Some translation planes of order 11^2 which admit SL(2, 9)

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday Nobuo NAKAGAWA (Received July 13, 1989, Revised August 10, 1990)

1. Introduction

Let G be a nonsolvable subgroup of the linear translation complement of a translation plane Π of order q^2 with kernel GF(q) where q is a power of a prime p, and let G_0 be a minimal nonsolvable normal subgroup of G. In [5] Ostrom pointed out the following theorem which is proved by using a work of Suprunenko and Zalesskii [7].

THEOREM A. If $G_0/Z(G_0)$ is simple and if p>5, then $G_0/Z(G_0)$ must be PSL(2,5), PSL(2,9), or $PSL(2,p^s)$ for some positive integer s.

If $G_0/Z(G_0)$ is isomorphic to $PSL(2, p^s)$, Π is a Desarguesian plane, a Hall plane, a Hering plane or a Schaffer plane(Walker [8], [9] and Schaffer [6]). At the case that $G_0/Z(G_0)$ is isomorphic to PSL(2,9), Mason proved the following theorem in [4].

THEOREM B. If $G_0/Z(G_0)$ is isomorphic to A_6 , there are exactly two isomorophic classes of planes Π with kernel GF(7). If H is the translation complement of Π and D the kernel of Π , then in one case we have $H/D \cong$ A_6 , while in the second we have $H/D \cong S_6$.

We have studied about the case that the kernel of Π is GF(11). Our result will be described by a following theorem which is proved at the end after much preparation.

THEOREM C. Let Π be a translation plane of dimension 2 over its kernel and the linear translation complement C has a normal subgroup G such that $G/Z(G) \cong S_6$. Then there are exactly three isomorphism classes of planes Π with kernel GF(11). If D is the kernel of Π , then C = DG.

Notation is standard, and follows that of [2]. For a permutation group M on Ω , we put $M_x = \{g \in M \mid xg = x\}$ where x is an element of Ω , and for a group H, we put $Cl_H(x) = \{g^{-1}xg \mid g \in H\}$ where x is an element of H. We write S^{Ω} and A^{Ω} for a symmetric and alternative group on Ω . In Section 2 we shall study the group G, its representations and spreads

N. Nakagawa

on which G acts, while Section 3 and 4 will be devoted to existence of the planes Π in question.

2. The spreads

We use the following notations throughout the paper, K = SL(2, 9) is a 2-fold cover of A_6 . The group G is $K\langle f \rangle$, where f is induced by the Frobenius automorphism of GF(9). J = SL(2, 3) is a subgroup of K. Let θ be an element of GF(9) such that $\theta^2 = -1$, and $\nu = \theta + 1$. Then ν is a generator of the multiplicative group $GF(9)^*$. We define six matrices as follows:

$$z = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad c = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad d = \begin{bmatrix} 1 & 0 \\ \nu & 1 \end{bmatrix}, \\ b = \begin{bmatrix} -\theta & -\theta \\ 1-\theta & 1 \end{bmatrix}, \quad p = \begin{bmatrix} \theta & \theta \\ -\theta & \theta \end{bmatrix}, \quad q = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},$$

where the order of z, c d b, p and q are 2, 3, 3, 5, 8 and 4, respectively.

LEMMA 2.1. K has exactly two inequivalent complex irreducible characters of degree 4, which are denoted by χ and ψ . Moreover,

- (i) χ and ψ are rational and faithful;
- (ii) χ and ψ differ only on 3-singular elements, and we may take $\chi(c) = -2$, $\chi(d) = 1$ and $\psi(c) = 1$, $\psi(d) = -2$

FROOF. See (Lemma 2.3 of [4]).

LEMMA 2.2. G has exactly four inequivalent complex irreducible characters of degree 4. We may denote them by χ , χ' , ψ , ψ' , where χ and $\chi'(resp. \psi and \psi')$ both extend the character $\chi(resp. \psi)$ of Lemma 2.1. Moreover, the following hold;

- (i) χ and χ' are Galois conjugate, and also ψ and ψ' are Galois conjugate.
- (ii) χ lies in GF(11), that is, by reduction modulo 11, the representation which affords χ gives an irreducible representation of degree 4 on GF(11).
- (iii) ψ does not lie in GF(11).

PROOF. See (Lemma 2.4 and Lemma 2.5 of [4]).

We now specialize to the case p=11. So let V be 4-dimensional GF(11)-space. After Lemma 2.2 we may take $G \leq GL(V)$, and we may take V to be the GF(11)G-module which affords the character χ .

LEMMA 2.3. The following hold :

(i)
$$\chi(z) = -4$$
, $\chi(p) = 0$, $\chi(q) = 0$, $\chi(zb) = 1$, $\chi(b) = -1$,

and χ vanishes on $G \setminus K$ except on the elements of order 12, and we may take $\chi(x) = -5$ and $\chi(x^5) = 5$. Here, x is an element in $G \setminus K$ which satisfies $x^4 = d$.

- (ii) $C_v(d)$ is 2-dimensional.
- (iii) $C_v(f)$ is 2-dimensional.
- (iv) If y is not contained in $Cl_G(d) \cup Cl_G(f)$ and $y \neq 1$, then $C_V(y) = 0$.

PROOF. From the character table of G(See [1], pp. 228-238), the lemma is verified.

Set
$$f_1 = \begin{bmatrix} \theta & 0 \\ 0 & -\theta \end{bmatrix} f$$
, $f_2 = \begin{bmatrix} \theta & 0 \\ \theta & -\theta \end{bmatrix} f$,
 $f_3 = \begin{bmatrix} 0 & -\theta \\ -\theta & 0 \end{bmatrix} f$, $f_4 = \begin{bmatrix} 1 & 0 \\ \theta & 1 \end{bmatrix} f$, $f_5 = f$.

We define a mapping φ from G to S₆ as follows:

$$\varphi(f_1) = (12), \ \varphi(f_2) = (23), \ \varphi(f_3) = (34), \ \varphi(f_4) = (45), \ \varphi(f_5) = (56).$$

Then it is readily verified that the following hold :

LEMMA 2.4. φ is well defined and a homomorphism from G to S_6 . Moreover, $Ker(\varphi) = \langle z \rangle$, $\varphi(K) = A_6$, and $\varphi(J) = A^{\{1,2,3,4\}}$.

We write $\varphi(x) = \overline{x}$ for each element $x \in G$, and $\varphi(M) = \overline{M}$ for each subgroup M of G. Then we get $\overline{c} = (123)$, $\overline{d} = (123)(465)$, $\overline{b} = (12345)$, $\overline{p} = (1324)(56)$ and $\overline{q} = (14)(23)$. Throughout Section 2 we suppose that a spread \mathscr{S} preserved by G exists. Here \mathscr{S} consists of 2-dimentional subspaces of V, and $|\mathscr{S}| = 122$. Set $\mathscr{S}_1 = \{C_V(d') | d' \in Cl_G(d)\}$. Then we have the following Lemma.

LEMMA 2.5. \mathcal{G}_1 is a partial spread of \mathcal{G} with 20 components and d acts as homology on the tanslation plane corresponding to \mathcal{G} .

PROOF. Let *R* be a 3-Sylow subgroup of *K*, so that $R \cong Z_3 \times Z_3$. We may take $R = \langle c, d \rangle$. Since $|\mathscr{G}| \equiv 2 \pmod{3}$ there is certainly an *R*-invariant component, say *W*. Of course, *W* is a 2-dimensional *GF*(11) *R*-module, while |GL(W)| is not divisible by 9. Hence *R* is not faithful on *W*. By Lemma 2.3 the kernel of the action of *R* on *W* must be $\langle d \rangle$ or $\langle cd \rangle$, here $cd \in Cl_G(d)$. Since $G_W = N_G(\langle d \rangle)$ and $|G: N_G(\langle d \rangle)| = 20$, the lemma is proved.

Let S be a 2-Sylow subgroup of G. We may take $S = \langle p, q, f \rangle$. Here $p^8 = q^4 = f^2 = 1$, $p^4 = q^2 = z$, $q^{-1}pq = p^{-1}$, $f^{-1}pf = p^5$, qf = fq. Next we put $T = \langle p, qf \rangle$ and $L = \langle c, b \rangle$, then |S:T| = 2, and $\overline{L} = A^{\{1,2,3,4,5\}}$.

