be the real span of $i \beta_{1}, \cdots, i \beta_{r}$, and let \mathfrak{h}^{+}be the orthogonal complement of \mathfrak{h}^{-}in \mathfrak{h} with respect to the Killing form of \mathfrak{g}. One has $\mathfrak{h}=\mathfrak{h}^{+}+\mathfrak{h}^{-}$. Let ω be the orthogonal projection of $i \mathfrak{h}$ onto $i \mathfrak{h}^{-}$with respect to (,). Then it is well-known (Moore [15]) that

$$
\left\{\begin{array}{l}
\omega\left(\Sigma_{1}\right)=\left\{\left(\beta_{i}+\beta_{j}\right) / 2: 1 \leq i \leq j \leq r\right\}, \tag{3.16}\\
\omega\left({ }^{+} \Sigma_{0}\right)-(0)=\left\{\left(\beta_{i}-\beta_{j}\right) / 2: 1 \leq i<j \leq r\right\},
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\omega\left(\Sigma_{1}\right)=\left\{\begin{array}{l}
\left(\beta_{i}+\beta_{j}\right) / 2: 1 \leq i \leq j \leq r \\
\beta_{i} / 2: 1 \leq i \leq r
\end{array}\right\} \tag{3.17}\\
\omega\left(\Sigma_{0}\right)-(0)=\left\{\begin{array}{l}
\left(\beta_{i}-\beta_{j}\right) / 2: 1 \leq i<j \leq r \\
\beta_{i} / 2: 1 \leq i \leq r
\end{array}\right\},
\end{array}\right.
$$

where ${ }^{+} \Sigma_{0}={ }^{+} \Sigma \cap \Sigma_{0}$. Let a denote the real span of $Y_{\beta_{1}}, \cdots, Y_{\beta_{r}}$ in p. Then \mathfrak{a} is a maximal abelian subspace of \mathfrak{p}, and $\overline{\mathfrak{a}}:=\mathfrak{h}^{+}+\mathfrak{a}$ is a Cartan subalgebra of g. Let $\bar{\Delta}$ be the root system of g^{c} with respect to the Cartan subalgebra $\overline{\mathfrak{a}}^{C}$ (=the complexification of $\overline{\mathfrak{a}}$). $\bar{\Delta}$ is identified with a subset of the real part $i^{+}+\mathfrak{a}$ of $\overline{\mathfrak{a}}^{c}$ with respect to the Killing form of g. Let $\widetilde{\boldsymbol{\omega}}$ be the orthogonal projection of $i \mathfrak{h}^{+}+\mathfrak{a}$ onto \mathfrak{a}, and let $\Delta=\widetilde{\omega}(\bar{\Delta})-(0)$. Then Δ is the root system of g with respect to \mathfrak{a}, which was chosen in $\S 2$. As is well-known, if we put

$$
\begin{equation*}
x_{j}=\frac{1}{4}(\theta, \theta) Y_{\beta_{j}}, \quad 1 \leq j \leq r, \tag{3.18}
\end{equation*}
$$

then Δ is given by (2.10) or (2.11). Therefore, if we define $\gamma_{1}, \cdots, \gamma_{r}$ as in (2.10) or (2.11), then $\Pi:=\left\{\gamma_{1}, \cdots, \gamma_{r}\right\}$ is a fundamental system for Δ which is of type C_{r} or $B C_{r}$. In both cases, the dominant root ϑ in Δ is given by $2 x_{1}$ (cf. Lemma 2.5). Using (3.6) and (3.14), we have $(\operatorname{Ad} c)(\theta)=\vartheta$. Hence we can rewrite (3.18) as

$$
\begin{equation*}
x_{j}=\frac{1}{4}(\vartheta, \vartheta) Y_{\beta_{j}}, \quad 1 \leq j \leq r . \tag{3.19}
\end{equation*}
$$

As in 2. 2, $\left\{Z_{1}, \cdots, Z_{r}\right\}$ will denote the basis of \mathfrak{a} dual to Π.
LEMMA 3.3. If Π is of type $B C_{r}$, then we have $c_{k}^{4}=\exp \pi i Z_{k}, 1 \leq k \leq$ r. If Π is of type C_{r}, then we have $c_{k}^{4}=\exp \pi i Z_{k}, 1 \leq k \leq r-1$, and $c_{r}^{4}=$ $\exp 2 \pi i Z_{r}$.

Proof. Let

$$
h=\left(\begin{array}{cc}
1 & 0 \tag{3.20}\\
0 & -1
\end{array}\right), e_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), e_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Then an easy computation shows that the equality

$$
\begin{equation*}
\left(\exp \frac{\pi i}{4}\left(e_{+}+e_{-}\right)\right)^{4}=\exp \pi i h \tag{3.21}
\end{equation*}
$$

is valid in $S L(2, \boldsymbol{C})$. By using this, we have

$$
\begin{equation*}
c_{\beta_{j}}^{4}=\exp \pi i \breve{\jmath}_{j}, \quad 1 \leq j \leq r . \tag{3.22}
\end{equation*}
$$

Hence it follows from (3.14) and (3.19) that

$$
\begin{align*}
c_{k}^{4} & =c c_{k}^{4} c^{-1}=c\left(\exp \pi i \sum_{j=1}^{k} \breve{\beta}_{j}\right) c^{-1} \tag{3.23}\\
& =\exp \pi i \sum_{j=1}^{k}(\operatorname{Ad} c) \breve{\beta}_{j}=\exp \pi i \sum_{j=1}^{k} Y_{\beta_{j}} \\
& =\exp \pi i \frac{4}{(\vartheta, \vartheta)} \sum_{j=1}^{k} x_{j} .
\end{align*}
$$

The lemma now follows from Lemma 2.5 and (3.23).
q.e.d.

Lemma 3.4. Suppose that Π is of type $B C_{r}$ or C_{r}. Let $\varepsilon_{k}(1 \leq k \leq r)$ be the characteristic involution for the gradation of g with Z_{k} as its characteristic element. If $1 \leq k \leq r-1$, then the characteristic involution η_{k} of the \boldsymbol{Z}_{2}-GLA (3.15) k coincides with the ε_{k}-modification τ_{k} of the Cartan involution τ in 3.1. $\quad \eta_{r}$ coincides with τ_{r} or τ, according as Π is of type $B C_{r}$ or C_{r}, respectively.

Proof. We extend σ and τ to the involutive automorphisms of G^{C}, denoted again by σ and τ. Then we have

$$
\begin{equation*}
\tau\left(c_{\beta_{j}}\right)=c_{\beta_{j}}, \quad \sigma\left(c_{\beta_{j}}\right)=c_{\beta_{j}}^{-1}, \quad 1 \leq j \leq r . \tag{3.24}
\end{equation*}
$$

Noting that the conjugations σ and τ of g^{C} commute with each other, we see easily that

$$
\begin{equation*}
\sigma \tau=\tau \sigma=\eta_{0}=\operatorname{Adexp} \pi i E_{0} . \tag{3.25}
\end{equation*}
$$

Therefore the equality $\tau=\operatorname{Adexp} \pi i E_{0}$ is valid on $g . B y$ (3.25) and (3.24) we have

$$
\begin{align*}
& \left(\operatorname{Adexp}-\pi i E_{0}\right)\left(\operatorname{Ad} c_{k}^{2}\right)\left(\operatorname{Adexp} \pi i E_{0}\right)=(\tau \sigma)\left(\operatorname{Ad} c_{k}^{2}\right)(\tau \sigma)^{-1} \tag{3.26}\\
& =\operatorname{Ad}\left(\tau \sigma\left(c_{k}^{2}\right)\right)=\operatorname{Ad} c_{k}^{-2} .
\end{align*}
$$

Consequently, from (3.12) $)_{k},(3.10)_{k}$ and Lemma 3.3 it follows that on g

$$
\begin{align*}
\eta_{k} & =\operatorname{Adexp} \pi i E_{k}=\operatorname{Adexp} \pi i\left(\left(\operatorname{Ad} c_{k}^{2}\right) E_{0}\right) \tag{3.27}\\
& =\operatorname{Ad}\left(c_{k}^{2}\left(\exp \pi i E_{0}\right) c_{k}^{-2}\right)=\left(\operatorname{Ad} c_{k}^{2}\right)\left(\operatorname{Adexp} \pi i E_{0}\right)\left(\operatorname{Ad} c_{k}^{2}\right)^{-1} \\
& =\left(\operatorname{Ad} c_{k}^{4}\right)\left(\operatorname{Adexp} \pi i E_{0}\right)=\left(\operatorname{Ad} c_{k}^{4}\right) \tau
\end{align*}
$$

