Pseudo-hermitian symmetric spaces and Siegel domains over nondegenerate cones

Soji KANEYUKI (Received April 26, 1990)

Dedicated to Professor Noboru Tanaka on his sixtieth birthday

Introduction

Korányi-Wolf [13] established a method of realizing a hermitian symmetric space M_0 of noncompact type, equivariantly imbedded in its compact dual M^* , as a Siegel domain, by means of a so-called Cayley transform. The goal of this paper is to develop an analogy of the Korányi-Wolf theory for a certain class of complex affine symmetric spaces, called simple irreducible pseudo-hermitian symmetric spaces of K_{ε} -type (For the definition, see 2.3. Also see 5.2). It is proved that such a space arises as an open orbit in M^* under the identity component of the holomorphic automorphism group of M_0 (Proposition 3.7). For our purpose, we introduce the notion of a Siegel domain over a nondegenerate cone (§ 1), which is a generalization of a Siegel domain over a positive definite (=self-dual) cone. Contrary to the hermitian symmetric case, not the whole part of a simple irreducible pseudo-hermitian (non-hermitian) symmetric space of K_{ε} -type but an open dense subset of it is realized as an affine homogeneous Siegel domain over a nondegenerate cone (Theorem 5.3). This realization might serve the study of the boundary of such a symmetric space imbedded in M^* .

In § 1, the closure structure of a Siegel domain over a nondegenerate cone is given (Theorem 1.1). In § 2, a signature of roots (Oshima-Sekiguchi [18]) of a semisimple Lie algebra g is described in terms of a gradation of g. Given a real simple Lie algebra g of hermitian type, we construct in § 3 all simply connected irreducible pseudo-hermitian symmetric spaces of K_e-type associated with g (Theorem 3.6). In § 4, we give the graded Lie algebraic approach to the Korányi-Wolf theory. Let $g = \sum_{k=-2}^{2} g_k$ be a simple graded Lie algebra of hermitian type corresponding to a Siegel domain (The case $g_{-1}=g_1=(0)$ may occur). We then obtain the orbit decomposition of g_{-2} under the adjoint action of the group generated by the Lie algebra g_0 (Theorem 4.9). In § 5, we give a list of simple S. Kaneyuki

irreducible pseudo-hermitian symmetric spaces of K_{ε} -type and the corresponding Siegel domains over nondegenerate cones.

NOTATION. g^c denotes the complexification of a Lie algebra (or a real vector space) g. $c_g(X)$ denotes the centralizer of an element $X \ (\subseteq g)$ in a Lie algebra g.

§1. Siegel domains over nondegenerate cones

We shall begin with a brief review for the previous work [9], [10]. Let \mathfrak{A} be a compact simple Jordan algebra of degree r, and let $\mathfrak{A}_{p,q}$ $(p, q \ge 0, p+q \le r)$ be the set of elements $a \in \mathfrak{A}$ with $\operatorname{sgn}(a) = (p, q)$. Then we have the decomposition

(1.1)
$$\mathfrak{A} = \coprod_{p+q \leq r} \mathfrak{A}_{p,q},$$

which we shall call the *Sylvester decomposition* of \mathfrak{A} . Let us choose a system of primitive orthogonal idempotents $\{e_1, \dots, e_r\}$ such that $\sum_{i=1}^r e_i = e_i$, where e is the unit element of \mathfrak{A} . Let

(1.2)
$$o_{p,q} = \sum_{i=1}^{p} e_i - \sum_{j=1}^{q} e_{p+j}, \quad p, q \ge 0, p+q \le r;$$

here we are adopting the convention that the first or the second term of the right hand side of (1, 2) is zero, provided that p=0 or q=0, respectively. Let $\operatorname{Str}^{0} \mathfrak{A}$ denote the identity component of the structure group Str \mathfrak{A} of \mathfrak{A} . Then it is known that (1, 1) is the $\operatorname{Str}^{0} \mathfrak{A}$ -orbit decomposition of \mathfrak{A} ; more precisely we have

$$(1.3) \qquad \mathfrak{A}_{p,q} = (\operatorname{Str}^{0} \mathfrak{A}) o_{p,q}.$$

 $\mathfrak{A}_{p,q}$ is a cone in the sense that it is invariant under multiplication by positive real numbers \mathbf{R}^+ , and it is open if and only if p+q=r. Also we have $\mathfrak{A}_{p,q}=-\mathfrak{A}_{q,p}$. We say that $\mathfrak{A}_{r-k,k}$ $(0 \le k \le r)$ is a *nondegenerate* (homogeneous) cone. Note that the positive definite cone $V := \mathfrak{A}_{r,0}$ is an irreducible homogeneous self-dual open convex cone.

Let W be a complex vector space and F be a V-hermitian form on W. Let \mathfrak{A}^c be the complexification of \mathfrak{A} . We consider the smooth map Φ of $\mathfrak{A}^c \times W$ to \mathfrak{A} defined by

(1.4)
$$\Phi(z, u) = \text{Im } z - F(u, u),$$

where the imaginary part of $z \in \mathfrak{A}^c$ is taken with respect to \mathfrak{A} . As is easily proved, Φ is a surjective submersion. Let

(1.5)
$$D_{p,q} = \Phi^{-1}(\mathfrak{A}_{p,q}), \quad p, q \ge 0, p+q \le r.$$

It follows easily that each $D_{p,q}$ is connected. We say that the domain $D_{r-k,k}(0 \le k \le r)$ in the complex vector space $\mathfrak{A}^{c} \times W$ is a Siegel domain (of the second kind) over the nondegenerate cone $\mathfrak{A}_{r-k,k}$. Note that $D_{r,0}$ is a usual Siegel domain over the selfdual cone V. Sometimes we will write $D(\mathfrak{A}_{r-k,k}, F)$ for $D_{r-k,k}$, that is,

$$(1.6) \qquad D(\mathfrak{A}_{r-k,k}, F) = \{(z, u) \in \mathfrak{A}^C \times W : \operatorname{Im} z - F(u, u) \in \mathfrak{A}_{r-k,k}\}.$$

In the case where W = (0), the above domain is reduced to the tube domain

$$(1.7) \qquad D(\mathfrak{A}_{r-k,k}) = \{z \in \mathfrak{A}^{C} : \operatorname{Im} z \in \mathfrak{A}_{r-k,k}\},\$$

which is called the Siegel domain of the first kind over the nondegenerate cone $\mathfrak{A}_{r-k,k}$. From (1.1) we have the decomposition

(1.8)
$$\mathfrak{A}^{C} \times W = \coprod_{p+q \leq r} D_{p,q}.$$

Let $\operatorname{Aff}(D_{r,0})$ and $GL(D_{r,0})$ be the affine and linear automorphism groups of the Siegel domain $D_{r,0}$, respectively. G_a and H denote the identity components of $\operatorname{Aff}(D_{r,0})$ and $GL(D_{r,0})$, respectively. There exists a natural Lie homomorphism ρ of $GL(D_{r,0})$ into the automorphism group G(V)of the cone V ([5]).

THEOREM 1.1. (1) The closure $\overline{D}_{p,q}$ of $D_{p,q}$ is given by (1.9) $\overline{D}_{p,q} = \prod_{\substack{p_1 \leq p \\ q_1 \leq q}} D_{p_1,q_1}.$

(2) Suppose that ρ is surjective of H onto the identity component $G^{0}(V)$ of G(V). Then each $D_{p,q}$ is a G_{a} -orbit, and (1.8) is the G_{a} -orbit decomposition of $\mathfrak{A}^{c} \times W$; in particular, $D_{r-k,k}$ is an affine homogeneous domain.

PROOF. (1) We have ([9], [10]) that the closure $\overline{\mathfrak{A}}_{p,q}$ of $\mathfrak{A}_{p,q}$ is given by $\overline{\mathfrak{A}}_{p,q} = \coprod_{p_1 \leq p, q_1 \leq q} \mathfrak{A}_{p_1,q_1}$. Therefore the right hand side of (1.9) is rewritten as

$$\coprod_{\substack{p_1 \leq p \\ q_1 \leq q}} \Phi^{-1}(\mathfrak{A}_{p_1,q_1}) = \Phi^{-1}(\coprod_{\substack{p_1 \leq p \\ q_1 \leq q}} \mathfrak{A}_{p_1,q_1}) = \Phi^{-1}(\overline{\mathfrak{A}}_{p,q}).$$

Choose a point $(z_0, u_0) \in \Phi^{-1}(\overline{\mathfrak{A}}_{p,q})$. Then

 $(1.10) \quad \text{Im } z_0 - F(u_0, u_0) \in \overline{\mathfrak{A}}_{p,q}.$

Let $D_{u_0}(\subset D_{p,q})$ be the domain in $\mathfrak{A}^C \times \{u_0\}$ defined by

$$(1.11) \quad D_{u_0} = \{(z, u_0) \in \mathfrak{A}^c \times \{u_0\} : \operatorname{Im} z \in F(u_0, u_0) + \mathfrak{A}_{p,q}\}.$$

Then, from (1.10) it follows that the point (z_0, u_0) lies in the closure of D_{u_0} in $\mathfrak{A}^c \times \{u_0\}$, which implies that $(z_0, u_0) \in \overline{D}_{p,q}$. The converse inclusion \subset in (1.9) is obvious. Since $G^0(V) = \operatorname{Str}^0 \mathfrak{A}$ ([19]), the assertion (2) is an immediate consequence of Lemma 2.4 [6]. q. e. d.

COROLLARY 1.2. The boundary $\partial D_{r,0}$ of the Siegel domain $D_{r,0}$ can be expressed as a stratified set

$$(1.12) \quad \partial D_{r,0} = D_{r-1,0} \coprod D_{r-2,0} \coprod \cdots \coprod D_{1,0} \coprod D_{0,0}.$$

Furthermore, suppose that $\rho(H) = G^{0}(V)$. Then each stratum $D_{k,0}$ in (1.12) is a G_{a} -orbit.

REMARK 1.3. The unique closed subset $D_{0,0}$ in the expression (1.12) is the Silov boundary of the Siegel domain $D_{r,0}$.

§ 2. ε-modifications of Cartan involutions

2.1. For a graded Lie algebra (or shortly GLA), we will use terminologies in [8]. Let

$$(2.1) \qquad \mathfrak{g} = \sum_{k=-\nu}^{\nu} \mathfrak{g}_{k}$$

be a semisimple GLA of the ν -th kind over \mathbf{R} , and let $Z \in \mathfrak{g}_0$ be its characteristic element. Choose a grade-reversing Cartan involution τ of \mathfrak{g} and let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the corresponding Cartan decomposition, where $\tau|_{\mathfrak{k}}=1$ and $\tau|_{\mathfrak{p}}=-1$. Then Z lies in \mathfrak{p} . Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} containing Z, and let Δ be the root system of \mathfrak{g} with respect to \mathfrak{a} . We identify Δ with a subset of \mathfrak{a} with respect to the inner product (,) induced by the Killing form of \mathfrak{g} . Put

$$(2.2) \qquad \Delta_k = \{ \gamma \in \Delta : (\gamma, Z) = k \}, \qquad |k| \leq \nu.$$

Then we have ([8])

(2.3)
$$g_0 = c(\alpha) + \sum_{r \in \Delta_0} g^r,$$
$$g_k = \sum_{r \in \Delta_k} g^r, \qquad k \neq 0,$$

where $c(\alpha)$ is the centralizer of α in g and g' is the root space for the root $\gamma \in \Delta$.

