An F. and M. Riesz theorem on locally compact transformation groups

Hiroshi YAMAGUCHI Dedicated to Professor TSUYOSHI ANDO on his sixtieth birthday (Received May 2, 1991)

§1. Introduction.

Helson and Lowdenslager extended the classical F. and M. Riesz theorem as follows.

THEOREM A (cf. [12, 8.2.3. Theorem]). Let G be a compact abelian group with ordered dual, i. e., there exsits a semigroup P in \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and (ii) $P \cap (-P) = \{0\}$. Let μ be a measure in M(G)such that $\hat{\mu}(\gamma) = 0$ for $\gamma < 0$. Then

(I) $\hat{\mu}_a(\gamma) = \hat{\mu}_s(\gamma) = 0$ for $\gamma < 0$; (II) $\hat{\mu}_s(0) = 0$.

Theorem A (I) was extended, by the author ([13]) and Hewitt-Koshi -Takahashi ([7]), to LCA groups as follows.

THEOREM B (cf. [13, Corollary], [7, Theorem D]). Let G be a LCA group and P a semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let μ be a measure in $M_p(G)$, where $M_p(G) = \{\nu \in M(G) : \hat{\nu} = 0 \text{ on } P^c\}$. Then μ_a and μ_s also belong to $M_p(G)$.

In Theorem B we can not expect " $\hat{\mu}_s(0)=0$ " in general. As pointed out in the proof of [13, Corollary], Theorem B follows from the following theorem.

THEOREM C (cf. [13, Main Theorem]). Let G be a LCA group and P a closed semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let μ be a measure in $M_{pc}(G)$. Then μ_a and μ_s also belong to $M_{pc}(G)$.

On the other hand, Forelli obtained the following theorem ([5]).

THEOREM D (cf. [5, Theorem 5]). Let (\mathbf{R}, X) be a (topological) transformation group, in which the reals \mathbf{R} acts on a locally compact Hausdorff space X. Let σ be a positive Radon measure on X that is quasi -invariant. Let $\mu \in M(X)$, and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to σ . Suppose μ is an analytic measure, i. e., the spectrum of μ is in $[0, \infty)$. Then μ_a and μ_s are also analytic measures.

We need a comment on Theorem D. Analytic measures treated in [5, Theorem 5] are bounded complex Baire measures. But every bounded complex Baire measures on a locally compact Hausdorff space is uniquely extended to a bounded complex, regular Borel measure. Thus Theorem D follows from [5, Theorem 5].

Moreover the author extended Theorem A (I) to a compact transformation group as follows.

THEOREM E (cf. [15, Theorem 2.1]). Let (G, X) be a transformation group, in which a compact abelian group G acts on a locally compact Hausdorff space X. Let P be a semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let σ be a positive Radon measure on X that is quasi-invariant. Let μ be a measure in M(X), and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to σ . Suppose $sp(\mu) \subset P$. Then $sp(\mu_a)$ and $sp(\mu_s)$ are also contained in P.

In this paper, we shall extend Theorems D and E to a transformation group, in which a locally compact abelian (LCA) group acts on a locally compact Hausdorff space. In section 2, we state definitions and our theorems. In section 3, we give some results on a compact transformation group, and we give the proofs of our theorems in section 4. We also show that Theorem C follows from our theorems in section 4 (Remark 4. 2).

§ 2. Notations and results.

Let (G, X) be a (topological) transformation group, in which G is a LCA group and X is a locally compact Hausdorff space. Suppose that the action of G on X is given by $(g, x) \rightarrow g \cdot x$, where $g \in G$ and $x \in X$. Let $C_0(X)$ and $C_c(X)$ be the Banach space of continuous functions on X which vanish at infinity and the space of continuous functions on X with compact supports respectively. Let M(X) be the Banach space of bounded regular Borel measures on X with the total variation norm. Let $M^+(X)$ be the set of nonnegative measures in M(X). For $\mu \in M(X)$ and $f \in L^1(|\mu|)$, we often write $\mu(f) = \int_X f(x) d\mu(x)$. Let X' be another locally compact Hausdorff space, and let $S: X \to X'$ be a continuous map. For $\mu \in M(X)$, let $S(\mu) \in M(X')$ be the continuous image of μ under S. We denote by $\mathscr{F}(X)$ the σ -algebra of Borel sets in X. $\mathscr{F}_0(X)$ stands for the

 σ -algebra of Baire sets in X. That is, $\mathscr{B}_0(X)$ is the σ -algebra generated by compact G_{δ} -sets in X. A (Borel) measure σ on X is called quasi -invariant if $|\sigma|(F)=0$ implies $|\sigma|(g \cdot F)=0$ for all $g \in G$.

Let \widehat{G} be the dual group of G. M(G) and $L^1(G)$ denote the measure algebra and the group algebra respectively. For $\lambda \in M(G)$, $\widehat{\lambda}$ denotes the Fourier-Stieltjes transform of λ , i. e., $\widehat{\lambda}(\gamma) = \int_G (-x, \gamma) d\lambda(x)$. m_G stands for the Haar measure of G. Let $M_a(G)$ be the set of measures in M(G)which are absolutely continuous with respect to m_G . Then by the Radon -Nikodym theorem we can identify $M_a(G)$ with $L^1(G)$. For a subset E of \widehat{G} , $M_E(G)$ denotes the space of measures in M(G) whose Fourier-stieltjes transforms vanish off E. E^- denotes the closure of E. A closed subset E of \widehat{G} is called a Riesz set if $M_E(G) \subset L^1(G)$. For a closed subgroup Hof G, H^{\perp} denotes the annihilator of H.

Let f be a Borel measurable function on X. Then

(2. 1) $(g, x) \rightarrow f(g \cdot x)$ is a Borel measurable function on $G \times X$. For $\lambda \in M(G)$ and $\mu \in M(X)$, we can define $\lambda * \mu \in M(X)$, by virtue of [4, (7.23) Lemma and (7.27) Theorem], as follows.

(2.2)
$$\lambda * \mu(f) = \int_X \int_G f(g \cdot x) d\lambda(g) d\mu(x) = \int_G \int_X f(g \cdot x) d\mu(x) d\lambda(g)$$

for $f \in C_0(X)$.

REMARK 2.1. (2.2) holds for all bounded Borel functions f on X. For ξ , $\lambda \in M(G)$ and $\mu \in M(X)$, the following hold.

