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Solvability of convolution equations in spaces of
generalized distributions with restricted growth
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L. Ehrenpreis has established necessary and sufficient conditions
on the Fourier transform of a distribution S& & (R") in order that the
convolution equation

(0.1) S*xu=v

has a solution #€2'(R"), for every vE &'(R"), or more briefly, in order
that ‘

(0.2) S+*2'(R")D2'(R").

He proved that, for a distribution S€ &’(R"), (0.2) is valid if and only if
there are positive constants Ai,A: and As such that for every £ER”
there exists an P& R”" satisfying the conditions

0.3) |&€—7|<Aldog(2+|€l) and |S(n)|=(Ax+|E&).

In this case S is called invertible.

Later ([1], [2], [4] [5], [8] [11], [13], [14]), other versions of the
invertibility conditions (0.3) were used in order to prove the existence of
solutions of convolution equations in various spaces of distributions and
generalized distributions.

In this paper we study convolution equations in the spaces of general-
ized distributions of G. Bjorck with restricted growth. Specifically, we
construct a space Fum,» of generalized distributions “growing” no faster
than e"® for some a>0, where M is a function defined similarly to
those used in the definition of the spaces Wi in [7]. We then characterize
the convolution operators S in #wme for which S*# o' DH mu’;these
operators are called (M,w)-invertible.

In the particular case when w(€)=log(1+|&l), #m. is a space of dis-
tribution and our result coincides with that of S. Abdullah [2].

§1. Preliminaries

We use the notation and the basic properties of generalized functions

given in [3]
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We assume that the function w is defined by w(€)=n(|€]), EER",
where % is a continuous, increasing function on [0,00) such that

(@) & is concave and #(0)=0,
° h(¢)
() h(t)=a+blog(1+1t), t>0, for some real a and b>0.

Given a compact set K in R", let 9 ,(K) be the vector space of all
complex-valued C*-functions ¢ with supp ¢CK and such that, for every
A>0,

lolli= flp(ele@ds < oo,

where ¢ is the Fourier transform of ¢ and the integral is over R”.
Equipped with the topology deifined by the seminorms o—lloli, A>0,
7 o(K) is a Fréchet space. A function ¢ is in 2 4(K) if and only if for
every A>0 and every &>0,

sup (;( £)|ere-Hm=elrl £ oo
te b

where {=&+iy and H is the support function of K. This result is refer-
red to as the Paley-Wiener Theorem for functions in 2. The family of
seminorms {¢—|¢li:A>0} on @ 4(K) is equivalent to the family of
seminorms

{¢g— |||¢|I|A=§gg|é(?)le“"“"”‘”)"”' : A>0).

We denote by 2 o= 2 ,(R") the (strict) inductive limit of the spaces
7 o(K;), where K;=B(0,7), j=1,2,3,..., and B(0,7)={xER": |x|<7}.

The dual 2 . of @ . is the space of generalized distributions on R”.
If u2. and K is a compact set in R”, then there is a A>0 and a con-
stant C such that

lu(@)| < Cllel:, for every ¢€24.(K).

7, is provided with the weak topology. We also denote by & the
vector space of all functions ¢ such that ¢yE€ 2, for every ¥E7 .
The convolution of #u€2 . and ¢€@, is defined by (u*@)(x)=

u(7x9), where ¢(y)=¢(—v) and e(y)=¢(y—x). It is a function in &,
as a function of xER".

The “growth” of the generalized functions to be introduced in § 2 will
be determined by a function M which we define similarly as in [71:

Let x be a continuous, increasing function on [0,00) such that £(0)=0
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and ltifrl#(t)=oo
We define
F(s)= f "u(t)dt,s >0,

Then F is a continuous, increasing, convex function on [0,90) such that

F(0)=0 and 11m (s)

Two functions F and G defined as above by means of ¢ and v, respec-
tively, are said to be dual in the sense of Young if and only if # and v are
mutual inverses, i.e. v[u(t)]=¢t and g[v(s)]=s. For example, if p>1 and
1/p+1/g=1, then the functions F(s)=s’/p and G(¢)=t%/q are dual in the
sense of Young.