By Lemma 3.3 and (2.6), the last expression is equal to (Adexp $2 \pi i Z_{r}$) $\tau=\varepsilon_{r}^{2} \tau=\tau$, provided that Π is of type C_{r} and $k=r$. Otherwise, by Lemma 3.3, it is equal to $\varepsilon_{k} \tau=\tau_{k}$. q. e. d.
3. 3. In 3. 2, we constructed simple symmetric triples ($g, \mathfrak{h}_{k}, \eta_{k}$), $0 \leq k \leq r$. Note that $\left(\mathfrak{g}, \mathfrak{K}_{0}, \eta_{0}\right)=(\mathfrak{g}, \mathfrak{E}, \tau)$. Let $G:=A d g$ be the adjoint group generated by g. Let $H_{k}(0 \leq k \leq r)$ be the centralizer of $i E_{k}\left(\in \mathfrak{h}_{k}\right)$ in G. Lie $H_{k}=$
\mathfrak{h}_{k} holds. Let us consider the coset spaces

$$
\begin{equation*}
M_{k}=G / H_{k}, \quad 0 \leq k \leq r . \tag{3.28}
\end{equation*}
$$

LEmma 3.5. The subgroup $H_{k}(0 \leq k \leq r)$ is connected. The space $M_{k}=G / H_{k}(0 \leq k \leq r)$ is a simply connected simple symmetric coset space of K_{ε}-type.

Proof. Let \widetilde{G} be the universal covering group of G and π be the covering homomorphism of \widetilde{G} onto G. Then one can write $M=G / H_{k}=$ $\widetilde{G} / \pi^{-1}\left(H_{k}\right)$. Let $\widetilde{C}\left(i E_{k}\right)$ be the centralizer of $i E_{k}$ in \widetilde{G}. It follows easily that $\pi^{-1}\left(H_{k}\right)=\widetilde{C}\left(i E_{k}\right)$. Let $\tilde{\eta}_{k}$ be the involutive automorphism of \widetilde{G} defined by $\tilde{\eta}_{k}(a)=\left(\exp \pi i E_{k}\right) a\left(\exp -\pi i E_{k}\right), a \in \widetilde{G} . \quad \tilde{\eta}_{k}$ induces on g the involution η_{k}. We see easily that $\widetilde{C}\left(i E_{k}\right)$ is contained, as an open subgroup, in the subgroup $\widetilde{G}_{\eta_{k}}$ of $\tilde{\eta}_{k}$-fixed elements in \widetilde{G}. $\widetilde{G}_{\eta_{k}}$ is connected, by S. Koh [12]. Therefore $\widetilde{C}\left(i E_{k}\right)$ is connected, and so we have $\pi\left(\widetilde{C}\left(i E_{k}\right)\right)=\mathrm{H}_{k}$, which implies that H_{k} is connected. η_{k} extends to an involutive automorphism of G, denoted again by η_{k}. It satisfies $\pi \tilde{\eta}_{k}=\eta_{k} \pi$. Thus H_{k} is an open subgroup of the subgroup of η_{k}-fixed elements in G. Hence $M_{k}=G / H_{k}\left(=\widetilde{G} / \widetilde{C}\left(i E_{k}\right)\right)$ is simply connected simple symmetric space associated with the symmetric triple ($\mathfrak{g}, \mathfrak{h}_{k}, \eta_{k}$). On the other hand, by Lemma 3.4, η_{k} is an ε-involution and hence G / H_{k} is of K_{ε}-type. q. e. d.

Let us consider the automorphism $\operatorname{Adexp} \frac{\pi}{2}\left(-i E_{k}\right), 0 \leq k \leq r$, of g , which leaves \mathfrak{m}_{k} stable. Consider the linear endomorphism on \mathfrak{m}_{k}

$$
\begin{equation*}
j_{k}=\operatorname{Ad}_{m_{k}} \exp \frac{\pi}{2}\left(-i E_{k}\right), \quad 0 \leq k \leq r . \tag{3.29}
\end{equation*}
$$

We denote by (,) the restriction of the Killing form of g to \mathfrak{m}_{k}, which is a nondegenerate inner product on \mathfrak{m}_{k}. It is easy to see that j_{k} satisfies the followings:

$$
\begin{array}{ll}
j_{k}^{2}=-1, & \tag{3.30}\\
{\left[j_{k}, \operatorname{Ad}_{\mathrm{m}_{k}} a\right]=0,} & a \in H_{k}, \\
\left(j_{k} X, j_{k} Y\right)=(X, Y), & X, Y \in \mathfrak{m}_{k}
\end{array}
$$

Theorem 3.6. Let G be the adjoint group of a real simple Lie algebra g of hermitian type of real rank r, and $H_{k}(0 \leq k \leq r)$ be the centralizer in G of the element $i E_{k} \in_{g}\left(c f .(3.10)_{k}\right)$. Then the coset space $M_{k}=$ $G / H_{k}(0 \leq k \leq r)$ is a simply connected simple irreducible pseudo-hermitian symmetric space of K_{ε}-type. Conversely every simply connected simple ir. reducible pseudo-hermitian symmetric space of K_{ε}-type is obtained in this
manner. Furthermore, if the restricted root system of g is of type C_{r}, then we have the isomorphism $M_{k} \simeq M_{r-k}\left(0 \leq k \leq\left[\frac{r}{2}\right]\right)$ as pseudo-hermitian symmetric spaces.

Proof. In order to prove the first assertion, in view of Lemma 3.5, it remains to show that the symmetric space M_{k} is pseudo-hermitian and irreducible. By identifying m_{k} with the tangent space to $M_{k}=G / H_{k}$ at the origin, j_{k} extends to a G-invariant almost complex structure J_{k} on M_{k} (cf. (3.30), (3.31)). At the same time the inner product (,) extends to a G-invariant pseudo-hermitian metric on M_{k} (cf. (3.32)). M_{k} is thus pseudo-hermitian symmetric. Moreover, m_{k} has an invariant complex structure j_{k}, and g is never a complex Lie algebra. Hence, by a result of Koh (Theorem 7 [12]], M_{k} is irreducible. Considering (2.6)-(2.8) and comparing our $\varepsilon_{1}, \cdots, \varepsilon_{r}$ in Lemma 3.4 with the classification of signatures of roots for simple Lie algebras (Oshima-Sekiguchi [18]), we see that η_{0}, \cdots, η_{r} exhaust all the ε-involutions for g which correspond to pseudohermitian symmetric spaces (cf. Berger [3]]. This implies the second assertion. Next suppose that the restricted root system of g is of type C_{r}. Let K be the analytic subgroup of G generated by ${ }^{\mathfrak{E}}$ in 3.1. Note that $K=H_{0}$. Then, by Lemmas 2.6 and 3.4, there exists an element $a \in N_{K}(\mathfrak{a})$ such that $(\operatorname{Ad} a)^{-1} \eta_{k}(\operatorname{Ad} a)=\eta_{r-k}$ for $0 \leq k \leq r$ (Note that $\left.\eta_{0}=\eta_{r}=\tau\right)$. Hence we have $(\operatorname{Ad} a)^{-1} j_{k}(\operatorname{Ad} a)=j_{r-k}$ and $(\operatorname{Ad} a) \mathfrak{h}_{k}=\mathfrak{h}_{r-k}$, and consequently the two pseudo-hermitian symmetric spaces M_{k} and M_{r-k} are isomorphic.
q. e. d.
3.4. Let $U_{k}(0 \leq k \leq r)$ be the normalizer of $\bar{g}_{1}(k)$ in G^{c}. Then we can write $U_{k}=C^{c}\left(i E_{k}\right) \exp \bar{g}_{1}(k)$ (semi-direct), where $C^{c}\left(i E_{k}\right)$ is the centralizer of $i E_{k} \in g^{c}$ in G^{c}. U_{k} is connected and Lie $U_{k}=\bar{g}_{0}(k)+\bar{g}_{1}(k)$. The coset space $M^{*}=G^{c} / U_{0}$ is a compact irreducible hermitian symmetric space dual to the bounded symmetric domain $M_{0}=G / H_{0}$. G is viewed as a subgroup of G^{c}. The following proposition is a version of a result of Takeuchi [20].

PROPOSITION 3.7. The pseudo-hermitian symmetric space M_{k} $(0 \leq k \leq r)$ is holomorphically imbedded into M^{*} as the open G-orbit through the point $c_{k}^{2} o \in M^{*}$, where o denotes the origin of the coset space M^{*}.

