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Interpolating Blaschke products and
the left spectrum of multiplication operators

on the Bergman space
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Abstract. This paper studies the problem of approximating a Blaschke
product by interpolating Blaschke products. We will solve the problem
for some special classes of Blaschke products. Then we will give a con-
nection between this problem and the solidity near the origin in the left
spectrum of a multiplication operator on the Bergman space.

1. Definitions and notations

Let D be the open unit disk in the complex plane and \partial D be the unit
circle. The Banach algebra H^{\infty}(D) is the algebra of all bounded holomor-
phic functions on D under the \sup-norm topology. The Bergman space
L_{a}^{2}(D) is the Hilbert space of all holomorphic functions f on D such that

\int\int_{D}|f(z)|^{2}dA(z)<\infty ,

where A denotes the area measure of the plane. For f\in H^{\infty}(D) , the mul-
tiplication operator M_{f} on L_{a}^{2}(D) is the bounded operator that sends g\in
L_{a}^{2}(D) to fg\in L_{a}^{2}(D) .

A Blaschke product is a function in H^{\infty}(D) of the form

B(z)=e^{i\theta} \prod_{n=1}^{\infty}\frac{|z_{n}|}{\mathcal{Z}n}\frac{z_{n}-z}{1-\overline{z_{n}}z},

where the sequence \{z_{n}\} is in D and satisfies \sum_{n=1}^{\infty}(1-|z_{n}|)<\infty . (If some z_{n}=

0 , then the corresponding factor is to be interpreted as z). A sequence
\{z_{n}\} in D is called an interpolating sequence if for each bounded sequence
\{w_{n}\} of complex numbers, there is some f\in H^{\infty}(D) such that f(z_{n})=w_{n} .
A Blaschke product is called an interpolating Blaschke product (or ibp for
short) if the sequence \{z_{n}\} is an interpolating sequence. A well-known
open question [6, p. 430] in function theory is whether every Blaschke
product can be uniformly approximated by interpolating Blaschke prod-
ucts or not.
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This paper contains work done toward finding an answer to the ques-
tion. In section 2, we will see that certain classes of Blaschke products
can be uniformly approximated by ibp’s. These include the class of all
Blaschke products having zeros lying on finitely many radii. In section 3,
we will relate the problem of approximating a Blaschke product B by
ibp’s with the solidity near the origin in the left spectrum of the multiplica-
tion operator M_{B} on L_{a}^{2}(D) . This is done via a theorem of G. McDonald
and C. Sundberg. In section 4, we will conclude with some questions for
further investigation.

We would like to thank Lee Laroco, Don Marshall and Don Sarason
for informing us some of the results that appear in section 2.

2. Results about interpolating Blaschke products

We begin this section with two interesting theorems. They assert
that for Blaschke products having some specific zero distributions, certain
M\"obius transformations of them are interpolating Blaschke products.
These theorems were due to D. Marshall and D. Sarason, respectively.

THEOREM 1. Let B be a Blaschke product whose zeros lie in a Stolz
angle A with vertex on \partial D. Let \lambda be a point of D which is not a cluster
value of B|_{A} and is not in the set \{B(a):B’(a)=0\} . Then (B-\lambda)/

(1-\overline{\lambda}B) is an interpolating Blaschke product.

THEOREM 2. Let K be a closed convex subset of D\cup\{1\} which con-
tains 0. Let B be a Blaschke product whose zeros lie in K. Let \lambda be a

point of D which is not a cluster value of B|_{K} at 1 and is not in the set
\{B(a) : B’(a)=0\} . Then (B-\lambda)/(1-\overline{\lambda}B) is an interpolating Blaschke
product.

Below we shall present a proof of Theorem 2. We learned the proof
from Donald Sarason, who was informed about Theorem 1 and ideas of its
proof by Don Marshall. A proof of Theorem 1 can be given using similar
techniques. We leave the details to the reader.