LEMMA 2.6. The following hold :

- (i) $\chi_{IJ}=2\chi_5$, where $\chi_5 \in Irr(J)$.
- (ii) $\chi_{|J\times \langle f \rangle} = (\chi_5 \times 1) + (\chi_5 \times (-1)), \text{ where } \chi_5 \times 1, \chi_5 \times (-1) \in Irr(J \times \langle f \rangle).$
- (iii) $\chi_{J < pf >} = \chi_{51} \times \chi_{52}$, where χ_{51} , $\chi_{52} \in Irr(J \langle pf \rangle)$ and $\chi_{51} \neq \chi_{52}$.
- (iv) $\chi_{|T} = \theta_1 + \theta_2$, where $\theta_i \in Irr(T)$ for i = 1, 2 and $\theta_1 \neq \theta_2$.
- (v) $\chi_{L} = \eta_1 + \eta_2$, where $\eta_i \in Irr(L)$ for i=1, 2 and $\eta_1 \neq \eta_2$.

Moreover, by reduction modulo 11, the representations which afford χ_5 , χ_{51} , χ_{52} , θ_1 , θ_2 , η_1 and η_2 give irreducible representations of degree 2 on GF(11), respectively.

PROOF. We can get character tables of J, $J \times \langle f \rangle$, $J \langle pf \rangle$, T, and L by the method in Chapter 6 of [3], and by using their character tables we can verify this lemma.

LEMMA 2.7. J fixes just twelve 2-dimensional subspaces of V.

PROOF. We may take V_1 and V_2 to be the GF(11)J-submodules in Vwhich afford the character χ_5 of Lemma 2.6(i) where $V = V_1 \oplus V_2$. Let Φ be a GF(11)J-isomorphism from V_1 to V_2 . Now for each element $\sigma \in C_{GL(V_1)}(J)$, $V(\sigma) = \{x\sigma + x\Phi \mid x \in V_1\}$ is a 2-subspace of V fixed by J, and $V(\sigma) \neq V_i$ for i=1, 2. Moreover if $\sigma \neq \sigma'$ then $V(\sigma) \neq V(\sigma')$. Conversely if U is a 2-subspace of V fixed by J and if $U \neq V_i(i=1,2)$, then there is an element σ of $C_{GL(V_1)}(J)$ such that $U = V(\sigma)$. On the other hand, since $C_{GL(V_1)}(J) = \{aE \mid a \in GF(11)^*\}$ holds, the lemma follows.

Let $W_i(i=1, 2, 3)$ be the $GF(11)(J \times \langle f \rangle)$, $GF(11)(J \langle pf \rangle)$ and GF(11)T-submodules in V which afford the characters $\chi_5 \times 1$, χ_{51} and θ_1 , respectively. We put $\mathscr{G}_{21} = \{W_1g \mid g \in G\} = \{C_V(f') \mid f' \in Cl_G(f)\}, \mathscr{G}_{22} = \{W_2g \mid g \in G\}$ and $\mathscr{G}_{23} = \{W_3g \mid g \in G\}$.

LEMMA 2.8. S has at least one orbit \mathcal{F} of length 2 on \mathcal{S} . Furthermore, one of the following holds.

- (i) \mathscr{F} is contained in \mathscr{G}_{21} , and \mathscr{G}_{21} is a partial spread of \mathscr{G} with 30 components.
- (ii) \mathcal{F} is contained in \mathcal{G}_{22} , and $\overline{\mathcal{G}}_{22}$ is a partial spread of \mathcal{G} with 30 components.

(iii) \mathcal{F} is contained in \mathcal{G}_{23} , and \mathcal{G}_{23} is a partial spread of \mathcal{G} with 90 components.

PROOF. Since $|\mathscr{G}| \equiv 0 \pmod{4}$ and |S| = 32, S has an orbit of length 2 or length 1 on \mathscr{G} . Set $T_1 = S \cap K$, then $\chi_{|T_1|} = \theta_1^* + \theta_2^*$ where $\theta_i^* \in \operatorname{Irr}(T_1)$ and $\theta_i^*(1) = 2$ for i = 1, 2. But by reduction modulo 11, the representation which affords θ_i^* does not give an irreducible representation of degree 2 on GF(11) for i = 1, 2. Hence V is an irreducible T_1 -module and also an irreducible S-module. Therefore S has no orbit of length 1. Consequently S has an orbit \mathscr{F} of length 2 on \mathscr{G} .

Now for $U \in \mathcal{F}$, $|S: S_U| = 2$. On the other hand, S has just seven subgrups of index 2, $T_i(i=1, 2, 3, 4, 5, 6, 7)$ say. T_i is described by the generators as follows:

 $T_{1} = S \cap K = \langle p, q \rangle \text{ and } \overline{T}_{1} = \langle (1324)(56), (14)(23) \rangle$ $T_{2} = \langle p^{2}, q, f \rangle \text{ and } \overline{T}_{2} = \langle (12)(34), (13)(24) \rangle \times \langle (56) \rangle$ $T_{3} = \langle pf, q \rangle \text{ and } \overline{T}_{3} = \langle (1324), (14)(23) \rangle$ $T_{4} = \langle p, f \rangle \text{ and } \overline{T}_{4} = \langle (1324) \rangle \times \langle (56) \rangle$ $T_{5} = T = \langle p, qf \rangle \text{ and } \overline{T}_{5} = \langle (1324)(56), (14)(23)(56) \rangle$ $T_{6} = \langle p^{2}, qp, f \rangle \text{ and } \overline{T}_{6} = \langle (12)(34), (34)(56) \rangle \times \langle (56) \rangle$ $T_{7} = \langle pf, qp \rangle \text{ and } \overline{T}_{7} = \langle (1324), (34)(56) \rangle$

Since V is an irreducible T_1 -module, we have $S_U \neq T_1$. Suppose $S_U = T_4$. Since z inverts V, it is easy to see $z \notin C_{T_4}(U)$, which implies $C_{T_4}(U) \cap K = 1$. On the other hand T_4 does not normalize $\langle f \rangle$. Thus it follows that $C_{T_4}(U) = 1$ and $T_4 \leq GL(U)$. But T_4 is not isomorphic to a 2-Sylow subgroup of GL(2, 11), which leads to a contradiction. Hence $S_U \neq T_4$. Similarly it is shown that $S_U \neq T_6$ and $S_U \neq T_7$. If $S_U = T_2$, then $C_{T_2}(U) = \langle f \rangle$ and $U = C_V(f)$. Moreover $C_G(f) = J \times \langle f \rangle$ and $|G: C_G(f)| = 30$ hold. Thus the case (i) of Lemma 2.8 holds.

Now T_3 and T_5 are isomorphic to a 2-Sylow subgroup of GL(2, 11). If $S_U = T_3$, then $C_{T_3}(U) = 1$. It is readily checked that $T_3 \leq J \langle pf \rangle$ and $\overline{J} \langle \overline{p} \overline{f} \rangle = S^{\{1,2,3,4\}}$. If *H* is a subgroup of *G* such that $J \langle pf \rangle \leq H$, we have three cases: $\overline{H} = S^{\{1,2,3,4\}} \times \langle (56) \rangle$, $\overline{H} = S^{\{1,2,3,4,5\}}$ and H = G. Then in any case it follows that $\chi_{|H}$ is irreducible and *V* is an irreducible *H*-module. Hence $G_U = J \langle pf \rangle$. On the other hand, $|G: J \langle pf \rangle| = 30$. Thus the case (ii) of Lemma 2.8 holds.

If $S_U = T_5$, then $C_{T_5}(U) = 1$. Take a subgroup H of G such that $T_5 \leq H$. If $|\overline{H}| = 2^3 \cdot 3^2 \cdot 5$, then H = K and V is H-irreducible and so $S_U \neq H$. Next suppose $|\overline{H}| = 2^3 \cdot 3 \cdot 5$, then we have two cases : $\overline{H} = S^{\{i, j, k, l, m\}}$ and \overline{H} is an image of $S^{\{i, j, k, l, m\}}$ by an outer automorphism α of S_6 for some distinct numbers $\{i, j, k, l, m\} \subset \{1, 2, 3, 4, 5, 6\}$. In both cases it follows that T_5 is not contained in H, a contradiction. If $|\overline{H}| = 2^3 \cdot 3^2$, then $H = N_G(P)$ for a 3-Sylow subgroup P of G and it is checked that $\chi_{|H}$ is irreducible. Therefore $G_U \neq H$. Finally suppose $|\overline{H}| = 2^3 \cdot 3$. Then it is clear that $O_3(\overline{H}) = 1$ and so $O_2(\overline{H}) \neq 1$. Thus $O_2(\overline{H})$ is a normal subgroup of \overline{T}_5 . Hence we have $\langle (12)(34) \rangle = Z(\overline{T}_5) \leq O_2(\overline{H})$. Moreover $\overline{T}_5 \cap Cl_{s_6}((12)(34)) = \langle (12)(34) \rangle$ (34). Therefore $\langle (12)(34) \rangle = Z(\overline{H})$. On the other hand $C_{s_6}((12)(34))$ is a 2-group, a contradiction. Thus in the case that $S_U = T_5$, we get $G_U = T_5$. Since $|G: T_5| = 90$, the case (iii) of Lemma 2.8 holds. This completes the proof of the lemma.