Now let

$$(2.4) \qquad \mathfrak{g}_{ev} = \sum_{|2k| \leq \nu} \mathfrak{g}_{2k}, \qquad \mathfrak{g}_{od} = \sum_{|2k+1| \leq \nu} \mathfrak{g}_{2k+1}.$$

Then we have a Z_2 -GLA

$$(2.5) \qquad g = g_{ev} + g_{od},$$

which is called the \mathbb{Z}_2 -reduction of the GLA (2.1). The involutive automorphism ε of g defined by $\varepsilon|_{gev}=1$ and $\varepsilon|_{god}=-1$ is called the *charac*-teristic involution for the \mathbb{Z}_2 -GLA (2.5).

LEMMA 2.1. ε is a grade-preserving for the gradation (2.1) and is given by

(2.6) $\varepsilon = \text{Adexp } \pi i Z.$

PROOF. Since $Z \in g_0$, we have $\varepsilon(Z) = Z$, which implies that ε is grade-preserving. An easy computation shows that

(2.7) (Adexp
$$\pi i Z$$
) $X = \begin{cases} X, & X \in \mathfrak{c}(\mathfrak{a}) \\ e^{i\pi(\gamma, Z)}X, & X \in \mathfrak{g}^{\gamma}. \end{cases}$

Hence (2, 6) is immediate from (2, 3) and (2, 4). q. e. d.

REMARK 2.2. If we put

(2.8) $\tilde{\varepsilon}(\gamma) = e^{i\pi(\gamma,Z)}, \quad \gamma \in \Delta,$

then $\tilde{\epsilon}$ is seen to be a signature of roots. It turns out [18], [8] that every signature of roots of a simple Lie algebra g can be written as (2.8) for a certain gradation of g.

For the semisimple GLA (2.1), the grade-reversing Cartan involution τ commutes with ϵ . We say that the grade-reversing involution $\tau_{\epsilon} := \epsilon \tau$ is the ϵ -modification of τ . τ_{ϵ} is an ϵ -involution in the sense of Oshima-Sekiguchi [18].

LEMMA 2.3. The ε -modification τ_{ε} is uniquely determined by the gradation (2.1), up to conjugacy under the inner automorphism of an element of exp g_0 .

PROOF. Let τ' be another grade-reversing Cartan involution for the gradation (2.1), and let $\tau'_{\varepsilon} = \varepsilon \tau'$. By [8] there exists an element $X_0 \in g_0$ such that

 $(\operatorname{Adexp} X_0) \tau'(\operatorname{Adexp} - X_0) = \tau.$

We also have $\varepsilon(\operatorname{Adexp} X_0)\varepsilon^{-1} = \operatorname{Adexp} \varepsilon(X_0) = \operatorname{Adexp} X_0$. Therefore

q. e. d.

 $(\operatorname{Adexp} X_0) \tau_{\epsilon}'(\operatorname{Adexp} - X_0) = \tau_{\epsilon}.$

2.2. Let g be a real simple Lie algebra and τ be a Cartan involution of g. Let

(2.9) g=f+p

be the Cartan decomposition by τ , where $\tau|_{\mathfrak{r}}=1$ and $\tau|_{\mathfrak{p}}=-1$. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} , and Δ be the root system of \mathfrak{g} with respect to \mathfrak{a} . Choose a fundamental system $\Pi = \{\gamma_1, \dots, \gamma_r\}$ for Δ and let $\{Z_1, \dots, Z_r\}$ be the basis of \mathfrak{a} dual to Π with respect to the inner product (,) on \mathfrak{a} induced by the Killing form of \mathfrak{g} . For later considerations one can assume that Δ is of type BC_r or C_r. The following proposition follows from [8].

PROPOSITION 2.4. Suppose that Δ (or Π) is of type BC_r or C_r. Then there exists a bijection between the set Π and the set of isomorphism classes of gradations of the ν -th kind of g, $\nu=1$ or 2. The gradation of g corresponding to a root $\gamma_k \in \Pi(1 \le k \le r)$ is the one with Z_k as its characteristic element, in which case the Cartan involution τ is grade-reversing.

The situation being as above, let ε_k $(1 \le k \le r)$ be the characteristic involution of the \mathbb{Z}_2 -reduction of the gradation of g corresponding to $\gamma_k \in \Pi$. The ε_k -modification of the Cartan involution τ is denoted by τ_k .

Let Π be of type C_r . We then choose a basis $\{x_1, \dots, x_r\}$ in a such that

(2.10)
$$\Delta = \{ \pm (x_i \pm x_j) \ (1 \le i < j \le r), \ \pm 2x_i \ (1 \le i \le r) \},$$

$$\gamma_i = x_i - x_{i+1} \ (1 \le i \le r-1), \ \gamma_r = 2x_r.$$

If Π is of type BC_r , then we choose a basis $\{x_1, \dots, x_r\}$ in a such that

(2.11)
$$\Delta = \{ \pm (x_i \pm x_j) \ (1 \le i \le j \le r), \ \pm x_i, \ \pm 2x_i \ (1 \le i \le r) \}, \\ \gamma_i = x_i - x_{i+1} \ (1 \le i \le r-1), \ \gamma_r = x_r.$$

LEMMA 2.5. If Π is of type C_r , then

(2.12)
$$Z_{k} = \frac{4}{(\vartheta, \vartheta)} (x_{1} + \dots + x_{k}), \qquad 1 \le k \le r - 1,$$
$$Z_{r} = \frac{2}{(\vartheta, \vartheta)} (x_{1} + \dots + x_{r}),$$

where $\vartheta = 2x_1$ is the dominant root in Δ . If Π is of type BCr, then

$$(2.13) Z_k = \frac{4}{(\vartheta, \vartheta)} (x_1 + \cdots + x_k), 1 \le k \le r,$$

where $\vartheta = 2x_1$ is the dominant root in Δ .

PROOF. Let $\check{\gamma}_i = 2(\gamma_i, \gamma_i)^{-1}\gamma_i, 1 \le i \le r$, and let $\{\omega_1, \dots, \omega_r\}$ be the basis of a dual to the basis $\{\check{\gamma}_1, \dots, \check{\gamma}_r\}$. Then an easy computation shows that

$$(2.14) \qquad Z_k = 2(\gamma_k, \gamma_k)^{-1} \omega_k, \qquad 1 \le k \le r.$$

Suppose that Π is of type C_r . Then we have $2(\gamma_k, \gamma_k) = (\gamma_r, \gamma_r) = (\vartheta, \vartheta)$, $1 \le k \le r-1$. Hence, by (2.14) we have that $Z_k = 4(\vartheta, \vartheta)^{-1}\omega_k$, $1 \le k \le r-1$ and $Z_r = 2(\vartheta, \vartheta)^{-1}\omega_r$. It is known (Bourbaki [4]) that $\omega_k = x_1 + \dots + x_k$, $1 \le k \le r$. So we get (2.12). Suppose next that Π is of type BC_r . Then we have $2(\gamma_k, \gamma_k) = 4(\gamma_r, \gamma_r) = (\vartheta, \vartheta)$, $1 \le k \le r-1$. Hence it follows from (2.14) that $Z_k = 4(\vartheta, \vartheta)^{-1}\omega_k$, $1 \le k \le r-1$ and $Z_r = 8(\vartheta, \vartheta)^{-1}\omega_r$. Also it is known [4] that $\omega_k = x_1 + \dots + x_k$, $1 \le k \le r-1$ and $\omega_r = (1/2)(x_1 + \dots + x_r)$. Therefore we obtain (2.13). q. e. d.

LEMMA 2.6. Let K be the maximal compact subgroup of the adjoint group $G = \operatorname{Ad} \mathfrak{g}$ generated by the subalgebra \mathfrak{E} . Suppose that Π is of type C_r . Then there exists an element a in the normalizer $N_{\kappa}(\mathfrak{a})$ of \mathfrak{a} in K such that

(2.15) (Ad
$$a$$
)⁻¹ ε_k (Ad a) = ε_{r-k} (1 ≤ k ≤ $r-1$);

furthermore we have

(2.16) (Ad a)⁻¹ τ_k (Ad a) = τ_{r-k} (1 ≤ k ≤ r-1).

PROOF. Let $W(\Delta)$ be the Weyl group for the root system Δ . Consider the element $w \in W(\Delta)$ defined by

$$(2.17) \quad w(x_i) = x_{r+1-i} \quad (1 \le i \le r).$$

From (2.12) we get $w(Z_k) + Z_{r-k} = 2Z_r$ for $1 \le k \le r-1$. Hence, from (2.8) it follows that for $\gamma \in \Delta$

(2.18)
$$\tilde{\varepsilon}_{k}(w(\gamma)) = \tilde{\varepsilon}_{r-k}(\gamma), \quad 1 \le k \le r-1.$$

Choose an element $a \in N_{K}(\mathfrak{a})$ such that $(\operatorname{Ad} a)|_{\mathfrak{a}} = w$. Let $X \in \mathfrak{g}^{r}$. Then, in view of (2.18), (2.6) - (2.8), we have

$$\varepsilon_{k}((\operatorname{Ad} a)X) = \widetilde{\varepsilon}_{k}(w(\gamma))(\operatorname{Ad} a)X = \widetilde{\varepsilon}_{r-k}(\gamma)(\operatorname{Ad} a)X$$
$$= (\operatorname{Ad} a)(\widetilde{\varepsilon}_{r-k}(\gamma)X) = (\operatorname{Ad} a)\varepsilon_{r-k}(X).$$

Let $X \in c(\mathfrak{a})$. Then $\epsilon_k(X) = \epsilon_{r-k}(X) = X$. Therefore (2.15) follows. Since τ commutes with Ad a ($a \in K$), (2.16) follows from (2.15). q. e. d.

2.3. Here we give some definitions which are needed for later considerations. Let G be a Lie group and L be a closed subgroup of G. Suppose

that the coset space G/L is a (affine) symmetric (coset) space. G/L is called *simple irreducible* if G is real simple and if the linear isotropy representation of L is irreducible. G/L is called *pseudo-hermitian symmetric* if it is given a G-invariant almost complex structure J and a G-invariant pseudo-hermitian metric g (with respect to J). As is the case for a hermitian symmetric coset space, the almost complex structure J is automatically integrable and the metric g is automatically pseudo-kähler (cf. [17]).

Let us assume further that G is simple. Let θ be the involutive automorphism of G associated with L. The Lie algebra involution induced by θ is denoted again by θ . Let g=Lie G and 1=Lie L. We have then the symmetric triple $(g, 1, \theta)$. The simple symmetric space G/L is said to be of K_{ϵ} -type, if θ is an ϵ -involution of g. Now we go back to the situation in 2.2. Let \mathfrak{h}_k $(1 \le k \le r)$ be the subalgebra consisting of τ_k -fixed elements in g. For the sake of convenience, we define τ_0 to be τ . τ_k 's $(0 \le k \le r)$ are ϵ -involutions of g. Hence a symmetric coset space associated with the simple symmetric triple $(\mathfrak{g}, \mathfrak{h}_k, \tau_k)$, $0 \le k \le r$, is of K_{ϵ} -type.

