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1. Introduction

Let G be a nonsolvable subgroup of the linear translation complement
of a translation plane II of order q^{2} with kernel GF(q) where q is a
power of a prime p , and let G_{0} be a minimal nonsolvable normal subgroup
of G. In [5] Ostrom pointed out the following theorem which is proved
by using a work of Suprunenko and Zalesskii [7].

THEOREM A. If G_{0}/Z(G_{0}) is simple and if p>5 , then G_{0}/Z(G_{0})

must be PSL(2, 5) , PSL(2, 9) , or PSL(2, p^{s}) for some positive integer s.

If G_{0}/Z(G_{0}) is isomorphic to PSL(2, p^{s}) , II is a Desarguesian plane, a
Hall plane, a Hering plane or a Schaffer plane(Walker [8], [9] and
Schaffer [6] ) . At the case that G_{0}/Z(G_{0}) is isomorphic to PSL(2,9) ,

Mason proved the following theorem in [4].

THEOREM B. If G_{0}/Z(G_{0}) is isomorphic to A_{6} , there are exactly two
isomorophic classes of planes II with kernel GF(7) . If H is the translation
complement of II and D the kernel of \Pi , then in one case we have H/D\cong

A_{6} , while in the second we have H/D\cong S_{6} .

We have studied about the case that the kernel of II is GF(11) . Our
result will be described by a following theorem which is proved at the end
after much preparation.

THEOREM C. Let II be a translation plane of dimension 2 over its
kernel and the linear translation complement C has a normal subgroup G

such that G/Z(G)\cong S_{6} . Then there are exactly three isomo\uparrow phism classes

of planes II with kernel GF(11) . If D is the kernel of \Pi , then C=DG.

Notation is standard, and follows that of [2]. For a permutation
group M on \Omega , we put M_{x}=\{g\in M|xg=x\} where x is an element of \Omega ,

and for a group H , we put Cl_{H}(x)=\{g^{-1}xg|g\in H\} where x is an element
of H. We write S^{\Omega} and A^{\Omega} for a symmetric and alternative group on \Omega .
In Section 2 we shall study the group G, its representations and spreads
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on which G acts, while Section 3 and 4 will be devoted to existence of the
planes II in question.

2. The spreads

We use the following notations throughout the paper, K=SL(2,9) is
a 2-fold cover of A_{6} . The group G is K<f\rangle , where f is induced by the
Frobenius automorphism of GF(9) . J=SL(2,3) is a subgroup of K. Let
\theta be an element of GF(9) such that \theta^{2}=-1 , and \nu=\theta+1 . Then \nu is a
generator of the multiplicative group GF(9)^{*} . We define six matrices as
follows:

z=\{\begin{array}{ll}-1 00 -1\end{array}\} , c=\{\begin{array}{ll}1 01 l\end{array}\} , d=\{\begin{array}{ll}1 0\nu 1\end{array}\} ,

b=\{\begin{array}{ll}-\theta -\theta 1-\theta 1\end{array}\} , p=\{\begin{array}{ll}\theta \theta-\theta \theta\end{array}\} , q=\{\begin{array}{ll}1 11 -1\end{array}\} ,

where the order of z, cdb, p and q are 2, 3, 3, 5, 8 and 4, respectively.

LEMMA 2. 1. K has exactly two inequivalent complex irreducble char-
acters of degree 4, which are denoted by \chi and \psi. Moreover,

(i) \chi and \psi are rational and faithful j

(ii) \chi and \psi differ only on 3-singular elements, and we may take
\chi(c)=-2 , \chi(d)=1 and \psi(c)=1 , \psi(d)=-2

FROOF. See (Lemma 2. 3 of [4]).

LEMMA 2. 2. G has exactly four inequivalent complex irreducible
characters of degree 4. We may denote them by \chi, x’,-\psi, \psi’ , where \chi

and \chi’ (resp. \psi and \psi’) both extend the character \chi (resp. \psi) of Lemma 2. 1.
Moreover, the following hold ;

(i) \chi and \chi’ are Galois conjugate, and also \psi and \psi’ are Galois con-
jugate.

(ii) \chi lies in GF(11) , that is, by reduction modulo 11, the representa-
tion which affords \chi gives an irreducible representation of degree
4 on GF(11) .

(iii) \psi does not lie in GF(11) .

PROOF. See (Lemma 2. 4 and Lemma 2. 5 of [4]).

We now specialize to the case p=11 . So let V be 4-dimensi0nal
GF(11) -space. After Lemma 2. 2 we may take G\leqq GL(V) , and we may
take V to be the GF(11)G module which affords the character \chi .
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Lemma 2. 3. The following hold :

(i) \chi(z)=-4 , \chi(p)=0 , \chi(q)=0 , \chi(zb)=1 , \chi(b)=-1 ,

and \chi vanishes on G\backslash K except on the elements of order 12, and we may
take \chi(x)=-5 and \chi(x^{5})=5 . Here x is an element in G\backslash K which
satisfies x^{4}=d.

(ii) C_{V}(d) is 2-dimensi0nal.
(iii) C_{V}(f) is 2-dimensi0nal.
(iv) If y is not contained in Cl_{G}(d)\cup Cl_{G}(f) and y\neq 1 , then C_{V}(y)=0 .

PROOF. From the character table of G (See [1], pp. 228-238), the
lemma is verified.

Set f_{1}=\{\begin{array}{ll}\theta 00 -\theta\end{array}\} f, f_{2}=\{\begin{array}{ll}\theta 0\theta -\theta\end{array}\} f,

f_{3}=\{\begin{array}{ll}0 -\theta-\theta 0\end{array}\} f, f_{4}=\{\begin{array}{ll}1 0\theta 1\end{array}\} f, f_{5}=f.

We define a mapping \varphi from G to S_{6} as follows:

\varphi(f_{1})=(12) , \varphi(f_{2})=(23) , \varphi(f_{3})=(34) , \varphi(f_{4})=(45) , \varphi(f_{5})=(56) .

Then it is readily verified that the following hold:

Lemma 2. 4. \varphi is well defined and a homomo\uparrow phism from G to S_{6} .
Moreover, Ker(\varphi)=\langle z\rangle , \varphi(K)=A_{6} , and \varphi(J)=A^{\{1,2,3,4\}} .

We write \varphi(x)=\overline{x} for each element x\in G , and \varphi(M)=\overline{M} for each
subgroup M of G. Then we get \overline{c}=(123),\overline{d}=(123)(465),\overline{b}=(12345) ,
\overline{p}=(1324)(56) and \overline{q}=(14)(23) . Throughout Section 2 we suppose that a
spread \mathscr{L} preserved by G exists. Here \mathscr{L} consists of 2-dimentional sub-
spaces of V. and |\mathscr{L}|=122 . Set \mathscr{L}_{1}=\{C_{V}(d’)| d’\in Cl_{G}(d)\} . Then we
have the following Lemma.

LEMMA 2. 5. \mathscr{L}1 is a partial spread of \mathscr{L} with 20 components and d
acts as homology on the tanslation plane corresponding to \mathscr{L}.

PROOF. Let R be a 3-Sylow subgroup of K , so that R\cong Z_{3}\cross z . We
may take R=\langle c, d\rangle . Since |\mathscr{L}|\equiv 2(mod 3) there is certainly an R-
invariant component, say W. Of course, W is a 2-dimensional GF(11)
R-module, while |GL(W)| is not divisible by 9. Hence R is not faithful
on W. By Lemma 2. 3 the kernel of the action of R on W must be \langle d\rangle

or \langle cd\rangle , Here cdtEClG(d) . Since G_{W}=N_{G}(\langle d\rangle) and |G:N_{G}(\langle d\rangle)|=20 ,

the lemma is proved.
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Let S be a 2-Sylow subgroup of G. We may take S=\langle p, q, f\rangle . Here p^{8}=

q^{4}=f^{2}=1 , p^{4}=q^{2}=z, q^{-1}pq=p^{-1} , f^{-1}pf=p^{5} , ff=fq. Next we put T=\langle p,
qf\rangle and L=\langle c, b\rangle , then |S : T|=2 , and \overline{L}=A^{\{1,2,3,4,5\}} .

LEMMA 2. 6. The following hold :

(i) \chi_{1J}=2\chi_{5} , where \chi_{5}\in Irr(f) .
(ii) \chi_{|fx<f>}=(\chi_{5}\cross 1)+(\chi_{5}\cross(-1)) , where \chi_{5}\cross 1 , \chi_{5}\cross(-1)\in Irr(J\cross

\phi\rangle) .
(iii) \chi_{1J<pf>}=\chi_{51}\cross x_{52} , where \chi_{51} , x_{52}\in Irr(J\langle pf\rangle) and \chi_{51}\neq\chi_{52} .
(iv) \chi_{|T}=\theta_{1}+\theta_{2} , where \theta_{i}\in Irr(T) for i=1,2 and \theta_{1}\neq\theta_{2} .
(v) \chi_{|L}=\eta_{1}+\eta_{2} , where \eta_{i}\in Irr(L) for i=1,2 and \eta_{1}\neq\eta_{2} .