Let W_4 and W_4' be the GF(11)L-submodules in V which afford the characters η_1 and η_2 of Lemma 2.6(v), respectively. Set $\mathcal{G}_3 = \{W_4g \mid g \in G\}$. Then we get

LEMMA 2.9. \mathcal{G}_3 is a partial spread of \mathcal{G} with 12 components.

PROOF. Let $R = \langle b \rangle$. Then *R* is a 5-Sylow subgroup of *G*. Since $|\mathcal{G}| \equiv 2 \pmod{5}$, there is certainly an *R*-invariant component, say *U*. By Lemma 2.3(iv), *R* is faithful on *U*. If is clear that $\langle R, z \rangle \leq G_U$. We now define an outer automorphism α of S_6 as follows:

 $(12) \alpha = (12)(36)(45), (23) \alpha = (15)(26)(34), (34) \alpha = (16)(23)(45)$ $(45) \alpha = (12)(34)(56), (56) \alpha = (13)(26)(45).$

Then it is easy to see that $(12345)\alpha = (12345)^{-1}$. Take a subgroup H of G such that $\langle R, z \rangle \leq H$. Since $\overline{R} = \langle (12345) \rangle$, then one of the following holds.

(i) $\overline{H} = N_{s_{6}}(\overline{R}) = (\langle (12345) \rangle) \langle (2354) \rangle$ (ii) $\overline{H} = (\langle (12345) \rangle) \langle (25)(34) \rangle$ (iii) $\overline{H} = A^{\{1,2,3,4,5\}}$ and H = L(iv) $\overline{H} = S^{\{1,2,3,4,5\}}$ (v) $\overline{H} = (A^{\{1,2,3,4,5\}}) \alpha$ (vi) $\overline{H} = (S^{\{1,2,3,4,5\}}) \alpha$

Let J_1 be a subgroup of G such that $\overline{J}_1 = (\overline{J})\alpha$. Then V is an irreducible (not absolutely irreducible) $GF(11)J_1$ -module. Since $J_1 \leq H$ for H satisfying either (v) or (vi), we get $G_U \neq H$. Moreover, for H satisfying either (i) or (iv), it can be shown that $\chi_{|H}$ is irreducible and that $G_U \neq H$.

Suppose $G_U = H$ for H satisfying (ii). Then |H| = 20, $H \leq L$ and $H \cap Cl_G(f) = \phi$. Let ζ , ζ_1 and ζ'_1 be the characters of H which are afforded by the H-modules U, W_4 and W'_4 , respectively. It is seen easily that ζ , ζ_1

and ξ'_1 are all irreducible, and that $\xi_1 \neq \xi'_1$. If $U \cap W_4 = 0$ and $U \cap W_4' = 0$, then we obtain that $V = U \oplus W_4 = U \oplus W_4'$ and $\chi_{|H} = \xi + \xi_1 = \xi + \xi'_1$ which contradicts $\xi_1 \neq \xi'_1$. Therefore we may assume $U \cap W_4 \neq 0$. Since H acts on $U \cap W_4$ faithfully, we get dim $(U \cap W_4) = 2$. Consequently $U = W_4$, that is a contradiction. Thus it follows that $G_U \neq H$ for H satisfying (ii). Thus $G_U = L$. We get $U = W_4$ or $U = W_4'$ and $|G : G_U| = 12$, which complete the proof of the lemma.

In Lemma 2.8, if the case (iii) holds, then $\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_{23} \cup \mathcal{G}_3$ can be shown. Let Λ be the set of 2-subspaces of V fixed by J. $|\Lambda| = 12$ holds by Lemma 2.7. On the other hand $J \leq L$ and $J \leq L'$ where $\overline{L'} = A^{\{1,2,3,4,6\}}$. Since L and L' are conjugate in G, then $|\Lambda \cap \mathcal{G}_3| = 4$ by Lemma 2.6 (v). Moreover, since $J \leq J \times \langle f \rangle$ and $J \leq J \langle pf \rangle$, it is observed that $|\Lambda \cap \mathcal{G}_{21}| = 2$ and $|\Lambda \cap \mathcal{G}_{22}| = 2$ by Lemma 2.6(ii) and (iii). Set $\Lambda_1 = \Lambda \setminus ((\Lambda \cap \mathcal{G}_{21}) \cup (\Lambda \cap \mathcal{G}_{22}) \cup (\Lambda \cap \mathcal{G}_3))$. Then $|\Lambda_1| = 4$, and $N_G(J)$ acts transitively on Λ_1 . Let W_5 be an element of Λ_1 and put $\mathcal{G}_4 = \{W_5g \mid g \in G\}$. We prove the following lemma.

LEMMA 2.10. Suppose that the case (i) or (ii) of Lemma 2.8 holds. Then \mathcal{G}_4 is a partial spread of \mathcal{G} with 60 components.

We concentrate the cases (i) or (ii) of Lemma 2.8 and PROOF. set $\mathscr{G}_{4i} = \mathscr{G} \setminus (\mathscr{G}_1 \cup \mathscr{G}_{2i} \cup \mathscr{G}_3)$ for i=1, 2. Suppose that G is intransitive on \mathscr{G}_{4i} . Then G has an orbit \mathscr{T} whose length is less than 30, since $|\mathscr{G}_{4i}| = 60$. Take a component X in \mathcal{T} . Then we get $|G:G_X| \leq 30$. Therefore $|G_X| \geq$ 48 and $|\bar{G}_X| \ge 24$. If we set $H = G_X$, then $|\bar{H}| = 120, 72, 60, 48, 36, \text{ or } 24,$ since S_6 has no subgroup of order 30, 40 and 45. If $|\overline{H}|$ is either 120 or 72, then $\chi_{|H|}$ is irreducible, which is a contradiction. Suppose that $|\overline{H}|=60$. Then we may assume H = L or $\overline{H} = (\overline{L})\alpha$. The former case gives $X \in \mathscr{G}_3$ by the definition of \mathcal{G}_3 , a contradiction. The latter case gives the result that V is an H-irreducible module, since $J_1 \leq H$, which is also a contradiction. Suppose $|\overline{H}| = 48$, then $H = N_G(J)$ or $N_G(J_1)$. In any case, V is an *H*-irreducible module, a contradiction. Suppose |H|=36, then we may assume $H = N_G(\langle c \rangle)$ or $N_G(\langle d \rangle)$. In the former case, $\chi_{|H}$ is irrducible, a contradiction. In the latter case, it follows that $X \in \mathcal{G}_1$, which is also a contradiction.

Finally suppose |H|=24, then we have four cases: $J_1 \leq H$, $H=J \times \langle f \rangle$, $H=J\langle pf \rangle$ and $H=J\langle p \rangle$. Since J_1 and $J\langle p \rangle$ act irreducibly on V, we have $J_1 \leq H$ and $H \neq J\langle p \rangle$. If $H=J \times \langle f \rangle$, then $X \in \mathscr{G}_{21}$, and if $H=J\langle pf \rangle$, then $X \in \mathscr{G}_{22}$. In any case of these four cases we have a contradiction.

Thus G is transitive on \mathscr{G}_{4i} , and also $|G:G_X|=60$ holds for a component X in \mathscr{G}_{4i} . Since $|G_X|=24$, we may assume $G_X=J$ or $G_X=J_1$. But G_X

 $\neq J_1$ can be shown, as seen in the middle of the proof of Lemma 2.9. Hence it is reasonable to assume $G_X = J$ and $X = W_5$. Therefore $\mathscr{G}_{4i} = \mathscr{G}_4$ for i = 1, 2. The lemma is proved.

PROPOSITION 1. Suppose that \mathcal{G} is a spread in V, and that G acts the translation plane corresponding to \mathcal{G} . Then one of the following holds.

(i) $\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_{21} \cup \mathcal{G}_3 \cup \mathcal{G}_4$

(ii) $\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_{22} \cup \mathcal{G}_3 \cup \mathcal{G}_4$

(iii) $\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_{23} \cup \mathcal{G}_3$

PROOF. The present proposition follows from consequences of Lemma 2. 5, Lemma 2. 8, Lemma 2. 9 and Lemma 2. 10.