Proof. Let us define a smooth map φ_{k} of M_{k} to M^{*} by putting $\varphi_{k}\left(g H_{k}\right)=g c_{k}^{2} 0, g \in G$. Choose an element $a \in G \cap U_{k}$, and write it in the
form $a=b \exp X$, where $b \in C^{c}\left(i E_{k}\right), X \in \bar{g}_{1}(k)$. Since any element in G is left fixed by the involution σ of G^{c}, we have $\mathrm{b} \exp X=\sigma(b) \exp \sigma(X)$, or

$$
\begin{equation*}
\exp \sigma(X)=\left(\sigma(b)^{-1} b\right) \exp X . \tag{3.33}
\end{equation*}
$$

$C^{C}\left(i E_{k}\right)$ is stable under $\sigma . \quad \sigma$ is grade-reversing for the gradation (3.9) k (cf. Lemma 3.1). Therefore the left-hand side of (3.33) lies in $\exp \overline{\mathrm{g}}_{-1}(k)$, while the right-hand side lies in U_{k}. Since $\exp \bar{g}_{-1}(k) \cap U_{k}=$ (1), we get $X=0$, and so $a=b \in C^{C}\left(i E_{k}\right) \cap G=H_{k}$. Thus we have proved $G \cap U_{k}=H_{k}$, which implies that φ_{k} is injective. That φ_{k} is open is easily seen. Under the identification of the tangent space $T_{o}\left(M^{*}\right)$ at o with $\overline{\mathrm{g}}_{-1}(0)$, the tangent space at $c_{k}^{2} O$ to M^{*} is identified with $\overline{\mathrm{g}}_{-1}(k)$. On the other hand $\bar{g}_{-1}(k)$ is the i-eigenspace of the operator j_{k} on the complexification $\mathfrak{m}_{k}^{C}=\overline{\mathfrak{g}}_{-1}(k)+\bar{g}_{1}(k)$, and hence \mathfrak{m}_{k} with complex structure j_{k} is naturally \boldsymbol{C}-isomorphic to the complex vector space $\bar{g}_{-1}(k)$. From this we can conclude that the differential $\left(\varphi_{k}\right)_{*}$ at the origin of M_{k} is \boldsymbol{C}-linear, which is equivalent to saying that φ_{k} is holomorphic. q.e.d.

Later on we will identify M_{k} ($0 \leq k \leq r$) with its φ_{k}-image, and so M_{k} is viewed as an open submanifold of M^{*}.

§ 4. The Ad \boldsymbol{G}_{0}-orbit decomposition of g_{-2}

4. 5. Let g be a real simple Lie algebra of hermitian type of real rank r, and let τ be a Cartan involution of g. We shall preserve the situation in § 3. For a subset $\Phi \subset \Sigma$, we denote by $-\Phi$ the set of roots $-\alpha$, where $\alpha \in \Phi$. First of all we wish to construct the gradation of g^{c} whose characteristic element is $Z_{0}=\sum_{j=1}^{r} \breve{\beta}_{j}$. For an integer k, let

$$
\begin{equation*}
\widetilde{\Sigma}_{k}=\left\{\alpha \in \Sigma:\left(\alpha, Z_{0}\right)=k\right\} . \tag{4.1}
\end{equation*}
$$

By using (3.16) and (3.17) we have

$$
\begin{equation*}
\Sigma=\bigcup_{k=-2}^{2} \widetilde{\Sigma}_{k}, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \widetilde{\Sigma}_{0}=\left\{\alpha \in \Sigma_{0}: \omega(\alpha)=0 \text { or } \omega(\alpha)=\frac{1}{2}\left(\beta_{i}-\beta_{j}\right), i \neq j\right\}, \tag{4.3}\\
& \widetilde{\Sigma}_{1}=\left\{\alpha \in^{+} \Sigma: \omega(\alpha)=\frac{1}{2} \beta_{i}, 1 \leq i \leq r\right\}, \\
& \widetilde{\Sigma}_{2}=\left\{\alpha \in \Sigma_{1}: \omega(\alpha)=\frac{1}{2}\left(\beta_{i}+\beta_{j}\right), i \leq j\right\}, \\
& \widetilde{\Sigma}_{-k}=-\widetilde{\Sigma}_{k}, \quad k=1,2 .
\end{align*}
$$

We denote the root space $\left(\subset_{\mathfrak{g}}{ }^{c}\right)$ for $\boldsymbol{\alpha} \in \boldsymbol{\Sigma}$ by g^{α}. Let

$$
\begin{align*}
& \tilde{\mathfrak{g}}_{0}=\mathfrak{h} c+\sum_{\alpha \in \bar{\Sigma}_{0}} g^{\alpha}, \tag{4.4}\\
& \tilde{\mathrm{g}}_{k}=\sum_{a \in \Sigma_{\mathfrak{\Sigma}}} \mathrm{g}^{\alpha}, \quad k= \pm 1, \pm 2 .
\end{align*}
$$

Then we get the gradation of g^{c}

$$
\mathrm{g}^{c}=\tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{-1}+\tilde{\mathfrak{g}}_{0}+\tilde{\mathfrak{g}}_{1}+\tilde{\mathfrak{g}}_{2},
$$

with Z_{0} as its characteristic element. If the restricted fundamental system Π is of type C_{r}, then $\widetilde{\Sigma}_{1}=\widetilde{\Sigma}_{-1}=\varnothing$, in other words, $\tilde{g}_{1}=\tilde{\mathfrak{g}}_{-1}=(0)$.

Next we wish to recombine the gradation so as to get the gradation (3.1). Define four subsets of $\boldsymbol{\Sigma}$ by

$$
\begin{array}{ll}
\widetilde{\Sigma}_{1}^{+}=\Sigma_{-1} \cap \widetilde{\Sigma}_{-1}, & \widetilde{\Sigma}_{-1}^{-}=\Sigma_{0} \cap \widetilde{\Sigma}_{-1}, \tag{4.6}\\
\widetilde{\Sigma}_{1}^{+}=\Sigma_{0} \cap \widetilde{\Sigma}_{1,}, & \widetilde{\Sigma}_{1}^{-}=\Sigma_{1} \cap \widetilde{\Sigma}_{1} .
\end{array}
$$

Then we have

$$
\begin{equation*}
\widetilde{\Sigma}_{1}=\widetilde{\boldsymbol{\Sigma}}_{1}^{+} \cup \widetilde{\boldsymbol{\Sigma}}_{1}^{-}, \tag{4.7}
\end{equation*}
$$

$$
\widetilde{\mathbf{\Sigma}}_{-1}=\widetilde{\mathbf{\Sigma}}_{-1}^{ \pm} \cup \widetilde{\boldsymbol{\Sigma}}_{-1}^{-} .
$$

Also we have

$$
\Sigma_{1}=\widetilde{\Sigma}_{2} \cup \widetilde{\Sigma}_{1}^{-},
$$

$$
\begin{equation*}
\Sigma_{-1}=\widetilde{\Sigma}_{-2} \cup \widetilde{\Sigma}_{-1}^{+}, \quad \Sigma_{0}=\widetilde{\Sigma}_{-1}^{-} \cup \widetilde{\Sigma}_{0} \cup \widetilde{\Sigma}_{1}^{+} . \tag{4.8}
\end{equation*}
$$

Let $\tilde{g}_{ \pm 1}^{\epsilon}$ be the subspaces of g^{c} spanned by the root vectors E_{α} for $\alpha \in \widetilde{\Sigma}_{ \pm 1}^{\varepsilon}$, where the index ε always takes the values + and - . Then we have from (4.7) and (4.8)

$$
\begin{align*}
& \tilde{\mathfrak{g}}_{1}=\tilde{\mathfrak{g}}_{1}^{+}+\tilde{\mathfrak{g}}_{1}^{-}, \tag{4.9}\\
& \tilde{g}_{-1}^{c}=\left(\tilde{\mathfrak{g}}_{-1}^{+}+\tilde{\mathfrak{g}}_{-1}^{-},\right. \\
& \overline{\mathfrak{g}}_{0}=\tilde{\mathfrak{g}}_{-1}^{-}+\tilde{\mathfrak{g}}_{0}^{+}+\tilde{\mathfrak{g}}_{1}^{+}, \quad\left(\tilde{\mathfrak{g}}_{-1}^{-}+\tilde{\mathfrak{g}}_{0}+\tilde{\mathfrak{g}}_{1}^{+}\right)+\left(\tilde{\mathfrak{g}}_{-2}^{-}+\tilde{\mathfrak{g}}_{1}^{-}, \quad \tilde{\mathfrak{g}}_{2}\right), \\
& \overline{\mathfrak{g}}_{1}=\tilde{\mathfrak{g}}_{1}^{-}+\tilde{\mathfrak{g}}_{2},
\end{align*}
$$