(2.3) $\|\lambda * \mu\| \le \|\lambda\| \|\mu\|,$ (2.4) $\xi * (\lambda * \mu) = (\xi * \lambda) * \mu.$

For a closed subgroup H of G, let $J(\mu:H) = \{k \in L^1(H) : k * \mu = 0\}$. Set $J(\mu) = \{h \in L^1(G) : h * \mu = 0\}$ (= $J(\mu:G)$). Then, by (2.3) and (2.4), $J(\mu:H)$ and $J(\mu)$ are closed ideals in $L^1(H)$ and $L^1(G)$ respectively.

DEFINITION 2.1. For $\mu \in M(X)$, define the spectrum of μ by $\operatorname{sp}(\mu) = \bigcap_{h \in J(\mu)} \hat{h}^{-1}(0)$. For a closed subgroup H of G, we also define $\operatorname{sp}_{H}(\mu)$ by $\bigcap_{k \in J(\mu;H)} \hat{k}^{-1}(0)$.

For μ , $\nu \in M(X)$, it follows from (2.4) and the definition of spectrum that $sp(\mu+\nu) \subset sp(\mu) \cup sp(\nu)$ (cf. [5, Lemma 3]). Now we state our theorems.

THEOREM 2.1. Let (G, X) be a tmansformation group, in which G is

a LCA group and X is a locally compact Hausdorff space. Let P be a closed semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let σ be a positive Radon measure on X that is quasi-invariant. Let $\mu \in M(X)$, and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to σ . Suppose $sp(\mu) \subset P$. Then both $sp(\mu_a)$ and $sp(\mu_s)$ are also contained in P.

THEOREM 2.2. Let (G, X) and σ be as in Theorem 2.1. Let P be a proper closed semigroup in \widehat{G} such that $P \cup (-P) = \widehat{G}$, and suppose that $P \cap (-P)$ is open. Let $\mu \in M(X)$, and suppose that $sp(\mu) \subset P \setminus (-P)$. Then both $sp(\mu_a)$ and $sp(\mu_s)$ are also contained in $P \setminus (-P)$.

Before closing this section, we state several lemmas which we shall need later on. The following lemma is well-known.

LEMMA 2.1. For $f \in C_0(X)$ and $g \in G$, define $f_g \in C_0(X)$ by $f_g(x) = f(g \cdot x)$. Then $\lim_{g \to 0} ||f - f_g||_{\infty} = 0$.

LEMMA 2.2. Let $\mu \in M(X)$, and suppose that $k * \mu = 0$ for all $k \in L^1(G)$. Then $\mu = 0$.

PROOF. Suppose $\mu \neq 0$. Then there exists $f \in C_0(X)$ such that $\int_X f(x) d\mu(x) \neq 0$. For an open neighborhood V of 0 in G, let h_V be a non-negative function in $C_c(G)$ such that $\operatorname{supp}(h_V) \subset V$ and $||h_V||_1 = 1$. It follows from Lemma 2.1 that

(1) $\lim_{v} ||h_{v}*f-f||_{\infty} = 0,$

where $h_{v}*f(x) = \int_{G} f((-g)\cdot x)h_{v}(g)dm_{G}(g)$. Set $h_{v}^{*}(g) = h_{v}(-g)$. Then, by the hypothesis, we have

$$\int_{X} h_{v} * f(x) d\mu(x) = \int_{X} \int_{G} f((-g) \cdot x) h_{v}(g) dm_{c}(g) d\mu(x)$$
$$= \int_{X} f(x) d(h_{v}^{*} * \mu)(x)$$
$$= 0,$$

which together with (1) yields $\int_{X} f(x) d\mu(x) = 0$. This contradicts the choice of f, and the proof is complete.

LEMMA 2.3. Let $\lambda \in M(G)$ and $\mu \in M(X)$. Then $sp(\lambda * \mu) \subset \{\gamma \in \widehat{G} : \widehat{\lambda}(\gamma) \neq 0\}^{-}$.

PROOF. Suppose $\gamma_0 \notin \{\gamma \in \widehat{G} : \widehat{\lambda}(\gamma) \neq 0\}^-$. Let U be an open neighbor-

hood of γ_0 such that $U \cap \{\gamma \in \widehat{G} : \widehat{\lambda}(\gamma) \neq 0\}^- = \phi$. Let *h* be a function in $L^1(G)$ such that $\widehat{h}(\gamma_0) \neq 0$ and $\widehat{h} = 0$ on U^c . Then $h * \lambda = 0$, and so $h * (\lambda * \mu) = (h*\lambda)*\mu = 0$. Since $\widehat{h}(\gamma_0) \neq 0$, we have $\gamma_0 \notin \operatorname{sp}(\lambda*\mu)$. This completes the proof.

We shall use the following lemma frequently.

LEMMA 2.4 (cf. [12, 7.2.5. (a)]). Let G be a LCA group. Let $F \in L^1(G)$, and let I be a closed ideal in $L^1(G)$. Suppose that $\bigcap_{h \in I} \hat{h}^{-1}(0)$ is in the interior of $\hat{F}^{-1}(0)$. Then $F \in I$.

LEMMA 2.5. Suppose $G=H\oplus K$, where H and K are closed subgroups of G. Let E and F be closed subsets of \hat{H} and \hat{K} respectively. Let $\mu \in M(X)$, and suppose that $sp_H(\mu) \subset E$ and $sp_K(\mu) \subset F$. Then $sp(\mu) \subset E \times F$.

PROOF. For $x \in X$, $s \in H$ and $t \in K$, denote $(s, 0) \cdot x$ and $(0, t) \cdot x$ by $s \cdot x$ and $t \cdot x$ respectively. Suppose $(\gamma, \omega) \notin E \times F$. Then $\gamma \notin E$ or $\omega \notin F$. We may assume that $\gamma \notin E$. Then there exist $h \in L^1(H)$ and $k \in L^1(K)$ such that

(1) $\hat{h}(\gamma) \neq 0$,

(2) $\hat{k}(\omega) \neq 0$, and

(3) E is in the interior of $\hat{h}^{-1}(0)$.