In the proof, we will have occasions to work with the pseudohyperbolic
distance \rho(w, z) , which is defined to be |(w-z)/(1-\overline{z}w)| for points w , z
in the disk D. In addition, we will need the following two results. The
first one is well-known and was due to Lennart Carleson [5]. It gives
conditions for checking whether a sequence is interpolating or not. The
second one is the key ingredient in the proof of Theorem 2. It gives an
inequality which allows us to obtain the necessary condition for interpola-
tion. The inequality is derived from a careful geometric argument and
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usual manipulations with the pseudohyperbolic metric.

THEOREM 3. For a sequence \{z_{n}\} in the open unit disk D, the follow-
ing are equivalent :

(i) \{z_{n}\} is an interpolating Blaschke sequence;
(ii) \{z_{n}\} satisfifies the condition

\inf_{nj}\prod_{\neq n}\rho(z_{j}, z_{n})>0 ;

(iii) \{z_{n}\} satisfies the condition

\inf_{n}(1-|z_{n}|^{2})|B’(z_{n})|>0 ,

where B(z) is a Blaschke product with \{z_{n}\} as its zero sequence.

For a proof, see [6, pp. 287-293].

PROPOSITION 4. Let K be a closed convex subset of \overline{D} which contains
0. Let B be a Blaschke product whose zeros are contained in K. Let a be
a point of D\backslash K, and let \epsilon=\rho(a, K) . Then

(1-|a|^{2}) \frac{|B’(a)|}{|B(a)|}\geq\frac{2\epsilon(1-\epsilon^{2})}{(1+\epsilon^{2})1og\epsilon}\log|B(a)| .

PROOF. We will divide the proof into two parts.

Part I (Geometry): Let \alpha be the circle with non-Euclidean center at a
and pseudohyperbolic radius \epsilon . Then \alpha\cap K consists of a single point, say
p. Let l be the tangent line to \alpha at p. Then \alpha\backslash \{p\} and K\backslash \{p\} must be on
different sides of l . Let \beta be the circle that is tangent to \alpha at p and
meets \partial D orthogonally. Since K contains 0 (relative to \alpha), we claim that
\beta must lie on the same side of l as \alpha , then \beta would separate \alpha\backslash \{p\} from
K\backslash \{p\} .

To prove the claim, let \theta_{1} and \theta_{2} be the arguments of the tangent lines
to \alpha through 0 (\theta_{1}<\theta_{2}<\theta_{1}+\pi) . Then p is on the minor arc of \alpha because
the segment through 0 and p is in K. Let \tau be the unit clockwise tangent
vector to \alpha at p. We then have \theta_{2}\leq\arg\tau\leq\theta_{1}+\pi . Consider the linear
transformation

\phi(z)=\overline{\tau}i(\frac{z-p}{1-\overline{p}_{\mathcal{Z}}})

This transformation maps \alpha to a circle passing through 0. Since \phi’(p)=

\overline{\tau}i/(1-|p|^{2}) , the clockwise unit tangent to \phi(\alpha) at 0 is i . Hence \psi(\beta)\cap D

is the diameter with endpoints i and - i, and \phi(\alpha) lies in the right half-



298 Kin. Y. Li

plane.
Consider a point q=p+r\tau on the tangent line to \alpha at p, where r>0 .

It will be enough to show that \phi(q) lies in the left half-plane. We have

\psi(q)=\frac{ri}{1-|p|^{2}-\overline{p}r\tau} .

lin e -\theta_{2}<\arg\overline{p}<-\theta_{1} , so 0<\arg\overline{p}\tau<\pi . It follows that -\pi<\arg(1-|p|^{2}

-\overline{p}r\tau)<0 . Consequently,

\frac{\pi}{2}<\arg(\frac{ri}{1-|p|^{2}-\overline{p}r\tau})<\frac{3\pi}{2}

and the claim is established.
Now let \lambda=\phi(p)/|\phi(p)| , where \phi(z)=(a-z)/(1-\overline{a}z) . The circle

\overline{\lambda}\phi(\beta) is tangent to the circle |z|=\epsilon at z=\epsilon and is orthogonal to \partial D . So
\overline{\lambda}\phi(\beta) is self-symmetric with respect to \partial D . In particular, the segment
[\epsilon, 1/\epsilon] is a diameter of \overline{\lambda}\phi(\beta) . From this it follows that \overline{\lambda}\phi(\beta) is the
circle

|z- \frac{1+\epsilon^{2}}{2\epsilon}|=\frac{1-\epsilon^{2}}{2\epsilon} .