Note that $\tilde{\mathrm{g}}_{1}^{\mathrm{c}}$ and $\tilde{\mathrm{g}}_{-1}^{\varepsilon}$ are abelian subalgebras, and by the same arguments as in 4.3 in [7], we see that those four subalgebras have an equal dimension. (3.13) implies that $2 E_{0}^{+}=2 E_{0}-Z_{0}$, and hence it follows that the two decompositions (4.9) are the decompositions into the ($\pm i$)-eigenspaces
under the operator ad I, where $I=-2 i E_{0}^{+} ; \operatorname{ad} I$ is equal to $\varepsilon i 1$ on $\tilde{\mathfrak{g}}_{ \pm 1}^{\varepsilon}$.
4.2. For a subalgebra (or a subspace) \mathfrak{v} of \mathfrak{g}, we write ${ }^{c} \mathfrak{v}$ for $(\operatorname{Ad} c) v$. Since $Y_{\beta_{j}} \in \mathfrak{a} \subset \mathfrak{p}(1 \leq j \leq r)$, it follows from (3.14) that Z_{0} lies in ${ }^{c} g$. Let $\rho=(\operatorname{Ad} c)^{2}=\operatorname{Ad} c^{2}$. Then the conjugation of g^{C} with respect to the real form ${ }^{c} \mathrm{~g}$ is given by $\rho \sigma$ (cf. (3.24)). Consequently $\rho \sigma\left(Z_{0}\right)=Z_{0}$ and so $\rho \sigma$ is grade-preserving for the gradation (4.5). Also from (4.5) we obtain the following gradation of ${ }^{c} \mathrm{~g}$ with Z_{0} as its characteristic element:

$$
\begin{equation*}
{ }^{c} \mathrm{~g}=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}+\mathfrak{g}_{2}, \mathfrak{g}_{k}=\tilde{\mathfrak{g}}_{k} \cap^{c} \mathrm{~g}=\left\{X \in \tilde{\mathfrak{g}}_{k}: \rho \sigma X=X\right\}, \quad-2 \leq k \leq 2 \tag{4.12}
\end{equation*}
$$

Note that if Π is of type C_{r}, then $\mathfrak{g}_{-1}=g_{1}=(0)$. That $\tilde{g}_{k}(-2 \leq k \leq 2)$ is stable under $\rho \sigma$ implies that g_{k} is a real form of \tilde{g}_{k}.

LEMMA 4.1. $a d_{g_{\varepsilon 1}} I$ is a complex structure on $g_{\varepsilon 1}$. In particular g_{-1} is naturally \boldsymbol{C}-linearly isomorphic to $\tilde{\mathfrak{g}}_{-1}^{+}$.

Proof. $I=-2 i E_{0}^{+}$lies in g and hence $\sigma(I)=I$. On the other hand $E_{0}^{+} \in i \mathfrak{h}^{+}$and $\operatorname{Ad} c$ is equal to the identity on $i \mathfrak{h}^{+}$. Therefore we have $\rho \sigma(I)=\rho(I)=(\operatorname{Ad} c)^{2}\left(-2 i E_{0}^{+}\right)=-2 i E_{0}^{+}=I$, which implies that I lies in ${ }^{c} \mathrm{~g}$. Since I commutes with Z_{0}, it follows that I lies in g_{0} and that ad I leaves each subspace \mathfrak{g}_{k} stable. The complexification $g_{\varepsilon 1}^{C}$ is equal to $\tilde{\mathfrak{g}}_{\varepsilon 1}=\tilde{\mathfrak{g}}_{\varepsilon 1}^{+}+\tilde{\mathfrak{g}}_{\varepsilon 1}^{-}$, on which $(\operatorname{ad} I)^{2}=-1$ holds. This shows that $(\operatorname{ad} I)^{2}=-1$ on $g_{\varepsilon 1}$. q. e.d.

LEMMA 4.2. The conjugation σ is grade-reversing for the gradation (4.5). Moreover σ interchanges $\tilde{\mathfrak{g}}_{-1}^{\varepsilon}$ with $\tilde{\mathfrak{g}}_{1}^{-\varepsilon}$, where $-\varepsilon$ denotes - or + according as $\varepsilon=+$ or - , respectively.

Proof. The fact $Z_{0} \in i \mathfrak{h}^{-}$implies that $\sigma\left(Z_{0}\right)=-Z_{0}$. Hence the first assertion follows. We have thus at least $\sigma\left(\tilde{\mathfrak{g}}_{-1}^{\varepsilon}\right) \subset \tilde{\mathfrak{g}}_{1}$. Let $X \in \tilde{\mathfrak{g}}_{-1}^{\varepsilon}$. Then $[I, \sigma(X)]=[\sigma(I), \sigma(X)]=\sigma[I, X]=\sigma(\varepsilon i X)=-\varepsilon i X$, which shows that $\sigma(X) \in \tilde{g}_{-1}^{-\varepsilon}$.
q. e. d.

Let τ be the Cartan involution of g given in 3.1. Recall that we have extended τ to the conjugation of g^{c} with respect to the compact real form $\mathrm{g}_{u}=\mathbb{E}+i p$. Since τ commutes with Ad c (cf. (3.24)), ${ }^{c} \mathrm{~g}$ admits the Cartan decomposition by τ :

$$
\begin{equation*}
{ }^{c_{g}}={ }^{c_{\mathfrak{E}}}+{ }^{c_{\mathfrak{p}}} \tag{4.13}
\end{equation*}
$$

The fact that $\tau Z_{0}=-Z_{0}$ (cf. (3.4)) implies that τ is also grade-reversing for the gradation (4.12). Therefore we have the Cartan decomposition of g_{0} by τ :

$$
\begin{equation*}
g_{0}=\mathfrak{E}_{0}+p_{0} \tag{4.14}
\end{equation*}
$$

where $\mathfrak{E}_{0}=g_{0} \cap^{c} \mathfrak{E}$ and $\mathfrak{p}_{0}=g_{0} \cap^{c} \mathfrak{p}$.
4.3. We consider the two graded subalgebras of g^{c} :

$$
\begin{align*}
& { }^{c} g_{e v}=g_{-2}+g_{0}+g_{2}, \tag{4.15}\\
& g^{\prime}=g_{-2}+g_{0}^{\prime}+g_{2},
\end{align*}
$$

where $g_{0}^{\prime}=\left[g_{-2}, g_{2}\right]$. Let \mathfrak{n} be the ideal of g_{0} formed by elements $X \in g_{0}$ such that $(\operatorname{ad} X) g_{-2}=0$.

LEMMA 4.3. (Tanaka [22]). g^{\prime} is simple and

$$
\begin{equation*}
{ }^{c} \mathfrak{g}_{e v}=g^{\prime} \oplus \mathfrak{n} \quad(\text { direct sum }) . \tag{4.16}
\end{equation*}
$$

Therefore one has

$$
\begin{equation*}
\mathfrak{g}_{0}=\mathfrak{g}_{0}^{\prime} \oplus \mathfrak{n} \quad(\text { direct sum }) \tag{4.17}
\end{equation*}
$$

The Cartan involution τ of ${ }^{c} g$ leaves g^{\prime} stable, and its restriction to g^{\prime} is again a (grade-reversing) Cartan involution of g^{\prime}. Let $\mathfrak{E}^{\prime}={ }^{c} \in \in g^{\prime}$ and $\mathfrak{E}_{0}^{\prime}=$ ${ }^{c} \in \in g_{0}^{\prime}$, which are maximal compact subalgebras of g^{\prime} and g_{0}^{\prime} respectively. Set $Y_{0}=\sum_{j=1}^{r} Y_{\beta_{j}}$. The following lemma is essentially due to Korányi-Wolf [13]. But we give another proof in our context.

Lemma 4.4. The element $i Y_{0}$ is a central element of \mathbb{E}^{\prime}, and \mathbb{E}^{\prime} is the centralizer $\mathfrak{c}_{g^{\prime}}\left(i Y_{0}\right)$ of $i Y_{0}$ in g^{\prime}. In particular the simple GLA g^{\prime} is of hermitian type.