By (3) and the hypothesis, $sp_H(\mu)$ is in the interior of $\hat{h}^{-1}(0)$. It follows from Lemma 2.4 that

(4)
$$h \in J(\mu:H).$$

Define $F \in L^1(G)$ by F(s, t) = h(s)k(t). For any $f \in C_0(X)$, we have

$$F*\mu(f) = \int_X \int_{H^{\oplus}K} f((s, t) \cdot x) F(s, t) dm_{H^{\oplus}K}(s, t) d\mu(x)$$

$$= \int_K \int_X \int_H f_t(s \cdot x) h(s) dm_H(s) d\mu(x) k(t) dm_K(t)$$

$$= \int_K \int_X f_t(x) d(h*\mu)(x) k(t) dm_K(t)$$

$$= k*(h*\mu)(f)$$

$$= 0, \qquad (by (4))$$

where $f_t(x) = f(t \cdot x)$ $(t \in K, x \in X)$. This shows that $F \in J(\mu)$. On the other hand, $\hat{F}(\gamma, \omega) = \hat{h}(\gamma) \hat{k}(\omega) \neq 0$. Hence $(\gamma, \omega) \notin \operatorname{sp}(\mu)$, and we have $\operatorname{sp}(\mu) \subset E \times F$. This completes the proof.

§ 3. Some results on compact transformation groups.

In this section, let (G, X) be a transformation group, in which G is a compact abelian group and X is a locally compact Hausdorff space. For $\gamma \in \hat{G}$ and $\mu \in M(X)$, we note that $\gamma \in \operatorname{sp}(\mu)$ if and only if $\gamma * \mu \neq 0$ (cf. [14, Remark 1.1 (II.1)]). Let $\pi: X \to X/G$ be the canonical map. For $x \in X$, we define a continuous map $B_x: G \to G \cdot x$ ($\subset X$) by $B_x(g) = g \cdot x$. Set $G_x = \{g \in G: g \cdot x = x\}$. Then G_x is a closed subgroup of G. We define a map $\tilde{B}_x: G/G_x \to G \cdot x$ by $\tilde{B}_x(g+G_x) = g \cdot x$. Then \tilde{B}_x is a homeomorphism.

DEFINITION 3.1. For $x \in X$, put $\dot{x} = \pi(x)$. Define $m_{\dot{x}} \in M^+(X)$ by $m_{\dot{x}} = B_x(m_G)$.

As noted in [14, Remark 1.2], $m_{\dot{x}}$ is well-defined because $B_y(m_G) = B_x(m_G)$ for every $y \in \pi^{-1}(\dot{x})$. We state two conditions (D. I) and (D. II).

(D. I) Let (G, X) be a transformation group, in which G is a metrizable compact abelian group and X is a locally compact Hausdorff space. For any $\mu \in M^+(X)$, put $\eta = \pi(\mu)$. Then there exists a family $\{\lambda_x\}_{x \in X/G}$ of measures in $M^+(X)$ with the following properties :

- (3.1) $\dot{x} \rightarrow \lambda_{\dot{x}}(f)$ is η -measurable for each bounded Baire function f on X,
- $(3.2) \qquad \|\lambda_x\|=1,$
- $(3.3) \qquad \operatorname{supp}(\lambda_x) \subset \pi^{-1}(\dot{x}),$

(3.4) $\mu(f) = \int_{X/G} \lambda_{\dot{x}}(f) d\eta(\dot{x})$ for each bounded Baire function f on X.

(D, II) Let (G, X) be as in (D. I). Let $\nu \in M^+(X/G)$. Suppose $\{\lambda_{\dot{x}}^1\}_{\dot{x} \in X/G}$ and $\{\lambda_{\dot{x}}^2\}_{\dot{x} \in X/G}$ are families of measures in M(X) with the following properties:

- (3.5) $\dot{x} \rightarrow \lambda_{\dot{x}}^{i}(f)$ is ν -integrable for each bounded Baire function f on X(i=1,2),
- (3.6) $\operatorname{supp}(\lambda_{\dot{x}}^{i}) \subset \pi^{-1}(\dot{x}) \ (i=1, 2),$
- (3.7) $\int_{X/G} \lambda_{\dot{x}}^{1}(f) d\nu(\dot{x}) = \int_{X/G} \lambda_{\dot{x}}^{2}(f) d\nu(\dot{x}) \text{ for each bounded Baire function} f \text{ on } X.$

Then $\lambda_{\dot{x}}^1 = \lambda_{\dot{x}}^2 \quad \nu$ -a.a. $\dot{x} \in X/G$.

Let $\mu \in M(X)$ and $\eta \in M^+(X/G)$. By an η -disintegration of μ , we mean a family $\{\lambda_{\dot{x}}\}_{\dot{x} \in X/G}$ of measures in M(X) satisfying (3. 1)' $\dot{x} \rightarrow \lambda_{\dot{x}}(f)$

is η -integrable for each bounded Baire function f on X and (3. 3)-(3. 4) in (D. I). If, in addition, $\eta = \pi(|\mu|)$ and $||\lambda_{\dot{x}}^1|| = 1$ for all $\dot{x} \in X/G$, then we call $\{\lambda_{\dot{x}}\}_{\dot{x} \in X/G}$ a canonical disintegration of μ . Thus condition (D. I) says that each $\mu \in M^+(X)$ has a canonical disintegration $\{\lambda_{\dot{x}}\}_{\dot{x} \in X/G}$ with $\lambda_{\dot{x}} \in M^+(X)$.

REMARK 3.1. Let (G, X) be a transformation group, in which G is a metrizable compact abelian group and X is a locally compact metric space. Then (G, X) satisfies conditions (D. I) and (D. II) (cf. [14, Remark 6. 1]).

LEMMA 3.1. Let (G, X) be a transformation group, in which G is a metrizable compact abelian group and X is a locally compact Hausdorff space. Suppose (G, X) satisfies conditions (D, I) and (D, II). Let P be a semigroup in \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and (ii) $P \cap (-P) = \{0\}$. Let σ be a positive Radon measure on X that is quasi-invariant. Let ν be a measure in M(X) such that $sp(\nu) \subset P$ and $\nu \perp \sigma$. Then $m_G * \nu \perp \sigma$.