Moreover, by reduction modulo 11, the representations which afford \chi_{5} , \chi_{51} ,
\chi_{52} , \theta_{1} , \theta_{2} , \eta_{1} and \eta_{2} give irreducible representations of degree 2 on
GF(11) , respectively.

PROOF. We can get character tables of J, J\cross\sigma\rangle , J\langle pf\rangle , T, and L
by the method in Chapter 6 of [3], and by using their character tables we
can verify this lemma.

LEMMA 2. 7. J fixes just twelve 2-dimensional subspaces of V.

PROOF. We may take V_{1} and V_{2} to be the GF(11)J-submodules in V
which afford the character \chi_{5} of Lemma 2. 6 ( i) where V=V_{1}\oplus V_{2} . Let
\Phi be a GF(11)J-isomorphism from V_{1} to V_{2} . Now for each element \sigma\in

C_{GL(V_{1})}(J) , V(\sigma)=\{x\sigma+x\Phi|x\in V_{1}\} is a 2-subspace of V fixed by J , and
V(\sigma)\neq V_{i} for i=1 , 2. Moreover if \sigma\neq\sigma^{r} then V(\sigma)\neq V(\sigma’) . Conversely
ly if U is a 2-subspace of V fixed by J and if U\neq V_{i}(i=1,2) , then there
is an element \sigma of C_{GL(V_{1})}(J) such that U=V(\sigma) . On the other hand,
since c_{GL(V_{1})}CJ ) =\{aE|a\in GF(11)^{*}\} holds, the lemma follows.

Let W_{i}(i=1,2,3) be the GF(11)(J\cross\psi\rangle) , GF(11)(f\langle pf\rangle) and
GF(11)T-submodules in V which afford the characters \chi_{5}X1 , \chi_{51} and \theta_{1} ,
respectively. We put \mathscr{L}_{21}=\{W_{1}g|g\in G\}=\{C_{V}(f’)|f’\in Cl_{G}(f)\} , \mathscr{L}_{22}=

\{W_{2}g|g\in G\} and \mathscr{L}23=\{W_{3}g|g\in G\} .
LEMMA 2. 8. S has at least one orbit \mathscr{F} of length 2 on \mathscr{L}. Further-

more, one of the following holds.

(i) \mathscr{I}^{\vee}is contained in \mathscr{L}21 , and \mathscr{L}_{21} is a partial spread of \mathscr{L} with 30
components.

(ii) \mathscr{F} is contained in \mathscr{L}_{22} , and \mathscr{L}22 is a partial spread of \mathscr{L} with 30
components.
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(iii) \mathscr{F} is contained in \mathscr{L}_{23} , and \mathscr{L}_{23} is a partial spread of \mathscr{L} with 90
components.

PROOF. Since |\mathscr{L}|\not\equiv 0(mod 4) and |S|=32 , S has an orbit of length 2
or length 1 on \mathscr{L} . Set T_{1}=S\cap K , then \chi_{|T_{1}}=\theta_{1}^{*}+\theta_{2}^{*} where \theta_{i}^{*}\in Irr(T_{1})

and \theta_{i}^{*}(1)=2 for i=1,2 . But by reduction modulo 11, the representation
which affords \theta_{i}^{*} does not give an irreducible representation of degree 2 on
GF(11) for i=1,2 . Hence V is an irreducible T_{1} -module and also an
irreducible S module. Therefore S has no orbit of length 1. Consequently
ly S has an orbit t\mathscr{T} of length 2 on \mathscr{L} .

Now for U\in \mathscr{I}_{J}^{-}|S:S_{U}|=2 . On the other hand, S has just seven sub-
grups of index 2, T_{i}(i=1,2,3, 4, 5, 6, 7) say. T_{i} is described by the gener-
ators as follows:

T_{1}=S\cap K=\langle p, q\rangle and \overline{T}_{1}=\langle(1324)(56), (14) (23)\rangle

T_{2}=\langle p^{2}, q, f\rangle and \overline{T}_{2}=\langle(12)(34), (13) (24)\rangle x \langle (56) \rangle

T_{3}=\langle pf, q\rangle and \overline{T}_{3}=\langle(1324), (14) (23)\rangle

T_{4}=\langle p, f\rangle and \overline{T}_{4}=\langle(1324)\rangle\cross\langle(56)\rangle

T_{5}=T=\langle p, ff\rangle and \overline{T}_{5}=\langle(1324)(56), (14) (23) (56)\rangle

T_{6}=\langle p^{2}, qp, f\rangle and \overline{T}_{6}=\langle(12)(34), (34) (56)\rangle x \langle (56) \rangle

T_{7}=\langle pf, qp\rangle and \overline{T}_{7}=\langle(1324), (34) (56)\rangle

Since V is an irreducible T_{1} -module, we have S_{U}\neq T_{1} . Suppose S_{U}=T_{4} .
Since z inverts V. it is easy to see z\not\in C_{T_{4}}(U) , which implies C_{\tau_{4}}(U)\cap

K=1 . On the other hand T_{4} does not normalize \phi\rangle . Thus it follows
that C_{T_{4}}(U)=1 and T_{4}\leqq GL(U) . But T_{4} is not isomorphic to a 2-Syl0w
subgroup of GL(2,11) , which leads to a contradiction. Hence S_{U}\neq T_{4} .
Similarly it is shown that S_{U}\neq T_{6} and S_{U}\neq T_{7} . If S_{U}=T_{2} , then C_{T_{2}}( U)=

j\rangle and U=C_{V}(f) . Moreover C_{G}(f)=J\cross\sigma\rangle and |G:C_{G}(f)|=30 hold.
Thus the case ( i) of Lemma 2. 8 holds.

Now T_{3} and T_{5} are isomorphic to a 2-Sylow subgroup of GL(2,11) .
If S_{U}=T_{3} , then C_{T_{3}}( U)=1 . It is readily checked that T_{3}\leqq J\langle pf\rangle and
\overline{J}\langle\overline{p}\overline{f}\rangle=S^{\{1,2,3,4\}} . If H is a subgroup of G such that J\langle pf\rangle\subsetneqq H . we have
three case : \overline{H}=S^{\{1,2,3,4\}}\cross\langle(56)\rangle,\overline{H}=S^{\{1,2,3,4,5\}} and H=G. Then in any
case it follows that \chi_{|H} is irreducible and V is an irreducible //-module.
Hence G_{U}=J\langle pf\rangle . On the other hand, |G:J\langle pf\rangle|=30 . Thus the case
(ii) of Lemma 2. 8 holds.

If S_{U}=T_{5} , then C_{T_{5}}(U)=1 . Take a subgroup H of G such that T_{5}\subsetneqq

H. If |\overline{H}|=2^{3}\cdot 3^{2}\cdot 5 , then H=K and V is H irreducible and so S_{U}\neq H.
Next suppose |\overline{H}|=2^{3}\cdot 3\cdot 5 , then we have two cases: \overline{H}=S^{\{i,j,hl,m\}} and \overline{H} is
an image of S^{\{i,j,k.l,m\}} by an outer automorphism \alpha of S_{6} for some distinct
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numbers \{i, j, k, l, m\}\subset\{1,2,3, 4, 5, 6\} . In both cases it follows that T_{5} is
not contained in H. a contradiction. If |\overline{H}|=2^{3}\cdot 3^{2} , then H=N_{G}(P) for a
3-Sylow subgroup P of G and it is checked that \chi_{|H} is irreducible. There-
fore G_{U}\neq H. Finally suppose |\overline{H}|=2^{3}\cdot 3 . Then it is clear that O_{3}(\overline{H})=1

and so O_{2}(\overline{H})\neq 1 . Thus O_{2}(\overline{H}) is a normal subgroup of \overline{T}_{5} . Hence we
have \langle(12)(34)\rangle=Z(\overline{T}_{5})\leq O_{2}(\overline{H}) . Moreover \overline{T}_{5}\cap Cl_{s_{6}}((12)(34))=\langle(12)

(34)\rangle . Therefore \langle(12)(34)\rangle=Z(\overline{H}) . On the other hand C_{s_{6}}((12)(34))

is a 2-group, a contradiction. Thus in the case that S_{U}=T_{5} , we get G_{U}=

T_{5} . Since |G:T_{5}|=90 , the case (iii) of Lemma 2. 8 holds. This com-
pletes the proof of the lemma.