\S 3. Construction of pseudo-hermitian symmetric spaces

3.1. Let g be a real simple Lie algebra of hermitian type and τ be a Cartan involution of g. Let $g=\mathfrak{E}+\mathfrak{p}$ be the Cartan decomposition by τ as in (2.9). The complexification of g, \mathfrak{k} , \mathfrak{p} are denoted by \mathfrak{g}^{C} , \mathfrak{k}^{C} , \mathfrak{p}^{C} , respectively. We extend τ to the conjugation of \mathfrak{g}^{C} with respect to the compact real form $\mathfrak{g}_{u}=\mathfrak{E}+i\mathfrak{p}$. Since g is of hermitian type, \mathfrak{p} has an ad \mathfrak{E} -invariant complex structure. Let \mathfrak{p}^{\pm} be the $\pm i$ -eigenspaces of \mathfrak{p}^{C} under that complex structure. If we put $\overline{\mathfrak{g}}_{\pm 1}:=\mathfrak{p}^{\pm}$ and $\overline{\mathfrak{g}}_{0}:=\mathfrak{E}^{C}$, then one can write \mathfrak{g}^{C} as a GLA:

 $(3.1) \qquad \mathfrak{g}^{\boldsymbol{C}} = \bar{\mathfrak{g}}_{-1} + \bar{\mathfrak{g}}_{0} + \bar{\mathfrak{g}}_{1}.$

Choose a Cartan subalgebra \mathfrak{h} of \mathfrak{g} contained in \mathfrak{k} . Let Σ be the root system of \mathfrak{g}^{c} with respect to the Cartan subalgebra \mathfrak{h}^{c} (=the complexification of \mathfrak{h}). We identify Σ with a subset of the real part *i* \mathfrak{h} of \mathfrak{h}^{c} with respect to the inner product (,) on *i* \mathfrak{h} induced by the Killing form of \mathfrak{g}^{c} . Let $E_{0} \in \overline{\mathfrak{g}}_{0}$ be the characteristic element of the GLA (3.1), and let $\Sigma_{k} = \{\alpha \in \Sigma : (\alpha, E_{0}) = k\}, \ k = 0, \ \pm 1$. Then one has the decomposition :

$$(3.2) \qquad \boldsymbol{\Sigma} = \boldsymbol{\Sigma}_{-1} \cup \boldsymbol{\Sigma}_{0} \cup \boldsymbol{\Sigma}_{1}.$$

One can choose a linear order in Σ with respect to which the set Σ^{+} of positive roots in Σ satisfies ([8])

$$(3.3) \qquad \Sigma_1 \subset^+ \Sigma \subset \Sigma_0 \cup \Sigma_1$$

For a root $\alpha \in \Sigma$ we choose a root vector E_{α} in such a way that

where $\check{\alpha} = 2(\alpha, \alpha)^{-1}\alpha$. For a root $\alpha \in \Sigma$, we put

$$(3.5) X_{\alpha} = E_{\alpha} + E_{-\alpha}, Y_{\alpha} = -i(E_{\alpha} - E_{-\alpha}).$$

 \mathfrak{p} is spanned by those X_{α} and Y_{α} satisfying $\alpha \in \Sigma_1$. Let $\Gamma = {\beta_1, \dots, \beta_r} \subset \Sigma_1$ be a maximal system of strongly orthogonal roots such that

(3.6)
$$\theta = \beta_1 > \beta_2 > \cdots > \beta_r,$$

(β_j, β_j) = (θ, θ), 1 ≤ j ≤ r,

where $\theta \in \Sigma$ is the dominant root. Consider the subsets of Γ :

$$(3.7) \qquad \Gamma_k = \{\beta_1, \cdots, \beta_k\}, \ 1 \le k \le r, \qquad \Gamma_0 = \emptyset.$$

Let $G^{c} := \text{Ad } \mathfrak{g}^{c}$ be the adjoint group generated by the Lie algebra \mathfrak{g}^{c} , and put

(3.8)
$$c_{\beta j} = \exp \frac{\pi i}{4} X_{\beta j}, \qquad c_k = c_{\beta_1} \cdots c_{\beta_k}, \qquad 1 \le k \le r,$$
$$c_0 = 1, \qquad c = c_r.$$

Let $\bar{\mathfrak{g}}_{\lambda}(k) = (\operatorname{Ad} c_{k}^{2})\bar{\mathfrak{g}}_{\lambda}$, $\lambda = 0, \pm 1$. Then we have the gradation of \mathfrak{g}^{c} :

$$(3.9)_{k} \quad g^{c} = \bar{g}_{-1}(k) + \bar{g}_{0}(k) + \bar{g}_{1}(k), \qquad 0 \le k \le r,$$

whose characteristic element is

$$(3.10)_k \quad E_k = (\text{Ad } c_k^2) E_0, \qquad 0 \le k \le r$$

Consider the \mathbb{Z}_2 -reduction of the gradation $(3.9)_k$:

 $(3.11)_k \quad g^c = \bar{\mathfrak{h}}_k + \bar{\mathfrak{m}}_k, \qquad 0 \le k \le r,$

where $\bar{\mathfrak{h}}_k = \bar{\mathfrak{g}}_0(k)$ and $\bar{\mathfrak{m}}_k = \bar{\mathfrak{g}}_{-1}(k) + \bar{\mathfrak{g}}_1(k)$. Then, by Lemma 2.1, the characteristic involution η_k of the \mathbb{Z}_2 -GLA (3.11)_k is given by

$$(3.12)_k \quad \eta_k = \text{Adexp } \pi i E_k,$$

where $\eta_k = 1$ on $\overline{\mathfrak{h}}_k$ and $\eta_k = -1$ on $\overline{\mathfrak{m}}_k$.

LEMMA 3.1. Let $0 \le k \le r$. Then the element $iE_k \in \mathfrak{g}^c$ lies in \mathfrak{g} . In particular, the conjugation σ of \mathfrak{g}^c with respect to \mathfrak{g} is a grade-reversing involution of the GLA $(3.9)_k$.

PROOF. It is known by Korányi-Wolf [13] that E_0 can be written as

$$(3.13) \qquad E_0 = E_0^+ + \frac{1}{2} \sum_{j=1}^r \check{\beta}_j,$$

where $E_0^+ \in i\mathfrak{h}$ is orthogonal to the subspace $\sum_{j=1}^r \mathbf{R} \overset{\vee}{\beta}_j$ with respect to (,). We have ([13])

$$(3.14) \quad \text{Ad } c_{\beta_j} \colon X_{\beta_j} \mapsto X_{\beta_j}, \ Y_{\beta_j} \mapsto - \overset{\vee}{\beta_j}, \ \overset{\vee}{\beta_j} \mapsto Y_{\beta_j}.$$

Therefore we have $E_k = E_0 - \sum_{j=1}^k \check{\beta}_j$, which implies that $E_k \in i\mathfrak{h}$. Therefore $\sigma E_k = -E_k$, or equivalently, σ is grade-reversing. q. e. d.

LEMMA 3.2. (i) If we put $\mathfrak{h}_k = \overline{\mathfrak{h}}_k \cap \mathfrak{g}$ and $\mathfrak{m}_k = \overline{\mathfrak{m}}_k \cap \mathfrak{g}$, then \mathfrak{g} can be written as a \mathbb{Z}_2 -GLA

$$(3.15)_k \quad \mathfrak{g}=\mathfrak{h}_k+\mathfrak{m}_k, \qquad 0 \le k \le r,$$

which is a real form of the \mathbb{Z}_2 -GLA $(3.11)_k$. (ii) η_k in $(3.12)_k$ is an inner characteristic involution of g satisfying $\eta_k|_{\mathfrak{h}_k}=1$ and $\eta_k|_{\mathfrak{m}_k}=-1$. (iii) iE_k lies in \mathfrak{h}_k , and \mathfrak{h}_k coincides with the centralizer $c(iE_k)$ of iE_k in g.

PROOF. It follows from $(3.12)_k$ and Lemma 3.1 that σ commutes with η_k . Let $X \in \mathfrak{g}$. One can write $X = X_1 + X_2$, where $X_1 \in \overline{\mathfrak{h}}_k$ and $X_2 \in \overline{\mathfrak{m}}_k$. Then $\overline{\mathfrak{h}}_k$ and $\overline{\mathfrak{m}}_k$ are stable under σ . Therefore $\sigma X = X$ implies that $\sigma X_i = X_i$ (i=1,2), from which $(3.15)_k$ follows. Note that \mathfrak{h}_k and \mathfrak{m}_k are real forms of $\overline{\mathfrak{h}}_k$ and $\overline{\mathfrak{m}}_k$, respectively. By Lemma 3.1, η_k is an inner involution of \mathfrak{g} . Since E_k is the characteristic element of the GLA $(3.9)_k$, $\overline{\mathfrak{h}}_k$ is the centralizer of iE_k in \mathfrak{g}^c . Also we have seen $E_k \in i\mathfrak{h}$, and hence $iE_k \in \mathfrak{h}_k$. (iii) is a direct consequence of this fact. \mathfrak{g} . e. d.

3.2. Let $\mathfrak{h}^- \subset \mathfrak{h}$ be the real span of $i\beta_1, \dots, i\beta_r$, and let \mathfrak{h}^+ be the orthogonal complement of \mathfrak{h}^- in \mathfrak{h} with respect to the Killing form of \mathfrak{g} . One has $\mathfrak{h} = \mathfrak{h}^+ + \mathfrak{h}^-$. Let $\boldsymbol{\omega}$ be the orthogonal projection of $i\mathfrak{h}$ onto $i\mathfrak{h}^-$ with respect to (,). Then it is well-known (Moore [15]) that

(3.16)
$$\begin{cases} \boldsymbol{\omega}(\boldsymbol{\Sigma}_1) = \{(\boldsymbol{\beta}_i + \boldsymbol{\beta}_j)/2 : 1 \le i \le j \le r\}, \\ \boldsymbol{\omega}(\boldsymbol{\Sigma}_0) - (0) = \{(\boldsymbol{\beta}_i - \boldsymbol{\beta}_j)/2 : 1 \le i < j \le r\}, \end{cases}$$

or

(3.17)
$$\begin{cases} \boldsymbol{\omega}(\boldsymbol{\Sigma}_{1}) = \left\{ \begin{array}{l} (\boldsymbol{\beta}_{i} + \boldsymbol{\beta}_{j})/2 : 1 \le i \le j \le r \\ \boldsymbol{\beta}_{i}/2 : 1 \le i \le r \end{array} \right\}, \\ \boldsymbol{\omega}(^{+}\boldsymbol{\Sigma}_{0}) - (0) = \left\{ \begin{array}{l} (\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{j})/2 : 1 \le i < j \le r \\ \boldsymbol{\beta}_{i}/2 : 1 \le i \le r \end{array} \right\}, \end{cases}$$

where ${}^{+}\Sigma_{0} = {}^{+}\Sigma \cap \Sigma_{0}$. Let a denote the real span of $Y_{\beta_{1}}, \dots, Y_{\beta_{r}}$ in p. Then a is a maximal abelian subspace of p, and $\bar{a} := \mathfrak{h}^{+} + \mathfrak{a}$ is a Cartan subalgebra of g. Let $\overline{\Delta}$ be the root system of \mathfrak{g}^{C} with respect to the Cartan subalgebra $\bar{\mathfrak{a}}^{C}$ (=the complexification of $\bar{\mathfrak{a}}$). $\overline{\Delta}$ is identified with a subset of the real part $i\mathfrak{h}^{+} + \mathfrak{a}$ of $\bar{\mathfrak{a}}^{C}$ with respect to the Killing form of g. Let $\tilde{\omega}$ be the orthogonal projection of $i\mathfrak{h}^{+} + \mathfrak{a}$ onto a, and let $\Delta = \tilde{\omega}(\overline{\Delta}) - (0)$. Then Δ is the root system of g with respect to a, which was chosen in § 2. As is well-known, if we put

$$(3.18) \quad x_j = \frac{1}{4} (\theta, \theta) Y_{\beta_j}, \qquad 1 \le j \le r,$$

then Δ is given by (2.10) or (2.11). Therefore, if we define $\gamma_1, \dots, \gamma_r$ as in (2.10) or (2.11), then $\Pi := \{\gamma_1, \dots, \gamma_r\}$ is a fundamental system for Δ which is of type C_r or BC_r . In both cases, the dominant root ϑ in Δ is given by $2x_1$ (cf. Lemma 2.5). Using (3.6) and (3.14), we have $(\operatorname{Ad} c)(\theta) = \vartheta$. Hence we can rewrite (3.18) as

$$(3.19) \quad x_j = \frac{1}{4} (\vartheta, \vartheta) Y_{\beta_j}, \qquad 1 \le j \le r.$$

As in 2.2, $\{Z_1, \dots, Z_r\}$ will denote the basis of a dual to Π .