Throughout this paper F and G will be given functions defined by
means of ¢ and v, respectively, which are dual in the sense of Young.

For x,y&eR", we set

(1.1)  M(x)=F(|x]) and N(y)=G(|y)).
Then M and N have the following properties (see [7]):

(1.2) M@)+My)<M(x+y),

(1.3) M(x+y)<MQ2x)+MQ2y)

(1.4)  yM(x)<M(rx)

(1.5)  |xly|<Mx)+N(y) (Young’s inequality)
(1.6)  |xllyl—M(ax)<N(a™'y)

where x,yER"” and y=1 and a>0.

§ 2. The spaces ¥u,o and Fiu,o

Let M,N and w be the functions defined in § 1. We denote by # u,
the vector space of all complex-valued C”-functions ¢ on R” whose Four-
ier transforms ¢ are entire functions such that for every £>0 and every
A>0 there is a constant C with

(2.1)  le(O]<Ce @ N r=g4ipe C.
We define a topology in % u,« by means of the seminorms
(2.2) ||¢|lm=ggglé(@)le‘w“)“”‘“”,sﬁ >0,6=E+iy

Then #u,. becomes a Fréchet space.
By definition of N we have
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2.3  limE) o
- |7
for every €>0. Hence, for every compact set K in R" and every
€ >0, there is a constant C¢x such that

lelei<Cekllells, o€ 2u(K),

for every A>0. It follows that 24 C #u,» and the injection Zu— Fu,o is
continuous. Also, it is easy to show that 2 is dense in #y,». Thus the
dual # u..’ is a space of generalized distributions and each #E Hu,o is
determined by it’s values on Z .

The following theorem characterizes the generalized distributions in
Huo as those “growing” no faster than e”“®, for some a>0.

THEOREM 1. For a generalized distribution u€2." the following
conditions are equivalent :

(ml) uEﬁfM,w'

(m2) There exists a constant a>0 such that the set of gemeralized distribu-
tions {thnu)e ™ . he R"} is bounded in 9. .

(ms) There exists a constant a>0 such that (u*)(x)=0(eM*) gs |x|> 0
for every o€ .

(m4) There arve positive comstants a*,C, and A such that
lu(@)| < Ce™ *Plels, for every ¢€EZ o with supp ¢ B(0,|hl).

ProOF. (mi1)=(m:). Given uE ¥ u.’, there exist positive constants
A,e, and A such that

2.49)  lu(p)l<A
for every ¢& % u,» such that
(2.5)  lp(Qlgete@Ven r=gtipe ™.

If Y2, and supp ¥ B(0,7), then, given A, there exists a constant A
such that

(2.6) h;(g)lgAle—xw(e)wlnl, §=§+i77€ C",

by the Paley-Wiener theorem. We now apply (1.6) with a>1/e, (2.3),
and (2.6). We then obtain

|(@)(§)|€_M(‘”’)= | V;( £)emi<mE>| g Man

éAle—/lw(e)wln|+|hl|n|—M(ah)
SAAQ—Aw(eHrIvHN(a-“?)

SAfe O, (=g tipeCT,
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where A,* is another constant. Hence, in view of (2.4) and (2.5), we
have

|tn) e ™ M P ()| =|u(r_np)e P < AAF,

which shows that the set {r.u)e ™" : h& R"} is weakly bounded, and thus
proves (mo).
(mz)e(ms) : For €9, we have

(u*(x)=u(r-x0)=(rx2)(9)
2.7 ur@)(x)le ™ =|(r_xu)e ™ (p)|.

Since M(—x)=M(x), the equivalence of (mz) and (ms) follows from (2.7).
(mz)=(ms): By (m2), {(zaer)e™™“? : b€ R"} is a bounded set of continuous
linear forms on the Fréchet space @ »(K), where K=B(0,1). Since every
bounded set of continuous linear forms on a barreled space is
equicontinuous, there are positive constants C: and A such that

((zaue)e ™ ()| < Cillel:, hER?,
for all o€ 94(K). But |r»oli=|¢l:, and so
(2.8) lu(@)| < Cre™ )| ¢l

for every ¢&€ @, with support in a closed unit ball contained in
B(0,|7]+1).