Let W_{4} and W_{4}’ be the GF(11)L-submodules in V which afford the
characters \eta_{1} and \eta_{2} of Lemma 2. 6(v), respectively. Set \mathscr{L}_{3}=\{W_{4}g|g\in

G\} . Then we get

LEMMA 2. 9. \mathscr{L}_{3} is a partial spread of \mathscr{L} with 12 components.

PROOF. Let R=\langle b\rangle . Then R is a 5-Sylow subgroup of G. Since
|\mathscr{L}|\equiv 2 (mod 5), there is certainly an R invariant component, say U. By
Lemma 2. 6 ( v) , R is faithful on U. If is clear that \langle R, z\rangle\leq G_{U} . We
now define an outer automorphism \alpha of S_{6} as follows:

(12) \alpha=(12)(36)(45) , (23)\mbox{\boldmath $\alpha$}=(15) (26) (34), (34)\mbox{\boldmath $\alpha$}=(16) (23) (45)
(45) ’=(12) (34) (56) , (56) =(13) (26) (45) .

Then it is easy to see that (12345)\mbox{\boldmath $\alpha$}= (12345)^{-1} . Take a subgroup H of
G such that \langle R, z\rangle\leq H. Since \overline{R}=\langle(12345)\rangle , then one of the following
holds.

(i) H-=N_{S_{6}}(\overline{R})=(\langle(12345)\rangle)\langle(2354)\rangle

(ii) H-=(\langle(12345)\rangle)\langle(25)(34)\rangle

(iii) \overline{H}=A^{\{1,2,3,4,5\}} and H=L
(iv) \overline{H}=S^{\{1,2,3,4,5\}}

(v) \overline{H}=(A^{\{1,2,3,4,5\}})\alpha

(vi) \overline{H}=(S^{\{1,2,3,4,5\}})\alpha

Let J_{1} be a subgroup of G such that \overline{J_{1}}=(\overline{J})\alpha . Then V is an irreducible
(not absolutely irreducible) GF(11)J_{1} -module. Since J_{1}\leq H for H satisfy-
ing either ( v) or (vi), we get G_{U}\neq H. Moreover, for H satisfying
either ( i) or (iv), it can be shown that \chi_{|H} is irreducible and that G_{U}\neq

H.
Suppose G_{U}=H for H satisfying ( ii) . Then |H|=20 , H\subsetneqq L and H

\cap Cl_{G}(f)=\phi . Let \zeta , \zeta_{1} and \zeta_{1}’ be the characters of H which are afforded
by the H-modules U, W_{4} and W_{4-}’ respectively. It is seen easily that \zeta , \zeta_{1}
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and \zeta_{1}’ are all irreducible, and that \zeta_{1}\neq\zeta_{\acute{1}} . If U\cap W_{4}=0 and U\cap W_{4}’=0 ,
then we obtain that V=U\oplus W_{4}=U\oplus W_{4}’ and \chi_{|H}=\zeta+\zeta_{1}=\zeta+\zeta_{1}’ which
contradicts \zeta_{1}\neq\zeta_{1}’ . Therefore we may assume U\cap W_{4}\neq 0 . Since H acts
on U\cap W_{4} faithfully, we get \dim(U\cap W_{4})=2 . Consequently U=W_{4} , that
is a contradiction. Thus it follows that G_{U}\neq H for H satisfying ( ii) .
Thus G_{U}=L . We get U=W_{4} or U=W_{4}’ and |G:G_{U}|=12 , which complete
the proof of the lemma.

In Lemma 2. 8, if the case (iii) holds, then \mathscr{L}=\mathscr{L}_{1}\cup \mathscr{L}_{23}\cup \mathscr{L}_{3} can be
shown. Let \Lambda be the set of 2-subspaces of V fixed by J. |\Lambda|=12 holds by
Lemma 2. 7. On the other hand J\leq L and J\leq L’ where \overline{L}’=A^{\{1,2,3,4,6\}} .
Since L and L’ are conjugate in G, then |\Lambda\cap \mathscr{L}_{3}|=4 by Lemma 2. 6 ( v) .
Moreover, since J\leq I\cross\sigma\rangle and J\leq J\langle pf\rangle , it is observed that |\Lambda\cap \mathscr{L}_{21}|=2

and |\Lambda(\urcorner \mathscr{L}_{22}|=2 by Lemma 2. 6 ( ii) and (iii). Set \Lambda_{1}=\Lambda\backslash ((\Lambda\cap \mathscr{L}_{21})\cup(\Lambda

\cap \mathscr{L}_{22})\cup(\Lambda\cap \mathscr{L}_{3})) . Then |\Lambda_{1}|=4 , and N_{G}(J) acts transitively on \Lambda_{1} . Let
W_{5} be an element of \Lambda_{1} and put \mathscr{L}_{4}=\{W_{5}g|g\in G\} . We prove the follow-
ing lemma.

LEMMA 2. 10. Suppose that the case ( i) or ( ii) of Lemma 2. 8
holds. Then \mathscr{L}_{4} is a partial spread of \mathscr{L} with 60 components.

PROOF. We concentrate the cases ( i) or ( ii) of Lemma 2. 8 and
set \mathscr{L}_{4i}=\mathscr{L}\backslash (\mathscr{L}_{1}\cup \mathscr{L}_{2i}\cup \mathscr{L}_{3}) for i=1,2 . Suppose that G is intransitive on
\mathscr{L}_{4i} . Then G has an orbit \mathscr{T} whose length is less than 30, since |\mathscr{L}_{4i}|=60 .
Take a component X in \mathscr{T} Then we get |G:G_{X}|\leqq 30 . Therefore |G_{X}|\geqq

48 and |\overline{G}_{X}|\geqq 24 . If we set H=G_{X} , then |\overline{H}|=120,72,60,48,36 , or 24,
since S_{6} has no subgroup of order 30, 40 and 45. If |\overline{H}| is either 120 or 72,
then \chi_{|H} is irreducible, which is a contradiction. Suppose that |\overline{H}|=60 .
Then we may assume H=L or \overline{H}=(\overline{L})\alpha . The former case gives X\in \mathscr{L}_{3}

by the definition of \mathscr{L}_{3} , a contradiction. The latter case gives the result
that V is an H-irreducible module, since J_{1}\leq H , which is also a contradic-
tion. Suppose |\overline{H}|=48 , then H=N_{G}(J) or N_{G}(J_{1}) . In any case, V is an
H-irreducible module, a contradiction. Suppose |H|=36 , then we may
assume H=N_{G}(\langle c\rangle) or N_{G}(\langle d\rangle) . In the former case, \chi_{|H} is irrducible, a
contradiction. In the latter case, it follows that X\in \mathscr{L}_{1} , which is also a
contradiction.

Finally suppose |H|=24 , then we have four cases: J_{1}\leq H, H=J\cross\sigma\rangle ,
H=J\langle pf\rangle and H=I\langle p\rangle . Since J_{1} and I\langle p\rangle act irreducibly on V. we
have J_{1}\not\leq H and H\neq J\langle p\rangle . If H=J\cross\sigma\rangle , then X\in \mathscr{L}_{21} , and if H=J\langle pf\rangle ,
then X\in_{\mathscr{L}22} . In any case of these four cases we have a contradiction.

Thus G is transitive on \mathscr{L}_{4i} , and also |G:G_{X}|=60 holds for a comp0-

nent X in \mathscr{L}4i . Since |G_{X}|=24 , we may assume G_{X}=J or G_{X}=J_{1} . But G_{X}
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\neq J_{1} can be shown, as seen in the middle of the proof of Lemma 2. 9.
Hence it is reasonable to assume G_{X}=J and X=W_{5} . Therefore \mathscr{L}_{4i}=\mathscr{L}_{4}

for i=1,2 . The lemma is proved.

PROPOSITION 1. Suppose that \mathscr{L} is a spread in V, and that G acts
the translation plane corresponding to \mathscr{L}. Then one of the following holds.

(i) \mathscr{L}^{=}\mathscr{L}_{1}\cup \mathscr{L}_{21}\cup \mathscr{L}_{3}u_{\mathscr{L}}4

(ii) \mathscr{L}=\mathscr{L}_{1}’\cup \mathscr{L}_{22}\cup \mathscr{L}_{3}\cup \mathscr{L}_{4}

(iii) \mathscr{L}=\mathscr{L}1\cup \mathscr{L}_{23}\cup \mathscr{L}_{3}

PROOF. The present proposition follows from consequences of Lemma
2. 5, Lemma 2. 8, Lemma 2. 9 and Lemma 2. 10.