LEMMA 3.3. If Π is of type BCr, then we have $c_k^4 = \exp \pi i Z_k$, $1 \le k \le r$. *r.* If Π is of type Cr, then we have $c_k^4 = \exp \pi i Z_k$, $1 \le k \le r-1$, and $c_r^4 = \exp 2\pi i Z_r$.

PROOF. Let

$$(3.20) h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ e_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ e_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Then an easy computation shows that the equality

(3.21)
$$(\exp \frac{\pi i}{4}(e_++e_-))^4 = \exp \pi i h$$

is valid in SL(2, C). By using this, we have

$$(3.22) c_{\beta_j}^4 = \exp \pi i \dot{\beta}_j, 1 \le j \le r.$$

S. Kaneyuki

Hence it follows from (3.14) and (3.19) that

$$(3.23) \quad c_{k}^{4} = cc_{k}^{4}c^{-1} = c(\exp \pi i \sum_{j=1}^{k} \check{\beta}_{j})c^{-1}$$
$$= \exp \pi i \sum_{j=1}^{k} (\operatorname{Ad} c) \check{\beta}_{j} = \exp \pi i \sum_{j=1}^{k} Y_{\beta_{j}}$$
$$= \exp \pi i \frac{4}{(\vartheta, \vartheta)} \sum_{j=1}^{k} x_{j}.$$

The lemma now follows from Lemma 2.5 and (3.23).

q. e. d.

LEMMA 3.4. Suppose that Π is of type BC_r or C_r . Let $\varepsilon_k (1 \le k \le r)$ be the characteristic involution for the gradation of 9 with Z_k as its characteristic element. If $1 \le k \le r-1$, then the characteristic involution η_k of the Z_2 -GLA (3.15)_k coincides with the ε_k -modification τ_k of the Cartan involution τ in 3.1. η_r coincides with τ_r or τ , according as Π is of type BC_r or C_r , respectively.

PROOF. We extend σ and τ to the involutive automorphisms of G^c , denoted again by σ and τ . Then we have

$$(3.24) \quad \boldsymbol{\tau}(c_{\boldsymbol{\beta}_j}) = c_{\boldsymbol{\beta}_j}, \qquad \boldsymbol{\sigma}(c_{\boldsymbol{\beta}_j}) = c_{\boldsymbol{\beta}_j}^{-1}, \qquad 1 \leq j \leq r.$$

Noting that the conjugations σ and τ of g^c commute with each other, we see easily that

 $(3.25) \quad \boldsymbol{\sigma\tau} = \boldsymbol{\tau\sigma} = \boldsymbol{\eta}_0 = \operatorname{Adexp} \, \boldsymbol{\pi} i \boldsymbol{E}_0.$

Therefore the equality $\tau = Adexp \pi i E_0$ is valid on g. By (3.25) and (3.24) we have

(3.26) (Adexp
$$-\pi i E_0$$
) (Ad c_k^2) (Adexp $\pi i E_0$) = $(\tau \sigma)$ (Ad c_k^2) $(\tau \sigma)^{-1}$
= Ad $(\tau \sigma (c_k^2))$ = Ad c_k^{-2} .

Consequently, from $(3.12)_k$, $(3.10)_k$ and Lemma 3.3 it follows that on g

(3.27)
$$\eta_{k} = \operatorname{Adexp} \pi i E_{k} = \operatorname{Adexp} \pi i ((\operatorname{Ad} c_{k}^{2}) E_{0})$$
$$= \operatorname{Ad}(c_{k}^{2}(\exp \pi i E_{0}) c_{k}^{-2}) = (\operatorname{Ad} c_{k}^{2}) (\operatorname{Adexp} \pi i E_{0}) (\operatorname{Ad} c_{k}^{2})^{-1}$$
$$= (\operatorname{Ad} c_{k}^{4}) (\operatorname{Adexp} \pi i E_{0}) = (\operatorname{Ad} c_{k}^{4}) \tau.$$

By Lemma 3.3 and (2.6), the last expression is equal to $(Adexp 2\pi i Z_r)\tau = \varepsilon_r^2 \tau = \tau$, provided that Π is of type C_r and k = r. Otherwise, by Lemma 3.3, it is equal to $\varepsilon_k \tau = \tau_k$. q. e. d.

3.3. In 3.2, we constructed simple symmetric triples $(\mathfrak{g}, \mathfrak{h}_k, \eta_k)$, $0 \le k \le r$. Note that $(\mathfrak{g}, \mathfrak{h}_0, \eta_0) = (\mathfrak{g}, \mathfrak{k}, \tau)$. Let $G := \operatorname{Ad} \mathfrak{g}$ be the adjoint group generated by \mathfrak{g} . Let H_k $(0 \le k \le r)$ be the centralizer of iE_k $(\in \mathfrak{h}_k)$ in G. Lie $H_k =$ \mathfrak{h}_k holds. Let us consider the coset spaces

 $(3.28) \qquad M_k = G/H_k, \qquad 0 \le k \le r.$

LEMMA 3.5. The subgroup H_k $(0 \le k \le r)$ is connected. The space $M_k = G/H_k$ $(0 \le k \le r)$ is a simply connected simple symmetric coset space of K_{ε} -type.

PROOF. Let \tilde{G} be the universal covering group of G and π be the covering homomorphism of \tilde{G} onto G. Then one can write $M = G/H_k = \tilde{G}/\pi^{-1}(H_k)$. Let $\tilde{C}(iE_k)$ be the centralizer of iE_k in \tilde{G} . It follows easily that $\pi^{-1}(H_k) = \tilde{C}(iE_k)$. Let $\tilde{\eta}_k$ be the involutive automorphism of \tilde{G} defined by $\tilde{\eta}_k(a) = (\exp \pi i E_k) a (\exp - \pi i E_k), a \in \tilde{G}$. $\tilde{\eta}_k$ induces on g the involution η_k . We see easily that $\tilde{C}(iE_k)$ is contained, as an open subgroup, in the subgroup \tilde{G}_{η_k} of $\tilde{\eta}_k$ -fixed elements in \tilde{G} . \tilde{G}_{η_k} is connected, by S. Koh [12]. Therefore $\tilde{C}(iE_k)$ is connected, and so we have $\pi(\tilde{C}(iE_k)) = H_k$, which implies that H_k is connected. η_k extends to an involutive automorphism of G, denoted again by η_k . It satisfies $\pi \tilde{\eta}_k = \eta_k \pi$. Thus H_k is an open subgroup of the subgroup of η_k -fixed elements in G. Hence $M_k = G/H_k$ ($= \tilde{G}/\tilde{C}(iE_k)$) is simply connected simple symmetric space associated with the symmetric triple (g, \mathfrak{h}_k, η_k). On the other hand, by Lemma 3. 4, η_k is an ε -involution and hence G/H_k is of K ε -type. q. e. d.

Let us consider the automorphism $\operatorname{Adexp} \frac{\pi}{2}(-iE_k)$, $0 \le k \le r$, of g, which leaves \mathfrak{m}_k stable. Consider the linear endomorphism on \mathfrak{m}_k

$$(3.29) \quad j_k = \operatorname{Ad}_{\mathfrak{m}_k} \exp \frac{\pi}{2} (-iE_k), \qquad 0 \le k \le r.$$

We denote by (,) the restriction of the Killing form of g to \mathfrak{m}_k , which is a nondegenerate inner product on \mathfrak{m}_k . It is easy to see that j_k satisfies the followings:

$$\begin{array}{ll} (3.30) & j_k^2 = -1, \\ (3.31) & [j_k, \operatorname{Ad}_{\mathfrak{m}_k} a] = 0, \\ (3.32) & (j_k X, j_k Y) = (X, Y), \end{array} \quad \begin{array}{ll} a \in H_k, \\ X, Y \in \mathfrak{m}_k. \end{array}$$

THEOREM 3.6. Let G be the adjoint group of a real simple Lie algebra 9 of hermitian type of real rank r, and H_k $(0 \le k \le r)$ be the centralizer in G of the element $iE_k \in g$ $(cf. (3.10)_k)$. Then the coset space $M_k = G/H_k$ $(0 \le k \le r)$ is a simply connected simple irreducible pseudo-hermitian symmetric space of K_{ε} -type. Conversely every simply connected simple irreducible pseudo-hermitian symmetric space of K_{ε} -type is obtained in this

S. Kaneyuki

manner. Furthermore, if the restricted root system of g is of type C_r , then we have the isomorphism $M_k \simeq M_{r-k}$ $(0 \le k \le \left\lfloor \frac{r}{2} \right\rfloor)$ as pseudo-hermitian symmetric spaces.

PROOF. In order to prove the first assertion, in view of Lemma 3.5, it remains to show that the symmetric space M_k is pseudo-hermitian and irreducible. By identifying m_k with the tangent space to $M_k = G/H_k$ at the origin, j_k extends to a G-invariant almost complex structure J_k on M_k (cf. (3.30), (3.31)). At the same time the inner product (,) extends to a G-invariant pseudo-hermitian metric on M_k (cf. (3.32)). M_k is thus pseudo-hermitian symmetric. Moreover, m_k has an invariant complex structure j_k , and g is never a complex Lie algebra. Hence, by a result of Koh (Theorem 7 [12]), M_k is irreducible. Considering (2.6)-(2.8) and comparing our $\varepsilon_1, \dots, \varepsilon_r$ in Lemma 3.4 with the classification of signatures of roots for simple Lie algebras (Oshima-Sekiguchi [18]), we see that η_0 , \cdots , η_r exhaust all the ε -involutions for g which correspond to pseudohermitian symmetric spaces (cf. Berger [3]). This implies the second assertion. Next suppose that the restricted root system of g is of type C_r . Let K be the analytic subgroup of G generated by \mathfrak{t} in 3.1. Note that $K = H_0$. Then, by Lemmas 2.6 and 3.4, there exists an element $a \in N_K(\mathfrak{a})$ such that $(\operatorname{Ad} a)^{-1}\eta_k(\operatorname{Ad} a) = \eta_{r-k}$ for $0 \le k \le r$ (Note that $\eta_0 = \eta_r = \tau$). Hence we have $(\operatorname{Ad} a)^{-1} j_k (\operatorname{Ad} a) = j_{r-k}$ and $(\operatorname{Ad} a) \mathfrak{h}_k = \mathfrak{h}_{r-k}$, and consequently the two pseudo-hermitian symmetric spaces M_k and M_{r-k} are isomorphic. q. e. d.

3.4. Let U_k $(0 \le k \le r)$ be the normalizer of $\bar{g}_1(k)$ in G^c . Then we can write $U_k = C^c(iE_k) \exp \bar{g}_1(k)$ (semi-direct), where $C^c(iE_k)$ is the centralizer of $iE_k \in g^c$ in G^c . U_k is connected and Lie $U_k = \bar{g}_0(k) + \bar{g}_1(k)$. The coset space $M^* = G^c/U_0$ is a compact irreducible hermitian symmetric space dual to the bounded symmetric domain $M_0 = G/H_0$. G is viewed as a subgroup of G^c . The following proposition is a version of a result of Takeuchi [20].