We now apply a partition of unity in the form given in [9]. Let I, be
the set of all points c=(c1,cz,C3......... .cn)E B(0,|4]), whose coordinates c;

are in the set {% k=0,+1+2...... } Since B(0,|4|) is contained in an

n-cube with edge of length 2|4|, the number m of all points in I, does not
exceed (4|h|n+1)"<@n+1)"(1+|A1|").

Suppose Ir,={cV=0,c?,c?,.......,c'™}. We consider the compact sets K;=
B(cY 7), where 1/2<7<1, and the open sets Q;=B(c"?, 1), j=12,......,m.
We have

B(0,1)c UK, U0,C BOJA+1).

If ¢ is a function in @,(Q:) such that 0<¢¥<1 and ¥ =1 in a neighbor-
hood of K, we set ¥;=r.»¥, 1=12,...... m. Then the functions ¢1=t
and ¢,=¢;,(1—v)......(1—¥;_1), j=2,...... m, form a partititon of unity in
&, subordinate to the covering {Q;:7=12,...... ,m} of B(0,lA]), i.e.

€ 7 (Q;) and g‘,lquél, with equality in a neighborhood of
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B(0,|Al).

We observe that there is an integer ¢ independent of |4| such that the
number of factors in the definition of ¢; can be reduced to g. In fact, we
may -assume that ¢ does not exceed the number (8n#+1)" of all poins ¢V
in an #n-cube of side length 4. Since the functions ¥, are translations of
¥, there is a constant C; such that

2.9 ledhi<CQ+¢l#), 7=1,......, m.
We have derived this estimate by repeated application of the inequality
locrxcalls < xallallealls, for x1,%2.€ Fo.

If o€ 2. and suppe B(0,|4]), then go=ﬁ‘.l¢q0j and the support of each
function @@, is in a unit ball contained in B(0,|%|). Applying (2.8) and
(2.9), we obtain
(2.10) |u(¢)|£J§|u(¢¢j)|£CleM(ah)j§1"¢"l"¢j”l

< CCGUn+D"A+|AMA+¢l) e P ol
But

Ilhllm |h|ne—M(eh)=0

for every >0, whence
(2.11) (1_+_lhln)eM(ah)g(l+|h|n)eM((a+e)h)—M(eh)£ CseM((a+e)h)’

where C; is another constant.

Combining the estimates (2.10) and (2.11), we obtain (m.) with C=
C\C.Cs(dn+ D)1+ ¥)+*) and a*=a+e.

(m.)=(m,): Since the families of seminorms {¢—|¢[.: A>0} and
{e—lolli: A>0} are equivalent on @ »(K), where K=B(0,/A|), (m.) implies
that

lu(e)l<C*e” gl

for some positive constants C*A* and all functions ¢€ 9.(K). Note that
the support function of K is H(7)=|kll7|. But, for p€ g .(K),

1 ~ Axw(8)—|hlnln] —
|gl\rqr'.}alqo(?ﬂe 0

and so there exists H=6&+ & C” such that

ll ol =] g&( &) et eEo=Ihlinol=Inol
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It follows that

|u(¢)|e—M(ah)+|hllfiol < C*ek*w(éo)—lﬂollé( §0)|

whence

(2 . 12) Iu(gp)'ema-lno)g C*ezl*w(e'o)—lnol“,;( Co)l,

because of (1.6). If we choose 0<e<1/a, we obtain from (2.12),
[u(@)| < C*et* @ =N o £ < C*| @l ers

for all p€24(K). If we now apply the Hahn-Banach Theorem, we can
extend # to a continuous linear form on #u,», which proves (m;). The
proof of the theorem is now complete.

REMARK 1: For € %y and ¢E Hu,e, the convolution wu=* g

defined by u*¢(x)=u(z:¢) is also a function in &, (see the proof of Th.
1.7.3 in [3]) which satisfies condition (ms).