PROOF. Since ν is bounded and regular, we may assume that $\sigma \in M^+(X)$ (cf. [14, the proof of Theorem 1.1, p. 311]). Put $\eta = \pi(|\nu|)$. By (D. I), $|\nu|$ has a canonical disintegration $\{\lambda_x\}_{x \in X/G}$ with $\lambda_x \in M^+(X)$. Let $\eta = \eta_a + \eta_s$ be the Lebesgue decomposition of η with respect to $\pi(\sigma)$. We define $\omega_1, \omega_2 \in M^+(X)$ as follows:

(1)
$$\omega_1(f) = \int_{X/G} \lambda_x(f) d\eta_a(\dot{x}),$$
$$\omega_2(f) = \int_{X/G} \lambda_x(f) d\eta_s(\dot{x})$$

for $f \in C_0(X)$. We note that (1) holds for all bounded Baire functions f on X. It is easy to verify that

(2)
$$|\nu| = \omega_1 + \omega_2$$
, and

(3) $\pi(\omega_2) \perp \pi(\sigma).$

It follows from (2) and the hypothesis that $\omega_1 \perp \sigma$. Hence, by [14, Lemma 2.5 (II)], we have

(4)
$$\lambda_{\dot{x}} \perp m_{\dot{x}} \eta_a - \text{a.a.} \, \dot{x} \in X/G.$$

Let *h* be a unimodular Baire function on *X* such that $\nu = h|\nu|$, and define measures ν_1 , $\nu_2 \in M(X)$ as follows:

(5)
$$\nu_1(f) = \int_{X/G} \nu_{\dot{x}}(f) \ d\eta_a(\dot{x}),$$

$$\nu_2(f) = \int_{X/G} \nu_{\dot{x}}(f) d\eta_s(\dot{x})$$

for $f \in C_0(X)$, where $\nu_{\dot{x}} = h\lambda_{\dot{x}}$. Then

(6)
$$\nu = \nu_1 + \nu_2.$$

We note that $\{\nu_{\dot{x}}\}_{\dot{x}\in X/G}$ is a canonical disintegration of ν . Since $\operatorname{sp}(\nu)\subset P$, it follows from [14, Lemma 2.6] that

(7)
$$\operatorname{sp}(\nu_{\dot{x}}) \subset P \eta$$
-a.a. $\dot{x} \in X/G$;

hence

(8) $\operatorname{sp}(\nu_{\dot{x}}) \subset P \eta_a$ -a. a. $\dot{x} \in X/G$.

Since $\operatorname{supp}(\nu_{\dot{x}}) \subset \pi^{-1}(\dot{x})$ and $\widetilde{B}_x: G/G_x \to G \cdot x (=\pi^{-1}(\dot{x}))$ is a homeomorphism, there exists a measure $\xi_{\dot{x}} \in M(G/G_x)$ such that $\widetilde{B}_x(\xi_{\dot{x}}) = \nu_{\dot{x}}$, where $x \in \pi^{-1}(\dot{x})$. By(8) and [14, Proposition 1.2], we have

(9)
$$\xi_{\dot{x}} \in M_{P \cap G_{x}}(G/G_{x}) \quad \eta_{a}\text{-a.a.} \quad \dot{x} \in X/G.$$

It follows from (4) and [14, Proposition 1.5] that

(10)
$$\xi_{\dot{x}} \perp m_{G/G_x} \eta_a$$
-a.a. $\dot{x} \in X/G$.

Hence we have, by (9), (10) and Theorem A (II),

(11)
$$\xi_{\dot{x}} \in M_{(P \setminus \{0\}) \cap G_x^{\perp}}(G/G_x) \quad \eta_a \text{-a.a.} \quad \dot{x} \in X/G,$$

which yields

(12)
$$\operatorname{sp}(\nu_{\dot{x}}) \subset P \setminus \{0\} \quad \eta_a \text{-a.a.} \quad \dot{x} \in X/G$$

by [14, Proposition 1.2]. Hence

 $m_G * \nu_{\dot{x}} = 0 \quad \eta_a$ -a.a. $\dot{x} \in X/G$,

which together with [14, Lemma 2.3] yields

$$m_G * \nu_1(f) = \int_{x/G} m_G * \nu_{\dot{x}}(f) d\eta_a(\dot{x}) = 0$$

for all $f \in C_0(X)$. This shows that

(13)
$$m_G * \nu_1 = 0.$$

On the other hand, it is easy to verify that

(14)
$$\pi(m_G * \omega_2) = \pi(\omega_2).$$

(3) and (14) imply that $m_G * \omega_2 \perp \sigma$, and so $m_G * \nu_2 \perp \sigma$ because $m_G * \nu_2 < <$

 $m_G * \omega_2$. By (6) and (13), we have $m_G * \nu = m_G * \nu_2$. Hence we get $m_G * \nu \perp \sigma$, and the proof is complete.

LEMMA 3.2. Let (G, X) be a transformation group, in which G is a compact abelian group and X is a locally compact metric space. Then the conclusion of Lemma 3.1 holds.

PROOF. Let ν be a measure in M(X) such that $\operatorname{sp}(\nu) \subset P$ and $\nu \perp \sigma$. Since ν is bounded and regular, we may assume that X is σ -compact and $\sigma \in M^+(X)$. Suppose $m_G * \nu$ and σ are not mutually singular. Let $m_G * \nu = \omega + \zeta$ be the Lebesgue decomposition of $m_G * \nu$ with respect to σ , where $\omega < <\sigma$ and $\zeta \perp \sigma$. Then $\omega \neq 0$. By [14, Lemmas 2.11 and 2.13], there exists a countable subgroup Γ of \widehat{G} such that

- (1) $\pi_H(\omega) \neq 0$,
- (2) $\pi_H(|\nu|) \perp \pi_H(\sigma)$, and
- (3) $\pi_H(|\zeta|) \perp \pi_H(\sigma),$

where $H = \Gamma^{\perp}$ and $\pi_H : X \to X/H$ is the canonical map. Let (G/H, X/H)be the transformation group induced by (G, X). By [14, Lemma 2.9], $\pi_H(m_G * \nu) = m_{G/H} * \pi_H(\nu)$. Since $\pi_H(\omega) < < \pi_H(\sigma)$, it follows from (3) that $m_{G/H} * \pi_H(\nu) = \pi_H(\omega) + \pi_H(\zeta)$ is the Lebesgue decomposition of $m_{G/H} * \pi_H(\nu)$ with respect to $\pi_H(\sigma)$. Since σ is quasi-invariant, $\pi_H(\sigma)$ is quasi-invariant. By [14, Lemma 2.10], we have $\operatorname{sp}(\pi_H(\nu)) \subset P \cap \Gamma$. Since G/H and X/Hare metrizable, it follows from Remark 3.1 that (G/H, X/H) satisfies conditions (D. I) and (D. II). Hence, by (2) and Lemma 3.1, we have $m_{G/H} * \pi(\nu) \perp \pi_H(\sigma)$, which yields $\pi_H(\omega) = 0$. This contradicts (1), and the proof is complete.