Proof. By (3.14) we have (Ad c) $Z_{0}=Y_{0}$. Since $i Z_{0} \in \mathfrak{h}^{-} \subset \mathfrak{E}, i Y_{0}$ lies in ${ }^{c}{ }_{\mathcal{E}}$. The inclusion $E_{ \pm \beta_{j}} \in \tilde{\mathfrak{g}}_{ \pm 2}$ implies $Y_{0} \in \tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{2}$, and hence $i Y_{0} \in g^{\prime C}$. Thus $i Y_{0} \in g^{\prime C} \cap^{C} \mathcal{E}=\mathcal{E}^{\prime}$. Recall that \mathfrak{E}^{C} is the centralizer $c_{9} c\left(E_{0}\right)$. We have $(\operatorname{Ad} c) E_{0}=(\operatorname{Ad} c)\left(E_{0}^{+}+\frac{1}{2} Z_{0}\right)=E_{0}^{+}+\frac{1}{2}(\operatorname{Ad} c) Z_{0}=E_{0}^{+}+\frac{1}{2} Y_{0}$, which implies
 By virtue of the equality $2 E_{0}^{+}=2 E_{0}-Z_{0}$, it follows that

$$
\begin{equation*}
\left[E_{0}^{+},{ }^{c} g_{e v}\right]=0 . \tag{4.18}
\end{equation*}
$$

Therefore $\mathfrak{E}^{\prime C}=c_{9^{\prime}} c\left(i Y_{0}\right)$ and consequently $\mathfrak{E}^{\prime}=c_{9^{\prime}}\left(i Y_{0}\right)$. q. e. d.

By Lemma 4.3, we see that \mathfrak{n} is the centralizer of \mathfrak{g}^{\prime} in ${ }^{c} g^{g}$. On the other hand, $i E_{0}^{+}$lies in $c_{9}\left(\boldsymbol{Z}_{0}\right)=g_{0}$. Hence, from (4.18) we have
(4.19) $i E_{0}^{+} \in \mathfrak{n}$.

Lemma 4.5. The Cartan involution $\left.\tau\right|_{c_{g}}$ of ${ }^{c} \mathrm{~g}$ is given by $\operatorname{Adexp}(\pi i$ $\left.\left(E_{0}^{+}+\frac{1}{2} Y_{0}\right)\right)$. The Cartan involution $\left.\tau\right|_{g^{\prime}}$ of g^{\prime} is given by $\operatorname{Adexp} \frac{\pi i}{2} Y_{0}$.

Proof. By (3.24) and (3.25) it follows that

$$
\begin{aligned}
\left.\tau\right|_{\mathrm{c}_{\mathrm{g}}} & =(\operatorname{Ad} c)\left(\left.\tau\right|_{\mathrm{g}}\right)(\operatorname{Ad} c)^{-1}=(\operatorname{Ad} c)\left(\operatorname{Adexp} \pi i E_{0}\right)(\operatorname{Ad} c)^{-1} \\
& =\operatorname{Adexp} \pi i\left((\operatorname{Ad} c)\left(E_{0}^{+}+\frac{1}{2} Z_{0}\right)\right)=\operatorname{Adexp} \pi i\left(E_{0}^{+}+\frac{1}{2} Y_{0}\right) .
\end{aligned}
$$

The second assertion follows from this and (4.18).
q. e. d.

Lemma 4.6. 1) $\mathfrak{E}_{0}=\mathfrak{E}_{0}^{\prime} \oplus \mathfrak{n}$ (direct sum). 2) The Cartan decomposition of g_{0}^{\prime} by τ is given by

$$
\begin{equation*}
g_{0}^{\prime}=\xi_{0}^{\prime}+p_{0} . \tag{4.20}
\end{equation*}
$$

Proof. By the definition, Y_{0} lies in $\mathrm{g}^{\prime c}$. Hence, by (4.16) we have (4.21) $\quad\left[Y_{0}, \mathfrak{r}\right]=0$.

Let $X \in \mathfrak{n}$. Then, by Lemma 4.5,

$$
\tau X=X+\pi i\left(\left[E_{0}^{+}, X\right]+\frac{1}{2}\left[Y_{0}, X\right]\right)+\cdots .
$$

By (4.18) we have $\left[E_{0}^{+}, X\right] \in\left[E_{0}^{+}, r\right]=(0)$. Hence, from (4.21) it follows that τ is the identity on \mathfrak{n}. This implies that $\mathfrak{n} \subset \mathfrak{f}_{0}$. (4.20) is an immediate consequence of the first assertion.
q. e. d.

Lemma 4.7. $\quad \mathfrak{i f}^{-}$is a maximal abelian subspace of ${ }^{c} \mathfrak{p}$ contained in \mathfrak{p}_{0}.
Proof. The subspace a spanned by $Y_{\beta_{1}}, \cdots, Y_{\beta_{r}}$ is a maximal abelian subspace of \mathfrak{p}. Since $i \mathfrak{h}^{-}$is spanned by $\breve{\beta}_{1}, \cdots, \breve{\beta}_{r}$, it is maximal abelian in $c_{\mathfrak{p}}$ by virtue of (3.14). By (3.5) we have $E_{-\beta_{j}}=\frac{1}{2}\left(X_{\beta_{j}}-i Y_{\beta_{j}}\right)$. Since $X_{\beta_{j}}$ and $Y_{\beta_{j}}$ lie in $\mathfrak{p}, \sigma\left(E_{-\beta_{j}}\right)=\frac{1}{2}\left(X_{\beta_{j}}+i Y_{\beta_{j}}\right)$ holds. Using (3.14), we get $\rho \sigma\left(E_{-\beta_{j}}\right)=\frac{1}{2}\left(X_{\beta_{j}}-i Y_{\beta_{j}}\right)=E_{-\beta_{j}}$, which implies that $E_{-\beta_{j}} \in^{c}{ }_{g}$. In view of (4.3) and (4.4), we get $E_{-\beta_{j}} \in g_{-2}$. Consequently $E_{\beta_{j}} \in g_{2}$ and hence $\breve{\beta}_{j} \in\left[\mathfrak{g}_{-2}, \mathfrak{g}_{2}\right] \cap{ }^{c} \mathfrak{p}=p_{0}$ by Lemma 4.6.
q. e.d.

Let us now consider the g_{-2}-valued trilinear map B_{τ} on g-2 given by

$$
\begin{equation*}
B_{\tau}(X, Y, Z)=\frac{1}{2}[[\tau Y, X], Z], \quad X, Y, Z \in \mathrm{~g}_{-2} . \tag{4.22}
\end{equation*}
$$

$\left(g_{-2}, B_{\tau}\right)$ is a Jordan triple system (in short, JTS), since g^{\prime} is a GLA of the first kind.

Lemma 4.8. The JTS (g_{-2}, B_{τ}) is compact and simple.
Proof. g^{\prime} is a simple GLA and the Cartan involution τ of g^{\prime} is grade-reversing. Consequently (g_{-2}, B_{τ}) is simple (cf. pp. 98-99 in [8]), and hence $\left(g_{-2}, B_{\tau}\right)$ satisfies the condition (A) ([1]). To the JTS (g_{-2}, B_{τ}) there corresponds a GLA $L\left(B_{\tau}\right)$ of the first kind, called the KoecherKantor algebra for (g_{-2}, B_{τ}) ([19], [8]). It follows from [8] that there exists a grade-preserving isomorphism φ of g^{\prime} onto $L\left(B_{\tau}\right)$ satisfying

$$
\begin{equation*}
\varphi \tau=\tau_{B_{\tau}} \varphi, \tag{4.23}
\end{equation*}
$$

where $\tau_{B_{\tau}}$ is the grade-reversing canonical involution of $L\left(B_{\tau}\right)$ ([8]). By (4.23), $\tau_{B_{\tau}}$ is a Cartan involution of $L\left(B_{\tau}\right)$. Therefore, by Proposition 2.4 [1], the JTS (g_{-2}, B_{τ}) is nondegenerate and so it is compact by Theorem 3.3 [1].
q. e. d.