REMARK 2: If w(&)=log(1+]€|), then %m,’ coincides with the space
Hu' studied in [2] and [12]. %’ consists of distributions which are
derivatives of finite order of continuous functions on R” growing no faster
than ", for some a>0.

We now define a subspace of #w,.” which will serve as the space of
convolution operators for #u... Let #u» be the vector space of all
entire functions % such that, for some A>0 and every >0,

suglh( é«)le—lw(é)—N(em < oo
tect

For each #€ #u,w, the linear form u on #u,.. defined by

(2.13)  ulg)=(2n)" [M(E)o(— &)

is continuous and therefore in #y,’. We denote by O/ (Fu,o"; #u.o’) the
vector space of all & ¥y, which admit a representation (2.13) with
some function A& #uw,. Moreover, if u is of the form (2.13), we say that
h is the Fourier transform # of . In that case (2.13) is a version of the
Parseval formula.

If u€0(Fuw ; ¥ ue) and ¢E .0, then
(s @) =u(t:p)=(2n) " (&) §(E) et .

Since #E€ #wum,0, the product #¢ satisfies condition (2.1), and so
U*QE ¥u,0. Furthermore, if Y& %u,0 then
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(e )(#)= [(ur )) Y () dx =)™ (&) (&) H(—§)de

whence we have
(2.14) wrp=ud
and

(2.15)  (ux@)(¥)=ulp*¥).

Suppose that for some A >0 and every €>0 there is a constant Cei, such
that |7 (&)< Cepe®® @V =E+ine ",

Applying (2.14), we find that for every A>0 and every &>0,
“u*gO"E,ASCe,lo“¢"el2,lo+&, PEFu,0.

which shows that the mapping ¢— u*¢ from Hu, into Fwm,» is continu-
ous.
The convolution of #€ 0/ FHu,e ; Fue) With vEX 4" can now be

defined by (u*v)(@)=(v*u)(@)=v(u*p) for all pE Hi0.

If both « and v are in O/ FHu.o ; Fuo), then uxv is in O (Fuw' ; Fuw)
and satisfies (2.14). Also, if #,» and w are in #u,» and at least two of
them are in O (Fuw : Fuo), then (u*xv)*w=wu*(v+*w). The proofs of
these last two statements are easy and we omit them.

§ 3. Solvability of convolution equations in % y,o’

We consider convolution equations of the form S * u=v where
SE0N Fuw } Fuw) and u,0EFu,o’. We say that S has a fundamental
solution in ¥u. if there is an EE ¥ u,o’ such that S*E=4, where ¢ is the
Dirac measure. Our aim is to characterize those convolution operators S
for which S* #u,0 2 F u,0'.

DEFINITION : A generalized distribution SE0./(F .0’ ; # m,0’) is
said to be (M,w)-invertible if there are positive constants A,C, and ¢ such
that for every £EER” there is a z€ C" with

(3.1) |E—2<AG ' [1+w(&)] and |S(2)|>Ce (€);
where G™! is the inverse of the function G in (1.1).

THEOREM 2. For a gemeralized distribution SE O (Fu.o’ ; ¥ ') the
following conditions ave equivalent :
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(Sx) S*JCZ/M,(»,2 ‘%/M,w,
(s2) S has a fundamental solution in ¥ u.o .
(ss) S is (M,w)-invertible.

PROOF. Since the implication (s;)=(sz2) is trivial, it suffices to show
that (s2)=(s3) and (s3)=(s1).
(s2)=(s3): Suppose that EE ¥ u,.” is a fundamental solution for S, i.e.
S*E=4¢. Then for every ¢& ¥ u,» we have

p=op*(S*E)=E=*(S*¢) and so
3.2)  @x)=E[r(S*¢)], xER"

Since € #%u,o’, there are positive constants Co¢, and A such that

(3.3)  |E[zd(S* @< Collta(S* Dlecss, 9€E Hin’
But, for every Y€ %u,o,
(3.4) ||Tx¢f||2e,x=§élgn|!ﬁ(é’)e_i(x'g)lem“)_”(ze”)