3. Existence of the spread I

Set \mathscr{L}_{1}^{*}=\mathscr{L}_{1}\cup \mathscr{L}21\cup \mathscr{L}3\cup \mathscr{L}4 , \mathscr{L}_{2}^{*}=\mathscr{L}_{1}\cup \mathscr{L}_{22}\cup \mathscr{L}_{3}\cup \mathscr{L}_{4} , \mathscr{L}_{3}^{*}=\mathscr{L}_{1}\cup \mathscr{L}23\cup

\mathscr{L}3 for the \mathscr{L}i(i=1,3,4) and \mathscr{L}_{2j}(j=1,2,3) in Section 2. Then we have
the following proposition.

PROPOSITION 2. rightarrow r_{1}^{*} and \mathscr{L}_{2}^{*} are spreads in V.

In order to prove Proposition 2, we shall follow a long series of lem-
mas.

LEMMA 3. 1. Let V_{1}=C_{V}(x) , V_{2}=C_{V}(y) for elements x, y in G. If
there is a non-trivial element s in (x,y\rangle such that s\not\in(Cl_{G}\propto)\cup Cl_{G}(d) ),
then V_{1}\cap V_{2}=0 .

PROOF. It is obvious from Lemma 2. 3(iv) that C_{V}(s)=0 . More-
over, \langle x, y\rangle centralizes V_{1}\cap V_{2} . Therefore V_{1}\cap V_{2}=0 . The lemma fol-
lows.

Now we note the following property of G.
LEMMA3.2.

(i) Let x\in G, then \langle d, d^{x}\rangle\cong Z_{3} , Z_{3}\cross z , SL(2,3) or SL(2,5) .
(ii) Let x\in G, then \sigma, f^{x}\rangle \cong z , z\cross z , D_{6} , D_{8} or D_{12} , where D_{n} is a

dihedral group of order n. Moreover if \sigma, f^{x}\rangle \cong D_{6} holds, then there is
an element c’ in \sigma, f^{x}\rangle such that c’\in Cl_{G}(c) .

LEMMA 3. 3. \mathscr{L}_{1} and \mathscr{L}_{21} are partial spread in V.

PROOF. The present Lemma follows from Lemma 3. 1 and Lemma 3. 2.

Lemma 3. 4. If U\in \mathscr{L}_{1} and W\in \mathscr{L}_{21} hold, then U\cap W=0 .
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PROOF. For each element f’\in Cl_{G}(f) , it is easy to see that id,f’\rangle
contains an element s such that s\not\in(Cl_{G}(f)\cup Cl_{G}(d)) . Hence we have the
desired result by Lemma 3. 1.

LEMMA 3. 5. ( i) If U\in \mathscr{L}_{1} and W\in \mathscr{L}_{3} hold, then U\cap W=0 .
(ii) If U\in \mathscr{L}_{21} and W\in \mathscr{L}_{3} hold, then U\cap W=0 .

PROOF. Suppose U\cap W=D\neq 0 . We may assume U=C_{V}(x) where
x=d or f in the case ( i) or ( ii) , respectively. Then it follows that
G_{U}=C_{G}(\langle x\rangle) . Let H be the stabilizer of D in the action of N_{G}(\langle x\rangle) on
the set \Gamma of 1-subspaces of U. Then it follows from Lemma 2. 3(iv) that
H=\langle z, x\rangle and that |N_{G}(\langle x\rangle)/H|=12 . Thus G_{U} is transitive on \Gamma . Hence
from Lemma 3. 3 the cardinality of \{Dg|g\in G\} is 12\cross 20 or 12\cross 30 corre-
sponding to the respective case of x=d or x=f.

If we set G_{W}=L’ . then L’ is conjugate to L in G. For an element b’

of order 5 in L’ , we have \chi_{|<b’>}=\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4} , where \rho_{i}(i=1,2,3, 4) are
distinct four non-principal characters of \langle b’\rangle . Obviously, \rho_{i}(b’)\in GF(11)

for i=1,2,3,4. Accordingly we may assume that \langle b’\rangle fixes D and that
L_{D}’=\langle z, b’\rangle , because L’\cap Cl_{G} Cf ) =\phi and L’\cap Cl_{G}(d)=\phi . Therefore
|L’ : L_{D}’|=12 and L’ is transitive on 1-spaces of W. Hence |\{Dg|g\in G\}|\leq

12\cross 12 . This contradiction proves the lemma.

LEMMA 3. 6. \mathscr{L}_{3} is a partial spread of V.

PROOF. Assume that there are W\in \mathscr{L}_{3} and g\in G such that W\cap

W^{g}=D is a 1-space. We claim that without loss of generality we may
take G_{W}=L . Since L is transitive on 1-spaces of W. we get D^{g-1}=D^{t} for
some t\in L that implies tg\in G_{D} . Moreover, G_{D}=L_{D} by Lemma 3. 5.
Therefore we have tg\in L which gives g\in L and W^{g}=W . this is a contra-
diction. The lemma is proved.

LEMMA 3. 7. If U\in \mathscr{L}_{1} and W\in \mathscr{L}4 hold, then U\cap W=0 .

PROOF. Without loss of generality we may take G_{U}=N_{G}(\langle d\rangle) .
This shows that G_{W}=J’ is conjugate to J in G. Hence \overline{J}’=A^{\{i,j,k,l\}} holds
for some elements \{/, j, k, l\}\subset\{1,2,3,4,5, 6\} . Since \overline{N_{K}(\langle d\rangle)}=(\langle(123) ,
(456) \rangle)\langle(12) (45)\rangle , it can be seen that \overline{J}’\cap\overline{N_{K}(\langle d\rangle)}\neq 1 and that there is
an element y\in\zeta\Gamma’\cap N_{K}(\langle d\rangle))\backslash \{1, z\} . If U\cap W=D is a 1-space, then U=
D\oplus D^{y}=W , which is a contradiction. The lemma is proved.

LEMMA 3. 8. IF U\in \mathscr{L}_{21} and W\in_{\mathscr{L}}4 hold, then U\cap W=0 .

PROOF. Suppose U\cap W=D is a 1-space. We may take U=C_{V}(f)

and G_{U}=C_{G}(f)=J\cross\sigma\rangle . On the other hand, G_{W}=J’ is conjugate to J in
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G. Let r be the number of elements in \mathscr{L}_{4} which contain D. Then by
counting in two different ways the number of pairs (D’. X) such that X\in

\mathscr{L}_{4} and D’ is a 1-space of X , the equality 60\cross 12=30\cross 12\cross r is obtained,
since G_{U} is transitive on 1-spaces of U and also \mathscr{L}_{21} is a partial spread in
V. This equality gives r=2 . Therefore it follows that |\{X\in \mathscr{L}_{4}|U\cap X

\neq 0\}|=24 and |\{X\in \mathscr{L}_{4}|U\cap X=0\}|=36 .
Take a subset \{i, j, k, l\} of {1, 2, 3, 4, 5, 6} such that |\{i, j, k, l\}|=4 and

set \overline{J}’=A^{\{i,j,k,l\}} . It follows that J\cap I\prime\prime>\neq(\langle z\rangle) if and only if the condition
A^{\{1,2,3,4\}}\cap A^{\{i,j,k,l\}}\neq 1 is satisfied. On the other hand there are exactly 9
subsets \{i, j, k, l\} satisfying the condit\overline{l}on mentioned above. Moreover
there are exactly 4 elements in \mathscr{L}_{4} which are fixed J’ . If we set G_{X}=J_{2}

for an element X of \mathscr{L}_{4} , and if J_{2}\cap I>\neq(\langle z\rangle) is satisfied, then U\cap X=0 by
the argument in the latter half of the proof of Lemma 3. 7, since J\leq C_{G}(f) .
After all we have the conclusion that U\cap X=0 if and only if J_{2}\cap I>\neq(\langle z\rangle) .
Similarly it can be shown that C_{V}(zf)\cap X=0 if and only if J_{2}\cap I>\neq(\langle z\rangle) ,
since CG(/)=CG(z/) . Hence the statement that C_{V}(f)\cap W=D is a 1-
space implies the statement that C_{V}(zf)\cap W=D’ is a 1-space. Therefore
we have D=D^{f}=C_{V}(f)\cap W^{f} and D’=D^{rzf}=Cv(f)\cap W^{f}. On the other
hand, since C_{V}(f)\cap C_{V}(zf)=0 , it is easy to see D\neq D’ Thus we get W=
D\oplus D’=W^{f}, which gives f\in G_{W}=J’ . This is a contradiction. The
lemma is proved.

LEMMA 3. 9. If U\in \mathscr{L}_{3} and W\in_{\mathscr{L}4} holds, then U\cap W=0 .