PROPOSITION 3.7. The pseudo-hermitian symmetric space M_k $(0 \le k \le r)$ is holomorphically imbedded into M^* as the open G-orbit through the point $c_k^2 o \in M^*$, where o denotes the origin of the coset space M^* .

PROOF. Let us define a smooth map φ_k of M_k to M^* by putting $\varphi_k(gH_k) = gc_k^2$, $g \in G$. Choose an element $a \in G \cap U_k$, and write it in the

form $a=b \exp X$, where $b \in C^{c}(iE_{k})$, $X \in \overline{\mathfrak{g}}_{1}(k)$. Since any element in G is left fixed by the involution σ of G^{c} , we have $b \exp X = \sigma(b) \exp \sigma(X)$, or

$$(3.33) \quad \exp \sigma(X) = (\sigma(b)^{-1}b) \exp X.$$

 $C^{c}(iE_{k})$ is stable under σ . σ is grade-reversing for the gradation $(3.9)_{k}$ (cf. Lemma 3.1). Therefore the left-hand side of (3.33) lies in $\exp \bar{g}_{-1}(k)$, while the right-hand side lies in U_{k} . Since $\exp \bar{g}_{-1}(k) \cap U_{k} =$ (1), we get X=0, and so $a=b \in C^{c}(iE_{k}) \cap G=H_{k}$. Thus we have proved $G \cap U_{k}=H_{k}$, which implies that φ_{k} is injective. That φ_{k} is open is easily seen. Under the identification of the tangent space $T_{o}(M^{*})$ at o with $\bar{g}_{-1}(0)$, the tangent space at $c_{k}^{2}o$ to M^{*} is identified with $\bar{g}_{-1}(k)$. On the other hand $\bar{g}_{-1}(k)$ is the *i*-eigenspace of the operator j_{k} on the complexification $\mathfrak{m}_{k}^{c}=\bar{\mathfrak{g}}_{-1}(k)+\bar{\mathfrak{g}}_{1}(k)$, and hence \mathfrak{m}_{k} with complex structure j_{k} is naturally C-isomorphic to the complex vector space $\bar{\mathfrak{g}}_{-1}(k)$. From this we can conclude that the differential $(\varphi_{k})_{*}$ at the origin of M_{k} is C-linear, which is equivalent to saying that φ_{k} is holomorphic. q. e. d.

Later on we will identify M_k $(0 \le k \le r)$ with its φ_k -image, and so M_k is viewed as an open submanifold of M^* .

§ 4. The Ad G_0 -orbit decomposition of g_{-2}

4.1. Let g be a real simple Lie algebra of hermitian type of real rank r, and let τ be a Cartan involution of g. We shall preserve the situation in § 3. For a subset $\Phi \subset \Sigma$, we denote by $-\Phi$ the set of roots $-\alpha$, where $\alpha \in \Phi$. First of all we wish to construct the gradation of g^{C} whose characteristic element is $Z_0 = \sum_{j=1}^{r} \check{\beta}_j$. For an integer k, let

(4.1) $\widetilde{\Sigma}_k = \{ \alpha \in \Sigma : (\alpha, Z_0) = k \}.$

By using (3.16) and (3.17) we have

(4.2)
$$\Sigma = \bigcup_{k=-2}^{2} \widetilde{\Sigma}_{k},$$

where

(4.3)
$$\widetilde{\Sigma}_{0} = \{ \boldsymbol{\alpha} \in \Sigma_{0} : \boldsymbol{\omega}(\boldsymbol{\alpha}) = 0 \text{ or } \boldsymbol{\omega}(\boldsymbol{\alpha}) = \frac{1}{2} (\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{j}), \ i \neq j \}, \\ \widetilde{\Sigma}_{1} = \{ \boldsymbol{\alpha} \in ^{+}\Sigma : \boldsymbol{\omega}(\boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\beta}_{i}, \ 1 \leq i \leq r \}, \\ \widetilde{\Sigma}_{2} = \{ \boldsymbol{\alpha} \in \Sigma_{1} : \boldsymbol{\omega}(\boldsymbol{\alpha}) = \frac{1}{2} (\boldsymbol{\beta}_{i} + \boldsymbol{\beta}_{j}), \ i \leq j \}, \\ \widetilde{\Sigma}_{-k} = -\widetilde{\Sigma}_{k}, \qquad k = 1, \ 2. \end{cases}$$

We denote the root space $(\subseteq \mathfrak{g}^c)$ for $\alpha \in \Sigma$ by \mathfrak{g}^{α} . Let

$$(4.4) \qquad \tilde{\mathfrak{g}}_0 = \mathfrak{h}^C + \sum_{\alpha \in \tilde{\Sigma}_0} \mathfrak{g}^{\alpha}, \\ \tilde{\mathfrak{g}}_k = \sum_{\alpha \in \tilde{\Sigma}_k} \mathfrak{g}^{\alpha}, \qquad k = \pm 1, \ \pm 2.$$

Then we get the gradation of g^c

$$(4.5) \qquad \mathfrak{g}^{\mathcal{C}} = \tilde{\mathfrak{g}}_{-2} + \tilde{\mathfrak{g}}_{-1} + \tilde{\mathfrak{g}}_0 + \tilde{\mathfrak{g}}_1 + \tilde{\mathfrak{g}}_2,$$

with Z_0 as its characteristic element. If the restricted fundamental system Π is of type C_r , then $\tilde{\Sigma}_1 = \tilde{\Sigma}_{-1} = \emptyset$, in other words, $\tilde{g}_1 = \tilde{g}_{-1} = (0)$.

Next we wish to recombine the gradation so as to get the gradation (3.1). Define four subsets of Σ by

 $\begin{array}{ll} (4.6) \qquad \widetilde{\Sigma}_{-1}^+\!=\!\Sigma_{-1}\cap\widetilde{\Sigma}_{-1}, \qquad \widetilde{\Sigma}_{-1}^-\!=\!\Sigma_0\cap\widetilde{\Sigma}_{-1}, \\ \qquad \widetilde{\Sigma}_{1}^+\!=\!\Sigma_0\cap\widetilde{\Sigma}_{1}, \qquad \widetilde{\Sigma}_{1}^-\!=\!\Sigma_{1}\cap\widetilde{\Sigma}_{1}. \end{array}$

Then we have

(4.7)
$$\widetilde{\Sigma}_1 = \widetilde{\Sigma}_1^+ \cup \widetilde{\Sigma}_1^-, \qquad \widetilde{\Sigma}_{-1} = \widetilde{\Sigma}_{-1}^+ \cup \widetilde{\Sigma}_{-1}^-.$$

Also we have

(4.8) $\Sigma_1 = \widetilde{\Sigma}_2 \cup \widetilde{\Sigma}_1^-, \qquad \Sigma_{-1} = \widetilde{\Sigma}_{-2} \cup \widetilde{\Sigma}_{-1}^+, \qquad \Sigma_0 = \widetilde{\Sigma}_{-1}^- \cup \widetilde{\Sigma}_0 \cup \widetilde{\Sigma}_1^+.$

Let $\tilde{\mathfrak{g}}_{\pm 1}^{\varepsilon}$ be the subspaces of \mathfrak{g}^{c} spanned by the root vectors E_{α} for $\alpha \in \widetilde{\Sigma}_{\pm 1}^{\varepsilon}$, where the index ε always takes the values + and -. Then we have from (4.7) and (4.8)

$$\begin{array}{ll} (4.9) & \tilde{\mathfrak{g}}_{1} = \tilde{\mathfrak{g}}_{1}^{+} + \tilde{\mathfrak{g}}_{1}^{-}, & \tilde{\mathfrak{g}}_{-1} = \tilde{\mathfrak{g}}_{-1}^{+} + \tilde{\mathfrak{g}}_{-1}^{-}, \\ (4.10) & \mathfrak{g}^{c} = (\tilde{\mathfrak{g}}_{-2} + \tilde{\mathfrak{g}}_{-1}^{+}) + (\tilde{\mathfrak{g}}_{-1}^{-} + \tilde{\mathfrak{g}}_{0} + \tilde{\mathfrak{g}}_{1}^{+}) + (\tilde{\mathfrak{g}}_{1}^{-} + \tilde{\mathfrak{g}}_{2}), \\ (4.11) & \bar{\mathfrak{g}}_{0} = \tilde{\mathfrak{g}}_{-1}^{-} + \tilde{\mathfrak{g}}_{0} + \tilde{\mathfrak{g}}_{1}^{+}, & \bar{\mathfrak{g}}_{-1} = \tilde{\mathfrak{g}}_{-2} + \tilde{\mathfrak{g}}_{-1}^{+}, & \bar{\mathfrak{g}}_{1} = \tilde{\mathfrak{g}}_{1}^{-} + \tilde{\mathfrak{g}}_{2}, \end{array}$$

Note that $\tilde{\mathfrak{g}}_{1}^{\epsilon}$ and $\tilde{\mathfrak{g}}_{-1}^{\epsilon}$ are abelian subalgebras, and by the same arguments as in 4.3 in [7], we see that those four subalgebras have an equal dimension. (3.13) implies that $2E_{0}^{+}=2E_{0}-Z_{0}$, and hence it follows that the two decompositions (4.9) are the decompositions into the $(\pm i)$ -eigenspaces under the operator ad I, where $I = -2iE_0^+$; ad I is equal to $\epsilon i1$ on $\tilde{g}_{\pm 1}^{\epsilon}$.

4.2. For a subalgebra (or a subspace) v of g, we write ${}^{c}v$ for $(\operatorname{Ad} c)v$. Since $Y_{\beta_{j}} \in a \subset v$ $(1 \leq j \leq r)$, it follows from (3.14) that Z_{0} lies in ${}^{c}g$. Let $\rho = (\operatorname{Ad} c)^{2} = \operatorname{Ad} c^{2}$. Then the conjugation of g^{c} with respect to the real form ${}^{c}g$ is given by $\rho\sigma$ (cf. (3.24)). Consequently $\rho\sigma(Z_{0}) = Z_{0}$ and so $\rho\sigma$ is grade-preserving for the gradation (4.5). Also from (4.5) we obtain the following gradation of ${}^{c}g$ with Z_{0} as its characteristic element:

 $(4.12) \quad {}^{c}\mathfrak{g}=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}+\mathfrak{g}_{2}, \ \mathfrak{g}_{k}=\tilde{\mathfrak{g}}_{k}\cap {}^{c}\mathfrak{g}=\{X\in\tilde{\mathfrak{g}}_{k}: \rho\sigma X=X\}, \ -2\leq k\leq 2.$

Note that if Π is of type C_r , then $g_{-1}=g_1=(0)$. That \tilde{g}_k $(-2 \le k \le 2)$ is stable under $\rho\sigma$ implies that g_k is a real form of \tilde{g}_k .

LEMMA 4.1. $ad_{ge1}I$ is a complex structure on g_{e1} . In particular g_{-1} is naturally *C*-linearly isomorphic to \tilde{g}_{-1}^+ .

PROOF. $I = -2iE_0^+$ lies in g and hence $\sigma(I) = I$. On the other hand $E_0^+ \in i\mathfrak{h}^+$ and Ad c is equal to the identity on $i\mathfrak{h}^+$. Therefore we have $\rho\sigma(I) = \rho(I) = (\operatorname{Ad} c)^2(-2iE_0^+) = -2iE_0^+ = I$, which implies that I lies in ${}^c\mathfrak{g}$. Since I commutes with Z₀, it follows that I lies in \mathfrak{g}_0 and that ad I leaves each subspace \mathfrak{g}_k stable. The complexification $\mathfrak{g}_{\varepsilon_1}^C$ is equal to $\tilde{\mathfrak{g}}_{\varepsilon_1} = \tilde{\mathfrak{g}}_{\varepsilon_1}^+ + \tilde{\mathfrak{g}}_{\varepsilon_1}^-$, on which $(\operatorname{ad} I)^2 = -1$ holds. This shows that $(\operatorname{ad} I)^2 = -1$ on $\mathfrak{g}_{\varepsilon_1}$. q. e. d.