< sup|§(£)| @+ xlml-2nten < guxie| g

teCn '

because of (1.4) and (1.6). We set a=1/e and apply (3.4) to the right-
hand side of (3.3). Then from (3.2) and (3.3) we obtain
(35 suplelo)le™ < CilS el $E7ina
on account of the equality [|@]lc..=/¢]e

Since S€ 0/ (Fu,o' ; #u,o’) there also exist positive constants C, and A
such that

(3.6) SO Ciehre @D r=g4 et
We prove that the (M,w)-invertibility condition (3.1) is valid if we choose
3.7  A>2A+A+2)/e and ¢c>24+1

To this end we use a construction of a sequence in @, due to Ehrenpreis
[6] We choose ¥< 9w such that ¥>0, suppyC B(0,1) and

(3.8) fe‘M‘“"’w(x)dx———l.
Then

3.9)  #(0)= f W) dx > / e M@ () dr=1
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Furthermore, there is an » >0 such that
(3.10) |#(Q)|<e @@+ for F=£4ipE C" with |¢|=r

where A > A+ A X X
Next, for £k=12,...... we set  ¥x(8)=[¢(&/R)]*

Then & & o, supp 1o B(O0D) and [a(x)dx=(0)=[F(O)]*>1, in
view of (3.9). It follows that

(3.11)  supe|yu(x)|=(1/V2) e yp(x)x >d

with d=e7?/V,, where F is the function in (1.1) and V, is the volume
of B(0,1).

Suppose now that S does not satisfy condition (3.1) with the constants
A and c¢ chosen as in (3.7). Then we can find &ER™, j=12,...... , such
that |&|— o and

(3.12) |S(&)|<e ¥ when (€ C” and |E—&|<AG 1+ w(&))]
Let % be the integral part of (A/»)G 1+ w(&;)], and set
e O)=t(E—&), tEC™
Then ¢;€ 9w, supp ¢;CB(0,1) and
(3.13)  0<d< supe™|gi(x)|< Col S* e,
by (3.5) and (3.11).

We demonstrate that [S*¢;|.—0 as j— o and thus arrive at a con-
tradiction to (3.13). We have

||S*¢j“s,/1£0'j+ 7j, Where
o= sup |S(E)FAS)|erwo-ree
le—&l<kr

and 7= sup |S(&)g;(&)|et@@-NeEn
[~ &il=kr

We show that 0,—~0 and 7;—0 as j— co.
By (3.12) and the subadditivity of w we have
(3'14) O.jge—Cw(ef) sup |¢;(§)|em(e)—msn)
[&—&l<kr

< p-(c=DwE) s Aw(8)=N(en)
e sup| ¥ ($le

But, by definition of w (see also [3], Corollary 1.2.8) and G,
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€7 w(£)—0 and |7 GH(£)—~0 as -0,
Hence, given any constant R, we have
(3.15) Rk<w(&;)<|&l, for suffiiciently large j.
In particular,
(3.16)  w(&)<w(E)), if |€|<kr and j is sufficiently large.
Note also that

()= [ ga(x)dnl < [ o)l di,
and so, if we set a=1/e and use (1.6), (3.8) and (3.15), we obtain
(3.17) (Dl < [pla)le ey

= ﬁ a(x)le™ W dx< e ﬁ ¥u() | de= " f ¥ (x)dx)*
< e(k+l)F(a)(f¢(X)Q_M(ax)dx)k < C_:ew(e,)

for sufficiently large j, where C is a constant independent of j. If we now
apply (3.16) and (3.17) to the right-hand side of (3.14) we conclude that
for sufficiently large j

0,< Ce(e-24-Dw(e)
which shows that g, 0 as j— o, by the choice of ¢ in (3.7).
Next, by (3.6), (1.3) and the subadditivity of w, we have

N
5<C, sup |@;(&)|etinw@rtnenz-Nien
[E—&il=kr

< Cle(nh)w(ej) sug |;/;(_§>|ke(/lﬂl)w(é)—N(sﬂ/z)
g=k  \ K

But for |¢|= 47,
h&( ElR)|* < g tewtr+2i]

where A;>A+A;, on account of (3.10) and the subadditivity of w. Hence,
for |¢|=Er,