Let G_{0} and G_{0}^{\prime} be the analytic subgroups of the adjoint group $\operatorname{Ad}^{c} \mathrm{~g}$ generated by g_{0} and g_{0}^{\prime}, respectively. By the definition of \mathfrak{n}, we have $\operatorname{Ad}_{8-2} G_{0}=\operatorname{Ad}_{\mathrm{g}_{-2}} G_{0}^{\prime}$. Let us put

$$
\begin{equation*}
o_{p, q}=\sum_{j=1}^{p} E_{-\beta_{j}}-\sum_{k=1}^{q} E_{-\beta_{p+k},} \tag{4.24}
\end{equation*}
$$

where $p, q \geq 0, p+q \leq r$. Here we are adopting the same convention as for (1.2). Let $V_{p, q}$ denote the $\left(\operatorname{Ad}_{\mathrm{g}-2} G_{0}\right)$-orbit in ${ }_{\mathrm{g}-2}$ through the point $o_{p, q}$, that is,

$$
\begin{equation*}
V_{p, q}=\left(\operatorname{Ad}_{d-2} G_{0}\right) o_{p, q}, \quad p, q \geq 0, p+q \leq r . \tag{4.25}
\end{equation*}
$$

THEOREM 4.9. Let ${ }^{c} g=\sum_{k=-2}^{2} g_{k}$ be the GLA given in (4.12), which is simple of hermitian type of real rank r. Then the $A d_{g_{-2}} G_{0}$-orbit decomposition of g_{-2} is given by

$$
\begin{equation*}
g_{-2}=\underset{p+q \leq r}{\amalg} V_{p, q} . \tag{4.26}
\end{equation*}
$$

Proof. Set $E=\sum_{j=1}^{r} E_{-\beta_{j}} \in_{\mathfrak{g}_{-2}}$, and define a multiplication \square on g $_{-2}$ by putting

$$
\begin{equation*}
X \square Y=B_{\tau}(X, E, Y), \quad X, Y \in \in_{-2} . \tag{4.27}
\end{equation*}
$$

Then a theorem of Meyberg (cf. Koecher [11]) shows that the multiplication \square defines on g_{-2} the structure of a Jordan algebra*). That Jordan algebra is denoted by ($\left.g_{-2}, \square\right)$. The property $[\tau E, E]=-Z_{0}$ implies that E is the unit element of $\left(g_{-2}, \square\right)$. On the other hand, looking into the classification of compact simple JTS's (Loos [14]; also see [8] for the classical case), and picking up the ones whose Koecher-Kantor algebras are simple of hermitian type, we can see that each JTS ($\mathrm{g}_{-2}, B_{\tau}$) comes from the Jordan algebra (g_{-2}, \square), that is,

$$
\begin{equation*}
B_{\tau}(X, Y, Z)=(X \square Y) \square Z+X \square(Y \square Z)-Y \square(X \square Z) \tag{4.28}
\end{equation*}
$$

holds. From (4.28) and Lemma 4.8 it follows that (g_{-2}, \square) is compact simple. Noting that g^{\prime} is isomorphic to $L\left(B_{\tau}\right)$ and using Lemma 3.1 in [1], we can conclude that \mathfrak{p}_{0} consists of the operators of all left multiplications of elements in the Jordan algebra ($\left.g_{-2}, \square\right)$. If we denote by $T_{j}(1 \leq$ $j \leq r)$ the operator of left multiplication by the element $E_{-\beta_{j}} \in \in_{g_{-2}}$, then we see from (4.27), (4.22) and (3.4) that $T_{j}=-\breve{\beta}_{j} / 2$ holds under the identification of g_{0}^{\prime} with $\operatorname{ad}_{8-20}{ }^{\prime}$. This implies that T_{1}, \cdots, T_{r} span the maximal abelian subspace $i \mathfrak{h}^{-}$of p_{0} (cf. Lemma 4.7). The relation $T_{j}=-\breve{\beta}_{j} / 2$ $(1 \leq j \leq r)$ implies that $\left\{E_{-\beta_{1}}, \cdots, E_{-\beta_{r}}\right\}$ is a system of orthogonal idempotents. Suppose that $E_{-\beta_{1}}$ can be written as the sum $E^{\prime}+E^{\prime \prime}$ of two orthogonal idempotents E^{\prime} and $E^{\prime \prime}$. Then, by considering the Peirce decomposition of g_{-2} by the idempotent $E_{-\beta_{1}}$, one can conclude that $\left\{E^{\prime}, E^{\prime \prime}\right.$, $\left.E_{-\beta_{2}}, \cdots, E_{\left.-\beta_{r}\right\}}\right\}$ forms a system of orthogonal idempotents. By a property of the Peirce decomposition ([2]], $E^{\prime}, E^{\prime \prime}, E_{-\beta_{2}}, \cdots, E_{-\beta_{r}}$ are strictly commutative, which implies that the operators of the left multiplications by those elements span an $(r+1)$-dimensional abelian subspace of p_{0}. This is a contradiction. $\left\{E_{-\beta_{1}}, \cdots, E_{-\beta_{r}}\right\}$ is thus a system of primitive orthogonal idempotents. By a property of a Koecher-Kantor algebra, $\mathrm{Ad}_{9-2} G_{0}=$ $\mathrm{Ad}_{8-2} G_{0}^{\prime}$ coincides with the identity component of the structure group of the Jordan algebra (g_{-2}, \square). Thus we are finally in a position to apply the Sylvester's law of inertia ([9], [10]; see also $(1,1)$ and (1.3)) to the Jordan algebra (g_{-2}, \square) to obtain the decomposition (4.25).
q.e.d.

[^0]
§ 5. Cayley images and Siegel domains over nondegenerate cones

5. 6. Let g be a real simple Lie algebra of hermitian type of real rank r, τ a Cartan involution of \mathfrak{g} and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the Cartan decomposition by τ as in (2.9). We retain all the conventions in the previous sections. Let us consider the map F: $\mathfrak{g}_{-1} \times \mathfrak{g}_{-1} \rightarrow \tilde{g}_{-2}=g_{-2}+i \mathfrak{g}_{-2}$ defined by

$$
\begin{equation*}
F(X, Y)=\frac{1}{4}\{[[I, X], Y]+i[X, Y]\}, \quad X, Y \in_{g_{-1}} \tag{5.1}
\end{equation*}
$$

$\operatorname{ad}_{g-1} I$ is the complex structure on g_{-1} with respect to which the correspondence $X \mapsto \frac{1}{2}(X-i[I, X])$ gives a \boldsymbol{C}-linear isomorphism of \mathfrak{g}_{-1} onto $\tilde{\mathfrak{g}}_{-1}^{+}$ (cf. Lemma 4.1). If we identify g_{-1} with \tilde{g}_{-1}^{+}as complex vector spaces, then, by using the fact that $\tilde{\mathfrak{g}}_{-1}^{+}$is abelian, it turns out that

$$
\begin{equation*}
F(Z, U)=\frac{i}{2}[Z, \rho \sigma U], \quad Z, U \in \tilde{\mathfrak{g}}_{-1}^{+} \tag{5.2}
\end{equation*}
$$

This expression is essentially the same as Korányi-Wolf's [13], and hence F is a $V_{r, 0}$-hermitian form (cf. §1). Note that $V_{r, 0}$ is an irreducible selfdual cone. Consider the Siegel domain in \bar{g}_{-1} over the nondegenerate cone $V_{r-k, k}(1 \leq k \leq r)$:

$$
\begin{equation*}
D\left(V_{r-k, k}, F\right)=\left\{(Z, U) \in \tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{-1}^{+}=\overline{\mathrm{g}}_{-1}: \operatorname{Im} Z-F(U, U) \in V_{r-k, k}\right\} \tag{5.3}
\end{equation*}
$$

where the imaginary part of Z is taken with respect to the real form g_{-2}. Sometimes we call $D\left(V_{r-k, k}, F\right)$ simply a Siegel domain. If the restricted root system $\Delta(\S 3)$ of g is of type C_{r}, then $\tilde{\mathfrak{g}}_{-1}^{+}=(0)$ holds and hence the Siegel domain $D\left(V_{r-k, k}, F\right)$ reduces to the tube domain $D\left(V_{r-k, k}\right)$ over the nondegenerate cone $V_{r-k, k}$. Let ξ be the well-known holomorphic (open dense) imbedding of \bar{g}_{-1} into the compact dual $M^{*}=G^{c} / U_{0}$ (cf. 3.4) of M_{0} (cf. (3.28)), defined by $\boldsymbol{\xi}(X)=\exp X \cdot o, X \in \bar{g}_{-1}$, where o is the origin of M^{*}. It is known [13] that the Cayley image $c\left(M_{0}\right)$ is contained in $\boldsymbol{\xi}\left(\bar{g}_{-1}\right)$ and that

$$
\begin{equation*}
\xi^{-1}\left(c\left(M_{0}\right)\right)=D\left(V_{r, 0}, F\right) \tag{5.4}
\end{equation*}
$$

We wish to know what the set $\xi^{-1}\left(c\left(M_{k}\right)\right), k \geq 1$, is.
LEMMA 5.1. $\quad \xi^{-1}\left(c c_{k}^{2} O\right)=-i 0_{k, r-k}, 0 \leq k \leq r$, where $o_{k, r-k}$ is the one given in (4.24).