LEMMA 4.2. The conjugation σ is grade-reversing for the gradation (4.5). Moreover σ interchanges $\tilde{g}_{-1}^{\epsilon}$ with $\tilde{g}_{1}^{-\epsilon}$, where $-\epsilon$ denotes - or + according as $\epsilon = +$ or -, respectively.

PROOF. The fact $Z_0 \in i\mathfrak{h}^-$ implies that $\sigma(Z_0) = -Z_0$. Hence the first assertion follows. We have thus at least $\sigma(\tilde{\mathfrak{g}}_{-1}^{\epsilon}) \subset \tilde{\mathfrak{g}}_1$. Let $X \in \tilde{\mathfrak{g}}_{-1}^{\epsilon}$. Then $[I, \sigma(X)] = [\sigma(I), \sigma(X)] = \sigma[I, X] = \sigma(\epsilon i X) = -\epsilon i X$, which shows that $\sigma(X) \in \tilde{\mathfrak{g}}_{-1}^{-\epsilon}$.

Let τ be the Cartan involution of g given in 3.1. Recall that we have extended τ to the conjugation of g^c with respect to the compact real form $g_u = \mathfrak{E} + i\mathfrak{p}$. Since τ commutes with Ad c (cf. (3.24)), c_g admits the Cartan decomposition by τ :

 $(4.13) \quad {}^{c}\mathfrak{g} = {}^{c}\mathfrak{E} + {}^{c}\mathfrak{p}.$

The fact that $\tau Z_0 = -Z_0$ (cf. (3.4)) implies that τ is also grade-reversing for the gradation (4.12). Therefore we have the Cartan decomposition of g_0 by τ :

 $(4.14) \qquad \mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0,$

where $\mathfrak{k}_0 = \mathfrak{g}_0 \cap {}^c \mathfrak{k}$ and $\mathfrak{p}_0 = \mathfrak{g}_0 \cap {}^c \mathfrak{p}$.

4.3. We consider the two graded subalgebras of g^c :

(4.15)
$$c_{g_{ev}} = g_{-2} + g_0 + g_2, g' = g_{-2} + g'_0 + g_2,$$

where $g'_0 = [g_{-2}, g_2]$. Let n be the ideal of g_0 formed by elements $X \in g_0$ such that $(ad X)g_{-2}=0$.

LEMMA 4.3. (Tanaka [22]). g' is simple and

(4.16) ${}^{c}g_{ev}=g'\oplus \mathfrak{n}$ (direct sum).

Therefore one has

 $(4.17) \quad \mathfrak{g}_0 = \mathfrak{g}'_0 \oplus \mathfrak{n} \qquad (direct \ sum).$

The Cartan involution τ of ${}^c\mathfrak{g}$ leaves \mathfrak{g}' stable, and its restriction to \mathfrak{g}' is again a (grade-reversing) Cartan involution of \mathfrak{g}' . Let $\mathfrak{k}' = {}^c\mathfrak{k} \cap \mathfrak{g}'$ and $\mathfrak{k}'_0 = {}^c\mathfrak{k} \cap \mathfrak{g}'_0$, which are maximal compact subalgebras of \mathfrak{g}' and \mathfrak{g}'_0 respectively. Set $Y_0 = \sum_{j=1}^r Y_{\beta_j}$. The following lemma is essentially due to Korányi-Wolf [13]. But we give another proof in our context.

LEMMA 4.4. The element iY_0 is a central element of \mathfrak{t}' , and \mathfrak{t}' is the centralizer $c_{\mathfrak{g}'}(iY_0)$ of iY_0 in \mathfrak{g}' . In particular the simple GLA \mathfrak{g}' is of hermitian type.

PROOF. By (3.14) we have $(\operatorname{Ad} c)Z_0 = Y_0$. Since $iZ_0 \in \mathfrak{h}^- \subset \mathfrak{k}$, iY_0 lies in ${}^c\mathfrak{k}$. The inclusion $E_{\pm \beta_j} \in \tilde{\mathfrak{g}}_{\pm 2}$ implies $Y_0 \in \tilde{\mathfrak{g}}_{-2} + \tilde{\mathfrak{g}}_2$, and hence $iY_0 \in \mathfrak{g}'^c$. Thus $iY_0 \in \mathfrak{g}'^c \cap {}^c\mathfrak{k} = \mathfrak{k}'$. Recall that \mathfrak{k}^c is the centralizer $\mathfrak{c}_{\mathfrak{g}}c(E_0)$. We have $(\operatorname{Ad} c)E_0 = (\operatorname{Ad} c)(E_0^+ + \frac{1}{2}Z_0) = E_0^+ + \frac{1}{2}(\operatorname{Ad} c)Z_0 = E_0^+ + \frac{1}{2}Y_0$, which implies that $(\operatorname{Ad} c)\mathfrak{k}^c = \mathfrak{c}_{\mathfrak{g}}c(E_0^+ + \frac{1}{2}Y_0)$. Hence $\mathfrak{k}'^c = \mathfrak{g}'^c \cap ({}^c\mathfrak{k})^c = \mathfrak{c}_{\mathfrak{g}'c}(E_0^+ + \frac{1}{2}Y_0)$. By virtue of the equality $2E_0^+ = 2E_0 - Z_0$, it follows that $(4.18) \quad [E_0^+, {}^c\mathfrak{g}_{ev}] = 0$.

Therefore $\mathfrak{t}'^{c} = \mathfrak{c}_{\mathfrak{g}'^{c}}(iY_{0})$ and consequently $\mathfrak{t}' = \mathfrak{c}_{\mathfrak{g}'}(iY_{0})$. q. e. d.

By Lemma 4.3, we see that n is the centralizer of g' in ${}^{c}g_{ev}$. On the other hand, iE_{0}^{+} lies in $c_{c_{0}}(Z_{0}) = g_{0}$. Hence, from (4.18) we have

 $(4.19) \quad iE_0^+ \in \mathfrak{n}.$

LEMMA 4.5. The Cartan involution $\tau \mid_{c_{g}} of c_{g}$ is given by $Adexp(\pi i (E_{0}^{+} + \frac{1}{2}Y_{0}))$. The Cartan involution $\tau \mid_{g'} of g'$ is given by $Adexp \frac{\pi i}{2}Y_{0}$.

PROOF. By (3.24) and (3.25) it follows that

$$\tau|_{c_{g}} = (\operatorname{Ad} c)(\tau|_{g})(\operatorname{Ad} c)^{-1} = (\operatorname{Ad} c)(\operatorname{Adexp} \pi i E_{0})(\operatorname{Ad} c)^{-1}$$

= Adexp $\pi i((\operatorname{Ad} c)(E_{0}^{+}+\frac{1}{2}Z_{0})) = \operatorname{Adexp} \pi i(E_{0}^{+}+\frac{1}{2}Y_{0}).$

The second assertion follows from this and (4.18). q. e. d.

LEMMA 4.6. 1) $\mathfrak{k}_0 = \mathfrak{k}'_0 \oplus \mathfrak{n}$ (direct sum). 2) The Cartan decomposition of \mathfrak{g}'_0 by τ is given by

$$(4.20) \qquad \mathfrak{g}_0' = \mathfrak{k}_0' + \mathfrak{p}_0.$$

PROOF. By the definition, Y_0 lies in g'^c . Hence, by (4.16) we have (4.21) $[Y_0, n] = 0.$

Let $X \in \mathfrak{n}$. Then, by Lemma 4.5,

$$\tau X = X + \pi i ([E_0^+, X] + \frac{1}{2} [Y_0, X]) + \cdots.$$

By (4.18) we have $[E_0^+, X] \in [E_0^+, n] = (0)$. Hence, from (4.21) it follows that τ is the identity on n. This implies that $n \subset \mathfrak{k}_0$. (4.20) is an immediate consequence of the first assertion. q. e. d.

LEMMA 4.7. $i\mathfrak{h}^-$ is a maximal abelian subspace of ${}^{c}\mathfrak{p}$ contained in \mathfrak{p}_0 .

PROOF. The subspace a spanned by $Y_{\beta_1}, \dots, Y_{\beta_r}$ is a maximal abelian subspace of \mathfrak{p} . Since $i\mathfrak{h}^-$ is spanned by $\check{\beta}_1, \dots, \check{\beta}_r$, it is maximal abelian in ${}^c\mathfrak{p}$ by virtue of (3.14). By (3.5) we have $E_{-\beta_j} = \frac{1}{2}(X_{\beta_j} - iY_{\beta_j})$. Since X_{β_j} and Y_{β_j} lie in $\mathfrak{p}, \ \sigma(E_{-\beta_j}) = \frac{1}{2}(X_{\beta_j} + iY_{\beta_j})$ holds. Using (3.14), we get $\rho\sigma(E_{-\beta_j}) = \frac{1}{2}(X_{\beta_j} - iY_{\beta_j}) = E_{-\beta_j}$, which implies that $E_{-\beta_j} \in {}^c\mathfrak{g}$. In view of (4.3) and (4.4), we get $E_{-\beta_j} \in \mathfrak{g}_{-2}$. Consequently $E_{\beta_j} \in \mathfrak{g}_2$ and hence $\check{\beta}_j \in [\mathfrak{g}_{-2}, \mathfrak{g}_2] \cap {}^c\mathfrak{p} = \mathfrak{p}_0$ by Lemma 4.6. q. e. d.

Let us now consider the g_{-2} -valued trilinear map B_{τ} on g_{-2} given by

(4.22)
$$B_{\tau}(X, Y, Z) = \frac{1}{2}[[\tau Y, X], Z], \qquad X, Y, Z \in \mathfrak{g}_{-2}.$$

 (g_{-2}, B_r) is a Jordan triple system (in short, JTS), since g' is a GLA of the first kind.

LEMMA 4.8. The JTS (g_{-2}, B_{τ}) is compact and simple.

PROOF. g' is a simple GLA and the Cartan involution τ of g' is grade-reversing. Consequently (g_{-2}, B_{τ}) is simple (cf. pp. 98-99 in [8]), and hence (g_{-2}, B_{τ}) satisfies the condition (A) ([1]). To the JTS (g_{-2}, B_{τ}) there corresponds a GLA $L(B_{\tau})$ of the first kind, called the Koecher-Kantor algebra for (g_{-2}, B_{τ}) ([19], [8]). It follows from [8] that there exists a grade-preserving isomorphism φ of g' onto $L(B_{\tau})$ satisfying

$$(4.23) \quad \boldsymbol{\varphi}\boldsymbol{\tau} = \boldsymbol{\tau}_{\boldsymbol{B}\boldsymbol{\tau}}\boldsymbol{\varphi},$$

where $\tau_{B_{\tau}}$ is the grade-reversing canonical involution of $L(B_{\tau})$ ([8]). By (4.23), $\tau_{B_{\tau}}$ is a Cartan involution of $L(B_{\tau})$. Therefore, by Proposition 2.4 [1], the JTS ($\mathfrak{g}_{-2}, B_{\tau}$) is nondegenerate and so it is compact by Theorem 3.3 [1]. q. e. d.

