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On cyclic tournaments

Noboru ITO
(Received January 30, 1991)

Let V be the set of integers 1, 2,..., v and S(v) the symmetric group
on V. Put C=(1,2,...,v). Let W(v) be the set of all subgroups of S(v)
of odd orders containing C.

A complete asymmetric digraph A whose set of vertices is V is also
called a tournament. We identify a digraph with its adjacency matrix.
We also identify a permutation with its matrix representation.

Let A and B be two tournaments of order v. Then B is equivalent to
A if there exists a permutation matrix P such that B=P'AP, where ¢
denotes the transposition. This is a true equivalence relation. If B=A,
then P is called an automorphism of A. The set G(A) of all auto-
morphisms of A forms a group, the automorphism group of A.

A tournament A is called cyclic if G(A) contains C. Let A be a
cyclic tournament of order v. We may regard the first row vector O(1) of
A as the out-neighborhood of the vertex 1. Since A is cyclic, A is com-
pletely determined by O(1). Put v=2k+1 and *=v—i+1 for 2</<k
+1. We call {7,7*} a complementary pair for 2<:<k+1. Choose one
element from each complementary pair. This procedure determines O(1)
and hence A. Thus there exist 2* cyclic tournaments. Let C(v) be the
set of all cyclic tournaments of order v.

Let G be an element of W(v) and H the stabilizer of 1 in G. If we
want to construct a cyclic tournament A such that G(A) contains G, then
we have a restriction on the choice of elements from complementary pairs
imposed by H. Namely if 7 and j* belong to the same orbit of H, then
both of 7 and ;* or none of them have to be chosen. If we do so, then we
see that every maximal element G of W(v) is of the form G=G(A) for
some element A of C(v).

Let v=p be a prime and u(p) the odd portion of p—1, namely p—1=
2°u(p). Then G(p) denotes the metacyclic group of order pu(p) on V.
Since G(p) is maximal in W(p), G(p)=G(A) for some tournament A of
order p.

In the present paper we show the following :
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(i) If any v-cycle of G(A) is a power of C, we can determine the
size of the equivalence class of A in C(v);

(ii) Any maximal element of W(v) is of the form G(p)°G(p.)°...
°G(pr), where v=p1ps...pr is a prime decomposition of v and ° denotes the
Polya composition. For this see [1];

(iii) An element of W(v) of the largest order is uniquely (up to the
conjugacy in W(v)) determined by a certain linear order of odd primes;

and

(iv) Any element of W(v) is of the form G(A) for a certain element
A of C(v).

2.

PROPOSITION 1. Let A and B be two equivalent cyclic tournaments
such that B=P'AP, wherve P is a permutation matrix. Assume that any
v-cycle of G(A) is a power of C. Then P belongs to the normalizer
NKC) of <C>. Put N(KC>)=<C>N(v), where N(v) is the stabilizer of
1 in NKC>). Then N(v) is Abelian of order ¢(v), where ¢ denotes the
Euler totient function. Let ¢(A) be the order of N(v)NG(A). Then the
size of the equivalence class in C(v) to which A belongs equals ¢(v)/p(A).

PrROOF. We have that A=PBP'=PC'BCP'=PC'P'APCP*. So
PCP? belongs to G(A). By assumption PCP® is a power of C. The rest
is obvious.

REMARK 1. The assumption on G(A) in proposition 1 is satisfied, in
particular, if G(A)=<C) or v is square-free. So for certain v it is pos-
sible to have a formula for the number of equivalence classes of cyclic
tournaments.

(i) If v is a Fermat prime, v=2"+1, then each equivalence class
has size v—1 and hence there exist 2*"'"" classes.

(ii) If v and (v—1)/2=F are primes, then, since any tournament A
of order v such that G(A) has order vk is equivalent to the tournament of
quadratic residue (or non-residue) type ([2]), there exist (2*'—1/k)+1
classes.

3.

PROPOSITION 2. Let G be a maximal element of W(v). Then G is
similar to G(p)°G(p2)°...°G(pr), where ° denotes the Polya composition
and v=pib2...Dpr 1S a prime decomposition.

PrOOF. If v is a prime, then our assertion holds good by a theorem
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of Burnside ([4], (11.7)). So assume that v is not a prime. Since G con-
tains C, by a theorem of Schur ([4], (25.3)) G is imprimitive. Let M be a
maximal subgroup of G of index m containing Gi, the stabilizer of 1 in G.
Let core(M) denote the largest normal subgroup of G contained in M.
Then G/core(M) is a permutation group of degree m and of odd order
containing an m-cycle. Since M is maximal in G, by a theorem of Schur
([4], (25.3)) we have that m is a prime. Now we apply an induction argu-
ment with respect to the degree. For the rest we refer to ([3],10.5.5).