(3 ) 18) Tjg Cle(/\+/11)w($1)|s|u1k) e2[77|—N(€77/2)
n=kr

Note that for #=(2/e)v~'(4/e), the function e**~¢*? is decreasing, which
implies that
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su ezlﬂl—N(EU/Z) — eZkr— G(err/2)

|9|=kr

for sufficiently large j. Furthermore, by (3.15), (1.4) and the choice of A
in (3.7) we have

2kr <w(&;) and ekr/2>(A+A+2)G 1+ w(€)]=
G HA+A+2)[1+ w(&)]}

for sufficiently large ;. It follows that

(3.19) |S|u Q2TI=N(En2) < O, o= (thitDw (&)
nl=kr

where C; is a constant. Applying this to (3.18), we obtain
< Ch Cre™ @&

i.e. ;—0 as j~ . We have thus proven that S is (M,w)-invertible.

(s3)=(sl):If S is (M,w)-invertible, then so is S,

We therefore assume that S satisfies condition (3.1). We prove that,
given &1,41 >0, there exist €;,4:>0 and a constant B such that

V .
(3.20)  loller,u <BIS*@lesie, PEH m,0
Then, it will follow from the Hahn-Banach Theorem that for any
VE Fu,o, the linear form g‘*wv(@ can be extended to a continuous lin-
ear form « on #%wm,» such that ‘
\
(S*u)@)=u(S*9)=v(p), PEFu,w

which shows that # is a solution in #u,«’ of the equation S*u=uv.

If & %u,» then the function ¢=§*¢ is also in #um,» and ;5=§(5 by
(2.14). We apply Hormander’s Lemma ([10], Lemma 2.1) to obtain

(3.21) |¢(§)|£itic’g?m'w(z)'ﬁg%plS(—Z)I

(8up,1S=2))

where o=|7|+AG ' [1+ w(&)] and ¢{=&+ineC™.
But, by condition (3.1) for S, we have

(322) lgSAUE |§(—Z)|2 ‘g(_z)|2ce—cw($)

zeC"

)

sup
[¢— 2l < AG 1+ w(8)]

Furthermore, for every positive € and 4,
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(3.23) |9 (D<e Oy, (=E+inEC™,
Applying the inequalities

—w(x+8)<—w(é)+w(x) and N(ey+enp)<NQey)+ N(2¢ep),
we obtain from (3.23),

Sup '¢(Z)l<”1//“€Ae—Aw(EHN(Ze']) sup eflw(x)+N(2€y)
le~zl< <yl S40

But for large values of |£| and for e<(16A4)7!, we have
(3.24) Aw(x)<N(ep)+w(é), if |x|<4p

and

(3.25) N(Q2ey)<N(16ep)+w(&)+1, if |y|<4p

Hence, there exists a constant B; such that

(3.26) Sup |9 (2)| < Bi|| ] e ae® 0@ @V - 5 e O
sup,_

Next, for some A*>0 and every >0 there exists a constant B: such that
|S(=I<Boet@®Ven r=g4ipeC™.

Similarly, as in (3.24), for large values of |&| and |7|, and for e<(16A4)7},
we have

(3.27) *w(x)<N(ep)+w(é), if |x|<4p
Hence

Sup |S( Z)|<B e/l*w(x)+N(2ey) sup eA*w(x)+N(25y)
l¢—2l<4p |x],ly[<*

and so, by (3.24) and (3.25), we can find a constant B; such that

Igsg‘p ls( Z)|<B e(A*+2)w(E)+N(19€r)), z, é’ Cn

combining (3.21), (3.22), (3.26) and (3.27), we find
|g(§)|ei-Hr2emtete-NSen < By,

where B=B1B;C%. Thus, given 0<&<38/16Aand A, >0, we can choose
0<e:<e1/38 and A=A +A*+2¢c+4 to obtain

|gllen < Bl¥les o< Bl S* gl ez, .

Note that the requirement that &,<(0, 38/16A] constitutes no restriction of
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generalty, because it suffices to prove (3.20) only for small values of &i.
The proof of is now complete.

[1]
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