Let G_0 and G'_0 be the analytic subgroups of the adjoint group Ad ${}^c_{\mathfrak{g}}$ generated by \mathfrak{g}_0 and \mathfrak{g}'_0 , respectively. By the definition of \mathfrak{n} , we have $\mathrm{Ad}_{\mathfrak{g}_{-2}}G_0 = \mathrm{Ad}_{\mathfrak{g}_{-2}}G'_0$. Let us put

$$(4.24) \qquad o_{p,q} = \sum_{j=1}^{p} E_{-\beta_j} - \sum_{k=1}^{q} E_{-\beta_{p+k}},$$

where $p, q \ge 0, p+q \le r$. Here we are adopting the same convention as for (1.2). Let $V_{p,q}$ denote the $(\mathrm{Ad}_{g-2}G_0)$ -orbit in g_{-2} through the point $o_{p,q}$, that is,

$$(4.25) V_{p,q} = (\mathrm{Ad}_{g_{-2}}G_0) o_{p,q}, p, q \ge 0, p+q \le r.$$

THEOREM 4.9. Let ${}^{c}g = \sum_{k=-2}^{2} g_{k}$ be the GLA given in (4.12), which is simple of hermitian type of real rank r. Then the $Ad_{g-2}G_{0}$ -orbit decomposition of g_{-2} is given by

$$(4.26) \qquad \mathfrak{g}_{-2} = \coprod_{p+q \leq r} V_{p,q}.$$

PROOF. Set $E = \sum_{j=1}^{r} E_{-\beta_j} \in \mathfrak{g}_{-2}$, and define a multiplication \square on \mathfrak{g}_{-2} by putting

232

 $(4.27) \quad X \square Y = B_{\tau}(X, E, Y), \qquad X, Y \in \mathfrak{g}_{-2}.$

Then a theorem of Meyberg (cf. Koecher [11]) shows that the multiplication \Box defines on \mathfrak{g}_{-2} the structure of a Jordan algebra^{*)}. That Jordan algebra is denoted by $(\mathfrak{g}_{-2}, \Box)$. The property $[\tau E, E] = -Z_0$ implies that E is the unit element of $(\mathfrak{g}_{-2}, \Box)$. On the other hand, looking into the classification of compact simple JTS's (Loos [14]; also see [8] for the classical case), and picking up the ones whose Koecher-Kantor algebras are simple of hermitian type, we can see that each JTS (\mathfrak{g}_{-2}, B_r) comes from the Jordan algebra $(\mathfrak{g}_{-2}, \Box)$, that is,

$$(4.28) \quad B_{\tau}(X, Y, Z) = (X \Box Y) \Box Z + X \Box (Y \Box Z) - Y \Box (X \Box Z)$$

holds. From (4.28) and Lemma 4.8 it follows that (g_{-2}, \Box) is compact simple. Noting that g' is isomorphic to $L(B_{\tau})$ and using Lemma 3.1 in [1], we can conclude that p_0 consists of the operators of all left multiplications of elements in the Jordan algebra (g_{-2}, \Box) . If we denote by T_j (1 \leq $j \leq r$) the operator of left multiplication by the element $E_{-\beta_j} \in \mathfrak{g}_{-2}$, then we see from (4.27), (4.22) and (3.4) that $T_j = -\check{\beta}_j/2$ holds under the identification of g' with $ad_{g_{-2}g'_{0}}$. This implies that T_1, \dots, T_r span the maximal abelian subspace $i\mathfrak{h}^-$ of \mathfrak{p}_0 (cf. Lemma 4.7). The relation $T_i = -\check{\beta}_i/2$ $(1 \le j \le r)$ implies that $\{E_{-\beta_1}, \cdots, E_{-\beta_r}\}$ is a system of orthogonal idempotents. Suppose that $E_{-\beta_1}$ can be written as the sum E' + E'' of two orthogonal idempotents E' and E''. Then, by considering the Peirce de- $E_{-\beta_2}, \cdots, E_{-\beta_r}$ forms a system of orthogonal idempotents. By a property of the Peirce decomposition ([2]), $E', E'', E_{-\beta_2}, \cdots, E_{-\beta_r}$ are strictly commutative, which implies that the operators of the left multiplications by those elements span an (r+1)-dimensional abelian subspace of \mathfrak{p}_0 . This is a contradiction. $\{E_{-\beta_1}, \cdots, E_{-\beta_r}\}$ is thus a system of primitive orthogonal idempotents. By a property of a Koecher-Kantor algebra, $Ad_{a-2}G_0 =$ $\mathrm{Ad}_{g_{-2}}G'_0$ coincides with the identity component of the structure group of the Jordan algebra (g_{-2}, \Box) . Thus we are finally in a position to apply the Sylvester's law of inertia ([9], [10]; see also (1,1) and (1.3)) to the Jordan algebra (g_{-2}, \Box) to obtain the decomposition (4.25). q. e. d.

^{*)} This Jordan algebra structure was originally introduced by Korányi-Wolf [13] by a different manner.

§5. Cayley images and Siegel domains over nondegenerate cones

5.1. Let g be a real simple Lie algebra of hermitian type of real rank r, τ a Cartan involution of g and $g=\mathfrak{k}+\mathfrak{p}$ be the Cartan decomposition by τ as in (2.9). We retain all the conventions in the previous sections. Let us consider the map $F: g_{-1} \times g_{-1} \rightarrow \tilde{g}_{-2} = g_{-2} + ig_{-2}$ defined by

(5.1)
$$F(X, Y) = \frac{1}{4} \{ [[I, X], Y] + i[X, Y] \}, \quad X, Y \in \mathfrak{g}_{-1}.$$

 $\operatorname{ad}_{\mathfrak{g}_{-1}} I$ is the complex structure on \mathfrak{g}_{-1} with respect to which the correspondence $X \mapsto \frac{1}{2}(X - i[I, X])$ gives a *C*-linear isomorphism of \mathfrak{g}_{-1} onto $\tilde{\mathfrak{g}}_{-1}^+$ (cf. Lemma 4.1). If we identify \mathfrak{g}_{-1} with $\tilde{\mathfrak{g}}_{-1}^+$ as complex vector spaces, then, by using the fact that $\tilde{\mathfrak{g}}_{-1}^+$ is abelian, it turns out that

(5.2)
$$F(Z, U) = \frac{i}{2} [Z, \rho \sigma U], \qquad Z, U \in \tilde{\mathfrak{g}}_{-1}^+.$$

This expression is essentially the same as Korányi-Wolf's [13], and hence F is a $V_{r,0}$ -hermitian form (cf. § 1). Note that $V_{r,0}$ is an irreducible selfdual cone. Consider the Siegel domain in \overline{g}_{-1} over the nondegenerate cone $V_{r-k,k}$ $(1 \le k \le r)$:

(5.3)
$$D(V_{r-k,k}, F) = \{ (Z, U) \in \tilde{g}_{-2} + \tilde{g}_{-1}^+ = \bar{g}_{-1} \colon \text{Im } Z - F(U, U) \in V_{r-k,k} \},$$

where the imaginary part of Z is taken with respect to the real form \mathfrak{g}_{-2} . Sometimes we call $D(V_{r-k,k}, F)$ simply a Siegel domain. If the restricted root system $\Delta(\S 3)$ of \mathfrak{g} is of type C_r , then $\tilde{\mathfrak{g}}_{-1}^+=(0)$ holds and hence the Siegel domain $D(V_{r-k,k}, F)$ reduces to the tube domain $D(V_{r-k,k})$ over the nondegenerate cone $V_{r-k,k}$. Let ξ be the well-known holomorphic (open dense) imbedding of $\tilde{\mathfrak{g}}_{-1}$ into the compact dual $M^*=G^c/U_0$ (cf. 3.4) of M_0 (cf. (3.28)), defined by $\xi(X)=\exp X \cdot o, X \in \tilde{\mathfrak{g}}_{-1}$, where o is the origin of M^* . It is known [13] that the Cayley image $c(M_0)$ is contained in $\xi(\tilde{\mathfrak{g}}_{-1})$ and that

(5.4) $\xi^{-1}(c(M_0)) = D(V_{r,0}, F).$

We wish to know what the set $\xi^{-1}(c(M_k))$, $k \ge 1$, is.

LEMMA 5.1. $\xi^{-1}(cc_k^2 o) = -io_{k,r-k}, 0 \le k \le r$, where $o_{k,r-k}$ is the one given in (4.24).

PROOF. Let h and e_{\pm} be the same as in (3.20). Then we have in $SL(2, \mathbb{C})$

$$(\exp\frac{\pi i}{4}(e_{+}+e_{-}))^{3} = \exp(-ie_{-}) \begin{pmatrix} -1/\sqrt{2} & 0\\ 0 & -\sqrt{2} \end{pmatrix} \exp(-ie_{+}).$$

Therefore we get

(5.5)
$$c_{\beta_j}^3 = \exp(-iE_{-\beta_j})k'_{\beta_j}\exp(-iE_{\beta_j});$$

also we know [13]

(5.6)
$$c_{\beta_j} = \exp(iE_{-\beta_j})k_{\beta_j}\exp(iE_{\beta_j}).$$

Here k'_{β_j} and k_{β_j} are elements of the complex analytic subgroup of G^c generated by $\check{\beta}_j$. We have that $cc_k^2 = \prod_{j=1}^k c_{\beta_j}^3 \prod_{j=k+1}^r c_{\beta_j}$ for $1 \le k \le r$ and $cc_k^2 = c$ for k=0. Consequently from (5.5) and (5.6) it follows that

(5.7)
$$cc_k^2 \equiv \exp i \left(-\sum_{j=1}^k E_{-\beta_j} + \sum_{j=k+1}^r E_{-\beta_j} \right) \mod U_0$$

The lemma is a direct consequence from (5.7). q. e. d.

Let G_a be the identity component of the affine automorphism group of the Siegel domain $D(V_{r,0}, F)$. According to Tanaka [21], Lie G_a coincides with the graded subalgebra $g_a := g_{-2} + g_{-1} + g_0$, and g_0 is the Lie algebra of the linear automorphism group of $D(V_{r,0}, F)$.

LEMMA 5.2. Let $D_{p,q} = \Phi^{-1}(V_{p,q})$, where $\Phi: \bar{g}_{-1} \rightarrow g_{-2}$ is the same as in (1.4). Then we have the G_a -orbit decomposition of \bar{g}_{-1} :

$$(5.8) \qquad \bar{\mathfrak{g}}_{-1} = \coprod_{p+q \leq r} D_{p,q};$$

each $D_{P,q}$ is the Ga-orbit through the point $io_{P,q}$.

PROOF. As was shown in § 1, the Sylvester decomposition (4.26) of \mathfrak{g}_{-2} yields the decomposition (5.8). From what is montioned just before the lemma, the group G_0 is the identity component of $GL(D_{r,0})$. The homomorphism ρ in § 1 coincides now with the adjoint representation $\operatorname{Ad}_{\mathfrak{g}_{-2}}$ of G_0 . The image $\operatorname{Ad}_{\mathfrak{g}_{-2}}G_0$ is identical with the identity component of the structure group of the Jordan algebra $(\mathfrak{g}_{-2}, \Box)$ (cf. the proof of Theorem 4.9); the latter coincides with the identity component of the automorphism group of the cone $V_{r,0}$ ([19]). By Theorems 4.9 and 1.1 we have that each subset $D_{p,q} \subset \overline{\mathfrak{g}}_{-1}$ is a G_a -orbit. $D_{p,q}$ contains the set $\{(iX, 0) \in \widetilde{\mathfrak{g}}_{-2} + \widetilde{\mathfrak{g}}_{-1}^+: X \in V_{p,q}\}$, which implies that $io_{p,q} \in D_{p,q}$.