PROPOSITION 3.1. Let (G, X) be a transformation group, in which G is a compact abelian group and X is a locally compact Hausdorff space. Let P be a semigroup in \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and (ii) $P \cap (-P) = \{0\}$. Let σ be a positive Radon measure on X that is quasi-invariant. Let ν be a measure in M(X) such that $sp(\nu) \subset P$ and $\nu \perp \sigma$. Then $m_G * \nu \perp \sigma$.

PROOF. Since ν is bounded and regular, we may assume that X is σ -compact and $\sigma \in M^+(X)$. Suppose that $m_G * \nu$ and σ are not mutually singular. Let $m_G * \nu = \omega + \zeta$ be the Lebesgue decomposition of $m_G * \nu$ with respect to σ , where $\omega < <\sigma$ and $\zeta \perp \sigma$. Then $\omega \neq 0$. By [15, Lemma 3.1], there exists an equivalence relation " \sim " on X with the following properties :

(1) X/\sim is a σ -compact metrizable, locally compact Hausdorff space with respect to the quotient topology;

 $(G, X/\sim)$ becomes a transformation group by the action $g \cdot \tau(x)$ (2) $=\tau(g \cdot x)$ for $g \in G$ and $x \in X$, where $\tau : X \to X/\sim$ is the canonical map; $\tau(\omega) \neq 0$; (3);).

(4)
$$\tau(|\nu|+|\zeta|) \perp \tau(\sigma)$$

By [15, Lemma 2.1], $\tau(\sigma)$ is quasi-invariant. By (4), $\tau(\nu)$ and $\tau(\sigma)$ are mutually singular. It follows from [15, Lemma 2.2] that $sp(\tau(\nu)) \subseteq sp(\nu)$ $\subseteq P$. Hence, by (1) and Lemma 3.2, we have $m_G * \tau(\nu) \perp \tau(\sigma)$. On the other hand, $m_G * \tau(\nu) = \tau(m_G * \nu) = \tau(\omega) + \tau(\zeta)$. And (3)-(4) implies that $0 \neq 1$ $\tau(\omega) < < \tau(\sigma)$ and $\tau(\zeta) \perp \tau(\sigma)$. Thus we have a contradiction. This completes the proof.

PROPOSITION 3.2. Let (G, X), P and σ be as in the previous proposition. Let μ be a measure in M(X) such that $sp(\mu) \subset P \setminus \{0\}$. Let $\mu = \mu_a$ $+\mu_s$ be the Lebesgue decomposition of μ with respect to σ . Then both $sp(\mu_a)$ and $sp(\mu_s)$ are also contained in $P \setminus \{0\}$.

PROOF. We may assume that $\sigma \in M^+(X)$. It suffices to prove that $\operatorname{sp}(\mu_s) \subset P \setminus \{0\}$ because of [14, Remark 1.1 (II)]. Suppose $\operatorname{sp}(\mu_s) \not\subset P \setminus \{0\}$. Since $\operatorname{sp}(\mu) \subset P$, it follows from [15, Theorem 2.1] that $\operatorname{sp}(\mu_s) \subset P$; hence $0 \in \operatorname{sp}(\mu_s)$. Thus $m_G * \mu_s \neq 0$. Since $0 = m_G * \mu = m_G * \mu_a + m_G * \mu_s$, it follows from [14, Lemma 1, 1] that

$$0 \neq m_G * \mu_s = -m_G * \mu_a < < m_G * \sigma < < \sigma.$$

This contradicts Proposition 3.1, and the proof is complete.

§ 4. Proofs of Theorems 2.1 and 2.2.

In this section we prove Theorems 2.1 and 2.2. Let (G, X) be a transformation group, in which G is a LCA group and X is a locally compact Hausdorff space. Suppose \hat{G} is ordered, i.e., there exists a closed semigroup P in \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and (ii) $P \cap (-P) = \{0\}$ (cf. [12, 8.1]). If G is noncompact and not isomorphic with \mathbf{R} , G is isomorphic with $\mathbf{R} \oplus H$ and $P = \{(x, d) \in \mathbf{R} \oplus \hat{H} : d > 0, \text{ or } d = 0 \text{ and } x \ge 0\}$, where H is a compact connected subgroup of G (cf. [12, 8.1.5. Theorem and 8. 1.6. Theorem]).

Suppose \hat{G} is ordered and G is isomorphic with $\mathbf{R} \oplus H$, LEMMA 4.1. where H is a compact connected abelian group. Let P be the closed semigroup in \hat{G} which induces an order on \hat{G} , and set $P_H = \{d \in \hat{H} : d \ge 0\}$. Let $\mu \in M(X)$, and suppose $sp(\mu) \subset P$. Then $sp_H(\mu - m_H * \mu) \subset P_H \setminus \{0\}$.

PROOF. Evidently $P \subset \mathbf{R} \times P_{H}$.

Step 1. $\operatorname{sp}_{H}(\mu) \subset P_{H}$.

Suppose $d \in \widehat{H} \setminus P_H$. For any $\omega \in L^1(\mathbb{R})$, define $F_\omega \in L^1(\mathbb{R} \oplus H)$ by $F_\omega(s, t) = \omega(s)$ (t, d). Then $sp(\mu)$ is in the interior of $\widehat{F}_{\omega}^{-1}(0)$. It follows from Lemma 2.4 that $F_{\omega}*\mu=0$. For any $f \in C_0(X)$, put $f_s(x)=f(s \cdot x)$ $(s \in \mathbb{R}, x \in X)$. Then

(1)

$$0 = F_{\omega} * \mu(f) = \int_{X} \int_{R^{\oplus}H} f((s, t) \cdot x) F_{\omega}(s, t) dm_{R^{\oplus}H}(s, t) d\mu(x)$$

$$= \int_{R} \int_{X} \int_{H} f_{s}(t \cdot x) (t, d) dm_{H}(t) d\mu(x) \omega(s) ds$$

$$= \int_{R} (dm_{H}) * \mu(f_{s}) \omega(s) ds.$$

By Lemma 2.1, $s \rightarrow (dm_H) * \mu(f_s)$ is a bounded continuous function on **R**. By (1), we have

$$(dm_H)*\mu(f_s)=0$$
 a.a. $s\in \mathbf{R}$;

hence

$$(dm_H)*\mu(f)=0$$
 for all $f\in C_0(X)$.