PROOF. Suppose U\cap W=D is a 1-space. We may take G_{U}=L . By
the same argument as the proof in Lemma 3. 8, each 1-space of U is
contained in exactly 5 elements of \mathscr{L}_{4} . Hence U\cap W’\neq 0 holds for every
element W’ of \mathscr{L}_{4} . Especially U\cap W_{5}=E is a 1-space. Then we have
U=E\oplus E^{y}=W_{5} for some element y\in J , since J\leq L . This contradiction
proves the lemma.

LEMMA 3. 10. \mathscr{L}_{4} is a partial spread of V.

PROOF. Let W be an element of \mathscr{L}_{4} and D be a 1-space of W. We
may take G_{W}=J. Then it can easily be shown that G_{D}=\langle z\rangle or |G_{D}|=10

from Lemma 2. 3(iv), Lemma 3. 7 and Lemma 3. 8. Suppose |G_{D}|=10 ,
then G_{D}\leq L’ where L’ is a conjugate subgroup to L in G. Hence G_{D} fixes
U for some element U of \mathscr{L}_{3} such that G_{U}=L’ and D\leq U holds by the
argument in the latter half of the proof of Lemma 3. 5. This contradicts
Lemma 3. 9. Therefore G_{D}=\langle z\rangle .

Suppose that W\cap W^{g}=D is a 1-subspace for an element g\in G. Then
D\subset W and Dg-1\subset W. Since J is transitive on 1-spaces of W we get



Some translation planes of order 11^{2} which admit SL(2, 9) 101

D^{g^{-1}}=D^{t} for some t\in J. Hence D=D^{tg} and tg\in G_{D}=\langle z\rangle holds. There-
fore g\in I and W=W^{g} . This contradiction proves the lemma.

PROOF OF PROPOSITION 2.
\mathscr{L}_{1}^{*} is a spread in V by using from Lemma 3. 3 to Lemma 3. 10. Let

W be an element of \mathscr{L}22 such that Gw -Jipfy . Since J\langle pf\rangle is transitive
on 1-spaces of W. it follows that |(J\langle pf\rangle)_{D}|=4 for every 1-space D of W.
Hence D is centralized by an involution f’ in J\langle pf\rangle which is conjugate to

f. This yields W \subset\bigcup_{f’\in Cl_{G}0^{c})}C_{V}(f’)=\bigcup_{X\in \mathscr{L}_{21}}X , which implies \bigcup_{X\in \mathscr{L}_{22}}X=\bigcup_{X\in \mathscr{L}_{21}}X

and V=( \bigcup_{X\in_{\mathscr{L}}1}X)\cup(\bigcup_{X\in \mathscr{L}_{22}}X)\cup(\bigcup_{X\in \mathscr{L}_{3}}X)\cup(\bigcup_{X\in \mathscr{L}_{4}}X) . This means that \mathscr{L}_{2}^{*} is

a spread in V. The proposition is proved.

4. Existence of the spread II

We shall show that \mathscr{L}_{3}^{*} is a spread in V in this section.

Lemma 4. 1. \mathscr{L}_{23} is a partial spread in V.

PROOF. Let W be an element of \mathscr{L}_{23} fixed by T=\langle p, qf\rangle , where
\overline{T}=\langle(1324)(56), (14) (23) (56)\rangle . Morerover let \Delta(W) be the set of 1-
spaces of W. T has exactly two orbits \Delta_{1} ( W) , \Delta_{2} ( W) on \Delta(W) , where
|\Delta_{1} ( W)|=4 and |\Delta_{2} ( W)|=8 . It is readily verified that f_{1}=pqf and f_{1}\in T

\cap Cl_{G}(f) hold, and that f_{1} centralizes an element D_{1} of \Delta_{1} ( W) . Suppose
g\in G and W\cap W^{g}=D is a 1-space. Then we get D, D^{g-1}\subset W. If D,
D^{g-1}\in\Delta_{1} ( W) holds, then there is an element t\in T such that D^{g-1}=D^{t} ,

which implies tg\in G_{D} . Moreover we have |T_{D}|=4 . It follows that |G_{D}|=4

and G_{D}=T_{D} , because G_{D}\cap Cl_{G}(d)=\phi holds from Lemma 3. 4 and there is
no element of order 5 in N_{G}(j\rangle) . Therefore g\in T which shows that
W^{g}=W. This is a contradiction. Thus it follows that D\in\Delta_{2} ( W) or
D^{g-1}\in\Delta_{2}( W) . Hence without loss of generality we may assume D\in

\Delta_{2}( W) , which implies T_{D}=\langle z\rangle .
Now we shall prove G_{D}=\langle z\rangle . If not, then there are three cases to

consider: |G_{D}|=4 , |G_{D}|=6 and |G_{D}|=10 . We shall lead contradictions in
all of the cases, as seen below.

Assume first that |G_{D}|=4 holds, then it can easily be shown that G_{D}=

\langle z, f’\rangle for some f’\in Cl_{G}(f) . Set \mathscr{B}= {E|U\in \mathscr{L}_{23} , E is a 1-space of U }.
Since G_{D}=\langle z, f’\rangle holds, we get D\subset C_{V}(f’) . On the other hand there is an
element W’ of \mathscr{L}23 such that f’\in G_{W’} . It follows that f’ centralizes an
element D’ of \Delta_{1} ( W’) , which implies D’\subset C_{V}(f’) . Moreover C_{G}(f’) is
transitive on 1-spaces of C_{V}(f’) . Therefore it follows that D’=D^{s} for
some element s\in C_{G}(f’) . Hence G is transitive on \mathscr{B} and the equality
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|\mathscr{B}|=360 is obtaind. Hence each element of \mathscr{B} is contained in exactly
three elements of \mathscr{L}23 . Therefore there is an element U of \mathscr{L}_{23} , where D_{1}

\subset U and U\neq W. We put G_{U}=T’ It is readily checked that \overline{T}’\cap

C_{S\epsilon}((12))\neq 1 . Hence there is an element g\in T’\backslash \{1, z\} such that gf_{1}g^{-1}=f_{1}

or zf_{1}1 If D_{1}^{g}=D_{1} holds, then g=f_{1} or g=zf_{1} . This shows that f_{1}\in T’ If
\Pi^{g}\neq D_{1} holds, then U=D_{1}\oplus D^{g} . This shows that ( U)^{f_{1}}=(\Pi\oplus\Pi^{g})^{f_{1}}=U.
We also have f_{1}\in G_{U}=T’ Thus it follows that D_{1}\in\Delta_{1} ( U)andD_{1}^{x}\in

\Delta_{1}( W) for some element x\in G such that U^{x}=W. Hence D_{1}^{\kappa y}=D_{1} holds
for an element y\in T. Therefore we have xy\in G_{D_{1}} . Thus it follows that x
\in T . which implies U=W. This is a contradiction. Therefore we have
|G_{D}|\neq 4 .

Next assume that |G_{D}|=6 holds. Then G_{D}=\langle z, d’\rangle holds for an ele-
ment d’\in Cl_{G}(d) . We get D\subset C_{V}(\langle d’\rangle) . If N_{G}(\langle d’\rangle)\cap T\neq\langle z\rangle holds,
then we have W=D\oplus D^{y}=C_{V}(\langle d’\rangle) for an element y\in(N_{G}(\langle d’\rangle)\cap T)\backslash \{1 ,
z\} . This is a contradiction. Hence N_{G}(\langle d’\rangle)\cap T=\langle z\rangle holds. Let \langle x\rangle

be a subgroup satisfying the following conditions: N_{G}(\langle x\rangle)\cap T=\langle z\rangle and
x\in Cl_{G}(d) . Then there are exactly eight subgroups satisfying these condi-
tions, and each of them centralizes exactly one element of \Delta_{2} ( W) . Since
N_{G}(\langle d\rangle)\cap T=\langle z\rangle holds, without loss of generality we may assume d’=d.
Set D=\langle v\rangle , (v)f_{1}=w, (v)f=v’ . (w)f=w’ and d^{f}=d^{*} . Then it follows
that W=\langle v\rangle\oplus\langle w\rangle , W’=\langle v’\rangle\oplus\langle w’\rangle and V=W\oplus W’ Moreover we
have W^{f}=W’ . Since f_{1}^{-1}df_{1}=(d^{*})^{2} holds, we get w=(v)f_{1}\in C_{V}(\langle d\rangle)^{f_{1}}=

C_{V}(\langle d^{*}\rangle) . Similarly it follows that v’\in C_{V}(\langle d^{*}\rangle) and w’\in C_{V}(\langle d\rangle) .
Hence C_{V}(\langle d\rangle)=\langle v\rangle\oplus\langle w’\rangle and C_{V}(\langle d*\rangle)=\langle w\rangle\oplus\langle v’\rangle holds. Since
C_{V}(\langle d^{*}\rangle)^{d}=C_{V}(\langle d^{*}\rangle) , we may put (w) d=\alpha w+\beta v’ and (v’)d=\gamma w+\delta v’

for some elements \alpha , \beta , \gamma , \delta\in GF(11) , which give 1=\chi(d)=tr(d)=2+
\alpha+\delta. Hence we have the following equality.