3. Existence of the spread I

Set $\mathscr{G}_1^* = \mathscr{G}_1 \cup \mathscr{G}_{21} \cup \mathscr{G}_3 \cup \mathscr{G}_4$, $\mathscr{G}_2^* = \mathscr{G}_1 \cup \mathscr{G}_{22} \cup \mathscr{G}_3 \cup \mathscr{G}_4$, $\mathscr{G}_3^* = \mathscr{G}_1 \cup \mathscr{G}_{23} \cup \mathscr{G}_3$ for the $\mathscr{G}_i(i=1,3,4)$ and $\mathscr{G}_{2j}(j=1,2,3)$ in Section 2. Then we have the following proposition.

PROPOSITION 2. \mathscr{S}_1^* and \mathscr{S}_2^* are spreads in V.

In order to prove Proposition 2, we shall follow a long series of lemmas.

LEMMA 3.1. Let $V_1 = C_V(x)$, $V_2 = C_V(y)$ for elements x, y in G. If there is a non-trivial element s in $\langle x, y \rangle$ such that $s \notin (Cl_G(f) \cup Cl_G(d))$, then $V_1 \cap V_2 = 0$.

PROOF. It is obvious from Lemma 2.3(iv) that $C_V(s)=0$. Moreover, $\langle x, y \rangle$ centralizes $V_1 \cap V_2$. Therefore $V_1 \cap V_2=0$. The lemma follows.

Now we note the following property of G.

Lemma 3.2.

(i) Let $x \in G$, then $\langle d, d^x \rangle \cong Z_3$, $Z_3 \times Z_3$, SL(2,3) or SL(2,5).

(ii) Let $x \in G$, then $\langle f, f^x \rangle \cong Z_2$, $Z_2 \times Z_2$, D_6 , D_8 or D_{12} , where D_n is a dihedral group of order n. Moreover if $\langle f, f^x \rangle \cong D_6$ holds, then there is an element c' in $\langle f, f^x \rangle$ such that $c' \in Cl_G(c)$.

LEMMA 3.3. \mathcal{G}_1 and \mathcal{G}_{21} are partial spread in V.

PROOF. The present Lemma follows from Lemma 3.1 and Lemma 3.2. LEMMA 3.4. If $U \in \mathcal{G}_1$ and $W \in \mathcal{G}_{21}$ hold, then $U \cap W = 0$. PROOF. For each element $f' \in Cl_G(f)$, it is easy to see that $\langle d, f' \rangle$ contains an element *s* such that $s \notin (Cl_G(f) \cup Cl_G(d))$. Hence we have the desired result by Lemma 3.1.

LEMMA 3.5. (i) If $U \in \mathcal{G}_1$ and $W \in \mathcal{G}_3$ hold, then $U \cap W = 0$. (ii) If $U \in \mathcal{G}_{21}$ and $W \in \mathcal{G}_3$ hold, then $U \cap W = 0$.

PROOF. Suppose $U \cap W = D \neq 0$. We may assume $U = C_V(x)$ where x = d or f in the case (i) or (ii), respectively. Then it follows that $G_U = C_G(\langle x \rangle)$. Let H be the stabilizer of D in the action of $N_G(\langle x \rangle)$ on the set Γ of 1-subspaces of U. Then it follows from Lemma 2.3(iv) that $H = \langle z, x \rangle$ and that $|N_G(\langle x \rangle)/H| = 12$. Thus G_U is transitive on Γ . Hence from Lemma 3.3 the cardinality of $\{Dg \mid g \in G\}$ is 12×20 or 12×30 corresponding to the respective case of x = d or x = f.

If we set $G_W = L'$, then L' is conjugate to L in G. For an element b' of order 5 in L', we have $\chi_{|\langle b'\rangle} = \rho_1 + \rho_2 + \rho_3 + \rho_4$, where $\rho_i(i=1,2,3,4)$ are distinct four non-principal characters of $\langle b'\rangle$. Obviously, $\rho_i(b') \in GF(11)$ for i=1, 2, 3, 4. Accordingly we may assume that $\langle b'\rangle$ fixes D and that $L'_D = \langle z, b' \rangle$, because $L' \cap Cl_G(f) = \phi$ and $L' \cap Cl_G(d) = \phi$. Therefore $|L': L'_D| = 12$ and L' is transitive on 1-spaces of W. Hence $|\{Dg \mid g \in G\}| \le 12 \times 12$. This contradiction proves the lemma.

LEMMA 3.6. \mathcal{G}_3 is a partial spread of V.

PROOF. Assume that there are $W \in \mathscr{S}_3$ and $g \in G$ such that $W \cap W^g = D$ is a 1-space. We claim that without loss of generality we may take $G_W = L$. Since L is transitive on 1-spaces of W, we get $D^{g^{-1}} = D^t$ for some $t \in L$ that implies $tg \in G_D$. Moreover, $G_D = L_D$ by Lemma 3.5. Therefore we have $tg \in L$ which gives $g \in L$ and $W^g = W$, this is a contradiction. The lemma is proved.

LEMMA 3.7. If $U \in \mathcal{G}_1$ and $W \in \mathcal{G}_4$ hold, then $U \cap W = 0$.

PROOF. Without loss of generality we may take $G_U = N_G(\langle d \rangle)$. This shows that $G_W = J'$ is conjugate to J in G. Hence $\overline{J'} = A^{\{i, j, k, l\}}$ holds for some elements $\{i, j, k, l\} \subset \{1, 2, 3, 4, 5, 6\}$. Since $\overline{N_K}(\langle d \rangle) = (\langle (123), (456) \rangle) \langle (12)(45) \rangle$, it can be seen that $\overline{J'} \cap \overline{N_K}(\langle d \rangle) \neq 1$ and that there is an element $y \in (J' \cap N_K(\langle d \rangle)) \setminus \{1, z\}$. If $U \cap W = D$ is a 1-space, then $U = D \oplus D^y = W$, which is a contradiction. The lemma is proved.

LEMMA 3.8. IF $U \in \mathcal{G}_{21}$ and $W \in \mathcal{G}_4$ hold, then $U \cap W = 0$.

PROOF. Suppose $U \cap W = D$ is a 1-space. We may take $U = C_v(f)$ and $G_U = C_G(f) = J \times \langle f \rangle$. On the other hand, $G_W = J'$ is conjugate to J in

G. Let *r* be the number of elements in \mathscr{G}_4 which contain *D*. Then by counting in two different ways the number of pairs (D', X) such that $X \in \mathscr{G}_4$ and *D'* is a 1-space of *X*, the equality $60 \times 12 = 30 \times 12 \times r$ is obtained, since G_U is transitive on 1-spaces of *U* and also \mathscr{G}_{21} is a partial spread in *V*. This equality gives r=2. Therefore it follows that $|\{X \in \mathscr{G}_4 \mid U \cap X \neq 0\}|=24$ and $|\{X \in \mathscr{G}_4 \mid U \cap X = 0\}|=36$.

Take a subset $\{i, j, k, l\}$ of $\{1, 2, 3, 4, 5, 6\}$ such that $|\{i, j, k, l\}| = 4$ and set $\overline{J}'' = A^{\{i, j, k, l\}}$. It follows that $J \cap J'' \ge (\langle z \rangle)$ if and only if the condition $A^{\{1,2,3,4\}} \cap A^{\{i,j,k,l\}} \neq 1$ is satisfied. On the other hand there are exactly 9 subsets $\{i, j, k, l\}$ satisfying the condition mentioned above. Moreover there are exactly 4 elements in \mathcal{S}_4 which are fixed J''. If we set $G_X = J_2$ for an element X of \mathscr{G}_4 , and if $J_2 \cap J \ge (\langle z \rangle)$ is satisfied, then $U \cap X = 0$ by the argument in the latter half of the proof of Lemma 3.7, since $J \leq C_G(f)$. After all we have the conclusion that $U \cap X = 0$ if and only if $J_2 \cap J \ge (\langle z \rangle)$. Similarly it can be shown that $C_v(zf) \cap X = 0$ if and only if $J_2 \cap J \ge (\langle z \rangle)$, since $C_G(f) = C_G(zf)$. Hence the statement that $C_V(f) \cap W = D$ is a 1space implies the statement that $C_V(zf) \cap W = D'$ is a 1-space. Therefore we have $D = D^f = C_V(f) \cap W^f$ and $D' = D'^{zf} = C_V(zf) \cap W^f$. On the other hand, since $C_v(f) \cap C_v(zf) = 0$, it is easy to see $D \neq D'$. Thus we get W = $D \oplus D' = W^{f}$, which gives $f \in G_{W} = J'$. This is a contradiction. The lemma is proved.

LEMMA 3.9. If $U \in \mathcal{G}_3$ and $W \in \mathcal{G}_4$ holds, then $U \cap W = 0$.