By the claim, the circle \overline{\lambda}\phi(\beta) separates the circle |z|=\epsilon from \overline{\lambda}\phi(K)

(except for the common point \epsilon), so \overline{\lambda}\phi(K) lies in the interior of
\overline{\lambda}\phi(\beta) (except for \epsilon). The reciprocal function maps the intersection of D
and the interior of \overline{\lambda}\phi(\beta) onto the intersection of the exterior of D and
the interior of \overline{\lambda}\phi(\beta) . From this it follows that every z in K satisfies

{\rm Re} \frac{1}{\overline{\lambda}\phi(z)}\geq\frac{2\epsilon}{1+\epsilon^{2}} .

Part II (Computations): Let \{z_{n}\} be the zero sequence of B(z) . A
simple calculation shows that

\frac{B’(z)}{B(z)}=\sum_{n=1}^{\infty}\frac{1-|z_{n}|^{2}}{(z-z_{n})(1-\overline{z_{n}}z)} .

Thus,

(1-|a|^{2}) \frac{B’(a)}{B(a)}=\sum_{n=1}^{\infty}\frac{(1-|a|^{2})(1-|z_{n}|^{2})}{(a-z_{n})(1-\overline{z_{n}}a)}

= \sum_{n=1}^{\infty}(\frac{1-\overline{a}z_{n}}{a-z_{n}})[\frac{(1-|a|^{2})(1-|z_{n}|^{2})}{|1-\overline{z_{n}}a|^{2}}]

= \sum_{n=1}^{\infty}(\frac{1-\overline{a}z_{n})}{a-z_{n}})[1-|\frac{a-z_{n}}{1-\overline{z_{n}}a}|^{2}] .
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Consequently,

(1-|a|^{2}) \frac{|B’(a)|}{|B(a)|}=|\sum_{n=1}^{\infty}\frac{1}{\overline{\lambda}\phi(z_{n})}[1-|\frac{a-z_{n}}{1-\overline{z_{n}}a}|^{2}]|

\geq{\rm Re}(\sum_{n=1}^{\infty}\frac{1}{\overline{\lambda}\phi(z_{n})}[1-|\frac{a-z_{n}}{1-\overline{z_{n}}a}|^{2}])

\geq\frac{2\epsilon}{1+\epsilon^{2}}\sum_{n=1}^{\infty}[1-|\frac{a-z_{n}}{1-\overline{z_{n}}a}|^{2}] .

Since |(a-z_{n})/(1-\overline{z_{n}}a)|\geq\epsilon , and since the function (1-x)/\log x is decreas-
ing on (0, 1) , we have

1-| \frac{a-z_{n}}{1-\overline{z_{n}}a}|^{2}\geq\frac{1-\epsilon^{2}}{1og\epsilon^{2}}\log|\frac{a-z_{n}}{1-\overline{z_{n}}a}|^{2}

for all n . So

(1-|a|^{2}) \frac{|B’(a)|}{|B(a)|}\geq\frac{2\epsilon(1-\epsilon^{2})}{(1+\epsilon^{2})1og\epsilon}\sum_{n=1}^{\infty}\log|\frac{a-z_{n}}{1-\overline{z_{n}}a}|

= \frac{2\epsilon(1-\epsilon^{2})}{(1+\epsilon^{2})1og\epsilon}\log|B(a)| ,

which was to be shown. \square

PROOF OF THEOREM 2. Since the zeros of B are in K and \lambda is not a
radial limit of B at 1, \lambda is not a radial limit of B anywhere on \partial D . It
follows that B_{\lambda}(z)=(B-\lambda)/(1-\overline{\lambda}B) is a Blaschke product.