\alpha+\beta=-1 (1)

It can easily be shown that (v’)f_{1}=(v)ff_{1}ff=(v)zf_{L}f=-w’ Hence
we have (v) d^{*}=(w)f_{1}d*=(w)d^{2}f_{1}=(\alpha w+\beta v’)df_{1}=(\alpha^{2}+\beta\gamma)v-(\alpha\beta+

\beta\delta)w’ and (v) d^{*}=(v’)fd^{*}ff=(v’)df=\gamma w’+\delta v , which give \alpha^{2}+\beta\gamma=\delta and
\alpha\beta+\beta\delta=-\gamma . Hence from (1) we have the following two equalities.

\beta=\gamma (2)
\alpha^{2}+\beta^{2}=\delta (3)

Now, p\in T implies W^{p}=W and W^{\prime p}=W’ Hence we may put
(v)p=\lambda v+\mu w and (w)p=\nu v+\eta w for some elements \lambda , \mu , \nu , \eta\in GF(11) .
Hence (v’)p=(v)fpff=(v)zpf=-\lambda v’-\mu w’ and (w’)p=-\nu v’-\eta w’ hold.
Moreover we have (w) p=(v)f_{1}pfJ_{1}=(v)p^{3}f_{1} . Hence (v) p^{3}=\nu w+\eta v
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holds. Similarly (w) p^{3}=\lambda w+\mu v, (w’)p^{3}=-\lambda w’-\mu v’ and ( v’)p^{3}=

-\nu w’-\eta v’ hold. Therefore it follows that - v=(v)p^{4}=(\nu w+\eta v)p=(\nu^{2}+

\eta\lambda)v+(\nu\eta+\eta\mu)w . This yields \eta(\nu+\mu)=0 and \nu^{2}+\eta\lambda=-1 . If \eta=0 ,

then we get (\langle w\rangle)^{p}=\langle v\rangle=(\langle w\rangle)^{f_{1}} , which implies pf_{1}\in T_{(<w>)} . Since D=
\langle v\rangle\in\Delta_{2}( W) , we also have \langle w\rangle\in\Delta_{2} ( W) , which implies T_{t<w>)}=\langle z\rangle .
Hence we have pf_{1}=1 or pf_{1}=z , a contradiction. Therefore \eta\neq 0 . Simi-
larly \nu\neq 0 , \lambda\neq 0 and \mu\neq 0 are obtained. Thus we have the following two
equalities.

\nu=-\mu and \nu^{2}+\eta\lambda=-1 (4)

Moreover it follows that (v)p^{3}=\nu w+\eta v=-\mu w+\lambda^{-1}(-1-\mu^{2})v from
(4). On the other hand we have (v)p^{3}=(\lambda v\dagger\mu w)p^{2}=\{(\lambda^{2}\dagger\mu\nu)\lambda+

\mu\nu(\lambda+\eta)\}v+\{(\lambda^{2}+\mu\nu)_{\mu}+\mu\eta(\lambda+\eta)\}w . Hence (\lambda^{2}\dagger\mu\nu)+\eta(\lambda+\eta)=-1

holds. Thus it can be shown from (4) that \lambda^{2}-\mu^{2}-1-\mu^{2}+\eta^{2}=-1 .
Therefore we have the following equality.

\lambda^{2}+\eta^{2}=2\mu^{2} (5)

Set b’=dp^{-1}dp . Then it is easy to see that \overline{b}’=(13524) and |b’|=10 .
When we put (v) b’=A_{1}v+B_{1}w+C_{1}v’+D_{1}w’ . (w) b’=A_{2}v+B_{2}w+C_{2}v’+

D_{2}w’,-(v’)b’=A_{3}v+B_{3}w+C_{3}v’+D_{3}w’ and (w’)b’=A_{4}v+B_{4}w+C_{4}v’+D_{4}w’

we get A_{1}=-\nu^{2}\alpha^{-}\eta\lambda , B_{2}=-\lambda\alpha^{2}\eta-\alpha\mu^{2}+\beta\eta^{2}\gamma, C_{3}=\gamma\lambda^{2}\beta-\delta\nu^{2}-\eta\delta^{2}\lambda and
D_{4}=-\lambda\eta-\mu^{2}\delta. Hence it follows from (2) and (4) that A_{1}=-\mu^{2}\alpha+\mu^{2}+

1 , B_{2}=\alpha^{2}(\mu^{2}+1)-\alpha\mu^{2}+\beta^{2}\eta^{2} , C_{3}=\beta^{2}\lambda^{2}-\delta^{2}\mu+\delta^{2}(\mu^{2}+1) and D_{4}=\mu^{2}+1-

\mu^{2}\delta hold. Therefore we obtain 1=\chi(b’)=tr(b’)=A_{1}+B_{2}+C_{3}+D_{4}=2+4

\mu^{2}+(\alpha^{2}+\delta^{2})(\mu^{2}\dagger 1)+\beta^{2}(\lambda^{2}+\eta^{2}) from (1). We also obtain \alpha^{2} \dagger \delta^{2}=2

\alpha^{2}+2\alpha+1 from (1), \beta^{2}=\delta-\alpha^{2}=-1-\alpha-\alpha^{2} from (1) and (3) and \lambda^{2}+

\eta^{2}=2\mu 2 from (5). Hence we have the followig equality.

0=2+3\mu^{2}+2\alpha^{2}+2\alpha (6)

Since \beta^{2}=-1-\alpha-\alpha^{2} is a square number, it follows that \alpha\in\{\pm 3, \pm 4 ,
2, -5}. Thus we have 2\alpha^{2}+2\alpha=1,2 or -4. The application of these
values into (6) gives \mu^{2}=-1 , -5 or -3, respectively. This is a contra-
diction. Therefore we have |G_{D}|\neq 6 .

Finally assume that |G_{D}|=10 holds. Set G_{D}=\langle z, b_{1}\rangle for some element
b_{1} of G such that |b_{1}|=5 . If N_{G}(\langle b_{1}\rangle)\cap T_{\neq}>\langle z\rangle holds, then we have W=
D\oplus D^{x} for an element x\in(N_{G}(\langle b_{1}\rangle)\cap T)\backslash \{1, z\} and W is fixed by \langle b_{1}\rangle ,

that is a contradiction. Hence N_{G}(\langle b_{1}\rangle)\cap T=\langle z\rangle holds. Set M=\{\langle x\rangle|x

\in Cl_{G}(b) and N_{G}(\langle x\rangle)\cap T=\langle z\rangle\} . Then it can easily be shown that |M|=
32 and the number of orbits of the action of \langle T, f\rangle on M is exactly three.
We denote their orbits by M_{1} , M_{2} and M_{3} . It is easy to see that |M_{1}|=8 ,
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|M_{2}|=8 and |M_{3}|=16 . We may take b\in M_{1} , b’\in M_{2} and b’\in M_{3} as repre-
sentatives, where \overline{b}=(12345),\overline{b}^{rr}=(12536),\overline{b}"’=(12356) , respectively.
There are three cases to consider: ( i) b_{1} is an element of M_{1} , ( ii)b_{1} is
an element of M_{2} , (iii) b_{1} is an element of M_{3} .

Case ( i ) . We may assume b_{1}=b . It follows that pqf=f_{1}\in T,
p^{-1}ff=f_{3}\in T and p^{2}=f_{1}f_{2}\in T. We put p^{-2}b_{1}p^{2}=b_{2} , f_{1}b_{L}f_{1}=b_{3} and f_{3}bJ_{3}=

b_{4} . It is readily verified that D, D^{p}2,\eta D^{f_{1}} and D^{f_{3}} are fixed by \langle b_{1}\rangle , \langle b_{2}\rangle ,
\langle b_{3}\rangle and \langle b_{4}\rangle , respectively. It is observed to be b_{i}\in L for i=1,2,3,4.
Moreover L fixes exactly two 2-spaces of V , say V_{1} and V_{2} . For each i
\in\{1,2,3,4,\} , \langle b_{i}\rangle fixes exactly four 1-spaces of V_{rightarrow} and two of them are
contained in V_{1} and the remaining two are contained in V_{2} . Hence we
may assume D\subset V_{1} and D^{x}\subset V_{1} for some element x\in\{f_{1}, f_{3}, p^{2}\} . Then we
have W=D\oplus D^{x}=V_{1} , a contradiction. Thus we get b_{1}\not\in M_{1} , which
shows that Case ( i) does not occur.