PROOF. Suppose $U \cap W = D$ is a 1-space. We may take $G_U = L$. By the same argument as the proof in Lemma 3.8, each 1-space of U is contained in exactly 5 elements of \mathscr{G}_4 . Hence $U \cap W' \neq 0$ holds for every element W' of \mathscr{G}_4 . Especially $U \cap W_5 = E$ is a 1-space. Then we have $U = E \oplus E^y = W_5$ for some element $y \in J$, since $J \leq L$. This contradiction proves the lemma.

LEMMA 3.10. \mathcal{G}_4 is a partial spread of V.

PROOF. Let W be an element of \mathscr{G}_4 and D be a 1-space of W. We may take $G_W = J$. Then it can easily be shown that $G_D = \langle z \rangle$ or $|G_D| = 10$ from Lemma 2.3(iv), Lemma 3.7 and Lemma 3.8. Suppose $|G_D| = 10$, then $G_D \leq L'$ where L' is a conjugate subgroup to L in G. Hence G_D fixes U for some element U of \mathscr{G}_3 such that $G_U = L'$ and $D \leq U$ holds by the argument in the latter half of the proof of Lemma 3.5. This contradicts Lemma 3.9. Therefore $G_D = \langle z \rangle$.

Suppose that $W \cap W^g = D$ is a 1-subspace for an element $g \in G$. Then $D \subset W$ and $D^{g^{-1}} \subset W$. Since J is transitive on 1-spaces of W, we get

 $D^{g^{-1}} = D^t$ for some $t \in J$. Hence $D = D^{tg}$ and $tg \in G_D = \langle z \rangle$ holds. Therefore $g \in J$ and $W = W^g$. This contradiction proves the lemma.

PROOF OF PROPOSITION 2.

 \mathscr{G}_1^* is a spread in V by using from Lemma 3.3 to Lemma 3.10. Let W be an element of \mathscr{G}_{22} such that $G_W = J\langle pf \rangle$. Since $J\langle pf \rangle$ is transitive on 1-spaces of W, it follows that $|(J\langle pf \rangle)_D| = 4$ for every 1-space D of W. Hence D is centralized by an involution f' in $J\langle pf \rangle$ which is conjugate to f. This yields $W \subset \bigcup_{f' \in Cl_c(f)} C_V(f') = \bigcup_{X \in \mathscr{G}_{21}} X$, which implies $\bigcup_{X \in \mathscr{G}_{21}} X = \bigcup_{X \in \mathscr{G}_{21}} X$ and $V = (\bigcup_{X \in \mathscr{G}_{11}} X) \cup (\bigcup_{X \in \mathscr{G}_{21}} X) \cup (\bigcup_{X \in \mathscr{G}_{22}} X)$. This means that \mathscr{G}_2^* is a spread in V. The proposition is proved.

4. Existence of the spread II

We shall show that \mathscr{S}_3^* is a spread in V in this section.

LEMMA 4.1. \mathcal{G}_{23} is a partial spread in V.

PROOF. Let W be an element of \mathscr{S}_{23} fixed by $T = \langle p, qf \rangle$, where $\overline{T} = \langle (1324)(56), (14)(23)(56) \rangle$. Moreover let $\Delta(W)$ be the set of 1-spaces of W. T has exactly two orbits $\Delta_1(W), \Delta_2(W)$ on $\Delta(W)$, where $|\Delta_1(W)| = 4$ and $|\Delta_2(W)| = 8$. It is readily verified that $f_1 = pqf$ and $f_1 \in T \cap Cl_G(f)$ hold, and that f_1 centralizes an element D_1 of $\Delta_1(W)$. Suppose $g \in G$ and $W \cap W^g = D$ is a 1-space. Then we get $D, D^{g-1} \subset W$. If $D, D^{g-1} \in \Delta_1(W)$ holds, then there is an element $t \in T$ such that $D^{g-1} = D^t$, which implies $tg \in G_D$. Moreover we have $|T_D| = 4$. It follows that $|G_D| = 4$ and $G_D = T_D$, because $G_D \cap Cl_G(d) = \phi$ holds from Lemma 3.4 and there is no element of order 5 in $N_G(\langle f \rangle)$. Therefore $g \in T$, which shows that $W^g = W$. This is a contradiction. Thus it follows that $D \in \Delta_2(W)$ or $D^{g^{-1}} \in \Delta_2(W)$. Hence without loss of generality we may assume $D \in \Delta_2(W)$, which implies $T_D = \langle z \rangle$.

Now we shall prove $G_D = \langle z \rangle$. If not, then there are three cases to consider : $|G_D|=4$, $|G_D|=6$ and $|G_D|=10$. We shall lead contradictions in all of the cases, as seen below.

Assume first that $|G_D|=4$ holds, then it can easily be shown that $G_D = \langle z, f' \rangle$ for some $f' \in Cl_G(f)$. Set $\mathscr{R} = \{E \mid U \in \mathscr{G}_{23}, E \text{ is a 1-space of } U\}$. Since $G_D = \langle z, f' \rangle$ holds, we get $D \subset C_V(f')$. On the other hand there is an element W' of \mathscr{G}_{23} such that $f' \in G_{W'}$. It follows that f' centralizes an element D' of $\Delta_1(W')$, which implies $D' \subset C_V(f')$. Moreover $C_G(f')$ is transitive on 1-spaces of $C_V(f')$. Therefore it follows that $D' = D^s$ for some element $s \in C_G(f')$. Hence G is transitive on \mathscr{R} and the equality $|\mathscr{R}|=360$ is obtaind. Hence each element of \mathscr{R} is contained in exactly three elements of \mathscr{G}_{23} . Therefore there is an element U of \mathscr{G}_{23} , where $D_1 \subset U$ and $U \neq W$. We put $G_U = T'$. It is readily checked that $\overline{T}' \cap C_{S_6}((12)) \neq 1$. Hence there is an element $g \in T' \setminus \{1, z\}$ such that $gf_1g^{-1}=f_1$ or zf_1 . If $D_1^g = D_1$ holds, then $g = f_1$ or $g = zf_1$. This shows that $f_1 \in T'$. If $D_1^g \neq D_1$ holds, then $U = D_1 \oplus D_1^g$. This shows that $(U)^{f_1} = (D_1 \oplus D_1^g)^{f_1} = U$. We also have $f_1 \in G_U = T'$. Thus it follows that $D_1 \in \Delta_1(U)$ and $D_1^x \in \Delta_1(W)$ for some element $x \in G$ such that $U^x = W$. Hence $D_1^{xy} = D_1$ holds for an element $y \in T$. Therefore we have $xy \in G_{D_1}$. Thus it follows that $x \in T$, which implies U = W. This is a contradiction. Therefore we have $|G_D| \neq 4$.

Next assume that $|G_D|=6$ holds. Then $G_D=\langle z, d' \rangle$ holds for an element $d' \in Cl_{G}(d)$. We get $D \subset C_{V}(\langle d' \rangle)$. If $N_{G}(\langle d' \rangle) \cap T \neq \langle z \rangle$ holds, then we have $W = D \oplus D^{y} = C_{v}(\langle d' \rangle)$ for an element $y \in (N_{G}(\langle d' \rangle) \cap T) \setminus \{1, \dots, N_{G}\}$ z}. This is a contradiction. Hence $N_G(\langle d' \rangle) \cap T = \langle z \rangle$ holds. Let $\langle x \rangle$ be a subgroup satisfying the following conditions: $N_G(\langle x \rangle) \cap T = \langle z \rangle$ and $x \in Cl_{G}(d)$. Then there are exactly eight subgroups satisfying these conditions, and each of them centralizes exactly one element of $\Delta_2(W)$. Since $N_G(\langle d \rangle) \cap T = \langle z \rangle$ holds, without loss of generality we may assume d' = d. Set $D = \langle v \rangle$, $\langle v \rangle f_1 = w$, $\langle v \rangle f = v'$, $\langle w \rangle f = w'$ and $d^f = d^*$. Then it follows that $W = \langle v \rangle \oplus \langle w \rangle$, $W' = \langle v' \rangle \oplus \langle w' \rangle$ and $V = W \oplus W'$. Moreover we have $W^{f} = W'$. Since $f_{1}^{-1}df_{1} = (d^{*})^{2}$ holds, we get $w = (v)f_{1} \in C_{v}(\langle d \rangle)^{f_{1}} =$ $C_v(\langle d^* \rangle)$. Similarly it follows that $v' \in C_v(\langle d^* \rangle)$ and $w' \in C_v(\langle d \rangle)$. Hence $C_v(\langle d \rangle) = \langle v \rangle \oplus \langle w' \rangle$ and $C_v(\langle d^* \rangle) = \langle w \rangle \oplus \langle v' \rangle$ holds. Since $C_{v}(\langle d^{*} \rangle)^{d} = C_{v}(\langle d^{*} \rangle)$, we may put $(w)d = \alpha w + \beta v'$ and $(v')d = \gamma w + \delta v'$ for some elements α , β , γ , $\delta \in GF(11)$, which give $1 = \chi(d) = tr(d) = 2 + d$ $\alpha + \delta$. Hence we have the following equality.