Hence $(dm_H)*\mu=0$, and so $d\notin \operatorname{sp}_H(\mu)$. This shows that Step 1 holds.

Step 2. $0 \notin \operatorname{sp}_H(\mu - m_H * \mu)$.

We note that $m_H*(\mu - m_H*\mu) = m_H*\mu - (m_H*m_H)*\mu = 0$. Since $\hat{m}_H(0) = 1$, we have $0 \notin \operatorname{sp}_H(\mu - m_H*\mu)$. Thus Step 2 is obtained.

Since $J(\mu: H) \subset J(m_H * \mu: H)$, we have $\operatorname{sp}_H(m_H * \mu) \subset \operatorname{sp}_H(\mu)$. Hence, by Steps 1 and 2, we have $\operatorname{sp}_H(\mu - m_H * \mu) \subset P_H \setminus \{0\}$. This completes the proof.

THEOREM 4.1. Let (G, X) be a transformation group, in which G is a LCA group and X is a locally compact Hausdorff space. Suppose there exists a closed semigroup in \hat{G} such that (i) $P \cup (-P) = \hat{G}$ and (ii) $P \cap$ $(-P) = \{0\}$. Let σ be a positive Radon measure on X that is quasiinvariant. Let $\mu \in M(X)$, and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to σ . Suppose $sp(\mu) \subset P$. Then both $sp(\mu_a)$ and $sp(\mu_s)$ are also contained in P.

PROOF. By [12, 8.1.5. Theorem], we have

(a) $G \cong \mathbf{R}$, (b) G is compact, or (c) $G \cong \mathbf{R} \oplus H$,

where H is a compact connected subgroup of G.

Case 1. $G \cong \mathbf{R}$.

In this case, the theorem follows from Theorem D.

Case 2. *G* is compact.

In this case, the theorem follows from Theorem E.

Case 3. $G \cong \mathbf{R} \oplus H$, where H is a compact connected subgroup of G.

As seen at the beginning of this section, we have $P = \{(x, d) \in \mathbb{R} \oplus \hat{H} : d > 0, or d = 0 and x \ge 0\}$. Put $P_H = \{d \in \hat{H} : d \ge 0\}$. Set

(1)
$$\mu = (\mu - m_H * \mu) + m_H * \mu.$$

By Lemma 4.1, $\operatorname{sp}_{H}(\mu - m_{H} * \mu) \subset P_{H} \setminus \{0\}$. Hence Proposition 3.2 implies that

(2)
$$\operatorname{sp}_H((\mu - m_H * \mu)_a), \operatorname{sp}_H((\mu - m_H * \mu)_s) \subset P_H \setminus \{0\}.$$

Since $\mathbf{R} \times (P_H \setminus \{0\}) \subset P$, it follows from (2) and Lemma 2.5 that

(3)
$$\operatorname{sp}((\mu - m_H * \mu)_a), \operatorname{sp}((\mu - m_H * \mu)_s) \subset P.$$

Claim. $\operatorname{sp}_{R}(m_{H}*\mu) \subset \mathbb{R}^{+}$, where \mathbb{R}^{+} is the nonnegative real numbers. For any $x_{0} \in \mathbb{R} \setminus \mathbb{R}^{+}$, there exists a function k in $L^{1}(\mathbb{R})$ such that $\widehat{k}(x_{0}) \neq 0$ and \mathbb{R}^{+} is in the interior of $\{x \in \mathbb{R} : \widehat{k}(x) = 0\}$. Define $F \in L^{1}(\mathbb{R} \oplus H)$ by F(s, t) = k(s). Then $\operatorname{sp}(\mu)$ is in the interior of $\widehat{F}^{-1}(0)$. It follows from Lemma 2.4 that

$$(4) F*\mu=0.$$

We note that $k^*(m_H^*\mu) = F^*\mu$ (see the proof of Lemma 2.5). Hence (4) yields $k^*(m_H^*\mu) = 0$. Since $\hat{k}(x_0) \neq 0$, x_0 does not belong to $\operatorname{sp}_{\mathbb{R}}(m_H^*\mu)$. This shows that the claim holds.

By Claim and Theorem D, we have

(5)
$$\operatorname{sp}_{\mathbf{R}}((m_H*\mu)_a), \operatorname{sp}_{\mathbf{R}}((m_H*\mu)_s) \subset \mathbf{R}^+.$$

By Lemma 2.3, we have $\operatorname{sp}_H(m_H*\mu) \subset \{0\}$, and $\{0\}$ is a Riesz set in \hat{H} . Hence, by [15, Theorem 2.4], we have

(6)
$$\operatorname{sp}_{H}((m_{H}*\mu)_{a}), \operatorname{sp}_{H}((m_{H}*\mu)_{s}) \subset \{0\},$$

which together with (5) and Lemma 2.5 yields

(7)
$$\operatorname{sp}((m_H*\mu)_a), \operatorname{sp}((m_H*\mu)_s) \subset \mathbf{R}^+ \times \{0\} \subset P.$$

It follows from (1), (3) and (7) that $sp(\mu_a) \subset P$ and $sp(\mu_s) \subset P$. This completes the proof.

We return to the general case. For $\mu \in M(X)$, set $J_{M(G)}(\mu) = \{\lambda \in M(G) : \lambda * \mu = 0\}$.

DEFINITION 4.1. For $\mu \in M(X)$, define $\operatorname{sp}_{M(G)}(\mu)$ by $\bigcap_{\lambda \in J_{M(G)}(\mu)} \mu^{\hat{\lambda}^{-1}(0)}$.

LEMMA 4.2. For $\mu \in M(X)$, we have $sp(\mu) = sp_{M(G)}(\mu)$.

PROOF. Since $J_{M(G)}(\mu) \supset J(\mu)$, we have $\operatorname{sp}_{M(G)}(\mu) \subset \operatorname{sp}(\mu)$. Suppose $\gamma \notin \operatorname{sp}_{M(G)}(\mu)$. Then there exists $\lambda \in J_{M(G)}(\mu)$ such that $\hat{\lambda}(\gamma) \neq 0$. Let k be a function in $L^1(G)$ such that $\hat{k}(\gamma) \neq 0$. Then $k * \lambda \in L^1(G)$, $(k * \lambda) * \mu = k * (\lambda * \mu) = 0$ and $(k * \lambda)^{\wedge}(\gamma) \neq 0$. Hence $\gamma \notin \operatorname{sp}(\mu)$, and so $\operatorname{sp}(\mu) \subset \operatorname{sp}_{M(G)}(\mu)$. This completes the proof.