Case ( ii) . We may assume b_{1}=b^{rr} Set D=\langle v\rangle and f_{1}bJ_{1}=b_{6} . It is
easy to see that \overline{b}_{6}=(15362) . Let L_{1} be a subgroup which is conjugate to
L in G such that \overline{L}_{1}=A^{\{1,2,3,5,6\}} . Then it follows that b_{1} , b_{6}\in L_{1}c Since
\langle b_{1}\rangle fixes D and C_{D}(b_{1})=0 from Lemma 2. 3(iv), moreover 3 is a primi-
tive fifth root of unity in GF(11) , we may assume that (v)b_{1}=3v . As
well as in the case |G_{D}|=6 , we put (v)f_{1}=w, (v)f=v’, (w)f=w’, (v)p=
\lambda v+\mu w and (w)p=\nu v+\eta w . We have already known that (v’)f_{1}=-w’ ,
(v’)p=-\lambda v’-\mu w’ . (w’)p=-\nu v’-\eta w’ . (v) p^{3}=\nu w+\eta v, (w)p^{3}=\lambda w+\mu v,
(v’)p^{3}=-\nu w’-\eta v’ and (w’)p^{3}=-\lambda w’-\mu v’ Then the equality (4) and
(5) being derived in the case |G_{D}|=6 also hold here and are used again.
It is readily checked that fb_{1}f=b_{6}^{-1}\tau It follows that (w)b_{6}=(w)f_{1}b_{1}f_{1}=3w,
(v’)b_{6}^{-1}=(v’)JbJ=3v’ and (w’)b_{1}^{-1}=(w’)flJ=3w’ Hence we have
(v’)b_{6}=4v’ and (w’)b_{1}=4w’ It can be shown that L_{1} fixes exactly two
2-subspaces of V_{-} say U_{1} and U_{2} . Moreover since b_{1} fixes \langle v\rangle and \langle w’\rangle ,

and since b_{6} fixes \langle w\rangle and \langle v’\rangle , each element of \{\langle v\rangle, \langle w\rangle, \langle v’\rangle, \langle w’\rangle\} is
contained in U_{1} or U_{2} with the same argument as the proof in the case
(i ) . Obviously it follows that \langle v\rangle\oplus\langle w\rangle\neq U_{i} and \langle v’\rangle\oplus\langle w’\rangle\neq U_{i} for i=
1,2 . On the other hand, since f\not\in L_{1} holds, we obtain \langle v\rangle\oplus\langle v’\rangle\neq U_{i} and
\langle w\rangle\oplus\langle w’\rangle\neq U_{i} for i=1,2 . Hence we may assume \langle v\rangle\oplus\langle w’\rangle=U_{1} and
\langle w\rangle\oplus\langle v’\rangle=U_{2} . Set (w) b_{1}=\beta_{1}w+\gamma_{1}v’,-(v’)b_{1}=\beta_{2}w+\gamma_{2}v’ . where \beta_{1} , \beta_{2} ,
\gamma_{1} , \gamma_{2}\in GF(11) . Then -1=\chi(b_{1})=tr(b_{1})=-4+\beta_{1}+\gamma_{2} hold. Therefore
we have the following equality.

\beta_{1}+\gamma_{2}=3 (7)

Next it follows that (v) b_{1}^{2}=-2v, (w) b_{1}^{2}=(\beta_{1}^{2}+\gamma_{1}\beta_{2})w+(\beta_{1}\gamma_{1}+\gamma_{1}\gamma_{2})v’ ,
(v’)b_{1}^{2}=(\beta_{1}\beta_{2}+\gamma_{2}\beta_{2})w+(\beta_{2}\gamma_{1}+\gamma_{2}^{2})v’\wedge and (w’)b_{1}^{2}=5w’ . Hence -1=
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\chi(b_{1}^{2})=3+\beta_{1}^{2}+2\beta_{2}\gamma_{1}+\gamma_{2}^{2} holds. Therefore from (7) we have the follow-
ing equality.

\beta_{1}\gamma_{2}-\beta_{2}\gamma_{1}=1 (8)

Now we put c_{1}=b_{1}^{-1}f_{1}bJ . then it is seen that c_{1}=(265) , which implies
c_{1}\in Cl_{G}(c) . Since (w) b_{1}=\beta_{1}w+\gamma_{1}v’ holds, we have w=(\beta_{1}w)b_{1}^{-1}+

(\gamma_{1}v’)b_{1}^{-1} . Similarly we have v’=(\beta_{2}w)b_{1}^{-1}+(\gamma_{2}v’)b_{1}^{-1} . Therefore \gamma_{2}w-

\gamma_{1}v’=(w)b_{1}^{-1} holds from (8). Similarly \beta_{1}v’-\beta_{2}w=(v’)b_{1}^{-1} holds. Hence
it can be shown that (v) c_{1}=(v)b_{1}^{-1}f_{1}bJ=(4v)f_{1}b_{1}f=4\beta_{1}w’+4\gamma_{1}v, (w) c_{1}=

(w)b_{1}^{-1}f_{1}b_{1}f=(\gamma_{2}w-\gamma_{1}v’)f_{1}b_{1}f=3\gamma_{2}v’+4\gamma_{1}w , ( v’)c_{1}=(v’)b_{1}^{-1}f_{1}bJ=

(\beta_{1}v’-\beta_{2}w)f_{1}bJ=-4\beta_{1}w-3\beta_{2}v’ ( w’)c_{1}=(w’)b_{1}^{-1}f_{1}b_{1}f=(-3v’)b_{1}f=

-3\beta_{2}w’-3\gamma_{2}v . Therefore it follows that -2=\chi(c_{1})=tr(c_{1})=-3\gamma_{1}+5\beta_{2} .
Thus we have the following equality.

-4\gamma_{1}+3\beta_{2}=1 (9)

Moreover we put a_{1}=b_{1}pb_{1}p-1 , then it follows that a_{1}=(1243)(56) ,

which implies a_{1}\in Cl_{G}(p) . If we put (v) a_{1}=A_{1}v+B_{1}w+C_{1}v’+D_{1}w’-

(w)a_{1}=A_{2}v+B_{2}w+C_{2}v’+D_{2}w’ ( v’)a_{1}=A_{3}v+B_{3}w+C_{3}v’+D_{3}w’ and
(w’)a_{1}=A_{4}v+B_{4}w+C_{4}v’+D_{4}w_{:}’ then A_{1} , B_{2} , C_{3} and D_{4} can be written as
A_{1}=2\lambda\eta-3\mu\beta_{1}2 , B_{2}=-3\beta_{1}\nu^{2}-\beta_{1}^{2}\lambda\eta+\lambda^{2}\gamma_{1}\beta_{2} , C_{3}=\beta_{2}\gamma_{1}\eta^{2}-\gamma_{2}^{2}\lambda\eta-4^{2}\gamma_{2}\mu

and D_{4}=-4\nu^{2}\gamma_{2}-5\lambda\eta . Hence from (4), (5), (7), (8) and (9) we have
the following equality.

0=\chi(a_{1})=2\beta_{1}^{2}+(2\mu^{2}+5)\beta_{1}+(1-3\mu^{2}) (10)

Finally we put t=b_{1}f_{1}b_{1}f_{1} , then it follows that \overline{t}=(23)(56) , which
implies t\in Cl_{G}(q) . Moreover we have (v) t=3\beta_{1}v-3\gamma_{1}w’,-(w)t=3\beta_{1}w+

4\gamma_{1}v’ (v’)t=3\beta_{2}w+4\gamma_{2}v’ and (w’)t=-4\beta_{2}v+4\gamma_{2}w’ Tence 0=\chi (t)=
tr(t)=6\beta_{1}+8\gamma_{2} holds. Thus we have the following equality.

3\beta_{1}+4\gamma_{2}=0 (11)

Therefore from (7) and (11) we have \beta_{1}=1 . Hence from (10) it fol-
lows that \mu^{2}=-3 , which is a contradiction. Thus we get b_{1}\not\in M_{2} , which
shows that Case ( ii) does not occur.