$$\boldsymbol{\alpha} + \boldsymbol{\beta} = -1 \tag{1}$$

It can easily be shown that $(v')f_1 = (v)ff_1ff = (v)zf_1f = -w'$. Hence we have $(v)d^* = (w)f_1d^* = (w)d^2f_1 = (\alpha w + \beta v')df_1 = (\alpha^2 + \beta\gamma)v - (\alpha\beta + \beta\delta)w'$ and $(v)d^* = (v')fd^*ff = (v')df = \gamma w' + \delta v$, which give $\alpha^2 + \beta\gamma = \delta$ and $\alpha\beta + \beta\delta = -\gamma$. Hence from (1) we have the following two equalities.

$$\beta = \gamma$$
 (2)

$$\alpha^2 + \beta^2 = \delta \tag{3}$$

Now, $p \in T$ implies $W^{p} = W$ and $W'^{p} = W'$. Hence we may put $(v)p = \lambda v + \mu w$ and $(w)p = \nu v + \eta w$ for some elements λ , μ , ν , $\eta \in GF(11)$. Hence $(v')p = (v)fpff = (v)zpf = -\lambda v' - \mu w'$ and $(w')p = -\nu v' - \eta w'$ hold. Moreover we have $(w)p = (v)f_{1}pf_{1}f_{1} = (v)p^{3}f_{1}$. Hence $(v)p^{3} = \nu w + \eta v$ holds. Similarly $(w)p^3 = \lambda w + \mu v$, $(w')p^3 = -\lambda w' - \mu v'$ and $(v')p^3 = -\nu w' - \eta v'$ hold. Therefore it follows that $-v = (v)p^4 = (\nu w + \eta v)p = (\nu^2 + \eta \lambda)v + (\nu \eta + \eta \mu)w$. This yields $\eta(\nu + \mu) = 0$ and $\nu^2 + \eta \lambda = -1$. If $\eta = 0$, then we get $(\langle w \rangle)^p = \langle v \rangle = (\langle w \rangle)^{f_1}$, which implies $pf_1 \in T_{(\langle w \rangle)}$. Since $D = \langle v \rangle \in \Delta_2(W)$, we also have $\langle w \rangle \in \Delta_2(W)$, which implies $T_{(\langle w \rangle)} = \langle z \rangle$. Hence we have $pf_1 = 1$ or $pf_1 = z$, a contradiction. Therefore $\eta \neq 0$. Similarly $\nu \neq 0$, $\lambda \neq 0$ and $\mu \neq 0$ are obtained. Thus we have the following two equalities.

$$\nu = -\mu$$
 and $\nu^2 + \eta \lambda = -1$ (4)

Moreover it follows that $(v)p^3 = vw + \eta v = -\mu w + \lambda^{-1}(-1-\mu^2)v$ from (4). On the other hand we have $(v)p^3 = (\lambda v + \mu w)p^2 = \{(\lambda^2 + \mu v)\lambda + \mu v(\lambda + \eta)\}v + \{(\lambda^2 + \mu v)\mu + \mu \eta(\lambda + \eta)\}w$. Hence $(\lambda^2 + \mu v) + \eta(\lambda + \eta) = -1$ holds. Thus it can be shown from (4) that $\lambda^2 - \mu^2 - 1 - \mu^2 + \eta^2 = -1$. Therefore we have the following equality.

$$\lambda^2 + \eta^2 = 2\mu^2 \tag{5}$$

Set $b'=dp^{-1}dp$. Then it is easy to see that $\overline{b}'=(13524)$ and |b'|=10. When we put $(v)b'=A_1v+B_1w+C_1v'+D_1w'$, $(w)b'=A_2v+B_2w+C_2v'+D_2w'$, $(v')b'=A_3v+B_3w+C_3v'+D_3w'$ and $(w')b'=A_4v+B_4w+C_4v'+D_4w'$, we get $A_1=-v^2\alpha-\eta\lambda$, $B_2=-\lambda\alpha^2\eta-\alpha\mu^2+\beta\eta^2\gamma$, $C_3=\gamma\lambda^2\beta-\delta\nu^2-\eta\delta^2\lambda$ and $D_4=-\lambda\eta-\mu^2\delta$. Hence it follows from (2) and (4) that $A_1=-\mu^2\alpha+\mu^2+1$, $B_2=\alpha^2(\mu^2+1)-\alpha\mu^2+\beta^2\eta^2$, $C_3=\beta^2\lambda^2-\delta\mu^2+\delta^2(\mu^2+1)$ and $D_4=\mu^2+1-\mu^2\delta$ hold. Therefore we obtain $1=\chi(b')=\operatorname{tr}(b')=A_1+B_2+C_3+D_4=2+4\mu^2+(\alpha^2+\delta^2)(\mu^2+1)+\beta^2(\lambda^2+\eta^2)$ from (1). We also obtain $\alpha^2+\delta^2=2\alpha^2+2\alpha+1$ from (1), $\beta^2=\delta-\alpha^2=-1-\alpha-\alpha^2$ from (1) and (3) and $\lambda^2+\eta^2=2\mu^2$ from (5). Hence we have the followig equality.

$$0 = 2 + 3\mu^2 + 2\alpha^2 + 2\alpha \tag{6}$$

Since $\beta^2 = -1 - \alpha - \alpha^2$ is a square number, it follows that $\alpha \in \{\pm 3, \pm 4, 2, -5\}$. Thus we have $2\alpha^2 + 2\alpha = 1$, 2 or -4. The application of these values into (6) gives $\mu^2 = -1$, -5 or -3, respectively. This is a contradiction. Therefore we have $|G_D| \neq 6$.

Finally assume that $|G_D|=10$ holds. Set $G_D = \langle z, b_1 \rangle$ for some element b_1 of G such that $|b_1|=5$. If $N_G(\langle b_1 \rangle) \cap T \geqq \langle z \rangle$ holds, then we have $W = D \oplus D^x$ for an element $x \in (N_G(\langle b_1 \rangle) \cap T) \setminus \{1, z\}$ and W is fixed by $\langle b_1 \rangle$, that is a contradiction. Hence $N_G(\langle b_1 \rangle) \cap T = \langle z \rangle$ holds. Set $M = \{\langle x \rangle \mid x \in Cl_G(b) \text{ and } N_G(\langle x \rangle) \cap T = \langle z \rangle\}$. Then it can easily be shown that |M|=32 and the number of orbits of the action of $\langle T, f \rangle$ on M is exactly three. We denote their orbits by M_1 , M_2 and M_3 . It is easy to see that $|M_1|=8$,

 $|M_2|=8$ and $|M_3|=16$. We may take $b \in M_1$, $b'' \in M_2$ and $b''' \in M_3$ as representatives, where $\overline{b} = (12345)$, $\overline{b}'' = (12536)$, $\overline{b}''' = (12356)$, respectively. There are three cases to consider: (i) b_1 is an element of M_1 , (ii) b_1 is an element of M_2 , (iii) b_1 is an element of M_3 .

Case (i). We may assume $b_1 = b$. It follows that $pqf = f_1 \in T$, $p^{-1}qf = f_3 \in T$ and $p^2 = f_1f_2 \in T$. We put $p^{-2}b_1p^2 = b_2$, $f_1b_1f_1 = b_3$ and $f_3b_1f_3 = b_4$. It is readily verified that D, D^{p^2} , D^{f_1} and D^{f_3} are fixed by $\langle b_1 \rangle$, $\langle b_2 \rangle$, $\langle b_3 \rangle$ and $\langle b_4 \rangle$, respectively. It is observed to be $b_i \in L$ for i=1, 2, 3, 4. Moreover L fixes exactly two 2-spaces of V, say V_1 and V_2 . For each $i \in \{1, 2, 3, 4,\}$, $\langle b_i \rangle$ fixes exactly four 1-spaces of V, and two of them are contained in V_1 and the remaining two are contained in V_2 . Hence we may assume $D \subset V_1$ and $D^x \subset V_1$ for some element $x \in \{f_1, f_3, p^2\}$. Then we have $W = D \oplus D^x = V_1$, a contradiction. Thus we get $b_1 \notin M_1$, which shows that Case (i) does not occur.