Suppose there exists a proper closed semigroup P in \hat{G} such that $P \cup (-P) = \hat{G}$. Put $\Lambda = P \cap (-P)$, and let $\tau : \hat{G} \to \hat{G}/\Lambda$ be the natural homomorphism. Let $H = \Lambda^{\perp}$, and set $\tilde{P} = \tau(P)$. Then \tilde{P} is a proper closed semigroup in \hat{G}/Λ such that (i) $\tilde{P} \cup (-P) = \hat{G}/\Lambda$ and (ii) $\tilde{P} \cap (-\tilde{P}) = \{0\}$. From Proposition 4.1 through Proposition 4.3, we assume that there exists such a proper closed semigroup P in \hat{G} .

PROPOSITION 4.1. Let E be a closed set in \hat{G} such that $E + \Lambda = E$, and let $\tilde{E} = \tau(E)$. Let μ be a measure in M(X). Then the following are equivalent.

(i) $sp_H(\mu) \subset \widetilde{E}$;

(ii)
$$sp(\mu) \subset E$$
.

PROOF. Since $E + \Lambda = E$, we note that \tilde{E} is a closed set in \hat{G}/Λ .

(i) \Box (ii): Suppose $\gamma \notin E$. Since $E + \Lambda = E$, $\tau(\gamma) \notin \tilde{E}$, and so $\tau(\gamma) \notin \mathfrak{sp}_{H}(\mu)$. Hence there exists $f \in L^{1}(H)$ such that $f * \mu = 0$ and $\hat{f}(\tau(\gamma)) \neq 0$. We can consider f as a measure in M(G). We denote it by λ_{f} . Then $\lambda_{f} * \mu = f * \mu = 0$ and $\hat{\lambda}_{f}(\gamma) = \hat{f}(\tau(\gamma)) \neq 0$. It follows from Lemma 4.2 that $\gamma \notin \mathfrak{sp}_{M(G)}(\mu) = \mathfrak{sp}(\mu)$. Hence we have $\mathfrak{sp}(\mu) \subset E$.

(ii) rightarrow(i): Suppose $\tau(\gamma) \notin \widetilde{E}$ ($\gamma \notin E$). Let \widetilde{V} be a compact neighborhood of $\tau(\gamma)$ such that $\widetilde{V} \cap \widetilde{E} = \phi$. Then there exists $f \in L^1(H)$ such that $\widehat{f}(\tau(\gamma)) \neq 0$ and $\operatorname{supp}(\widehat{f}) \subset \widetilde{V}$. Let μ_f be the measure in M(G) corresponding to f. Then

(1)
$$\widehat{\lambda}_f(\gamma) = \widehat{f}(\tau(\gamma)) \neq 0.$$

We note that

(2) $\operatorname{supp}(\widehat{\lambda}_f) \subset \tau^{-1}(\widetilde{V}).$

Since $E + \Lambda = E$, we have $\tau^{-1}(\tilde{E}) = E$. This together with $\tilde{V} \cap \tilde{E} = \phi$ yields (3) $\tau^{-1}(\tilde{V}) \cap E = \phi$.

It follows from (ii), (2) and (3) that

(4) $\operatorname{sp}(\mu)$ is in the interior of $\hat{\lambda}_f^{-1}(0)$.

Claim. $\lambda_f * \mu = 0$.

For any $h \in L^1(G)$, $h * \lambda_f \in L^1(G)$, and (4) implies that $sp(\mu)$ is in the interior of $\{\gamma \in \widehat{G} : (h * \lambda_f)^{\wedge}(\gamma) = 0\}$. It follows from Lemma 2.4 that $h * (\lambda_f * \mu) = (h * \lambda_f) * \mu = 0$. Hence, by Lemma 2.2, we have $\lambda_f * \mu = 0$, and the claim is obtained.

By Claim, $f * \mu = 0$, and $\hat{f}(\tau(\gamma)) \neq 0$. Hence $\tau(\gamma) \notin \operatorname{sp}_{H}(\mu)$. This shows that $\operatorname{sp}_{H}(\mu) \subset \widetilde{E}$, and the proof is complete.

The following two propositions follow from the previous proposition.

PROPOSITION 4.2. Let μ be a measure in M(X). Then the following are equivalent.

(i)
$$sp_H(\mu) \subset \widetilde{P}$$
;

(ii)
$$sp(\mu) \subset P$$

PROOF. Since $P + \Lambda = P$, the proposition follows from Proposition 4. 1.

PROPOSITION 4.3. Let μ be a measure in M(X). If Λ is open, then the following are equivalent.

(i) $sp_H(\mu) \subset \widetilde{P} \setminus \{0\}$;

(ii)
$$sp(\mu) \subset P \setminus (-P).$$

PROOF. $P \setminus (-P)$ is closed because $P \setminus (-P) = P \setminus \Lambda$. It is easy to verify that $P \setminus (-P) + \Lambda = P \setminus (-P)$ and $\tau(P \setminus (-P)) = \tilde{P} \setminus \{0\}$. Hence the proposition follows from Proposition 4.1.

Now we prove Theorem 2.1. We may assume that P is a proper closed semigroup in \hat{G} . Put $\Lambda = P \cap (-P)$ and $H = \Lambda^{\perp}$. Let $\tau : \hat{G} \to \hat{G}/\Lambda$ be the natural homomorphism, and set $\tilde{P} = \tau(P)$. Then \tilde{P} is a closed semigroup in \hat{G}/Λ such that $\tilde{P} \cup (-P) = \hat{G}/\Lambda$ and $\tilde{P} \cap (-\tilde{P}) = \{0\}$. Since $\operatorname{sp}(\mu) \subset P$, it follows from Proposition 4.2 that $\operatorname{sp}_{H}(\mu) \subset \tilde{P}$. We note that $\hat{H} \cong \hat{G}/\Lambda$. Hence Theorem 4.1 implies that

$$\operatorname{sp}_{H}(\mu_{a}), \operatorname{sp}_{H}(\mu_{s}) \subset \widetilde{P},$$

which together with Proposition 4.2 yields that $sp(\mu_a)$, $sp(\mu_s) \subset P$. This completes the proof of Theorem 2.1.