Case (iii). We may assume b_{1}=b’ . As well as in Case ( ii) , we put
D=\langle v\rangle , (v)f_{1}=w, (v)f=v’-(w)f=w’-(v)p=\lambda v+\mu w, (w) p=\nu v+\eta w ,

W=\langle v\rangle\oplus\langle w\rangle and W’=\langle v’\rangle\oplus\langle w’\rangle . We have already known that V=W
\oplus W’ , G_{W}=G_{W’}=T, (v’)p=-\lambda v’-\mu w’,\eta(w’)p=-\nu v’-\eta w’ and \mu\neq 0 .
We may also assume (v)b_{1}=3v, because b_{1} fixes D and C_{D}(b_{1})=0 from
Lemma 2. 3(iv) , moreover 3 is a primitive fifth root of unity in GF(11) .
Then we have (w)f_{1}bJ_{1}=3w, (v’)JbJ=3v’ and (w’)ff_{1}bJJ=3w’ It fol-
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lows that b_{1} , f_{1}bJ_{1} , fbJ and ff_{1}bJJ are elements of L_{1} , which satisfies
\overline{L}_{1}=A^{\{1,2,3,5,6\}} . Hence by the same argument as the proof in Case ( _{ii}) ,
we may assume \langle v\rangle\oplus\langle w’\rangle=U_{1} and \langle w\rangle\oplus\langle v’\rangle=U_{2} . Then we have G_{U_{1}}=

G_{U_{2}}=L . Set (w) b_{1}’=\alpha_{1}w+\beta_{1}’v’ . (v’)b_{1}=\alpha_{\acute{2}}w+\beta_{\acute{2}}v’ . and (w’)b_{1}=\alpha_{\acute{3}}v+

\beta_{\acute{3}}w’ where \alpha_{1}’ , \beta_{1}’ , \alpha_{\acute{2}} , \beta’ , \alpha_{\acute{3}} , \beta_{\acute{3}}\in GF(11) . If \beta_{\acute{1}}=0 , then \langle b_{1}\rangle fixes W.
This is a contradiction. Hence we get \beta_{\acute{1}}\neq 0 . If \beta_{\acute{3}}=0 , then it follows that
4v=(v)b_{1}^{-1}\in\langle w’\rangle , which is a contradiction. Hence we also get \beta_{\acute{3}}\neq 0 .
Since \overline{p}\overline{b}_{1}=(15)(24) , we have pb_{1}\in Cl_{G}(q) , which shows that (pb_{1})^{2}=z .
Therefore we have (v) (pb_{1})^{2}=-v . On the other hand it follows that
(v)pb_{1}=3\lambda v\dagger\mu(\alpha_{1}’w+\beta_{1}’v’) , (w)pb_{1}=3\nu v+\eta(\alpha_{\acute{1}}w+\beta_{\acute{1}}v’) and (v’)pb_{1}=
-\lambda(\alpha_{\acute{2}}w+\beta_{2}’v’)-\mu(\alpha_{\acute{3}}v+\beta_{\acute{3}}w’) . These yield (v) (pb_{1})^{2}=\{3\lambda v+\mu(\alpha_{\acute{1}}w+

\beta_{1}’v’)\}(pb_{1})=(-2\lambda^{2}+3’\mu\nu\alpha_{1}-\mu^{2}\beta_{1}’\alpha_{\acute{3}})v+\mu(3\lambda\alpha_{1}’+\eta\alpha_{\acute{1}}^{2}-\lambda\beta_{1}’\alpha_{\acute{2}})w+(3\lambda\beta_{\acute{1}}+

\mu\eta\alpha_{1}’\beta_{1}’-\lambda\mu\beta_{\acute{1}}\beta_{\acute{2}})v’+(-\mu^{2}\beta_{1}’\beta_{3}’)w’ Therefore -\mu^{2}\beta_{\acute{1}}\beta_{\acute{3}}=0 , which is in
contradiction to \beta_{\acute{1}}\neq 0 , \beta_{\acute{3}}\neq 0 and \mu\neq 0 . Thus we get b_{1}\not\in M_{3} , which shows
that Case (iii) also does not occur. Hence we have |G_{D}|\neq 10 .

We have concluded that |G_{D}|=2 and G_{D}=\langle z\rangle . From our assumption,
W\cap W^{g}=D is a 1-space. Therefore we get D, D^{g-1}\subset W. S_{\overline{1}}nceG_{D}=\langle z\rangle

holds, we have also G_{(D^{g\downarrow})}=\langle z\rangle . Thus D, D^{g-1}\in\Delta_{2}( W) holds, and hence
it follows that D^{g-1}=D^{x} for some element x\in T_{r} Therefore we have
D^{xg}=D , which implies xg\in G_{D}=\langle z\rangle . Hence g\in T holds. Thus we get
W^{g}=W . a contradiction. The lemma is proved.

PROPOSITION 3. \mathscr{L}_{3}^{*} is a spread in V.

PROOF OF PROPOSITION 3.
Suppose that W_{1}\in \mathscr{L}_{1} and W_{2}\in \mathscr{L}_{23} hold, and that W_{1}\cap W_{2}=D is a

1-space of V. Since W_{1}\in \mathscr{L}_{1} holds, we have |G_{D}|=6 . On the other hand
since W_{2}\in \mathscr{L}_{23} holds, we have |G_{D}|=4 if D\in\Delta_{1} ( W_{2}) and we have |G_{D}|=2

if D\in\Delta_{2}( W_{2}) . This is a contradiction. Therefore \mathscr{L}_{1}\cup \mathscr{L}_{23} is a partial
spread in V. If W_{3}\in \mathscr{L}_{3} holds and D is a 1-space of W_{3} , then |G_{D}|=10

holds. Hence similarly \mathscr{L}_{3}\cup \mathscr{L}_{23} is a partial spread is V. Thus \mathscr{L}_{3}^{*}=\mathscr{L}_{1}

\cup \mathscr{L}_{23}\cup \mathscr{L}3 is a spread in V. The proposition is proved.

PROOF OF THEOREM C.
From Proposition 1, Proposition 2 and Proposition 3, there are exactly

ly three isomorphism classes of planes II with kernel GF(11) on which G
acts. From our assumption, G is a normal subgroup of the linear transla-
tion complement C of \Pi . Let D be the kernel of \Pi . We put \overline{C}=C/Z

(G),\overline{H}=HZ(G)/Z(G) and \overline{x}=xZ(G) for a subgroup H and an element
x of C. Then we have \overline{G}=S_{6} and \overline{G}\leq\overline{C} . Let x be any element of C and

\mathscr{L} be any element of \{\mathscr{L}_{1}^{*}, \mathscr{L}_{2}^{*}, \mathscr{L}_{3}^{*}\} . Since \{ W^{x}|W\in \mathscr{L}\}=\mathscr{L} holds, we
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have W^{x}\in_{\mathscr{L}}1 for each W\in \mathscr{L}_{1} , which implies C_{V}(d^{\chi})=C_{V}(d)^{x}\in \mathscr{L}_{1}
[

Consequently it follows that d^{\chi}\in Cl_{G}(d) . Therefore (\overline{x})^{-1}\overline{d}\overline{x} is conju-
gate to \overline{d} in \overline{G} . Hence \overline{x} induces an inner automorphism of \overline{G}(\cong S_{6}) by
conjugation. Thus \overline{x}\overline{y}^{-1} centralizes \overline{G} for some element y\in G. Hence
we have [xy^{-1}, G]\subset Z(G) . When we put h=xy^{-1} , we get h^{-1}gh=g or
h^{-1}gh=gz for each element g\in G. Hence it is easy to see that C_{V}(d)^{h}=

C_{V}(d^{h}) and that C_{V}(d^{h}) equal to C_{V}(d) or Cv(dh) . However since it can
be shown that C_{V}(dz)\not\in_{\mathscr{L}_{1}} , it follows that C_{V}(d)^{h}=C_{V}(d) and that
h^{-1}dh=d. Similarly we have h^{-1}d’h=d’ for every element d’\in Cl_{G}(d) .
Hence h centralizes K.

Set W=C_{V}(d)=\langle v\rangle\oplus\langle w\rangle and W’=C_{V}(d^{J})=\langle v’\rangle\oplus\langle w’\rangle . Then we
have V=W\oplus W’ If follows that h\in C_{GL(W)}(N_{K}(\langle d\rangle)) and C_{GL(W)}(N_{K}

(\langle d\rangle))=\{\alpha E|\alpha\in GF(11)^{*}) . Hence there is an element \alpha in GF(11) such
that (u)h=\alpha u for each element u\in W. Similarly there is an element \beta in
GF(11) such that (u’)h=\beta u’ for each element u’\in W’\wedge On the other
hand there is an element c’ in K such that (v)c’=\lambda v+\mu w+\nu v’+\eta w’ ,

where \lambda , \mu , \nu , \eta\in GF(11) and (\nu, \eta)\neq(0,0) . Then it follows that
(v) c’h=\lambda\alpha v+\mu\alpha w+\nu\beta v’+\eta\beta w’ and (v) hc’=\alpha\lambda v+\alpha\mu w+\alpha\nu v’+\alpha\eta w’

Since c’h=hc’ holds, we get \alpha=\beta , which implies h\in D. Hence we get
x\in DG . Thus C=DG holds. Theorem C is proved.
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