Case (ii). We may assume $b_1 = b''$. Set $D = \langle v \rangle$ and $f_1 b_1 f_1 = b_6$. It is easy to see that $\overline{b}_6 = (15362)$. Let L_1 be a subgroup which is conjugate to L in G such that $\overline{L}_1 = A^{\{1,2,3,5,6\}}$. Then it follows that b_1 , $b_6 \in L_1$. Since $\langle b_1 \rangle$ fixes D and $C_D(b_1) = 0$ from Lemma 2.3(iv), moreover 3 is a primitive fifth root of unity in GF(11), we may assume that $(v)b_1=3v$. As well as in the case $|G_p|=6$, we put $(v)f_1=w$, (v)f=v', (w)f=w', (v)p= $\lambda v + \mu w$ and $(w)p = \nu v + \eta w$. We have already known that $(v')f_1 = -w'$, $(v')p = -\lambda v' - \mu w', \quad (w')p = -\nu v' - \eta w', \quad (v)p^3 = \nu w + \eta v, \quad (w)p^3 = \lambda w + \mu v,$ $(v')p^3 = -\nu w' - \eta v'$ and $(w')p^3 = -\lambda w' - \mu v'$. Then the equality (4) and (5) being derived in the case $|G_D|=6$ also hold here and are used again. It is readily checked that $fb_1f = b_6^{-1}$. It follows that $(w)b_6 = (w)f_1b_1f_1 = 3w$, $(v')b_{6}^{-1} = (v')fb_{1}f = 3v'$ and $(w')b_{1}^{-1} = (w')fb_{6}f = 3w'$. Hence we have $(v')b_6=4v'$ and $(w')b_1=4w'$. It can be shown that L_1 fixes exactly two 2-subspaces of V, say U_1 and U_2 . Moreover since b_1 fixes $\langle v \rangle$ and $\langle w' \rangle$, and since b_6 fixes $\langle w \rangle$ and $\langle v' \rangle$, each element of $\{\langle v \rangle, \langle w \rangle, \langle v' \rangle, \langle w' \rangle\}$ is contained in U_1 or U_2 with the same argument as the proof in the case (i). Obviously it follows that $\langle v \rangle \oplus \langle w \rangle \neq U_i$ and $\langle v' \rangle \oplus \langle w' \rangle \neq U_i$ for i =1, 2. On the other hand, since $f \notin L_1$ holds, we obtain $\langle v \rangle \oplus \langle v' \rangle \neq U_i$ and $\langle w \rangle \oplus \langle w' \rangle \neq U_i$ for i=1, 2. Hence we may assume $\langle v \rangle \oplus \langle w' \rangle = U_1$ and $\langle w \rangle \bigoplus \langle v' \rangle = U_2$. Set $(w) b_1 = \beta_1 w + \gamma_1 v'$, $(v') b_1 = \beta_2 w + \gamma_2 v'$, where β_1 , β_2 , γ_1 , $\gamma_2 \in GF(11)$. Then $-1 = \chi(b_1) = \operatorname{tr}(b_1) = -4 + \beta_1 + \gamma_2$ hold. Therefore we have the following equality.

$$\beta_1 + \gamma_2 = 3 \tag{7}$$

 $\chi(b_1^2) = 3 + \beta_1^2 + 2\beta_2\gamma_1 + \gamma_2^2$ holds. Therefore from (7) we have the following equality.

$$\boldsymbol{\beta}_1 \boldsymbol{\gamma}_2 - \boldsymbol{\beta}_2 \boldsymbol{\gamma}_1 = 1 \tag{8}$$

Now we put $c_1 = b_1^{-1} f_1 b_1 f$, then it is seen that $\overline{c_1} = (265)$, which implies $c_1 \in Cl_G(c)$. Since $(w) b_1 = \beta_1 w + \gamma_1 v'$ holds, we have $w = (\beta_1 w) b_1^{-1} + (\gamma_1 v') b_1^{-1}$. Similarly we have $v' = (\beta_2 w) b_1^{-1} + (\gamma_2 v') b_1^{-1}$. Therefore $\gamma_2 w - \gamma_1 v' = (w) b_1^{-1}$ holds from (8). Similarly $\beta_1 v' - \beta_2 w = (v') b_1^{-1}$ holds. Hence it can be shown that $(v) c_1 = (v) b_1^{-1} f_1 b_1 f = (4v) f_1 b_1 f = 4\beta_1 w' + 4\gamma_1 v$, $(w) c_1 = (w) b_1^{-1} f_1 b_1 f = (\gamma_2 w - \gamma_1 v') f_1 b_1 f = 3\gamma_2 v' + 4\gamma_1 w$, $(v') c_1 = (v') b_1^{-1} f_1 b_1 f = (\beta_1 v' - \beta_2 w) f_1 b_1 f = -4\beta_1 w - 3\beta_2 v'$, $(w') c_1 = (w') b_1^{-1} f_1 b_1 f = (-3v') b_1 f = -3\beta_2 w' - 3\gamma_2 v$. Therefore it follows that $-2 = \chi(c_1) = \operatorname{tr}(c_1) = -3\gamma_1 + 5\beta_2$. Thus we have the following equality.

$$-4\gamma_1 + 3\beta_2 = 1 \tag{9}$$

Moreover we put $a_1 = b_1 p b_1 p^{-1}$, then it follows that $\overline{a_1} = (1243)(56)$, which implies $a_1 \in Cl_G(p)$. If we put $(v)a_1 = A_1v + B_1w + C_1v' + D_1w'$, $(w)a_1 = A_2v + B_2w + C_2v' + D_2w'$, $(v')a_1 = A_3v + B_3w + C_3v' + D_3w'$ and $(w')a_1 = A_4v + B_4w + C_4v' + D_4w'$, then A_1 , B_2 , C_3 and D_4 can be written as $A_1 = 2\lambda\eta - 3\mu^2\beta_1$, $B_2 = -3\beta_1v^2 - \beta_1^2\lambda\eta + \lambda^2\gamma_1\beta_2$, $C_3 = \beta_2\gamma_1\eta^2 - \gamma_2^2\lambda\eta - 4\gamma_2\mu^2$ and $D_4 = -4\nu^2\gamma_2 - 5\lambda\eta$. Hence from (4), (5), (7), (8) and (9) we have the following equality.

$$0 = \chi(a_1) = 2\beta_1^2 + (2\mu^2 + 5)\beta_1 + (1 - 3\mu^2)$$
(10)

Finally we put $t=b_1f_1b_1f_1$, then it follows that $\overline{t}=(23)(56)$, which implies $t\in Cl_G(q)$. Moreover we have $(v)t=3\beta_1v-3\gamma_1w'$, $(w)t=3\beta_1w+4\gamma_1v'$, $(v')t=3\beta_2w+4\gamma_2v'$ and $(w')t=-4\beta_2v+4\gamma_2w'$. Tence $0=\chi(t)=$ $tr(t)=6\beta_1+8\gamma_2$ holds. Thus we have the following equality.

$$3\beta_1 + 4\gamma_2 = 0 \tag{11}$$

Therefore from (7) and (11) we have $\beta_1 = 1$. Hence from (10) it follows that $\mu^2 = -3$, which is a contradiction. Thus we get $b_1 \notin M_2$, which shows that Case (ii) does not occur.

Case (iii). We may assume $b_1 = b'''$. As well as in Case (ii), we put $D = \langle v \rangle$, $(v)f_1 = w$, (v)f = v', (w)f = w', $(v)p = \lambda v + \mu w$, $(w)p = \nu v + \eta w$, $W = \langle v \rangle \oplus \langle w \rangle$ and $W' = \langle v' \rangle \oplus \langle w' \rangle$. We have already known that $V = W \oplus W'$, $G_W = G_{W'} = T$, $(v')p = -\lambda v' - \mu w'$, $(w')p = -\nu v' - \eta w'$ and $\mu \neq 0$. We may also assume $(v)b_1 = 3v$, because b_1 fixes D and $C_D(b_1) = 0$ from Lemma 2.3(iv), moreover 3 is a primitive fifth root of unity in GF(11). Then we have $(w)f_1b_1f_1 = 3w$, $(v')fb_1f = 3v'$ and $(w')ff_1b_1f_1 = 3w'$. It fol-