Next we prove Theorem 2.2. Notations are as in the proof of Theorem 2.1. Since $\operatorname{sp}(\mu) \subset P \setminus (-P)$, it follows from Proposition 4.3 that $\operatorname{sp}_H(\mu) \subset \widetilde{P} \setminus \{0\}$. Since $P \cap (-P)$ is open, H is a compact subgroup of G. It follows from Proposition 3.2 that $\operatorname{sp}_H(\mu_a)$, $\operatorname{sp}_H(\mu_s) \subset \widetilde{P} \setminus \{0\}$. Hence, by Proposition 4.3, we have $\operatorname{sp}(\mu_a)$, $\operatorname{sp}(\mu_s) \subset P \setminus (-P)$. This completes the proof of Theorem 2.2.

REMARK 4.1. Let G be a LCA group. Then we get a transformation group (G, G). Let $\mu \in M(G)$, and let E be a closed subset of \hat{G} . The following are equivalent.

- (i) $\hat{\mu}$ vanishes on E^c ;
- (ii) $\operatorname{sp}(\mu) \subset E$.

In fact, "(i) \ominus (ii)" is not difficult, and "(ii) \ominus (i)" is obtained as follows: Let $\gamma \in E^c$. Then there exists $f \in L^1(G)$ such that $\hat{f}(\gamma) = 1$ and E is in the interior of $\hat{f}^{-1}(0)$. By (ii), sp(μ) is in the interior of $\hat{f}^{-1}(0)$. By Lemma 2.4, we have $f * \mu = 0$. Hence $0 = \hat{f}(\gamma)\hat{\mu}(\gamma) = \hat{\mu}(\gamma)$. This shows that (i) holds.

REMARK 4.2. Theorem C follows from Theorems 2.1 and 2.2. In fact, let μ be a measure in $M_{pc}(G)$. We may assume that P is a proper closed semigroup in \hat{G} . First we consider the case that $P \cap (-P)$ is not open. Since $\mu \in M_{pc}(G)$, μ belongs to $M_{(-p)}(G)$. It follows from Theorem 2.1 and Remark 4.1 that μ_a , $\mu_s \in M_{(-P)}(G)$. Since $(-P)^c$ is dense in P, we have μ_a , $\mu_s \in M_{Pc}(G)$. Next we consider the case that $P \cap (-P)$ is open. Since $P^c = (-P) \setminus P$ is closed, $\mu \in M_{Pc}(G)$ implies that $\operatorname{sp}(\mu) \subset P^c = (-P) \setminus P$, by Remark 4.1. Hence, by Theorem 2.2 and Remark 4.1, we have μ_a , $\mu_s \in M_{Pc}(G)$.

REMARK 4.3. Let (\mathbf{R}, X) be a transformation group, in which the reals \mathbf{R} acts on a locally compact Hausdorff space X. Let σ be a quasiinvariant, positive Radon measure on X. Let μ be an analytic measure on X, and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to σ . In [5, Theorem 5], Forelli showed that $\operatorname{sp}(\mu_a)$ and $\operatorname{sp}(\mu_s)$ are contained in $\operatorname{sp}(\mu)$. This result seems to depend on the fact that the semigroup $[0, \infty)$ is a Riesz set (cf. [15, Theorem 2.4]). In general, this result does not hold for another transformation group. We give an example: Let G be a compact connected abelian group which is not isomorphic to the circle group T, and let P be a semigroup in \hat{G} such that $P \cup$ $(-P)=\widehat{G}$ and $P\cap(-P)=\{0\}$. We consider the transformation group (G, G). We take m_G as a quasi-invariant measure. Since G is not isomorphic to T, there exists a nonzero singular measure $\widehat{\xi} \in M_P(G)$. Then there exists $\gamma_0 \in P$ such that $\widehat{\xi}(\gamma_0) \neq 0$. Let $\mu = \widehat{\xi}(\gamma_0) m_G - \xi$. Then $\widehat{\mu}(\gamma_0) = 0$ and $\widehat{\mu}_s(\gamma_0) = -\widehat{\xi}(\gamma_0) \neq 0$. It follows from Remark 4.1 and [14, Remark 1.1 (II. 1)] that $\operatorname{sp}(\mu) \subset P$ and $\operatorname{sp}(\mu_s) \not\subset \operatorname{sp}(\mu)$.

References

- [1] N. BOURBAKI, Intégration, Éléments de Mathématique, Livre VI, ch. 6, Paris, Herman, 1959.
- [2] K. DELEEUW, and I. GLICKSBERG, Quasi-invariance and analyticity of measures on compact groups, Acta Math. 109 (1963), 179-205.
- [3] R. DOSS, On the Fourier-Stieltjes transforms of singular or absolutely continuous measures, Math. Z., 97 (1967), 77-84.
- [4] G. B. FOLLAND, Real Analysis: Modern Techniques and Their Applications, Willey -Interscience, New York, 1984.
- [5] F. FORELLI, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33-57.
- [6] H. HELSON and D. LOWDENSLAGER, Prediction theory and Fourier series in several varriables, Acta Math. 99 (1958), 165-202.
- [7] E. HEWITT, S. KOSHI and Y. TAKAHASHI, The F. and M. Riesz theorem revisited, Math. Scand. 60 (1987), 63-76.
- [8] E. HEWITT and K. A. ROSS, Abstract Harmonic Analysis, Volumes I and II, New York -Heidelberg-Berlin, Springer-Verlag, 1963 and 1970.
- [9] R. A. JOHNSON, Disintegration of measures on compact transformation groups, Trans. Amer. Math. Soc. 233 (1977), 249-264.
- [10] D. MONTGOMERY and L. ZIPPIN, Topological Transformation Groups, Interscience, New York, 1955.
- [11] H. L. ROYDEN, Real Analysis (Second Edition), The Macmillan company, Collier-Macmillan Ltd., London, 1968.
- [12] W. RUDIN, Fourier Analysis on Groups, Interscience, New York, 1962.
- [13] H. YAMAGUCHI, A property of some Fourier-Stieltjes transforms, Pacific J. Math. 108 (1983), 243-256.
- [14] H. YAMAGUCHI, The F. and M. Riesz theorem on certain transformation groups, Hokkaido Math. J. 17 (1988), 289-332.
- [15] H. YAMAGUCHI, The F. and M. Riesz theorem on certain transformation groups, II, Hokkaido Math. J. 19 (1990), 345-359.

Department of Mathematics Josai University Sakado, Saitama Japan