We finally have

S. Kaneyuki

THEOREM 5.3. Let G be a real simple Lie group of hermitian type of real rank r. Let $M_k = G/H_k$ $(0 \le k \le r)$ be a (simply connected) simple irreducible pseudo-hermitian symmetric space of K_{ε} -type constructed in § 3 and realized as an open subset of M^* , the compact dual of the hermitian symmetric space M_0 (cf. Proposition 3.7). Then the intersection of the Cayley image $c(M_k)$ with $\xi(\bar{g}_{-1})$ is holomorphically equivalent to the affine homogeneous Siegel domain $D(V_{r-k,k}, F)$ in \bar{g}_{-1} , where $V_{r-k,k}$ is the nondegenerate cone given in (4.25) and F is the $V_{r,0}$ -hermitian form given in (5.2). More precisely we have

(5.9)
$$\boldsymbol{\xi}^{-1}(\boldsymbol{c}(\boldsymbol{M}_{k})\cap\boldsymbol{\xi}(\bar{\boldsymbol{g}}_{-1}))=\boldsymbol{D}(\boldsymbol{V}_{\boldsymbol{r}-\boldsymbol{k},\boldsymbol{k}},\boldsymbol{F}), \qquad 0 \leq k \leq r.$$

If the restricted root system of g = Lie G is of type C_r , then the Siegel domain $D(V_{r-k,k}, F)$ is reduced to the tube domain $D(V_{r-k,k})$.

PROOF. We may assume that G is centerless. Set ${}^{c}G = cGc^{-1}(\subset G^{c})$. Note that Lie ${}^{c}G = {}^{c}g$. We claim first that

$$(5.10) \quad c(M_k) = {}^c G(\xi(io_{r-k,k})), \qquad 0 \le k \le r.$$

In fact, noting that $V_{q,p} = -V_{p,q}$ (cf. § 1), we have from Lemma 5.1 that

$$c(M_{k}) = c(Gc_{k}^{2}o) = {}^{c}Gcc_{k}^{2}o = {}^{c}G(\xi(-io_{k,r-k}))$$

= ${}^{c}G(G_{0}\xi(-io_{k,r-k})) = {}^{c}G(\xi(i(-(Ad_{g-2}G_{0})o_{k,r-k})))$
= ${}^{c}G(\xi(i(-V_{k,r-k}))) = {}^{c}G(\xi(iV_{r-k,k}))$
= ${}^{c}G(\xi(io_{r-k,k})).$

There exists a bijective correspondence between the set of $\operatorname{Ad}_{\mathfrak{g}_{-2}}G_0$ -orbits in \mathfrak{g}_{-2} and the set of G_a -orbits in \mathfrak{g}_{-1} (cf. [6]). That bijection is obtained by assigning the G_a -orbit $G_a(io_{p,q})$ to each orbit $V_{p,q} = (\operatorname{Ad}_{\mathfrak{g}_{-2}}G_0)o_{p,q}$. Note that $G_a(io_{r-k,k}) = D(V_{r-k,k}, F)$ (cf. Theorem 1.1). Theorem 4.9 now shows that the number of G_a -orbits in \mathfrak{g}_{-1} is equal to $\frac{1}{2}(r+1)(r+2)$. This number is also equal to the number of cG -orbits in M^* (cf. Takeuchi [20]). Furthermore every cG -orbit has a nonempty intersection with $\boldsymbol{\xi}(\mathfrak{g}_{-1})$ (Nakajima [16]). Also any connected component of the intersection of a cG -orbit with $\boldsymbol{\xi}(\mathfrak{g}_{-1})$ is the $\boldsymbol{\xi}$ -image of a G_a -orbit in \mathfrak{g}_{-1} , and vice versa ([6]). Therefore the intersection of each cG -orbit with $\boldsymbol{\xi}(\mathfrak{g}_{-1})$ must be connected. Hence it follows from (5.10) that

$$c(M_k) \cap \boldsymbol{\xi}(\bar{\boldsymbol{g}}_{-1}) = {}^c G(\boldsymbol{\xi}(io_{r-k,k})) \cap \boldsymbol{\xi}(\bar{\boldsymbol{g}}_{-1}) = \boldsymbol{\xi}(G_a(io_{r-k,k}))$$
$$= \boldsymbol{\xi}(D(V_{r-k,k},F)),$$

proving (5.9). The second assertion follows from the fact that $g_{-1} = (0)$

Pseudo-hermitian symmetric spaces and Siegel domains over nondegenerate cones 237

q. e. d.

for the case of type C_r .

The Siegel domain $D(V_{r-k,k}, F)$ is called the Siegel domain corresponding to M_k .

5.2. Let H(r, F) denote the vector space of all hermitian matrices of degree r with entries in the division algebra F = R, C, H (=the quaternion algebra) or O (=the octanion algebra). Let

$$H_{r-k,k}(F) = \{X \in H(r, F) : \operatorname{sgn}(X) = (r-k, k)\},\$$

$$r \ge 1, F = R, C, H,\$$

$$H_{3-k,k}(O) = \{X \in H(3, O) : \operatorname{sgn}(X) = (3-k, k)\},\$$

$$C_{2,0}(n) = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 > x_2^2 + \dots + x_n^2, x_1 > 0\}, n \ge 3\$$

$$C_{1,1}(n) = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 < x_2^2 + \dots + x_n^2\}, n \ge 3\$$

$$C_{0,2}(n) = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 > x_2^2 + \dots + x_n^2, x_1 < 0\}, n \ge 3$$

These are nondegenerate homogeneous cones. Let $M_{p,q}(\mathbf{F})$ denote the space of all $p \times q$ matrices with entries in \mathbf{F} , and J denote the *r*-tuple direct sum of the matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

We give here a list of the simple irreducible pseudo-hermitian symmetric spaces M_k of K_{ϵ} -type and the corresponding Siegel domains D_k over nondegenerate cones. The explicit determination of M_k 's is done by inspecting the tables in [3], [18].

Type
$$I_{r,p,k}$$
 $(0 \le k \le r \le p)$
 $M_k = U(r, p)/U(r-k, k) \times U(k, p-k),$
 $D_k = \begin{cases} D(H_{r-k,k}(C)) & \text{for } r=p, \\ D(H_{r-k,k}(C), F) & \text{for } r < p, \end{cases}$
where $F(U, U) = \frac{1}{2} U^t \overline{U}, \ U \in M_{r,p-r}(C).$

Type II_{2n,2k}
$$(0 \le k \le \left[\frac{n}{2}\right] = r)$$

 $M_k = SO^*(2n)/U(n-2k, 2k),$
 $D_k = \begin{cases} D(H_{r-k,k}(H)) & \text{for } n \text{ even,} \\ D(H_{r-k,k}(H), F) & \text{for } n \text{ odd,} \end{cases}$
where $F(U, U) = \frac{1}{2}(U^t \overline{U} + J \overline{U}^t U^t J), U \in M_{2r,1}(C)$

Type III_{r,k} $(0 \le k \le r)$ $M_k = Sp(r, \mathbf{R})/U(r-k, k),$ $D_k = D(H_{r-k,k}(\mathbf{R}))$

Type IV_{*n*+2,*k*} (*k*=0, 1, 2)

$$\begin{cases}
M_0 = M_2 = SO^0(n+2, 2)/SO(n+2) \times SO(2), \\
D_0 = D_2 = D(C_{2,0}(n+2)). \\
M_1 = SO^0(n+2, 2)/SO^0(n, 2) \times SO(2), \\
D_1 = D(C_{1,1}(n+2)).
\end{cases}$$

Type V_k (k=0, 1, 2) $\begin{cases}
M_0 = E_{6(-14)}/SO(10) T, \\
D_0 = D(C_{2,0}(8), F). \\
M_1 = E_{6(-14)}/SO^*(10) T, \\
D_1 = D(C_{1,1}(8), F). \\
M_2 = E_{6(-14)}/SO^0(2, 8) T, \\
D_2 = D(C_{0,2}(8), F), \\
\text{where, the } C_{-}(8) \text{ herm}
\end{cases}$

where the $C_{2,0}(8)$ -hermitian form $F: \mathbb{C}^8 \times \mathbb{C}^8 \to \mathbb{C}^8$ is the one given by Tsuji [23].

Fype VI_k
$$(k=0, 1, 2, 3)$$

$$\begin{cases}
M_0 = M_3 = E_{7(-25)}/E_6 T, \\
D_0 = D_3 = D(H_{3,0}(\mathbf{0})), \\
M_1 = M_2 = E_{7(-25)}/E_{6(-14)} T, \\
D_1 = D_2 = D(H_{2,1}(\mathbf{0})).
\end{cases}$$

The coset space representations of the exceptional spaces M_k are only infinitesimal expressions (not global forms). T denotes the one-dimensional torus.

Bibliography

- H. ASANO and S. KANEYUKI, On compact generalized Jordan triple systems of the second kind, Tokyo J. Math., 11 (1988), 105-118.
- [2] A. ASH, D. MUMFORD, M. RAPOPORT and Y-S. TAI, Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, 1975.
- [3] M. BERGER, Les espaces symétriques non-compacts, Ann. École Norm. Sup., 74 (1957), 85-177.
- [4] N. BOURBAKI, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris, 1981.
- [5] S. KANEYUKI, Homogeneous Bounded Domains and Siegel Domains, Lect. Notes in Math., 241, Springer, Berlin-Heidelberg-New York, 1971.
- [6] S. KANEYUKI, On Siegel domains of finite type, J. Math. Soc. Japan, 39 (1987), 597-607.
- [7] S. KANEYUKI, On orbit structure of compactifications of parahermitian symmetric spaces, Japan. J. Math., 13 (1987), 333-370.
- [8] S. KANEYUKI and H. ASANO, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J., 112 (1988), 81-115.
- [9] S. KANEYUKI, The Sylvester's law of inertia for Jordan algebras, Proc. Japan Acad., 64 Ser. A(1988), 311-313.

- [10] S. KANEYUKI, On the causal structures of the Silov boundaries of symmetric bounded domains, to appear in Lect. Notes in Math., Springer.
- [11] M. KOECHER, An Elementary Approach to Bounded Symmetric Domains, Lect. Notes, Rice Univ., Houston, 1969.
- [12] S. S. KOH, On affine symmetric spaces, Trans. Amer. Math. Soc., 119 (1965), 291-309.
- [13] A. KORÁNYI and J. A. WOLF, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math., 81 (1965), 265-288.
- [14] O. LOOS, Bounded Symmetric Domains and Jordan Pairs, Math. Lect., Univ of Calif., Irvine, 1977.
- [15] C. C. MOORE, Compactification of symmetric spaces II: The Cartan domains, Amer. J. Math., 86 (1964), 358-378.
- [16] K. NAKAJIMA, On Tanaka's imbeddings of Siegel domains, J. Math. Kyoto Univ., 14 (1974), 533-548.
- [17] K. NOMIZU, Invariant affine connections on homogeneous spaces, Amer. J. Math., 76 (1954), 33-65.
- [18] T. OSHIMA and J. SEKIGUCHI, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math., 57 (1980), 1-81.
- [19] I. SATAKE, Algebraic Structures of Symmetric Domains, Iwanami Shoten, Tokyo and Princeton Univ. Press, Princeton, 1980.
- [20] M. TAKEUCHI, On orbits in a compact hermitian symmetric space, Amer. J. Math., 90 (1968), 657-680.
- [21] N. TANAKA, On infinitesimal automorphisms of Siegel domains, J. Math. Soc. Japan, 22 (1970), 180-212.
- [22] N. TANAKA, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math., 2 (1976), 131-190.
- [23] T. TSUJI, Siegel domains over self-dual cones and their automorphisms, Nagoya Math. J., 55 (1974), 33-80.

Department of Mathematics Sophia University Kioicho, Chiyoda-ku, Tokyo 102