Since \lambda is not a cluster value of B|_{K} at 1, the set B^{-1}(\lambda)\cap K is finite.
Also, inf \{\rho(a, K):a\in B^{-1}(\lambda)\backslash K\}>0 , for otherwise, there would be
sequences \{a_{n}\} in B^{-1}(\lambda)\backslash K and \{z_{n}\} in K such that \rho(a_{n}, z_{n}) converges to
0. Since \rho(a_{n}, z_{n})\geq\rho(B(a_{n}), B(z_{n})) , it follows that B(z_{n}) would converge
to \lambda , a contradiction. By Proposition 4, we get

\inf_{a\in B^{-1}(\lambda)}(1-|a|^{2})|B’(a)|>0 .

For a\in B^{-1}(\lambda) , B_{\lambda}’(a)=B’(a)/(1-|\lambda|^{2}) . The desired conclusion now follow
from Theorem 3. \square

The next two results assert that certain classes of Blaschke products
can be approximated by ibp’s. The first one also tells us that the uniform
closure of the ibp’s is closed under taking finite products. The second one
solves the approximation problem for Blaschke products having zeros on
finitely many radii.

THEOREM 5. Interpolating Blaschke products are dense among fifinite
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products of interpolating Blaschke products in the sup-norm topology.

For a proof, see [7, pp. 18-20].

THEOREM 6. If a Blascke product has all its zeros lying on fifinitely
many radii, then it can be uniformly approximated by interpolating Blasch-
ke products.

PROOF. In view of Theorem 5, it is enough to deal with the case of a
Blaschke product having all its zeros on a single radius. Suppose

B(z)=e^{i\theta} \prod_{n=1}^{\infty}\frac{|z_{n}|}{\mathcal{Z}n}\frac{z_{n}-z}{1-\overline{z_{n}}z}

is a Blaschke product with all the z_{n} ’s lying on the radius \{re^{i\phi} : 0\leq r<1\} .
Define

B_{0}(z)=e^{-i\theta}B(e^{i\phi}z) .

Then B_{0} is a Blaschke product with all its zeros on the unit radius K=[0 ,
1]. Furthermore, B_{0}|_{K} is real-valued. So all its cluster values are real.
Now take \lambda nonreal, close to 0 and not in \{B(a):B’(a)=0\} . By Theorem
2, (B_{0}-\lambda)/(1-\overline{\lambda}B_{0}) is an interpolating Blaschke product. Since \lambda close to
0 implies (B_{0}-\lambda)/(1-\overline{\lambda}B_{0}) is uniformly close to B_{0} . It follows that B_{0}

(and hence B) can be uniformly approximated by interpolating Blaschke
products. \square

3. Connections with left spectrum

Recall that the maximal ideal space \mathscr{M}(H^{\infty}(D)) of H^{\infty}(D) is the class
of all nonzero multiplicative linear functionals on H^{\infty}(D) endowed with
the Gelfand topology. As usual, for two points m_{1} , m_{2},\in \mathscr{M}(H^{\infty}(D)) ,
define m_{1}\sim m_{2} if and only if

\sup{ |m_{2}(f)| : f\in H^{\infty}(D) , ||f||_{\infty}<1 and m_{1}(f)=0} <1 .

This is an equivalence relation. Each equivalence class is called a
Gleason part of \mathscr{M}(H^{\infty}(D)) . It is easy to see that D embeds in \mathscr{M}(H^{\infty}(D))

via point evaluations and forms a single Gleason part. In fact, the
famous Corona theorem asserts that D is dense in \mathscr{M}(H^{\infty}(D)) . Also, it is
well-known that there are Gleason parts consisting of a single point.
These are called one-point (or trivial) parts. For a reference on the fasci-
nating theory of Gleason parts of \mathscr{M}(H^{\infty}(D)) , we refer the reader to [6,
Chapter X].