Proof. Let h and $e_{ \pm}$be the same as in (3.20). Then we have in $S L(2, \boldsymbol{C})$

$$
\left(\exp \frac{\pi i}{4}\left(e_{+}+e_{-}\right)\right)^{3}=\exp \left(-i e_{-}\right)\left(\begin{array}{cc}
-1 / \sqrt{2} & 0 \\
0 & -\sqrt{2}
\end{array}\right) \exp \left(-i e_{+}\right)
$$

Therefore we get

$$
\begin{equation*}
c_{\beta_{j}}^{3}=\exp \left(-i E_{-\beta_{j}}\right) k_{\beta_{j}}^{\prime} \exp \left(-i E_{\beta_{j}}\right) ; \tag{5.5}
\end{equation*}
$$

also we know [13]

$$
\begin{equation*}
c_{\beta_{j}}=\exp \left(i E_{-\beta_{j}}\right) k_{\beta_{j}} \exp \left(i E_{\beta_{j}}\right) . \tag{5.6}
\end{equation*}
$$

Here $k_{\beta_{j}}^{\prime}$ and $k_{\beta_{j}}$ are elements of the complex analytic subgroup of G^{C} generated by $\stackrel{\vee}{\beta}_{j}$. We have that $c c_{k}^{2}=\prod_{j=1}^{k} c_{\beta_{j}}^{3} \prod_{j=k+1}^{r} c_{\beta_{j}}$ for $1 \leq k \leq r$ and $c c_{k}^{2}=c$ for $k=0$. Consequently from (5.5) and (5.6) it follows that

$$
\begin{equation*}
c c_{k}^{2} \equiv \exp i\left(-\sum_{j=1}^{k} E_{-\beta_{j}}+\sum_{j=k+1}^{r} E_{-\beta_{j}}\right) \quad \bmod U_{0} \tag{5.7}
\end{equation*}
$$

The lemma is a direct consequence from (5.7).
q. e. d.

Let G_{a} be the identity component of the affine automorphism group of the Siegel domain $D\left(V_{r, 0}, F\right)$. According to Tanaka [21], Lie G_{a} coincides with the graded subalgebra $g_{a}:=g_{-2}+g_{-1}+g_{0}$, and g_{0} is the Lie algebra of the linear automorphism group of $D\left(V_{r, 0}, F\right)$.

LEMMA 5.2. Let $D_{p, q}=\Phi^{-1}\left(V_{p, q}\right)$, where $\Phi: \bar{g}_{-1} \rightarrow \mathrm{~g}_{-2}$ is the same as in (1.4). Then we have the G_{a}-orbit decomposition of $\overline{\mathrm{g}}_{-1}$:

$$
\begin{equation*}
\overline{\mathfrak{g}}_{-1}=\coprod_{p+q \leq r} D_{p, q} ; \tag{5.8}
\end{equation*}
$$

each $D_{p, q}$ is the G_{a}-orbit through the point $i_{p, q}$.
Proof. As was shown in §1, the Sylvester decomposition (4.26) of g_{-2} yields the decomposition (5.8). From what is montioned just before the lemma, the group G_{0} is the identity component of $G L\left(D_{r, 0}\right)$. The homomorphism ρ in $\S 1$ coincides now with the adjoint representation Ad_{8-2} of G_{0}. The image $\operatorname{Ad}_{8-2} G_{0}$ is identical with the identity component of the structure group of the Jordan algebra (g_{-2}, ロ) (cf. the proof of Theorem 4.9) ; the latter coincides with the identity component of the automorphism group of the cone $V_{r, 0}([19])$. By Theorems 4.9 and 1.1 we have that each subset $D_{p, q} \subset \bar{g}_{-1}$ is a G_{a}-orbit. $D_{p, q}$ contains the set $\{(i X, 0) \in$ $\left.\tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{-1}^{+}: X \in V_{p, q}\right\}$, which implies that $i_{0, q} \in D_{p, q}$.
q. e.d.

We finally have

THEOREM 5.3. Let G be a real simple Lie group of hermitian type of real rank r. Let $M_{k}=G / H_{k}(0 \leq k \leq r)$ be a (simply connected) simple irreducible pseudo-hermitian symmetric space of K_{ε}-type constructed in §3 and realized as an open subset of M^{*}, the compact dual of the hermitian symmetric space M_{0} (cf. Proposition 3.7). Then the intersection of the Cayley image $c\left(M_{k}\right)$ with $\boldsymbol{\xi}\left(\bar{g}_{-1}\right)$ is holomorphically equivalent to the affine homogeneous Siegel domain $D\left(V_{r-k, k}, F\right)$ in $\overline{\mathfrak{g}}_{-1}$, where $V_{r-k, k}$ is the nondegenerate cone given in (4.25) and F is the $V_{r, 0}$-hermitian form given in (5.2). More precisely we have

$$
\begin{equation*}
\boldsymbol{\xi}^{-1}\left(c\left(M_{k}\right) \cap \boldsymbol{\xi}\left(\bar{g}_{-1}\right)\right)=D\left(V_{r-k, k}, F\right), \quad 0 \leq k \leq r \tag{5.9}
\end{equation*}
$$

If the restricted root system of $\mathrm{g}=$ Lie G is of type C_{r}, then the Siegel domain $D\left(V_{r-k, k}, F\right)$ is reduced to the tube domain $D\left(V_{r-k, k}\right)$.

Proof. We may assume that G is centerless. Set ${ }^{c} G=c G c^{-1}\left(\subset G^{C}\right)$. Note that Lie ${ }^{c} G={ }^{c} \mathrm{~g}$. We claim first that

$$
\begin{equation*}
c\left(M_{k}\right)={ }^{c} G\left(\boldsymbol{\xi}\left(i o_{r-k, k}\right)\right), \quad 0 \leq k \leq r \tag{5.10}
\end{equation*}
$$

In fact, noting that $V_{q, p}=-V_{p, q}$ (cf. §1), we have from Lemma 5.1 that

$$
\begin{aligned}
c\left(M_{k}\right) & =c\left(G c_{k}^{2} O\right)={ }^{c} G c c_{k}^{2} O={ }^{c} G\left(\boldsymbol{\xi}\left(-i o_{k, r-k}\right)\right) \\
& ={ }^{c} G\left(G_{0} \boldsymbol{\xi}\left(-i 0_{k, r-k}\right)\right)={ }^{c} G\left(\boldsymbol{\xi}\left(i\left(-\left(A d_{g-2} G_{0}\right) o_{k, r-k}\right)\right)\right. \\
& ={ }^{c} G\left(\boldsymbol{\xi}\left(i\left(-V_{k, r-k}\right)\right)\right)={ }^{c} G\left(\boldsymbol{\xi}\left(i V_{r-k, k}\right)\right) \\
& ={ }^{c} G\left(\boldsymbol{\xi}\left(i 0_{r-k, k}\right)\right) .
\end{aligned}
$$

There exists a bijective correspondence between the set of Ad $_{8-2} G_{0}$-orbits in g_{-2} and the set of G_{a}-orbits in \bar{g}_{-1} (cf. [6]). That bijection is obtained by assigning the G_{a}-orbit $G_{a}\left(i o_{p, q}\right)$ to each orbit $V_{p, q}=\left(\mathrm{Ad}_{g-2} G_{0}\right) o_{p, q}$. Note that $G_{a}\left(i_{r-k, k}\right)=D\left(V_{r-k, k}, F\right)$ (cf. Theorem 1.1). Theorem 4.9 now shows that the number of G_{a}-orbits in \bar{g}_{-1} is equal to $\frac{1}{2}(r+1)(r+2)$.
This number is also equal to the number of ${ }^{c} G$-orbits in M^{*} (cf. Takeuchi [20]). Furthermore every ${ }^{c} G$-orbit has a nonempty intersection with $\boldsymbol{\xi}\left(\bar{g}_{-1}\right)$ (Nakajima [16]). Also any connected component of the intersection of a ${ }^{c} G$-orbit with $\xi\left(\bar{g}_{-1}\right)$ is the ξ-image of a G_{a}-orbit in \bar{g}_{-1}, and vice versa ([6]). Therefore the intersection of each ${ }^{c} G$-orbit with $\boldsymbol{\xi}\left(\bar{g}_{-1}\right)$ must be connected. Hence it follows from (5.10) that

$$
\begin{aligned}
c\left(M_{k}\right) \cap \boldsymbol{\xi}\left(\bar{g}_{-1}\right) & ={ }^{c} G\left(\boldsymbol{\xi}\left(i_{r-k, k}\right)\right) \cap \boldsymbol{\xi}\left(\bar{g}_{-1}\right)=\boldsymbol{\xi}\left(G_{a}\left(i_{r-k, k}\right)\right) \\
& =\boldsymbol{\xi}\left(D\left(V_{r-k, k}, F\right)\right),
\end{aligned}
$$

proving (5.9). The second assertion follows from the fact that $g_{-1}=(0)$
for the case of type C_{r}.
q. e. d.