REMARK 2. We notice that, under the assumption that G contains a
v-cycle, we have shown the solvability of G without invoking the Feit-
Thompson theorem.

4.

Let P be the set of all odd primes. We introduce a new order in P as
follows: p>q if and only if (qu(q))? ™' >(pu(p))?™".

LEMMA 1. > is a linear ovder.

PrROOF. If p#gq, then (qu(q))’'+(pu(p))*. Now assume that p>q
and ¢>7. Then we have that (qu(¢))"'>(pu(p))*™" and (vu(7))?"'>
(qu(q))"~'. So it follows that (qu(g))* V" ">(pu(p))? """ and that
(ru(#)) T VP D> (0y(q)) 7 V@D Hence we have that (ru(#))?71>
(pu(p))"', namely p>r.

REMARK 3. The following is the sequence of odd primes under 100
in the increasing order using >:3,7,5,11, 13,19, 23, 31, 29, 17, 43, 37, 47, 41,
59, 67,61, 71, 79, 83, 73, 89, 97.

PROPOSITION 3. Let G be an element of W(v) of the largest order.
Then G=G(p1)°G(p%)°...°G(pr), where v=pib2...pr is a prime decomposi-
tion such that pr=p.=... Zpr.

PROOF. The case =1 is trivial. Assume that »=2. Then the
orders of G(p1)°G(p:) and G(p2)°G(p1) are equal to pru(p)(p2u(p2))”* and
D2u(b2)(pru(p))?? respectively. So if pi>p., then the order of G(p1)°G(p2)
is larger than that of G(p2)°G(p:1). Now assume that »=3 and put v=
p1p22z. Then by an induction argument on 7 it is sufficient to compare the
orders of Gi=G(p1)°G(p2)°G(z) and Ga=G(p2)°G(p1)°G(z), where G(z)=
G(p3)°...°G(pr). In particular, we may assume that p1+p.. Let g(2)
denote the order of G(z). Now the orders of Gi and G: are equal to
Dru(p)(pau(p2)g9(2)?2)?t and poul(p)(pru(p)g(2)?')?* respectively. So exact-
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ly as in the case where »=2, we see that the order of G is larger than
that of Go..

REMARK 4. Though G is unique up to the conjugacy in S(v), there
may exist many inequivalent A’s such that G(A)=G.

Let O(7) denote the out-neighborhood of 7, 1=i<v.

LEMMA 2. Let A be a cyclic tournament of ovder v such that the
out-neighborhood O(1) of the vertex 1 consists of 2,3,..., k, where v=2Fk
+1. Then G(A)=<C>.

PROOF. It is enough to notice that O(1)N O(7) contains £—i+1 ver-
tices for 1=<7/<k+1, which implies that the stabilizer of 1 in G(A) is triv-
1al.

REMARK 5. We remark that we have G(A)=<{(C> for most cyclic
tournaments A.

LEMMA 3. Let X and Y be elements of W(v) such that X contains
Y properly. Let X(1) and Y(1) be the stabilizers of 1 in X and Y
respectively. Then X(1) and Y (1) have distinct orbit decompositions on
vV —{1}.

PrROOF. We apply an induction argument on the order v. If v is a
prime, then, by a theorem of Burnside [4,11.7], X(1) and Y (1) are semir-
egular on V—{1} and X(1) contains Y (1) properly. So the assertion is
obvious. If v is not a prime, then, by a theorem of Schur [4,25.3] X is
imprimitive. Let D be a non-trivial block and X(D) and Y(D) the
global stabilizers of D in X and Y respectively. Since Y contains C,
Y(D) is transitive on D. X(1) and Y(1) are the stabilizers of 1 in X(D)
and Y (D) respectively. Then by induction hypothesis the orbit decompo-
sition of Y(1) is a proper refinement of that of X(1) on D—{1}.

PROPOSITION 4. Let W be an element of W(v). Then there exists a
cyclic tournament A of order v such that W=G(A).

ProoF. In §1 we described a procedure to construct a cyclic tourna-
ment A° such that G(A°) contains W. Now assume that G(A°) contains
W properly. Let G(A°)(1) and W(1) be the stabilizers of 1 in G(A°) and
W respectively. Then by the orbit decomposition of V—{1} by
W(1) is a proper refinement of that by G(A°)(1). So by the procedure
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described in §1 we can construct a cyclic tournament A°° such that
G(A°°) contains W and G(A°) contains G(A°°) properly. We may

repeat this process. So eventually we obtain a cyclic tournament A such
that G(A)=W.
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