Now we recall a theorem of G. McDonald and C. Sundberg.
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THEOREM 7. Let B be a Blaschke product and let \sigma_{l}(M_{B}) be the left
spectrum of the multiplication operator M_{B} on L_{a}^{2}(D) . Then \sigma_{4}(M_{B})=

{m(B) : m is a one-point part of \mathscr{M}(H^{\infty}(D)) }. Moreover, B is a fifinite
product of interpolating Blaschke products if and only if \sigma p(M_{B}) does not
contain 0.

For a proof, see [8].
Theorem 7 serves as a bridge that connects interpolating Blaschke

products with the left spectrum of multiplication operators on L_{a}^{2}(D) .
Observe that for a Blaschke product B having all its zeros on [0, 1] , the
left spectrum \sigma_{4}(M_{B}) is contained in the set \partial D\cup[-1,1]\cup\{B(a):B’(a)=

0\} . Thus, it is quite thin near the origin. We shall see in the next result
that whenever this is the case we can uniformly approximate such a Blas-
chke product by ibp’s. On the other hand, if the left spectrum is solid
near the origin, then we cannot rely on using a M\"obius transformation of
the Blaschke product to obtain a good approximation.

PROPOSITION 8. Let B be a Blaschke product.
(i) If 0 is in the interior of \sigma_{4}(M_{B}) , then (B-\lambda)/(1-\overline{\lambda}B) is not a

fifinite product of interpolating Blaschke products for \lambda sufficiently close
to 0;

(ii) if 0 is not in the interior of \sigma_{9}(M_{B}) , then B can be uniformly ap-
proximated by interpolating Blaschke products.

PROOF. Let m be a point in \mathscr{M}(H^{\infty}(D)) and \lambda\in D . It is easy to see
that

m( \frac{B-\lambda}{1-\overline{\lambda}B})=\frac{m(B)-\lambda}{1-\overline{\lambda}m(B)} .

Suppose 0 is in the interior of \sigma_{4} (M_{B}) . Then there is an open disk D_{r}

=\{z:|z|<r\} in \sigma_{A}(M_{B}) . For each \lambda\in D_{r} , by Theorem 7, there is a one-
point part m such that m(B)=\lambda . It follows that m((B-\lambda)/(1-\overline{\lambda}B))=0 .
Therefore, (B-\lambda)/(1-\overline{\lambda}B) cannot be a finite product of interpolating
Blaschke products by Theorem 7 again.

Now if 0 is not in the interior of \sigma p(M_{B}) , then there is a sequence \{\lambda_{n}\}

in D\backslash \sigma_{Q}(M_{B}) converging to 0. It follows that each (B-\lambda_{n})/(1-\overline{\grave{\wedge}_{n}}B) is a
finite product of interpolating Blaschke product and it converges uniformly
to B as \lambda_{n} converges to 0. Finally, an appeal to Theorem 5 completes the
proof. \square

One may wonder if there are Blaschke products B such that 0 is in the
interior of \sigma_{l}(M_{B}) . In fact, we will show that there are Blaschke prod-
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ucts having the maximal possible left spectrum \sigma_{A}(M_{B}) , namely equals \overline{D} .
In order to exhibit these Blaschke products, we will bring out the little
Bloch space

\mathscr{B}_{0}= {f:f is holomorphic on D and \lim_{|z|arrow 1}(1-|z|^{2})|f’(z)|=0}.

In [9], Sarason showed that infinite Blaschke products exist in \mathscr{B}_{0} .
Christopher Bishop [2] and Kenneth Stephenson [10] independently gave
constructions for such Blaschke products. In fact, recently Bishop [3] has
even characterized all Blaschke products in \mathscr{B}_{0} in terms of their zero dis-
tributions. We intend to show that these Blaschke products have maxi-
mal left spectrums, but first we need to recall some preliminary facts.

THEOREM 9. H^{\infty}(D)\cap \mathscr{B}_{0} is the algebra of all bounded holomorphic
functions on D that are constant on every Gleason part of \mathscr{M}(H^{\infty}(D))\backslash D.