The Siegel domain $D\left(V_{r-k, k}, F\right)$ is called the Siegel domain corresponding to M_{k}.
5. 2. Let $H(r, \boldsymbol{F})$ denote the vector space of all hermitian matrices of degree r with entries in the division algebra $\boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$ (=the quaternion algebra) or \boldsymbol{O} ($=$ the octanion algebra). Let

$$
\begin{array}{rlr}
H_{r-k, k}(\boldsymbol{F})= & \{X \in H(r, \boldsymbol{F}): \operatorname{sgn}(X)=(r-k, k)\}, \\
& r \geq 1, \boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}, \\
H_{3-k, k}(\boldsymbol{O})= & \{X \in H(3, \boldsymbol{O}): \operatorname{sgn}(X)=(3-k, k)\}, & \\
C_{2,0}(n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}: x_{1}^{2}>x_{2}^{2}+\cdots+x_{n,}^{2}, x_{1}>0\right\}, & n \geq 3, \\
C_{1,1}(n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}: x_{1}^{2}<x_{2}^{2}+\cdots+x_{n}^{2}\right\}, & n \geq 3, \\
C_{0,2}(n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}: x_{1}^{2}>x_{2}^{2}+\cdots+x_{n,}^{2}, x_{1}<0\right\}, & n \geq 3 .
\end{array}
$$

These are nondegenerate homogeneous cones. Let $M_{p, q}(\boldsymbol{F})$ denote the space of all $p \times q$ matrices with entries in \boldsymbol{F}, and J denote the r-tuple direct sum of the matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

We give here a list of the simple irreducible pseudo-hermitian symmetric spaces M_{k} of K_{ε}-type and the corresponding Siegel domains D_{k} over nondegenerate cones. The explicit determination of $M \hat{k}$ s is done by inspecting the tables in [3], [18].

Type $\mathrm{I}_{r, p, k}(0 \leq k \leq r \leq p)$

$$
\begin{aligned}
& M_{k}=U(r, p) / U(r-k, k) \times U(k, p-k), \\
& D_{k}= \begin{cases}D\left(H_{r-k, k}(\boldsymbol{C})\right) & \text { for } r=p, \\
D\left(H_{r-k, k}(\boldsymbol{C}), F\right) & \text { for } r<p,\end{cases}
\end{aligned}
$$

where $F(U, U)=\frac{1}{2} U^{t} \bar{U}, U \in M_{r, p-r}(\boldsymbol{C})$.
Type $\mathrm{II}_{2 n, 2 k}\left(0 \leq k \leq\left[\frac{n}{2}\right]=r\right)$

$$
\begin{aligned}
& M_{k}=S O^{*}(2 n) / U(n-2 k, 2 k), \\
& D_{k}= \begin{cases}D\left(H_{r-k, k}(\boldsymbol{H})\right) & \text { for } n \text { even, } \\
D\left(H_{r-k, k}(\boldsymbol{H}), F\right) & \text { for } n \text { odd, }\end{cases}
\end{aligned}
$$

where $F(U, U)=\frac{1}{2}\left(U^{t} \bar{U}+J \bar{U}^{t} U^{t} J\right), \quad U \in M_{2 r, 1}(\boldsymbol{C})$.
Type $\mathrm{III}_{r, k}(0 \leq k \leq r)$

$$
\begin{aligned}
& M_{k}=S p(r, \boldsymbol{R}) / U(r-k, k), \\
& D_{k}=D\left(H_{r-k, k}(\boldsymbol{R})\right)
\end{aligned}
$$

Type $\mathrm{IV}_{n+2, k}(k=0,1,2)$
$\left\{\begin{array}{l}M_{0}=M_{2}=S O^{0}(n+2,2) / S O(n+2) \times S O(2), \\ D_{0}=D_{2}=D\left(C_{2,0}(n+2)\right) .\end{array}\right.$
$\left\{\begin{array}{l}M_{1}=S O^{0}(n+2,2) / S O^{0}(n, 2) \times S O(2), \\ D_{1}=D\left(C_{1,1}(n+2)\right) .\end{array}\right.$
Type $\mathrm{V}_{k}(k=0,1,2)$
$\left\{\begin{array}{l}M_{0}=E_{6(-14)} / S O(10) T, \\ D_{0}=D\left(C_{2,0}(8), F\right) .\end{array}\right.$
$\left\{\begin{array}{l}M_{1}=E_{6(-14)} / S O^{*}(10) T, \\ D_{1}=D\left(C_{1,1}(8), F\right)\end{array}\right.$
$\left\{\begin{array}{l}M_{2}=E_{6(-14)} / S O^{0}(2,8) T \text {, }, ~ ; ~\end{array}\right.$
$D_{2}=D\left(C_{0,2}(8), F\right)$,
where the $C_{2,0}(8)$-hermitian form $F: \boldsymbol{C}^{8} \times \boldsymbol{C}^{8} \rightarrow \boldsymbol{C}^{8}$ is the one given by Tsuji [23].

Type $\mathrm{VI}_{k}(k=0,1,2,3)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
M_{0}=M_{3}=E_{7(-25)} / E_{6} T, \\
D_{0}=D_{3}=D\left(H_{3,0}(\boldsymbol{O})\right),
\end{array}\right. \\
& \left\{\begin{array}{l}
M_{1}=M_{2}=E_{7(-25)} / E_{6(-14)} T, \\
D_{1}=D_{2}=D\left(H_{2,1}(\boldsymbol{O})\right)
\end{array}\right.
\end{aligned}
$$

The coset space representations of the exceptional spaces M_{k} are only infinitesimal expressions (not global forms). T denotes the onedimensional torus.

Bibliography

[1] H. ASANO and S. Kaneyuki, On compact generalized Jordan triple systems of the second kind, Tokyo J. Math., 11 (1988), 105-118.
[2] A. ASh, D. Mumford, M. Rapoport and Y-S. TAI, Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, 1975.
[3] M. BERGER, Les espaces symétriques non-compacts, Ann. École Norm. Sup., 74 (1957), 85-177.
[4] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris, 1981.
[5] S. Kaneyuki, Homogeneous Bounded Domains and Siegel Domains, Lect. Notes in Math., 241, Springer, Berlin-Heidelberg-New York, 1971.
[6] S. Kaneyuki, On Siegel domains of finite type, J. Math. Soc. Japan, 39 (1987), 597607.
[7] S. KANEYUKI, On orbit structure of compactifications of parahermitian symmetric spaces, Japan. J. Math., 13 (1987), 333-370.
[8] S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J., 112 (1988), 81-115.
[9] S. Kaneyuki, The Sylvester's law of inertia for Jordan algebras, Proc. Japan Acad., 64 Ser. A (1988), 311-313.
[10] S. Kaneyuki, On the causal structures of the Silov boundaries of symmetric bounded domains, to appear in Lect. Notes in Math., Springer.
[11] M. Koecher, An Elementary Approach to Bounded Symmetric Domains, Lect. Notes, Rice Univ., Houston, 1969.
[12] S. S. KOH, On affine symmetric spaces, Trans. Amer. Math. Soc., 119 (1965), 291-309.
[13] A. KORÁNYI and J. A. WOLF, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math., 81 (1965), 265-288.
[14] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Math. Lect., Univ of Calif., Irvine, 1977.
[15] C. C. MOORE, Compactification of symmetric spaces II : The Cartan domains, Amer. J. Math., 86 (1964), 358-378.
[16] K. NAKAJIMA, On Tanaka's imbeddings of Siegel domains, J. Math. Kyoto Univ., 14 (1974), 533-548.
[17] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math., 76 (1954), 33-65.
[18] T. Oshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math., 57 (1980), 1-81.
[19] I. Satake, Algebraic Structures of Symmetric Domains, Iwanami Shoten, Tokyo and Princeton Univ. Press, Princeton, 1980.
[20] M. Takeuchi, On orbits in a compact hermitian symmetric space, Amer. J. Math., 90 (1968), 657-680.
[21] N. TANAKA, On infinitesimal automorphisms of Siegel domains, J. Math. Soc. Japan, 22 (1970), 180-212.
[22] N. TANAKA, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math., 2 (1976), 131-190.
[23] T. TsujI, Siegel domains over self-dual cones and their automorphisms, Nagoya Math. J., 55 (1974), 33-80.

Department of Mathematics
Sophia University
Kioicho, Chiyoda-ku, Tokyo 102

[^0]: ${ }^{*)}$ This Jordan algebra structure was originally introduced by Korányi-Wolf [13] by a different manner.