lows that b_1 , $f_1b_1f_1$, fb_1f and $ff_1b_1f_1f$ are elements of L_1 , which satisfies $\overline{L}_1 = A^{\{1,2,3,5,6\}}$. Hence by the same argument as the proof in Case (ii), we may assume $\langle v \rangle \bigoplus \langle w' \rangle = U_1$ and $\langle w \rangle \bigoplus \langle v' \rangle = U_2$. Then we have $G_{U_1} = G_{U_2} = L$. Set $(w)b_1 = \alpha_1'w + \beta_1'v'$, $(v')b_1 = \alpha_2'w + \beta_2'v'$, and $(w')b_1 = \alpha_3'v + \beta_3'w'$, where α_1' , β_1' , α_2' , β_2' , α_3' , $\beta_3' \in GF(11)$. If $\beta_1' = 0$, then $\langle b_1 \rangle$ fixes W. This is a contradiction. Hence we get $\beta_1' \neq 0$. If $\beta_3' = 0$, then it follows that $4v = (v)b_1^{-1} \in \langle w' \rangle$, which is a contradiction. Hence we also get $\beta_3' \neq 0$. Since $\overline{p} \, \overline{b}_1 = (15)(24)$, we have $pb_1 \in Cl_G(q)$, which shows that $(pb_1)^2 = z$. Therefore we have $(v)(pb_1)^2 = -v$. On the other hand it follows that $(v)pb_1 = 3\lambda v + \mu(\alpha_1'w + \beta_1'v')$, $(w)pb_1 = 3\nu v + \eta(\alpha_1'w + \beta_1'v')$ and $(v')pb_1 = -\lambda(\alpha_2'w + \beta_2'v') - \mu(\alpha_3'v + \beta_3'w')$. These yield $(v)(pb_1)^2 = \{3\lambda v + \mu(\alpha_1'w + \beta_1'v')\}(pb_1) = (-2\lambda^2 + 3\mu\nu\alpha_1' - \mu^2\beta_1'\alpha_3')v + \mu(3\lambda\alpha_1' + \eta\alpha_1'^2 - \lambda\beta_1'\alpha_2')w + (3\lambda\beta_1' + \mu\eta\alpha_1'\beta_1' - \lambda\mu\beta_1'\beta_2')v' + (-\mu^2\beta_1'\beta_3')w'$. Therefore $-\mu^2\beta_1'\beta_3' = 0$, which is in contradiction to $\beta_1' \neq 0$, $\beta_3' \neq 0$ and $\mu \neq 0$. Thus we get $b_1 \notin M_3$, which shows that Case (iii) also does not occur. Hence we have $|G_p| \neq 10$.

We have concluded that $|G_D|=2$ and $G_D=\langle z \rangle$. From our assumption, $W \cap W^g = D$ is a 1-space. Therefore we get D, $D^{g^{-1}} \subset W$. Since $G_D=\langle z \rangle$ holds, we have also $G_{(D^{g^{-1}})}=\langle z \rangle$. Thus D, $D^{g^{-1}} \in \Delta_2(W)$ holds, and hence it follows that $D^{g-1}=D^x$ for some element $x \in T$. Therefore we have $D^{xg}=D$, which implies $xg \in G_D = \langle z \rangle$. Hence $g \in T$ holds. Thus we get $W^g = W$, a contradiction. The lemma is proved.

PROPOSITION 3. \mathscr{G}_{3}^{*} is a spread in V.

PROOF OF PROPOSITION 3.

Suppose that $W_1 \in \mathscr{G}_1$ and $W_2 \in \mathscr{G}_{23}$ hold, and that $W_1 \cap W_2 = D$ is a 1-space of V. Since $W_1 \in \mathscr{G}_1$ holds, we have $|G_D| = 6$. On the other hand since $W_2 \in \mathscr{G}_{23}$ holds, we have $|G_D| = 4$ if $D \in \Delta_1(W_2)$ and we have $|G_D| = 2$ if $D \in \Delta_2(W_2)$. This is a contradiction. Therefore $\mathscr{G}_1 \cup \mathscr{G}_{23}$ is a partial spread in V. If $W_3 \in \mathscr{G}_3$ holds and D is a 1-space of W_3 , then $|G_D| = 10$ holds. Hence similarly $\mathscr{G}_3 \cup \mathscr{G}_{23}$ is a partial spread is V. Thus $\mathscr{G}_3^* = \mathscr{G}_1 \cup \mathscr{G}_{23} \cup \mathscr{G}_3$ is a spread in V. The proposition is proved.

PROOF OF THEOREM C.

From Proposition 1, Proposition 2 and Proposition 3, there are exactly three isomorphism classes of planes II with kernel GF(11) on which G acts. From our assumption, G is a normal subgroup of the linear translation complement C of II. Let D be the kernel of II. We put $\overline{C} = C/Z$ (G), $\overline{H} = HZ(G)/Z(G)$ and $\overline{x} = xZ(G)$ for a subgroup H and an element x of C. Then we have $\overline{G} = S_6$ and $\overline{G} \leq \overline{C}$. Let x be any element of C and \mathcal{G} be any element of $\{\mathcal{G}_1^*, \mathcal{G}_2^*, \mathcal{G}_3^*\}$. Since $\{W^x \mid W \in \mathcal{G}\} = \mathcal{G}$ holds, we have $W^{x} \in \mathscr{G}_{1}$ for each $W \in \mathscr{G}_{1}$, which implies $C_{V}(d^{x}) = C_{V}(d)^{x} \in \mathscr{G}_{1}$. Consequently it follows that $d^{x} \in Cl_{G}(d)$. Therefore $(\overline{x})^{-1}\overline{dx}$ is conjugate to \overline{d} in \overline{G} . Hence \overline{x} induces an inner automorphism of $\overline{G} \cong S_{6}$ by conjugation. Thus $\overline{x}\overline{y}^{-1}$ centralizes \overline{G} for some element $y \in G$. Hence we have $[xy^{-1}, G] \subset Z(G)$. When we put $h = xy^{-1}$, we get $h^{-1}gh = g$ or $h^{-1}gh = gz$ for each element $g \in G$. Hence it is easy to see that $C_{V}(d)^{h} = C_{V}(d^{h})$ and that $C_{V}(d^{h})$ equal to $C_{V}(d)$ or $C_{V}(dz)$. However since it can be shown that $C_{V}(dz) \notin \mathscr{G}_{1}$, it follows that $C_{V}(d)^{h} = C_{V}(d)$ and that $h^{-1}dh = d$. Similarly we have $h^{-1}d'h = d'$ for every element $d' \in Cl_{G}(d)$. Hence h centralizes K.

Set $W = C_v(d) = \langle v \rangle \oplus \langle w \rangle$ and $W' = C_v(d') = \langle v' \rangle \oplus \langle w' \rangle$. Then we have $V = W \oplus W'$. If follows that $h \in C_{GL(W)}(N_K(\langle d \rangle))$ and $C_{GL(W)}(N_K(\langle d \rangle)) = \{\alpha E \mid \alpha \in GF(11)^*\}$. Hence there is an element α in GF(11) such that $(u)h = \alpha u$ for each element $u \in W$. Similarly there is an element β in GF(11) such that $(u')h = \beta u'$ for each element $u' \in W'$. On the other hand there is an element c' in K such that $(v)c' = \lambda v + \mu w + vv' + \eta w'$, where $\lambda, \mu, \nu, \eta \in GF(11)$ and $(\nu, \eta) \neq (0, 0)$. Then it follows that $(v)c'h = \lambda \alpha v + \mu \alpha w + v\beta v' + \eta \beta w'$ and $(v)hc' = \alpha \lambda v + \alpha \mu w + \alpha vv' + \alpha \eta w'$. Since c'h = hc' holds, we get $\alpha = \beta$, which implies $h \in D$. Hence we get $x \in DG$. Thus C = DG holds. Theorem C is proved.

References

- [1] L. DORNHOFF, Group Representation Theory, Part A, Dekker: New York 1972.
- [2] D. R. HUGHES and F. C. PIPER, Projective Planes, Springer-Verlag: New York, Heiderberg, Berlin, 1970.
- [3] I. M. ISAACS, Charcter Theory of Finite Groups, Academic Press: New York, San francisc, London, 1976.
- [4] G. MASON, Some tanslation planes of order 7^2 which admit SL₂(9), Geom. Dedicata 17 (1985), 297-305.
- [5] T.G. OSTROM, Lectures on finite translation planes, Confer. Sem. Mat. Univ. Bari No. 191 (1983), 1-29.
- [6] H. J. SCHAEFFER, Translationsebenen, auf denen die Gruppe SL(2, pⁿ) operiert, Diplomarbeit Tübingen.
- [7] I. D. SUPRENKO and A. E. ZALESSKII, Classification of finite irreducible linear groups of degree 4 on fields of charactristic p>5, Inst. Mat. Akad. Nauk, BSSR Preprint No. B (1976).
- [8] M. WALKER, On translation planes and their collineation groups, Ph. D. Thesis, University of London, (1973).
- [9] M. WALKER, A characterization of some translation planes, Abh. Math. Sem. Hamb. 49 (197), 216-233.

Department of Mathematics Faculty of Science and Technology Kinki University Higashi-Osaka, Osaka 577, Japan.