This result was due to Michael Behrens [2, p. 64], who originally
obtained it by an argument involving nonstandard analysis. A different
proof using only function theoretic techniques can be found in Paul
Budde’s dissertation [4, pp. 37-38].

From the definition of \mathscr{B}_{0} and Theorem 3, it is clear that \mathscr{B}_{0} does not
contain any (infinite) interpolating Blaschke product. However, it takes
an argument to see that \mathscr{B}_{0} does not contain any finite product of ibp’s.

PROPOSITION 10. In \mathscr{B}_{0} there are no fifinite products of (infifinite)
interpolating Blaschke products.

PROOF. Suppose B=B_{1}\ldots B_{n} is in \mathscr{B}_{0} , where B_{1}\ldots , B_{n} are interpolat-
ing Blaschke products. Let m\in \mathscr{M}(H^{\infty}(D))\backslash D be such that m(B_{1})=0 .
Then m(B)=0. Denote the Gleason part containing m by P(m) . To get
a contradiction, by Theorem 9, it suffices to show that B_{j}|_{p(m)}\not\equiv 0 for j=1 ,
..., n . Then B|_{p(m)}\not\equiv 0 and hence B is not constant on P(m) .

If m(B_{j})\neq 0 , then B_{j}|_{p(m)}\not\equiv 0 . So we may suppose m(B_{j})=0 . By [6, p .
408], since B_{j} is an interpolating Blaschke product, there is a bijective
continuous map L_{m} : Darrow P(m) such that L_{m}(0)=m and B_{j^{\circ}}L_{m} is one-t0-
one on some nonempty open disk D_{r_{J}}=\{z:|z|<r_{j}\} . Then B_{j}|_{Lm(D_{\Gamma j})}\not\equiv 0 .
Therefore, B_{j}|_{p(m)}\not\equiv 0 and the proof is complete \square

Finally we come to the aforementioned result.

THEOREM 11. If B is an (infifinite) Blaschke product in \mathscr{B}_{0} , then
\sigma_{4}(M_{B})=\overline{D}.

PROOF. Since 0p (M_{B}) is a closed set and is contained in \overline{D} by TheO-
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rem 7, it suffices to show that \sigma p(M_{B}) contains D. Let \lambda\in D . Suppose \lambda

\not\in\sigma_{A}(M_{B}) . Using Theorem 7, we can check that (B-\lambda)/(1-\overline{\lambda}B) is a
finite product of interpolating Blaschke products. From Theorem 9, it is
easy to see that \mathscr{B}_{0} is M\"obius invariant. Hence (B-\lambda)/(1-\overline{\lambda}B) is in \mathscr{B}_{0} .
This contradicts Proposition 10 and we are done. \square

4. Questions and comments

We conclude this paper by raising some questions for further investi-
gation.
1 Can any infinite Blaschke product in \mathscr{B}_{0} be uniformly approximated

by interpolating Blaschke products ? Proposition 10 tells us that \mathscr{B}_{0}

contains no finite products of ibp’s. Sarason [4, p. 42] has shown that
any Blaschke product in \mathscr{B}_{0} cannot have an isolated singular point.
In particular, in \mathscr{B}_{0} there are no infinite Blaschke products having
zeros lying on finitely many radii. So to answer this question, new
ideas must be introduced.

2 Is the converse of the second part of Proposition 8 true ? We consider
this question only because the classes of Blaschke products that we
can approximate by ibp’s seem to have low density near the origin in
the left spectrum. Note that this question has an affirmative answer
if and only if question 1 has a negative answer.

3 Are there function theoretic conditions on a Blaschke product B that
are equivalent to having 0 in the interior of \sigma p (M_{B}) ? An answer to
this question will identify those Blaschke products that will be difficult
for us to approximate.

4 Can we approximate Blaschke products with zeros in closed convex
subsets of D\cup\{e^{i\theta_{1}},\ldots,e^{i\theta n}\} by interpolating Blaschke products ? In
view of Theorems 2 and 6, this looks likely to be possible, but the
difficulty is in getting hold of noncluster values arbitrarily close to 0.
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